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Synchronization properties of fully connected networks of identical os­
cillatory neurons are studied, assuming purely excitatory interactions. 
We analyze their dependence on the time course of the synaptic in­
teraction and on the response of the neurons to small depolarizations. 
Two types of responses are distinguished. In the first type, neurons al­
ways respond to small depolarization by advancing the next spike. In 
the second type, an excitatory postsynaptic potential (EPSP) received 
after the refractory period delays the firing of the next spike, while 
an EPSP received at a later time advances the firing. For these two 
types of responses we derive general conditions under which excita­
tion destabilizes in-phase synchrony. We show that excitation is gen­
erally desynchronizing for neurons with a response of type I but can 
be synchronizing for responses of type II when the synaptic interac­
tions are fast. These results are illustrated on three models of neurons: 
the Lapicque integrate-and-fire model, the model of Connor et al., and 
the Hodgkin-Huxley model. The latter exhibits a type II response, at 
variance with the first two models, that have type I responses. We then 
examine the consequences of these results for large networks, focusing 
on the states of partial coherence that emerge. Finally, we study the 
Lapicque model and the model of Connor et al. at large coupling and 
show that excitation can be desynchronizing even beyond the weak 
coupling regime. 

1 Introduction ----------------------

Synaptic interactions between neurons are usually classified as excita­

tory or inhibitory according to the value of the reversal potential of the  
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synapses. However, as observed in Kopell (1988), there is no obvious 
relationship between this classification and the dynamic behavior of a 
network of interconnected neurons. If one focuses on synchronization 
properties of neural systems, a more fundamental classification of the in­
teractions should be in terms of "synchronizing interactions," that favor 
a stable in-phase state (where all the neurons fire at the same time) and 
"desynchronizing interactions" that tend to destabilize this state. 

This paper examines the conditions under which excitatory interac­
tions synchronize a network of neurons that fire spikes periodically. In 
particular, we will relate the synchronization properties to the response 
of the neurons to perturbations of their membrane potential. For this 
purpose we focus on a simple case: a homogeneous and fully connected 
network of excitatory neurons. Moreover we do not take into account 
interaction delays. Some of the results presented in this paper have been 
reported in Hansel et al. (1993c). 

In many cases a small excitatory postsynaptic potential (EPSP) sys­
tematically advances the next spike of the neuron, except when it occurs 
during the period of refractoriness where it has no effect. As shown 
below, this form of response is found, for instance, in simple integrate­
and-fire models and in the model of Connor et al. (1977) . We call such a 
response to EPSPs a response of type I. Using the phase reduction method 
(Ermentrout and Kopell 1991; Kuramoto 1984; Neu 1979), a powerful 
technique that has been applied recently to neural modeling (Ermentrout 
and Kopell 1991; Grannan et al. 1 992; Hansel et al. 1993a,c; Kopell 1988), 
we show that in general two weakly coupled neurons with a response 
of type I do not lock stably in-phase. We then illustrate this desynchro­
nizing effect of excitation on specific models of neurons and show that 
it occurs for synapses with physiologically relevant time constants (for 
non-NMDA synapses). 

If the in-phase state of a pair of neurons is unstable, a network of 
such neurons cannot synchronize fully. Partially coherent states then 
emerge in the network. It is even possible that no coherence can be 
achieved and that the asynchronous state turns out to be stable. We 
give examples of such collective states of large networks, focusing on 
the model of Connor et al., which exhibits "rotating waves" (Kuramoto 
1991; Watanabe and Strogatz 1993) and switching states (Hansel et al. 
1993b). Our study is based on numerical simulations, but it should be 
noted that some properties of these states can be studied analytically in 
the framework of phase reduction (Kuramoto 1984; Monnet et al. 1994; 
Watanabe and Strogatz 1993). 

Beyond the weak coupling limit, our general arguments on the desyn­
chronizing nature of excitation for neurons of type I no longer hold 
and our investigation relies on the study of specific models: namely an 
integrate-and-fire model and the model of Connor et al. For both models 
we find that in an intermediate (but wide) range of coupling strength the 
predictions of phase reduction remain qualitatively valid. However, for 
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stronger coupling, the deviations from this limit become important. For 
the integrate-and-fire model we show analytically that the desynchro­
nizing effect of the excitation is amplified at strong coupling, anti-phase 
locking being achieved even at finite coupling. For the model of Connor et al. our simulations show that if the rise time of the interaction is large 
enough the situation is very similar to what is found for the integrate­
and-fire model. On the other hand, for a short rise time, increasing the 
coupling strength can make the excitation synchronizing. 

Not all the neurons have a response of type I. Another form of re­
sponse is found, for instance, for the standard Hogdkin-Huxley (HH) 
model (Hodgkin and Huxley 1952). There is a region of the limit cycle, 
just after the refractory period, where a depolarization delays the firing 
of the next spike (for reasons that will become clear later, we will say that 
in this region the response is negative). A response of this kind will be 
called type II. We show that at weak coupling the region of negative re­
sponse tends to stabilize the in-phase state. The Hodgkin-Huxley model 
provides an example in which this stabilizing effect is strong enough to 
make fast excitatory interactions synchronizing. For slower interactions 
excitation is once again desynchronizing. 

The paper is organized as follows. In Section 2 we present the basic 
types of models of neurons considered in this study. After recalling 
the phase reduction method our general results at weak coupling are 
established and illustrated on specific examples in Section 3. In Section 4 
the case of large coupling is addressed. Finally, the last section is devoted 
to a discussion. 

2 The Models---------------------

2.1 Conductance-Based Neurons. Conductance-based models 
account for spiking by incorporating the dynamics of voltage-dependent 
membrane currents (see for instance Tuckwell 1988). In this framework, 
the dynamics of a neuron is described by the equation for the membrane 
potential V: 

dV Cdt = Iext - �g;(X;)(V - V;) + Isyn(f) (2.1 )  

where C is the membrane capacitance, and g; and V; are, respectively, the 
voltage-dependent conductance of the ith ionic current and its reversal 
potential. The gating variables of the ith current have been denoted here 
by X; and the model must also specify their relaxation dynamics. The 
synaptic current I syn ( t) is modeled as 

fsyn(f) = -(V - Vsyn)8syn(f) (2.2) 

where Vsyn is the reversal potential of the synapse, and 

8syn(t) = g L f(t - fspike),
spikes 

(2.3) 

3



the summation being performed over all the spikes emitted by the presy­
naptic neurons at times tspike· The synaptic interaction is usually classified 
according to whether Vsyn is larger or smaller than the threshold potential 
Vih, at which the postsynaptic neuron generates spikes. For Vsyn > Vih the 
interaction is called excitatory, while for Vsyn < Vih it is called inhibitory. 
The function f is normalized so that its peak value is 1 ;  g is then the 
maximal synaptic conductance induced by a postsynaptic potential. 

Several forms can be used for the function f (t). A standard choice is 

(2.4) 

The function f is maximum at the peak time tp = [rirz/(r1 - r2)] log 
(ri/r2) and the constant of normalization A then reads: 

A= 
1 

exp [-tp/r1] - exp [-tp/r2] 
(2.5) 

The characteristic times r1 and r2 are, respectively, the decay and rise 
times of the synapse. When r1 = r2 = r one obtains the so-called "alpha 
function": 

et [ t ]f (t) = -;: exp -� (2.6) 

Two well-known conductance-based models considered in this work 
are the Hodgkin-Huxley model and the model of Connor et al. The for­
mer was introduced to account for spike generation in the squid axon and 
relies on two voltage-dependent currents: the sodium current and the de­
layed rectifier potassium current (Hodgkin and Huxley 1952). The latter 
also incorporates an A-current and was introduced to conform to voltage­
clamp data from repetitive walking leg axons of a crustascean (Connor 
et al. 1977). This A-current was subsequently found in many types of neu­
rons (Rogawski 1985). Details on these models are given in the appendix. 

2.2 Integrate-and-Fire Neurons. Another class of models commonly 
used in neural modeling are integrate-and-fire models (Tuckwell 1988). 
These models do not rely on a biophysical description of firing and their 
simplicity makes them more easily amenable to analytical studies than 
conductance-based models (Abbott and van Vreeswijk 1993; Treves 1993; 
Tsodyks et al. 1993). 

In the simplest integrate-and-fire model, the Lapicque model, the 
membrane potential of a neuron satisfies the differential equation: 

dV V 
-d 

= - - + Iext + Isyn(t)
f To 

for 0 < V < () and 

V(tci) = 0 if V(t()) = () 

(2.7) 

(2.8) 
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This last condition corresponds to a fast resetting of the neuron after the 
firing of a spike at time t0; this firing occurs when the membrane potential 
reaches the spiking threshold B. The time constant of the membrane is To
and lext is a bias current that determines the firing rate of the neuron. The 
last term in equation 2.1 is the synaptic current received by the neuron. 
For this model we adopt 

fsyn(t) = g L { (f - fspike) (2.9) 
spikes 

where the function f (t) is given by equation 2.4 and the summation is 
done over all the spikes emitted prior to t by all the neurons presynaptic 
to the neuron we consider. This simple form of synaptic interaction is 
justified as a first approximation for excitatory interactions (g > 0) as 
no description of the spike is incorporated in the model and the driving 
force Vsyn - V remains approximately constant in the subthreshold regime.
Note that the membrane capacitance C was assumed to equal 1 and 
omitted from 2.7. 

One can also introduce in this model a refractory period, if necessary, 
by imposing that V(t) remains equal to 0 for a time T, after the firing 
of a spike. If the neurons are not interacting (g = 0) they emit spikes 
periodically with a period To = T, - To ln(l - e /Iext), for lex! > e. Without 
loss of generality one can assume To = 1, measuring then the time in 
units of To. 
3 The Case of Weak Interaction ______________ _ 

3.1 Reduction to Phase Models. In general, the dynamic equations of 
conductance-based neurons cannot be solved analytically and the study 
of synchronization in networks of such neurons must rely on numerical 
computations. However, if the neurons display a periodic behavior (limit 
cycle), if their firing rates all lie in a narrow range, and if the coupling 
is weak, a reduction to a phase model can be performed that greatly 
simplifies the analysis. 

Let us briefly recall the principle of such a reduction (Ermentrout and 
Kopell 1991; Kopell 1988; Kuramoto 1984). It is based on an averaging 
theorem that enables one to describe the state of each neuron i by a 
phase variable 1/J; (i = 1 ,  . . .  , N, where N is the number of nonlinear 
cycle oscillators in the system) indicating the position of neuron i on 
its limit cycle and to replace the original system of equations for the 
N oscillators by a simpler set of N differential equations that governs 
the time evolution of the N coupled phase variables. This differential 
systems reads 

(3. 1 )  
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where w; is the natural frequency of neuron i, that is, its frequency at 
zero coupling, while r gives the effective interaction between any two 
neurons. r depends only on the relative phase on the two neurons. The 
system is invariant with respect to a global rotation of all the phases, 
that are thus defined up to an arbitrary constant. It is conventional to 
choose the phases so that firing occurs for 1/J; = 0 mod 271". Note that the 
dependence on the relative phases stems from the assumption of weak 
coupling. For phase models at arbitrary coupling the interaction between 
two neurons depends on the values of both phases; the integrate-and-fire 
model studied below provides an example of that situation. 

The effective interaction between the phases is given by 

(3.2) 

This formula can be interpreted as follows. The effective interaction be­
tween the presynaptic neuron j and the postsynaptic neuron i is obtained 
by convolving over one period the synaptic current lsyn( 1/J;, 1/J1), due to the 
EPSPs (or IPSPs) generated by neuron j, and the "response function" Z 
of the target neuron i to these perturbations. The function Z is nothing 
else than the phase resetting curve of the neuron in the limit of van­
ishingly small perturbations of the membrane potential. If Z(ijJ) > 0 a 
small and instantaneous depolarization at 1/J of the neuron will advance 
the next spike; if Z(ijJ) < 0 the next spike will be delayed. To calculate r one must implement numerically the rigorous method described in 
Ermentrout and Kopell (1984) and Kopell (1988) or the more qualitative 
algorithm explained in Hansel et al. (1993a). Note that the 27r-periodic 
function r depends only on the single neuron dynamics. Once this effec­
tive phase interaction is determined it can be used to analyze networks 
of arbitrary complexity. Note also that the introduction of a delay � in 
the interaction is immediate in this formalism: r( 1f1) is just replaced by r(1/J - �). 

The synaptic current in 3.2 is 

(3.3) 

for an interaction described by equation 2.2 and 

(3.4) 

for an interaction described by a current independent of the postsynaptic 
voltage as in the integrate-and-fire model of Section 2.2. In the two cases 
the function gsyn ( 1/J) must take into account all the spikes emitted by the 
presynaptic neuron and has to be computed at the leading order in g. It 
has period 2JT and is defined, for 0 :::; u < 271", by ( e-uf.p, e-uN2 )

gsyn(u) = gA 1 - e-ZrrN1 - 1 - e-2"N2 (3.5) 
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where we have set �J1 = 2Jrr1/T and 7/J2 = 27rrz/T. As all the spikes 
are taken into account the maximum is displaced with respect to the 
maximum off and is given by 

7/Jrl/J2 [7/J1(l-e-2"N1)]7/Jp = 7/J1 - 7/J2 log 7/J2(l - e-21r/1/J2) (3.6) 

This quantity is an increasing function of 7/J1 and 7/J2 and remains bounded: 
7/Jp :::; Jr. The peak of the interaction thus always occurs within the first 
half of the firing period and the limiting value, Jr, is reached for infinitely 
large r1 and r2• 

The reduction to phases is exact only for small frequency dispersion: 
w· -w -'-- « 1 w (3.7) 

where w is the average frequency of the neural population. Another 
condition is that the coupling should be weak enough for averaging to 
be valid. This condition reads: 

E = 8_ « 1 (3.8) w 
The predictions of the phase model are then accurate at leading order in E 
and over times of the order of 1 / E. In addition, phase reduction assumes 
that the coupling is small enough for amplitude effects to be neglected. 
The more stable the limit cycle the weaker this constraint will be, but 
it is difficult to derive quantitative a priori estimates of the validity of 
the phase reduction. However, predictions of phase models often remain 
valid, at least qualitatively, for moderate values of the coupling. This 
will be the case for the examples studied below. 

3.2 A Pair of Identical Neurons: General Arguments. The phase 
locking of two identical and weakly coupled neurons can be easily inves­
tigated in the phase reduction framework. When the coupling between 
the neurons is symmetric, the two neurons are phase locked at large time 
with a phase shift 7/J that satisfies 

(3.9) 

Obviously 7/J = 0 and 7/J = 7r are solutions; they correspond, respec­
tively, to in-phase locking and anti-phase locking. Other zeros of r­
may also exist, that represent out-of-phase lockings. Only solutions that 
are stable with respect to small perturbations, i.e., that also satisfy the 
condition 

dr-d 7/J (7/J) < 0 (3.10) 
can be reached at large time. 
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We now investigate the stability of the in-phase solution for a recip­
rocal excitatory interaction (Vsyn � 0). It is determined by the sign of 

dr- , 1 f2" - , d'ljJ (0) = r (0) = - 27r lo Z(u)gsyn(u)du (3. 11)  
where Z(u) = Z(u) for interactions described by equation 2.9 and Z = 
Z(u)[Vsyn - V(u)] when the interaction is given by equation 2.2. 

3.2.1 Neurons with Type I Response. The simplest response of a neuron 
to depolarizing perturbations is to advance the firing of the next spike, 
outside its region of refractoriness. This corresponds to a response func­
tion Z of type I, nearly equal to 0 during the spike and the absolute 
refractory period, and positive on the rest of the limit cycle. The func­
tion Z has the same shape as Z up to a change of scale of the order of 
Vsyn - Veq where Veq is the potential of the neuron near rest (for interac­
tions described by equation 2.2). This stems from the fact that the driving 
force Vsyn - V(u) does not vary much outside the refractory region. We 
plot in Figure la an example of a type I response function obtained for 
the model of Connor et al. while Figure 1 b displays Z for the same model. 

Let T, denote the length of the refractory region. The only contribution 
to r' (0) will come from the rest of the limit cycle where Z > 0. Therefore:

, 1 12" - , r (0) = - -2 Z(u)gsyn(u)d'lj; 
7f 1f;, (3.12) 

where 'lj;, = 21l"T,/T is the length of the refractory region expressed in 
terms of phase. Let us introduce 1/J* = max('lj;,, 'l/Jp), where 1/Jp is the phase 
at which gsyn reaches its peak value. We have then 

, 1 11/J' 
-

, 1 121' - , r (0) = -2- Z(u)gsyn(u)d'lj! - 2- Z(u)gsyn(u)d'lj; 
7f 1/J, 7f 1/J' (3.13) 

The first contribution to r' (0) is negative and tends to stabilize the in­
phase state while the second is positive and tends to destabilize it. There­
fore the stability of the in-phase locked state will depend on the balance 
between these two terms. 

If 'lj;, > 'l/Jp the stabilizing term disappears. This provides a sufficient 
condition for the in-phase state to be unstable. This situation will be 
encountered, in particular, for interactions with a rise time short with 
respect to T,. We can estimate in such cases how the unstability rate 
depends on T1 and T2 (note that 1/>p varies slowly when T1 or Tz increases). 
At fixed Tz the overlap between Zand g' increases with T1• Therefore r' (0) 
increases also and the in-phase state becomes more unstable. Similarly, 
increasing T2 at fixed T1 enhances the instability of the in-phase state. 

Another general statement, valid even if 1/Jp > 'l/J,, can be made if Z 
reaches its maximum just before the firing of the spike and then drops 
abruptly to 0 (as occurs for the Lapicque model, see below). In that 
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Figure 1 :  (a) The response function Z as a function of time along one cycle 
of the model of Connor et al. The frequency of the neuron is approximately 
57 Hz. The origin of the time scale is set at the firing of the spike. (b) The 
two functions -Z(7f;)[V(1/!) - Vsyn] (solid line) and g5yn(1/J) (dashed line) for the 
model of Connor et al. Sarne frequency as in (a). The scales for both curves are 
arbitrary. The interaction is excitatory (Vsyn = 0). The rise time is T2 = 1 rnsec 
and the decay time is T1 = 3 rnsec. The convolution of these two functions 
yields the effective interaction r of the phase model. 
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case the excitation is always desynchronizing. Indeed, since the function 
g syn ( 'ljJ) is periodic one has

(3.14) 

As g�yn(?f!) > 0 in the interval [O, 'l/ip], the mean value theorem ensures that
for some ?f!; in this interval 

fo1/Jp ��yn(1fl)Z(1jJ)d1jJ = Z('lj!;)fo P g�yn(?f!)d'l/1
Similarly there exists some ?f!i in the interval [1/'Jp, 27r] such that

2 -J,;,; �;yn
1
('1/J)Z(1p)dtj; = Z('lj!�)f,µP gsyn ('I/! )dt/J 

(3.15) 

(3.16) 

Using equation 3.14 and the fact that Z is monotonically increasing we 
have 

(3.17) 

Therefore the desynchronizing contribution to f'(O) is predominant. 
One can rely on a similar argument to prove that if Z is differentiable

everywhere and has only one maximum, an excitatory interaction with 
instantaneous rise is desynchronizing whatever its decay time.1

These results can be extended by continuity. It is clear that the two 
contributions to f'(O) can be comparable only if V'p and the maximum ?f!m 
of Z are not too far apart. Since ?f!P < JT, this implies that excitation can
be synchronizing only if the resetting to 0 of Z is slow and both T1 and T2 are sufficiently large. 

A condition that we have implicitly assumed here is that the inter­
action is not fast enough to take place almost totally in the refractory 
region (Z � 0). Indeed, in that case the effect of the interaction will be
very small and no conclusion can be drawn from the present study. 

Summarizing, we have shown that for neurons of type I an excitatory 
synaptic interaction is desynchronizing when the interaction is not too 
fast (so as not to occur entirely inside the refractory period) and when 

1 If both the interaction and the response function are discontinuous at the time of 
the spike the linear stability analysis cannot be performed. If both discontinuities are 
finite, f(1/;) is continuous at 1jJ = 0 but its derivative is discontinuous at that point. This 
situation occurs in the integrate-and-fire model investigated by Tsodyks et al. (1993). If 
the discontinuity of the interaction is infinite (15 function) the function r is discontinuous 
as occurs, for instance, in the model studied by Kuramoto (1991) and by Mirollo and 
Strogatz (1990). For these two models it has been shown (Kuramoto 1984; Mirollo 
and Strogatz 1990; Tsodyks et al. 1993) that excitation is synchronizing at any coupling 
strength. These results can also be proved in the weak coupling limit using phase 
reduction, although a linear stability analysis cannot be applied in these cases. 
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Figure 2: The response function Z along one cycle of the HH model. The 
frequency of the neuron is approximately 68 Hz. The inset shows the evolution 
of the membrane potential during the oscillation. 

the peak of the synaptic interaction is located sufficiently before the peak 
of the response function. In particular, if the response function presents 
a steep decay after its maximum, excitation is desynchronizing in a very 
large domain (if not for all the values) of the synaptic parameters. 

3.2.2 Neurons with Type II Response. Oscillatory neurons can respond to 
a small and instantaneous depolarization in some region of the limit cycle 
by delaying the firing of the next spike. In that part of the limit cycle, 
the function Z is then negative. The Hodgkin-Huxley model provides 
an example of such a response, as shown in Figure 2. Z displays a 
negative region after the refractory period. This negative response stems 
from the fact that in this region, a depolarization activates the delayed 
rectifier potassium current more than the sodium current, leading to a 
total hyperpolarizing current and a delay in the firing of the next spike. 

In the following, such response functions will be called responses of 
type II. This classification of the responses into type I and type II does 
not exhaust a priori all the possibilities; other types of response might be 
encountered. 
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For response functions of type II, the argument given in the previ­
ous section no longer applies, because, even when the maximum of the 
synaptic interaction occurs inside the refractory region, there is a synchro­
nizing contribution to r'(O) coming from the region of negative response. 
If this negative region is large enough or if the interaction is sufficiently 
fast to occur mostly in that region the integral of equation 3.12 will be 
dominated by this synchronizing contribution and the in-phase state will 
be stable. On the other hand, the destabilizing contribution increases 
with the synaptic time constants r1 and r2; this can lead to a bifurcation 
to a state of out-of-phase locking for slower interactions. 

3.3 Examples. Let us now see some examples to illustrate these gen­
eral considerations. 

The Lapicque model recalled in Section 2.2 is the simplest example of 
a model with type I response. More specifically 

1 
Z(1f;) = -e.PI ext (3.18) 

for 0 ::::; 1f; < 27r; the constant Iext being defined as in Section 2.2. If a re­
fractory period is introduced Z has the above exponential profile outside 
the refractory region and is equal to 0 inside it. In view of the previ­
ous section, excitation is always desynchronizing at weak coupling for 
the Lapicque model. This can be checked by calculating the effective 
interaction r for that model. Indeed, performing the convolution inte­
gral between this function Z and the interaction (equations 3.4 and 3.5) 
according to equation 3.2 one finds 

where t = T01f; /27r ranges from 0 to T0, 
K = gA 1 1 

I IextTo 1 - l/Tj 1 -e-To/T;

(3.19) 

(3.20) 

(j = 1, 2) and the functions f 1 and f 2 are related to the tWO exponential 
terms of the interaction. Inside the refractory period (0 ::::; t ::::; T,) 

fj(f) = e(t-T,)/r1 (e(To-T,)(1-1/r;) _ 1) 
and outside it 

fj(f) = et-T, (e-To/r, -1) + e(t-To)/r1 (eTo-T, __ e-T,/r;)

(3.21) 

(3.22) 

r- has, in addition to unstable in-phase and anti-phase solutions, a sta­
ble out-of-phase solution. At given r2 and T, this out-of-phase solution 
increases with r1 until it reaches anti-phase at a critical value rf (T0), as 
shown in Figure 3. 
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Figure 3: Critical decay time, rf at which the integrate-fire-model at weak cou­
pling reaches anti-phase as a function of the natural period To, for r2 = 0.1 andT, = 0.3T.

We now consider the model of Connor et al., the response function 
of which is displayed in Figure 1 for a neuron oscillating with a pe­
riod T = 17.4 msec (1/J, >:::: 27r/5). We have studied the phase locking of 
two symmetrically coupled neurons for different values of r1 and Tz and 
computed numerically the phase shift between the two neurons at weak 
coupling using the phase reduction method (evaluating equation 3.2 and 
solving equation 3.9). In all the cases studied the neurons lock out-of­
phase, as can be seen in Figure 4. For a given r2 the phase shift increases 
with r1• Anti-phase is reached at finite value of r1• For example, anti­
phase locking is found at r1 = 31 msec for r2 = 0.5 msec, 71 = 11.5 msec, 
for r2 = 1 msec, and r1 = 5 msec for 72 = 2 msec. Similarly the phase 
shift increases with r2 at given r1• It is important to note that, even at 
very large r 1  and r2, the peak of the inti_:raction occurs well before the 
peak of Z (see Fig. lb where the peak of Z occurs well inside the second 
half of the oscillation). That is why excitation is always desynchronizing 
in this model. 

This behavior is qualitatively independent of the frequency of the 
oscillations but at smaller frequencies longer synaptic times will be nec­
essary to achieve a given phase shift. For instance, for a frequency of 
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Figure 4: Dephasing 6 between two coupled neurons (phase model derived 
from the model of Connor et al.) as a function of the decay time r1 for an 
excitatory interaction. Same frequency as in Figure L Three values of the rise 
time r2 are considered (curves from right to left): 0.5, l, and 2 msec. Dots were 
obtained by integration of the full model for r2 = 1 msec and g = 0.05 mS/ cm2 

and show a very good agreement with the prediction of the phase model. 

18 Hz and a rise time of r2 = 2 msec the transition to anti-phase occurs 
at r1 � 9.1 msec, which corresponds to 1/Jp = 1.04. 

As an example of type II response function we consider the HH model. 
This model has been studied in Hansel et al. (1993a,c) and here we simply 
summarize the results. In-phase synchronization of a pair of neurons is 
achieved for low firing rates or small synaptic time constants, because 
the condition mentioned above is satisfied: the negative part of the re­
sponse function is large enough to dominate the integral of equation 3.12. 
When the period of the neurons decreases or the duration of the synap­
tic interaction increases, a pitchfork bifurcation to two symmetric stable 
out-of-phase states occurs. For a frequency of 68 Hz and a rise time r2 = 2 msec the bifurcation takes place at rf � 5.1 msec (Hansel et al. 
1993c). For r2 = 0 (instantaneous rise of the interaction) the bifurcation 
occurs at rf � 10 msec. Beyond this bifurcation, in-phase synchrony is 
lost and excitation becomes desynchronizing. It is interesting to note 
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that this bifurcation occurs even for synaptic interactions that rise very 
fast. However, the bifurcation point rf is a decreasing function of r2, as 
expected from the argument of the previous section. 

Another interesting consequence of the negative response region is 
that the firing rate of a pair of identical HH neurons decreases when the 
coupling increases. This effect can be understood using phase models. 
The possibility of such a paradoxical reduction of the firing rate by exci­
tatory coupling has been suggested in Kopell (1988). More details about 
this effect in the HH model can be found in Hansel et al. (1993a). 

3.4 Large Networks. In this section we investigate the dynamics of 
large and fully connected excitatory networks neurons at weak coupling. 
We shall restrict ourselves to the model of Connor et al. and shall illustrate 
on this example the consequences of the out-of-phase locking of pairs 
of neurons on the collective properties of large networks. One expects 
intuitively that if in-phase locking is unstable for pairs of neurons, full 
synchrony will not be achieved in the network. This instability of the 
in-phase state is exemplified in Figure 5 for a network of 100 neurons 
when g = 0.1 mS/ cm2 (numerical integration of the equations for the full
model). At time t = 0, the network is almost fully synchronized in-phase. 
This synchrony is destroyed at later times by the excitatory interactions 
as indicated by the dispersion of the firing times of the neurons [see also 
Pinsky (1994) for another example of instability of the fully synchronized 
state in a network of excitatory neurons]. It can be proved easily in the 
framework of phase reduction that for any network of excitatory neurons 
such an instability occurs if I''(O) > 0, whatever the connectivity. 

In such situations the network is frustrated as any two neurons tend 
to lock with a phase shift 1jJ =!= 0 and these constraints cannot be all 
satisfied simultaneously. A large network then settles in a state of partial 
synchrony. Different types of partially coherent states may occur; in the 
framework of phase reduction they can be characterized by the nature 
(singular or continuous) of the one oscillator probability density P(¢, t) 
and its time dependence. These states can exhibit a large degeneracy. 
It is a major issue to determine which type of states occur generically. 
In the following we will give examples of partially coherent states that 
occur for the model of Connor et al. A more complete study of this issue 
is deferred to another paper (Monnet et al. 1994) where we will use phase 
reduction methods to show that these states should be generic in a broad 
class of models. 

3.4.1 Rotating Wave States. Among the possible collective states of par­
tial synchrony that can exist, an important and wide class consists of the 
so called "rotating waves." Such collective states have been introduced 
in Kuramoto (1991) and Watanabe and Strogatz (1993). They correspond 
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Figure 5: Firing times for a fully connected network of 100 neurons with ex­
citatory interactions (model of Connor et al., r1 = 3 msec, r2 = 1 msec, and g = 0.1 mS/cm2) presented as a raster-like display. Neurons were convention­
ally l abeled from 1 to 100 (ordinate). Each dot corresponds to the firing of a 
spike by one neuron. 

to a one phase probability distribution: 

P(1/J, t) = P(1; - !tt) (3.23) 

that is continuous, even in the absence of noise, and is periodic in time 
with a frequency fl. The distribution can be fully characterized by defin­
ing the order parameters (n 2: 0): 

1 N Rn(t) = - I:eimPk(t) N k=I 
(3.24) 

In large networks, these quantities are the Fourier coefficients of the phase 
distribution at time t. The moduli of the Rn are constant in time and the 
dependence on time of their arguments is 

arg Rn = nm + o:n (3.25) 

where the o:n are some constant phase shifts. The degree of phase coher­
ence across the network can be measured by IR1 ) . More generally, the 
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/R11 I measure the tendency of the neurons to cluster into n subpopula­
tions that spike coherently. Note that the fully synchronized state and 
the asynchronous state are particular forms of rotating waves. They cor­
respond respectively to Rn= 1 for all n [distribution P('lj!, t) = 8(1/! - Qt)] 
and Rn = 0 for all n [P( 'lj!, t) = l/27r]. Note also that if only a finite num­
ber of Fourier modes are retained to describe the effective interaction, 
rotating waves can be written in terms of the same number of (complex) 
order parameters. 

An example of rotating wave state (with frequency 0 � 62 Hz) can 
be found in the phase model derived from the model of Connor et al. 
for T1 = 3 msec and T2 = 2 msec.2 The firing pattern reached at large
time is shown on Figure 6a for almost fully synchronized initial condi­
tions. Similar patterns are obtained for other initial conditions (close to 
the asynchronous state or to a 2-cluster state). The time dependence of 
/R1 I is plotted in Figure 7, showing that at large time the same value 
fR1 I � 0.31 is reached for the different initial conditions we considered. 
We have checked that the IRnl (up to n = 4) are also converging at large 
time to constant values that are the same for these three types of initial 
conditions. This final state has therefore a large basin of attraction. An­
other characteristic of this rotating wave is that cross-correlations of pairs 
of neurons display phase shifts that vary from pair to pair. These dephas­
ings are a consequence of the frustration present in the network. Numer­
ical integration of the full system of equations shows at large time a par­
tially synchronized state, similar to the rotating wave of the phase model. 
This is illustrated on Figure 6b, where the firing pattern of a network of 
100 neurons is displayed for the same set of parameters as above. 

3.4.2 Cluster States and Switching States. In the previous section we saw 
that the system could overcome frustration by setting in a state with a 
continuum of dephasings (rotating wave). Conversely, the network may 
settle in cluster states, where groups of neurons display full synchrony. 
In an n-cluster state (Golomb et al. 1992; Kaneko 1990; Okuda 1993) the 
network breaks into n groups with a fraction p; (i = 1, . . . , n) of the 
neurons in group i. In each group, all the neurons are locked in-phase. 
The different groups display nonzero phase shift that may depend on 
time. The distribution corresponding to this state is singular and can be 
written 

n 
P('lj!, t) = LP;D['I/! - 1/!;(t) - Of] (3.26) 

i=l 
where the functions of time 'lj!;(t) are the positions of the clusters. 

For 2-clusters the phase shift �12 = 1/!1(t) - 1/!2(t) between the two 
groups is constant in time. The linear stability analysis of a general 2-

2This model was obtained by truncating at order 4 the Fourier expansion of the 
interaction function r. 
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Figure 6: Firing times for a fully connected network of 100 neurons with ex­
citatory interactions (model of Connor et al., r1 = 3 msec, r2 = 2 msec, and g = 0.1 mS/cm2), starting from an almost synchronized initial condition. (a) For 
the phase model derived at weak coupling. (b) For the full model. 
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Figure 7: Absolute value of the first order parameter R1 for the phase reduction 
of the model of Connor et al. Interaction is excitatory and characterized by 
T1 = 3 msec and T2 = 2 msec. Different initial conditions are considered: fully 
synchronized (solid line), random (dashed line), and two-cluster (dot-dashed 
line). 

cluster state can be performed and the eigenvalues expressed in term of 
derivatives of rat 0 and ±�12 (Hansel et al. 1993b; Okuda 1993). 

For the model of Connor et al. random initial conditions lead to a 
rotating wave when T1 = 3 msec and Tz = 1 msec. However, for other 
initial conditions simulations show a rapid convergence to a 2-cluster 
state (Figure 8a). The same behavior is found for the corresponding 
phase model. A remarkable point is that the stability analysis of the 2-
cluster states of the phase model reveals that they are linearly unstable. 
At first sight, it seems paradoxical that the dynamics may lead to an 
unstable state. However, similar phenomena have been observed for 
other networks of coupled neurons and have been explained in terms of 
heteroclinic loops between two 2-cluster states (Hansel et al. 1993b). It is 
then the pairs of connected 2-duster states that constitute stable states. 
As in this previous work, adding a very small noise induces periodic 
switching between 2-duster states, i.e., a quasiperiodic behavior of the 
network. Periodic switching also occurs in the full model, as illustrated 
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on Figure 8b. The order parameters Rn are not constant in time as they 
were for rotating wave states, but display oscillations with a period that 
depends logarithmically on the variance of the noise (Hansel et al. 1993b; 
Stone and Holmes 1991). 

3.4.3 The Asynchronous State. When the frustration is too strong the 
network may set in a completely asynchronous stable state where the 
number of neurons spiking in a given time interval is constant in time. At 
weak coupling, this state always exists as can be shown in the framework 
of phase reduction. Expanding the effective phase interaction in Fourier 
modes: 

00 f('l/i) = 2: an cos (mP) + bn sin (mp) (3.27) m=O 
it can be proved (Kuramoto 1984; Strogatz and Mirollo 1991) that the 
asynchronous state is stable iff bn > 0 for all n. Note that the stability 
of the asynchronous state implies the stability of anti-phase locking for 
a pair of neurons; however, the converse is not true. 

In the model of Connor et al. phase reduction predicts, for neurons 
spiking at 57 Hz and T2 = 2 msec, that the asynchronous state becomes 
stable above T1 � 7.5 msec. Numerical integration of the full system of 
nonlinear differential equations describing this network is in agreement 
with this prediction. This has been checked, for T1 = 8 msec, T2 = 2 msec 
(tP � 3.6 msec), by comparing the time fluctuations of the average activity
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Figure 8: Firing times for a fully connected network of 100 neurons with ex­
citatory interactions (model of Connor et al., T1 = 3 msec, T2 = 1 msec, and 
g = 0.1 mS/cm2).  (a) Without noise, for a random initial condition. Continued
next page. 
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Figure 8: (b) With noise when the initial condition is a two-cluster state. 
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S(t) (i.e., the fraction of neurons emitting a spike at time t) for different 
sizes of the network. Indeed, our simulations show that the fluctuations 
decay to zero like 1 / v'N as expected in the asynchronous state. 

4 Beyond Weak Coupling -------·---------

In this section we investigate the phase locking of a pair of identical ex­
citatory neurons with response of type I, without restricting ourselves 
to the weak coupling limit. We examine whether in-phase locking can 
be recovered at high coupling. This could be due to amplitude effects, 
or phase effects that lie beyond the averaging framework of phase re­
duction. We first investigate analytically an integrate-and-fire model in 
which amplitude effects are totally absent. Then we consider the model 
of Connor et al. that displays both phase and amplitude effects. 

4.1 Integrate and Fire Neurons. This model is actually a pure phase 
model due to the absence of amplitude effects, but it is only at weak 
coupling that the interaction between neurons is a function of the phase 
difference. However, this simple model can be studied analytically at any 
coupling. We shall present here the results obtained when no refractory 
period is taken into account and, for the sake of conciseness, we shall 
just give an outline of the computations involved. 

At coupling g, two identical integrate-and-fire neurons converge to a 
phase locked state characterized by a firing period T(g) and a time shiftfJ between the firing times of neuron 1 and neuron 2. Integrating the 
dynamics over one cycle, the periodicity condition leads to two equations 
that determine T and fJ (r0 = 1):

Iext(l -e-r) + e-T for e1g1 (t)dt () 
() 

where 

05,t<T - b 
T-05,t<T 
-b 5: t < 0 

05,t<T - b 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

We display in Figure 9 the numerical solution of these equations for r1 = 0.3, r2 = 0 . 1, () = 1, Iext = 1.1 (the period for the uncoupled neurons 
is then T0 = 2.4). Besides the two trivial solutions fJ = 0 and fJ = T /2 an 
out-of-phase solution exists. The corresponding phase shift starts at g = 0 
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Figure 9: Dephasing as a function of the coupling for a pair of integrate-and-fire 
models in mutual excitatory interaction (ri /ro = 0.3 and r2/ro = 0.1). 

from a finite value and increases with the coupling strength; anti-phase 
is reached at a finite value: g � 1.05. 

The stability of these different solutions can be investigated in the 
following way. Since the synaptic response is the difference of two expo­
nentials, the interaction term g1 (t) satisfies the second order differential 
equation: 

(4.5) 

where a =  l/r1 + l/r2, (3 = l/r1r2, and the summation on the right-hand 
side is performed over all the spikes emitted by neuron 2 at times tspikes 
prior to t. The dynamics of neuron 1 can then be rewritten as 

dV 
-V + Iext + 81 (4.6) 

dt 
dg1 g1 (4.7) 
dt 

-- + z1 Tz 
dz1 Z1 I: (4.8) 
dt 

-- + gA 8(t - tspike)TJ 
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and we can do likewise for neuron 2. The interactions between the neu­
rons are thus embodied in variables g; and z; that are local in time. We 
can then derive, by integrating these equations, a six-dimensional map­
ping that associates to the pth spiking times t�1) and t�2) of neurons 1 and
2 and the values of the variables g1, z1, g2, and z2 at those times, the
next spiking times t��1 and t��1 , and the values of the g; and z; at those
later times. Periodic solutions of the dynamics are fixed points of this 
mapping and their linear stability can be investigated by linearizing the 
mapping. Due to the global time invariance of the system, 1 is always 
an eigenvalue. If all the other eigenvalues are of modulus smaller than l, the solution is linearly stable; otherwise it is unstable. 

Applying this method to the present case shows that for g > 0 the in­
phase state is unstable on its whole domain of existence [it disappears, as 
well as the anti-phase state, at g =:: 1.93 where the period T(g) vanishes]. 
The intermediate solution is always stable and the anti-phase state is un­
stable at low g and becomes stable when it merges with the intermediate 
solution. Qualitatively similar results were found for all the values of r1 and r2 we have considered. The in-phase locked state was always 
unstable and a stable anti-phase state was achieved at large but finite g. 

In a recent work van Vreeswijk et al. (1994) studied the Lapicque model 
when the time course of the synapse is described by an a function. This 
is a special case of the interaction we have used. Their conclusion is that 
excitation is desynchronizing in agreement with our results. 

As a consequence, a large network of excitatory integrate-and-fire 
neurons cannot synchronize in-phase even at finite coupling strength 
[except if the interaction is instantaneous (Mirollo and Strogatz 1990)] .  
This fact was also found by Tsodyks et al. (1993) and the stability of the 
asynchronous state that may then arise was recently examined (Abbott 
and van Vreeswijk 1993; Treves 1993). Note also that at high coupling 
(T small) and given r1 = 0.3 the in-phase solution remains unstable even 
for very small values of r2 (a real eigenvalue is larger than 1); this was 
checked for r2 as small as 10-3. Therefore even a very fast rise of the 
interaction cannot stabilize in-phase synchronization. 

4.2 The Model of Connor et al. For the model of Connor et al., at 
large coupling strength, the phase shift between two neurons depends 
drastically on the synaptic time course. This is illustrated in Figure 10, 
for a fixed decay time constant r1 = 3 msec. The results are qualitatively 
different depending on the value of the rise time r2. For r2 = 1 msec, the 
system locks in phase above 2.6 mS/ cm2 but for r2 = 2 msec the phase
shift between the two neurons increases and anti-phase is reached at 
g � 1.3 mS/cm2. This behavior is similar to what we have found above
for the integrate-and-fire model. In the first case, large networks are 
expected to synchronize in phase at high coupling. This is confirmed by 
simulations: for g above 2.6 mS/cm2 full synchrony is achieved at a time 
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Figure 10: Dephasing 8, for the model of Connor et al., as a function of the 
coupling for a pair of excitatory neurons. Here T1 = 3 msec, while T2 = 2 msec
(dashed line) or T2 = 1 msec (solid line).

of the order of 100 msec. In contrast, for T2 = 2 msec and g = 1.3 mS I cm2 
the system stabilizes in a symmetric three-cluster state. In this state the 
network is broken into three similar groups of neurons. In each group all 
the neurons are locked in-phase while the phase shift between the clusters 
is T /3. Note that a stability analysis grounded on phase reduction reveals 
that this state is unstable at weak coupling. Clustering has also been 
found recently in models of thalamic (Golomb and Rinzel 1994; Golomb 
et al. 1994). In the present model it is found only in the strong coupling 
regime. 

5 Conclusion----------------------

It has been proposed in Kopell (1988) that synaptic interactions should 
be classified as synchronizing or desynchronizing rather than excitatory 
or inhibitory when dealing with synchronization in systems of neurons. 
The results of the present work support this point of view since we have 
shown that the time course of the synaptic interaction plays a role as 
significant as its excitatory or inhibitory nature. To understand collec-
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tive states of neural systems, one cannot separate the synaptic properties 
from cellular properties. This stands out clearly in our study, since the 
synchronizing effect of excitation was shown to depend on the response 
of the neurons to perturbations. 

The main result of this work is the fact that for neurons with type I 
response, excitation is desynchronizing in a large range of synaptic pa­
rameters that includes physiologically realistic values. Even if the synap­
tic times are very short the interaction is desynchronizing for this type of 
neuron. In contrast, for neurons of type II sufficiently fast excitation can 
be synchronizing. These results have been based on general arguments 
valid at weak coupling. The study of specific examples has allowed us 
to extend it to intermediate values and even in some cases to strong val­
ues of the coupling strength. We have also given examples of some of 
the consequences of these results for the dynamics of a large network 
of identical excitatory neurons. The trend of the neurons to lock out­
of-phase induces frustration in the network that settles then in partially 
coherent states, such as rotating wave states. An important characteris­
tic of these rotating waves is that the activities of the neurons are then 
correlated with phase shifts. When the frustration effects in the network 
become too strong, a transition to the completely asynchronous state can 
take place in spite of the homogeneity of the network and the absence of 
external noise. 

In this paper we have focused on excitatory interactions. However, 
the reduction to phase models can also be used for predicting the effect of 
inhibitory synapses. For neurons of type I, one can show that under very 
general conditions inhibition can be synchronizing, leading to a bistability 
where both the in-phase locked state and the anti-phase locked state of a 
pair of identical inhibitory neurons are stable. If this synchronizing effect 
is sufficiently strong (for instance for fast synapses), the anti-phase can 
even lose stability and the in-phase state is then the only stable state of 
locking. Similar results have been found for an integrate-and-fire model 
in van Vreeswijk et al. (1994). A more systematic study of this effect and 
its consequences for large networks will be published elsewhere (Hansel 
et al. 1994). 

We have considered only large homogeneous and fully connected net­
works. An important issue is to assess the effect of the heterogeneities 
found in biological situations: dispersion of neural characteristics (mem­
brane time constant, ionic conductances etc.), various sources of noise, 
connectivity pattern. It would be very interesting to determine whether 
these can counterbalance to some extent the desynchronizing effect of 
excitation by effectively reducing the frustration in the system (Hansel 
and Mato 1993; Tsodyks et al. 1993). This would give some insight on the 
ubiquity of partially coherent states and phase shifts in cross-correlations 
for biological systems. 

Finally let us remark that response functions are amenable to experi­
ments (Reyes and Fetz 1993a,b). It would be very interesting to determine 
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the responses of neurons in biological systems where collective effects 
have been observed. Are type I responses representative? If not, this 
would, for instance, question the relevance of integrate-and-fire models 
for modeling such systems. In particular, such observations would be 
very interesting for central pattern generators (CPGs). Can synchroniza­
tion properties in such systems be related to the response function of 
the neurons? One may also wonder whether the type of response can 
be modified by neuromodulatory effects leading to different patterns of 
synchrony. If so, this could have consequences from the functional point 
of view. 

The Hodgkin-Huxley Model. The HH model provides the simplest 
framework to describe spike generation in a real biological situation, 
namely the squid's giant axon. An HH neuron is described by a set of 
four variables X = (V, m, h, n) where V is the membrane potential, m and 
h the activation and inactivation variables of the sodium current, and 
n the activation variable of the potassium current. The corresponding 
equations read (Hodgkin and Huxley 1952): 

C
dV 

dt 
I - gNam3h(V - VNa) - gKn4(V - VK) - g1(V - V,) (A.1 )  

dm moo(V) - m 
(A.2) 

dt Tm (V) 

dh hoo(V) - h 
(A.3) 

dt Th (V) 

dn noo(V) - n 
(A.4) 

dt T,, (V) 

I is the external current injected into the neuron. It determines the neu­
ron's firing rate. The parameters gN., gK, and g1 are the maximum con­
ductances per surface unit for the sodium, potassium, and leak currents, 
VNai VK, and Vi are the corresponding reversal potentials, and C is the 
capacitance per surface unit. For the squid's axon typical values of the pa­
rameters (at 6.3°C) are VNa = 50 mV, VK = -77 mV, V, = -54.4 mV, gNa = 
120 mS /cm2, gK = 36 mS/cm2, g1 = 0.3 mS/cm2, and C = 1 µF/cm2• The 
functions m00(V), h00(V), and n00(V) and the characteristic times (in milli­
seconds) Tm, Tn, Th, are given by x00 (V) = ax/(ax + bx ) ,  Tx = 1/(ax + bx) with x = m, n, h and am = 0.1 (V+40) / { 1 - exp[(- V-40)/10] }, bm = 4 exp[(-V-
65)/18] ,  ah = 0.07 exp[( - V  - 65)/20], bh = 1 /{1  + exp[(- V  - 35)/10] }, 
a,, = 0.01 (V + 55)/ {1  - exp[( - V  - 55)/10] }, b,, = 0.125 exp[( - V  - 65) /80] . 

For small values of I the system reaches a stable fixed point (Veq = 
-65 mV for I =  0 µA/cm2). At 11 = 9.78 µA/cm2 the system undergoes 
an inverted Hopf bifurcation to the spiking regime. This behavior agrees 
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with the electrophysiological observation on the squid's axon that the 
oscillations start with finite amplitude and frequency. The periodic emis­
sion of spikes stops at 12 = 154.5 µA/cm2, where the fixed point becomes
again stable. 

The Model of Connor et al. The model of Connor et al. (1977) in­
corporates, in addition to the sodium and delayed rectifier potassium 
currents of the HH model, an A current and displays a much wider 
range of firing frequency than the Hodgkin-Huxley model. It is well 
known that the firing rates (from 50 to 120 Hz) that are achieved by the 
Hodgkin-Huxley model with usual parameters are much higher than is 
commonly observed in other preparations. On the basis of numerous 
observations, the so-called A current is often considered to widen the 
frequency range. Indeed this potassium current is characterized by an 
inactivation that is much slower than its activation and it will play a ma­
jor role when one tries to depolarize a neuron starting from a situation 
of hyperpolarization. The slow deinactivation of the inward A current 
will then tend to impede fast membrane depolarization and firing rates 
ranging from 0 to 300 Hz are thus obtained in the model of Connor et al. 
with a linear current-frequency relation at low frequencies. The role of 
the A current in low frequency spiking was recently investigated in detail 
by Rush and Rinzel (1994). 

The parameterizations of the sodium and delayed rectifier potassium 
currents for the HH model and the model of Connor et al. are very similar. 
Parameters for these currents are V Na = 55 m V, V K = -72 m V, V, = -17 mV, 8Na = 120 mS /cm2, gK = 20 mS/cm2, g1 = 0.3 mS/cm2, and 
C = 1 jtF/cm2• x00(V) = ax/(ax + bx), Tx = 1/ (ax + bx) with x = m, n, h and am = 0.l(V + 29.7)/{1 - exp[(-V - 29.7)/10] }, bm = 4 exp[(-V - 54.7)/18] ,  ah = 0.07 exp[(-V - 48)/20], bh = 1 /{ 1  +exp[(-V - 18)/10] }, an = 0.01 (V + 46.7)/{1 - exp[(-V - 46.7)/10] } ,  bn = 0.125 exp[(-V - 56.7)/80] . The A 
current is described in a similar way: 

IA -gA (V - VA)A3B 
dA A)O(V) - Adt TA(V) 
dB B00(V) - B 

where 
dt T5 (V) 

Aoo(V) 0.0761 exp[(V + 94.22)/31 .84] [ r3 1 + exp[(V + 1 . 17)/28.93] 
TA (V) 

Boo(V) 
0 3632 1 .158 

· + 1 + exp[(V + 55.96)/20.12] 
1 

[l + exp[(V + 53.3)/14.54]] 4 

(5. 1 )  
(5.2) 
(5.3) 

(5.4) 
(5.5) 
(5.6) 
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( - 1 2.678 78 V) - ·24 + 1 + exp[(V + 50)/16.027] (5.7) 
The reversal potential VA = -75 m V is slightly different from V K and the 
conductance gA is set here to 47.7 mS/cm2. The only difference with the 
parameterization of Connor et al. (1977) is that we did not introduce the 
temperature scaling factor in the kinetics of activation and inactivation 
variables. 
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