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ABSTRACT

The recognition of human actions in video streams is a challenging task in computer vision, with cardinal applications in e.g.
brain-computer interface and surveillance. Deep learning has shown remarkable results recently, but can be found hard to use
in practice, as its training requires large datasets and special purpose, energy-consuming hardware. In this work, we propose a
photonic hardware approach. Our experimental setup comprises off-the-shelf components and implements an easy-to-train
recurrent neural network with 16,384 nodes, scalable up to hundreds of thousands of nodes. The system, based on the
reservoir computing paradigm, is trained to recognise six human actions from the KTH video database using either raw frames
as inputs, or a set of features extracted with the histograms of oriented gradients algorithm. We report a classification accuracy
of 91.3%, comparable to state-of-the-art digital implementations, while promising a higher processing speed in comparison to
the existing hardware approaches. Because of the massively parallel processing capabilities offered by photonic architectures,
we anticipate that this work will pave the way towards simply reconfigurable and energy-efficient solutions for real-time video
processing.

1 Introduction

In recent years, human action recognition has become one of the most popular research areas in the field of computer vision1.
The driving force of this research field are the potential applications, which can be found in various areas such as surveillance,
control, and analysis2. Surveillance is concerned with tracking one or several subjects over time and detecting specific actions.
A typical example is the surveillance of a parking lot for the prevention of car theft. Applications concerning system-control
make use of the captured motions to provide control functionality in games, virtual environments, or to control remote devices3.
The detailed automatic analysis of motions could be used in clinical studies of e.g. orthopedic patients, or to help athletes
improve their performance2.

The recognition of human activities from video sequences is a challenging task due to numerous problems, such as
background clutter, partial occlusion, changes in scale or viewpoint, lighting, and appearance4. Deep learning, after being
successfully applied to speech recognition, natural language processing and recommendation systems, has been recently
introduced in the video-based human action recognition research field1. The numerous advantages of these hierarchical
approaches – raw video inputs, automatically deduced features and recognition of complex actions – attracted much interest
from the community. However, these approaches also have several drawbacks, such as the need of (very) large datasets,
the non-trivial tuning of the hyperparameters, and time- and energy-consuming training process, which commonly requires
dedicated high-end hardware such as graphical processing units (GPU).

In this work, we propose an optical signal processing system for classification of video-based human actions. The idea of
optical computing has been investigated for decades as photons propagate without generating heat or signal degradation due to
induction and capacitive effects, and thus promise a high level of parallelism in e.g. optical communications. Neural networks
would heavily benefit from parallel signal transmission, which, as shown by the increasing usage of optical interconnects
in modern computing systems, is one of the strong suits of photonics. An optical approach could thus allow one to build
high-speed and energy-efficient photonic computing devices.

Our experimental optical system implements a shallow recurrent neural network under the so-called reservoir computing
paradigm. Reservoir Computing (RC) is a set of machine learning methods for designing and training artificial neural
networks5, 6. The idea behind these techniques is to exploit the dynamics of a random recurrent neural network to process time
series by only training a linear output layer. The resulting system is significantly easier to train: instead of the entire network,
only the readout layer is optimised by solving a system of linear equations7. Furthermore, as less parameters are inferred during
training, the network can be trained on significantly smaller datasets without the risk of overfitting. The performance of the



numerous experimental implementations of reservoir computing in electronics8, optoelectronics9–12, optics13–16, and integrated
on chip17 is comparable to other digital algorithms on a series of benchmark tasks, such as wireless channel equalisation5,
phoneme recognition18 and prediction of future evolution of financial19 and chaotic20 time series. Finally, it was shown that the
readout layer of photonic reservoir computers can be implemented optically and trained using a digital micro-mirror device21.

In this paper, we present an optoelectronic reservoir computer, inspired by Refs.21, 22. The system is based on the phase
modulation of a spatially extended planar wave by means of a spatial light modulator (SLM). Our scheme offers a notable
parallelisation potential through simultaneous optical processing of the nodes of the reservoir computer, while the physical
resolution of the SLM defines the maximal network size. This allows for a significantly increased scalability of the network,
which is vital for successfully solving the challenging tasks in computer vision. The experimental setup can accommodate a
reservoir of 16,384 nodes, while the physical limitation of the concept is set to as high as 262,144 neurons. The input and the
output layers, as well as the recurrence of the network, are realised digitally in this work.

The system is benchmarked on the popular KTH database23, which contains video recordings of 6 different motions
(walking, jogging, running, boxing, hand waving, and hand clapping) performed by 25 subjects. At the pre-processing stage,
the histograms of oriented gradients (HOG) algorithm24 (described later) is used to extract spatial and shape information from
individual video frames. The photonic reservoir computer is used to classify the 6 motions given the resulting HOG features.

The setup is evaluated both experimentally and in simulations. The numerical model was design to mimic the experiment as
accurately as possible. It is based on the same nonlinearity, trained and tested on the same data, and the hyperparameters are
optimised in the same way. We investigate the scalability of our approach with network sizes ranging from 1,024 to 16,384 nodes
and report classification accuracy as high as 92% which is comparable to the state-of-the-art rates 90.7%−95.6% achieved
with far more complex and demanding architectures implemented on noiseless digital processors1. This work thus shows that a
challenging computer vision task can be efficiently solved with a simple photonic system. It represents a successfull first step
towards a video processing system with electronic pre-processing stage (HOG features) and a fully-optical reservoir computer,
that benefits from the intrinsic parallelism of photonics, and thus offers a highly-scalable and, potentially, energy-efficient
neural network.

2 Results
Before presenting the results of this study, we introduce the video-based human action classification task in the context of
reservoir computing, and then present the experimental setup. The theory of reservoir computing can be found in the Methods
section.

2.1 Classification of human action with a reservoir computer
The principles of the human action recognition task in the context of reservoir computing are illustrated in Fig. 1. In this
work, we used the popular KTH database of human actions23, publicly available online, which consists of video recordings
of 6 different motions (walking, jogging, running, boxing, hand waving, and hand clapping) performed by 25 subjects. In
particular, we focus on the first scenario “s1”, containing outdoor videos shot over uniform background (illustrated in Fig. 4a).
Each subjects performs each motion 4 times, which results in a dataset of 600 video sequences of variables lengths, ranging
from 24 to 239 frames. More details on the video properties of the dataset can be found in the Methods section. All videos
are concatenated together and split into individual frames, giving the raw video stream (see Fig. 1(a)), carried forward to the
pre-processing stage (Fig. 1(b)).

Feature extraction is a common approach in computer vision to provide the classification system, in this case – a photonic
reservoir computer, with the most relevant information. We tested our reservoir computer with raw frames, but the classification
errors were significantly higher than state of the art. Therefore, we turned to the histograms of oriented gradients algorithm,
introduced by Dalal and Triggs24. There, an intra-frame spatial gradient is computed for each pixel and then pooled into one
common gradient histogram. Such HOG features are widely used in computer vision and image processing with the intention
of aiding the localisation and detection of objects (see e.g.25). This method is particularly well-suited for pedestrian detection
(as well as a variety of common animals and vehicles) in static imagery. The main idea is that local object appearance and shape
can often be expressed well enough by distribution of local intensity gradients or edges’ directions. The HOG algorithm is
further discussed in the Methods section. To reduce the number of resulting HOG features and simplify computations, we apply
the principal component analysis (PCA)26, 27 based on the covariance method28 . We choose to keep the first 2,000 components
(out of 9,576), who’s eigenvalues account for 91.6% of the total variability in the data.

The training of the reservoir computer, illustrated in Fig. 1(c), was performed frame-wise on a subset of 450 video sequences,
each one containing a single motion sequence; 150 sequences were used to evaluate the performance of the system. Figure 1(d)
illustrates the 6 binary classifiers, introduced to distinguish the motions: 6 output nodes have been trained to give a “1” for each
frame of the correct motion, and “0” for the other frames. The winner-takes-all approach, shown in Fig. 1(e), is used to classify
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Figure 1. Scheme of principle of how our reservoir computer solves the human action classification task. The video input
stream (a) is a concatenation of the 600 video sequences available in the KTH dataset; 450 sequences were used for training,
and 150 for testing. The input stream undergoes a pre-processing stage (b), where the HOG algorithm is applied to each
individual frame. The dimensionality reduction through the PCA is not illustrated in this figure. The selected features are fed
into the photonic reservoir computer (c), trained to classify each individual frame. This is achieved by defining 6 binary output
nodes (d), one for each action class, that are trained to output 1 for a frame of the corresponding class and 0 for the others.
Target outputs are shown in blue. The frame-wise classification (e) is obtained by selecting the node with the maximum output,
i.e. the winner-takes-all approach. The final decision for a video sequence is given by the class attributed to the most frames of
the sequence. The target class is shown in yellow. Two examples illustrate the entire process. A boxing sequence, highlighted
in red in (a) and (b), is classified unambiguously in (e), as all output nodes in (d) remain low, except for the one corresponding
to boxing, that generates a clear spike. A walking sequence, highlighted in green, is more uncertain, as two output nodes –
jogging and walking – generate high responses in (d). Therefore, the reservoir output (e) oscillates between the two classes (the
faint vertical lines in the light-gray left-hand side region). However, since more frames in the sequence are classified as walking
(74.5%) than jogging (23.6%), the entire sequence is correctly classified as walking.

each individual frame. The classifier output is evaluated throughout the full video sequence (from the first frame to the last) and
the final result corresponds to the class having the majority of frames within the sequence attributed to it.

During the training, the NMSE cost function (see Eq. 3) was used to minimise the error between the reservoir output and
the target class. In this study, it was noted that the final classification did not require the output of the correct class to be as close
as possible to “1”, while the others being close to “0”. Since we use the winner-takes-all approach, all it takes for the correct
class to “win” is to be slightly higher than the others. In other words, lower NMSE does not necessarily mean less classification
errors. Therefore, we used a different error metric based on the confusion matrix23. Here, the confusion matrix is a 6×6 array
(dictated by the number of classes) computed for the entire video stream, each cell p(i, j) giving the percentage of actions
of class i classified into the class j. In other words, the diagonal of the confusion matrix contains the correct classification
produced by the system, while non-zero elements off the diagonal correspond to errors. We use the confusion matrix to compute
a new metric for the reservoir computer performance, called the score, given by the sum of the diagonal elements. A perfect
classification corresponds to a score of 600, as all the 6 actions have been recognised with a 100% accuracy.

2.2 Photonic reservoir computer
A typical discrete-time reservoir computer contains a large number N of internal variables xi∈0...N−1(n) evolving in discrete
time n ∈ Z, as given by

xi(n+1) = fNL,I

(
N−1

∑
j=0

W res
i j x j(n)+

K−1

∑
j=0

Bi ju j(n)

)
, (1)

where fNL,I is a nonlinear function (in this work, fNL,I(x) = bsin2(bxc8)c10), W res
i j is a N×N matrix of interconnecting weights

between the neurons of the neural network, u j(n) is an input with K dimensions, and Bi j is a N×K matrix of input weights,
often referred to as the input mask. Further information on the principles of reservoir computing and the properties of Bi j and
W res

i j can be found in the Methods section.
Our experimental setup implements Eq. 1 and is schematised in Fig. 2. It is composed of two parts: a free-space optical

arm and a computer. The optical part implements the nonlinearity f (x) = sin2(x) in Eq. 1. It is powered by a green LED source
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Figure 2. Illustration of the experimental setup, composed of an optical arm, connected to a computer. The output of a green
LED (LED 532 nm) is collimated and expanded (collimator+expander), then polarised (Pol. 1), and used to illuminate the
surface of the spatial light modulator (SLM). The latter is being imaged by a high-speed camera (camera) through a second
polariser (Pol. 2) and an imaging lens (lens). Both the camera and the SLM are controlled by a computer, running a Matlab
script. The latter generates the inputs from the input videos, and computes the values of pixels to be loaded on the SLM, i.e. the
SLM matrix. Groups of small individual pixels of the SLM are combined into larger macro-pixels, that are easier to separate on
the raw camera image. The computer uses the data from the camera to extract the reservoir states, compute the outputs and
generate the output classes.

at 532 nm (Thorlabs M530L3) set to a power level of 10.5 mW. The choice of the wavelength was based on the availability of
optical components and the ease of use and calibration of the setup in the visible spectrum. The optical power was adjusted
so as to provide sufficient illumination of the SLM to generate the highest contrast, with adequate exposure settings on the
camera. The output beam is linearly polarised, collimated and expanded to roughly 17 mm in diameter to evenly illuminate the
entire 7.68 mm×7.68 mm surface of the spatial light modulator (Meadowlark XY Phase P512 – 0532 with 8-bit resolution). In
simplified terms, a SLM is a variable, spatially resolved wave plate: its index of refraction along the slow axis can be decreased
electronically. That is, a linearly polarised illumination beam, parallel to the slow axis of the SLM, is reflected with a phase-only
modulation. If a beam is parallel to the fast axis instead, one would observe no modulation with the variable voltage. In this
setup, an illumination beam oriented at 45◦ with respect to the slow axis provides equal optical field components to the fast and
the slow axis of the SLM. After reflection, the former remains unchanged, while the latter undergoes a phase modulation. A
second polariser transforms the phase difference between the two components into intensity modulations, which are in turn
imaged onto a high-speed camera (Allied Vision Mako U-130B with 10-bit resolution). The imaging-system is optimised for a
compromise between imaging resolution and the field of view’s extend.

The computer runs a Matlab script controlling both the SLM and the camera, taking care of loading the data into the SLM
and obtaining images from the camera. The input mask Bi j and the interconnection matrix W res

i j are generated randomly at
the beginning of the experiment. At each discrete timestep n, the input to the nonlinear function ∑W res

i j x j(n)+∑Bi ju j(n) is
computed, and the resulting matrix is loaded onto the SLM device. The camera then records a picture of the SLM through the
imaging lens and the polarising optics. The raw image is cropped to the area of interest (the surface of the SLM) and averaged
over the macro-pixels (see below), resulting in a square matrix, that represents the updated reservoir states, given by Eq. 1. The
states are rearranged into a vector x j and used to compute the next SLM matrix at timestep n+1.

In this experiment, the reservoir size is defined by several factors. The device used here has a resolution of 512×512 pixels,
and allows in theory for a network size of 512×512 = 262,144 neurons, if each individual pixel was used as a node. However,
in our experiment this is challenging, since the SLM surface is slightly tilted with respect to the camera sensor. Consequently,
only a limited region of the SLM is seen in focus by the camera, while the rest is blurry. Therefore, in this experiment, we
only use the central 384×384 region of the SLM, and assign square groups of pixels, that we call macro-pixels, to individual
reservoir nodes. For instance, a small network of N = 1,024 nodes is obtained by setting the macro-pixel size to 12×12, while
a large network (N = 16,384) is obtain by reducing the macro-pixel size to 3×3 pixels on the SLM.

The speed of the setup is imposed by Matlab, that is, by the time needed to compute the next SLM matrix from the raw
camera image. For a large reservoir of N = 16,384 nodes, the system is capable of processing 2 video frames per second.
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In the case of a small reservoir (N = 1,024), the matrix multiplication ∑W res
i j x j(n) (see Eq. 1) requires less computations,

and the processing speed is increased up to 7 frames per second. The use of Matlab at this stage is a deliberate choice, as it
lends considerable flexibility to the setup, for example testing different pre-processing techniques, reservoir topologies, and
output decision-making layers by simply changing the code, i.e. without reconfiguration of the optical setup. The system’s
speed limitation can be alleviated by replacing the computer with a dedicated digital signal processing (DSP) board, or a
field-programmable gate array (FPGA) chip, capable of performing the matrix-products computations in real time (as in e.g.29).
More importantly, matrix can equally be offloaded to fully parallel optics21, 30. As our SLM model supports refresh rates up to
300 Hz in overdrive mode, the hardware would be capable of processing a video stream in real time. Furthermore and because
of its high frequency of operation, we could also theoretically time-multiplex up to 12 video streams at 25 fps.

2.3 Reservoir size and classification performance
To test the potential of our large-scale architecture on a challenging computer-vision task, we studied the impact of the reservoir
size on the classification performance. We investigated reservoir sizes from N = 1,024 up to N = 16,384, both numerically
and experimentally. Figure 3 shows the resulting performance for different reservoir sizes in terms of the classification score
(introduced in Sec. 2.1), computed during the testing phase. The hyperparameters were optimised from scratch for each
reservoir size, and independently in simulations and experiments. Details on the optimisation approach can be found in Sec.
4.3. In numerical simulations, we investigated the performance with different random input and interconnection weights.
We performed 5 distinctive simulations for each reservoir size with different random wights and full optimisation of the
hyperparameters. Blue bars display the average performance and the error bars show the standard deviations, i.e. the variability
of the score due to different random weights. In the experiment (red bars) such statistical analysis was hampered by the long
measurement duration, from a few days for smaller reservoirs up to a week for N = 16,384. Such long experimental runtimes
are due to the optimisation of the hyperparameters through grid search (see Sec. 4.3). With one set of hyperparameters, the
experiment processes the full dataset (i.e. both the training and test stages) in 1.6 to 5.5 hours, depending on the reservoir size.

The graph shows a steep increase in performance from a small reservoir size of N = 1,024 nodes up to N = 4,096, both in
numerical simulations and the experiment. The average score at N = 4,096 is 548 in both cases. The numerical results keep
improving for large reservoirs, reaching an average score of 552 at N = 16,384. The experimental results, on the other hand,
exhibit a slight decrease in performance with large reservoirs. This downturn is due to experimental imperfections, such as tilt
and misalignment of the area of interest cropped from raw camera images, that become more noticeable as the macro-pixels
shrink. However, the decrease has little significance, with a 1.3% performance drop between N = 4,096 and N = 16,384.

Table 1 compares the performance of our optical experiment with state-of-the-art digital approaches (the details can be
found in the respective papers). The table reports how the systems were trained on the KTH dataset (the database split), as well
the training time and processing speed, wherever possible (those two metrics are very seldom reported in the literature, hence
the large number of empty cells in the table). A few studies also report the system performance specifically on the s1 scenario,
thus directly comparable to our results. In terms of performance, the photonic RC is short by 4.7% from the best results on
the s1 scenario43, but outperforms the SVM approach in terms of processing speed by a factor of ten. The training time of
our system is significantly shorter than deep approaches45, and comparable to the SVM method with hierarchical compound
features34. Our photonic approach thus offers a performing, more flexible, and easy to train classification system. Furthermore,
the recent development of integrated photonic reservoir computers17 could give raise to very energy-efficient optical processors.

Table 2 displays the confusion matrices for the best scores obtained numerically (552 at N = 16,384) and experimentally
(548 at N = 4,096). The results obtained from the experiment agree very well with the numerical simulations. In particular,
we would like to point out that this does not only hold for the overall score, but also for the confusion-matrix’s individual
entries. This confirms the excellent controllability and robustness of the experimental system. Specifically, hand gestures (first
three rows) are perfectly recognised. Fast spatial movements of the subjects – jogging and running – are more challenging
to differentiate because, for instance, one subject’s running may be very similar to another subject’s jogging. Therefore, the
confusion matrices reflect several errors between these two classes. The walking action is also similar in appearance, but slower
on the temporal scale, hence, it is more accurately classified by the system.

3 Discussion & conclusion
In this work, we present a photonic video-processing system for human-action recognition. Unlike the recent advances in
computer vision, relying on deep learning, we have implemented a shallow recurrent neural network – a reservoir computer –
which not only simplifies the training process, but allows one to realise the network in hardware, such as photonic systems,
inherently leveraging the parallelism of optics. We demonstrate a highly flexible optical experiment that allows to accommodate
a very large number of physical nodes (N = 16,384), with the potential of scaling up to hundreds of thousands of nodes, thus
offering considerable advantages in terms of parallelism and speed, and for realisation of the crucial vector-matrix products.
The natural scalability of the proposed photonic architecture could be further exploited to process multiple video feeds in
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Performance
Authors Method Database split Training time Processing speed s1 scenario Full database
Yadav et al.31 IP + SVM 80%-20% – – – 98.20%
Shi et al.32 DTD, DNN 9-16 – – – 95.6%
Kovashka et al.33 BoW + SVM 8-8-9 – – – 94.53%
Gilbert et al.34 HCF + SVM LOOCV ∼ 5.6 h 24 fps – 94.5%
Baccouche et al.35 CNN & RNN 16-9 – – – 94.39%
Ali and Wang36 DBN & SVM 50%-20%-30% – – – 94.3%
Wang et al.37 DT + SVM 16-9 – – – 94.2%
Liu et al.38 MMI + SVM LOOCV – – – 94.15%
Sun et al.39 FT + SVM auto – – – 94.0%
Veeriah et al.40 Differential RNN 16-9 – – – 93.96%
Shu et al.41 SNN 9-16 – – 95.3% 92.3%
Laptev et al.42 FT + SVM 8-8-9 – – – 91.8%
Jhuang43 StC2 + SVM 16-9 – 0.4 fps 96.0% 91.6%
Klaeser et al.44 3D Grad + SVM 8-8-9 – – – 91.4%
This work Photonic RC 75%-25% 1.6 – 5.5 h 2−7 fps 91.3% –
Grushin et al.45 LSTM 16-9 1 day 12−15 fps – 90.7%
Ji et al.46 3DCNN 8-8-9 – – – 90.02%
Escobar et al.47 MT cells 16-9 – – 74.63% –
Schuldt et al.23 FT + SVM 8-8-9 – – – 71.83%

Table 1. Performance of various state-of-the-art digital approaches compared to our best experimental result. Database split
indicates how the KTH database was split for training and testing of the system. Most studies choose to split by the number of
subjects into either two groups (training and test, e.g. 16 subjects for training, 9 for the test) or three groups (training, validation
and test, e.g. 8-8-9). LOOCV corresponds to leave-one-out cross validation: the system is trained on 24 subjects and tested on
the remaining one. Training times and processing speeds are not discussed in most of the works, focusing on the classification
performance. Some studies report specific results on the s1 scenario, considered in this work.

parallel by allocated various regions of the SLM screen to independent reservoir computers, each processing a specific video
stream with the strategy described in this paper.

Finally and despite the simplicity of the system, its performance on the KTH dataset is comparable to state-of-the-art deep
approaches and superior to gradient-optimised LSTM networks. Our optical information processing system is particularly well
suited for the data that is already in the optical domain, such as image and video processing, studied here. This work thus
proposes a hardware solution to video information processing, that could outperform deep learning in terms of training time
and complexity.

4 Methods
4.1 Basic principles of reservoir computing
A typical discrete-time reservoir computer was discussed in Sec. 2.2, Eq. 1. The dynamics of the reservoir is determined by the
matrices W res

i j and Bi j, both time-independent and drawn from a random distribution with zero mean. The reservoir computer
produces M output signals yi(n), corresponding to the M output nodes (in this work, M = 6), given by a linear combination of
the states of its internal variables

yl(n) =
N−1

∑
j=0

W out
l j x j(n), (2)

where W out
l j are the readout weights, trained either offline (using standard linear regression methods, such as the ridge-regression

algorithm48 used here), or online29, in order to minimise the normalised mean square error (NMSE) between the output signal
y(n) and the target signal d(n), given by

NMSE =

〈
(y(n)−d(n))2

〉
〈
(d(n)−〈d(n)〉)2

〉 . (3)
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Table 2. Confusion matrices with the best performance.

4.2 Physical modeling of the photonic reservoir computer
The state variable xi(n) of the i-th photonic neuron at discrete time step n is the 10-bit quantified optical intensity bIi(n)c10
detected by the camera. We use the structure of the setup to determine the evolution of this state variable. It starts with a linear
transformation by the network adjacency matrix and the addition of a masked input data. This relation is used to update the
8-bit quantified phase value vector loaded in the SLM’s controller according to the following equation

bφi(n+1)c8 =
N−1

∑
j=0

W res
i j x j(n)+

K−1

∑
j=0

Bi ju j(n), (4)

with W res
i j and Bi j the reservoir adjacency matrix and input mask, respectively. The phase of the i-th SLM’s macro-pixel is

nonlinearly converted into an intensity value because of the peculiar polarisation configuration of the optical arm comprising
the LCoS SLM and two polarisers rotated by 45 degrees with respect to the orientation of the SLM’s liquid crystals in
their resting state. Using the theoretical framework of Jones calculus (see Ref.49 for more details), we can easily show that
bIi(n+1)c10 = bI0 sin2(bφi(n+1)c8)c10. Hence, the evolution equation for the i-th neuron’s state reads

xi(n+1) = fNL,I

(
N−1

∑
j=0

W res
i j x j(n)+

K−1

∑
j=0

Bi ju j(n)

)
, (5)
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Parameter Symbol Search values
Optimal for Optimal for
N = 1,024 N = 16,384

Num Exp Num Exp
Feedback gain α 0.1−1.5 0.8 0.8 0.6 0.3
Input gain β 0.0001−1 0.01 0.1 0.16 0.16
Interconnectivity gain γ 0.0001−1 0.1 0.1 0.001 0.001
Interconnectivity density ρ 0.0001−1 0.01 0.001 0.001 0.001

Table 3. Optimal hyperparameters for reservoirs of different sizes.

with fNL,I(·) = bI0 sin2 (b·c8)c10 the nonlinear function, I0 the uniform optical intensity illuminating (and reflected from) the
SLM and camera. Without loss of generality, I0 can be normalised at a unitary value. Here, a reservoir output is defined by

yl(n) =
N−1

∑
j=0

W out
l j x j(n), (6)

with Wout the readout matrix of trainable coefficients for the 6 outputs of the reservoir (one output per action to recognise).
An alternative approach is to consider the 8-bit quantified, macro-pixel phase-shift bφi(n)c8 induced by the SLM’s liquid

crystals as the state variable xi(n) of the i-th neuron at discrete time n. In this modelling scenario, the dynamics of the system
can also read

xi(n+1) =

⌊
N−1

∑
j=0

W res
i j fNL,φ x j(n))+

K−1

∑
j=0

Bi ju j(n)

⌋
8

, (7)

with fNL,φ (·) = bI0 sin2 (·)c10 the nonlinear function, I0 the uniform optical intensity illuminating (and reflected from) the SLM
and camera. Without loss of generality, I0 can be normalised at a unitary value. In this case, the reservoir output is defined by

yl(n) =
N−1

∑
j=0

W out
l j fNL,φ (x j(n). (8)

4.3 Hyperparameters
The dynamics of the reservoir can be optimised for a given task by tuning several control parameters. The input mask Bi j
is drawn from a random distribution over the interval [−1,1] and then multiplied by a coefficient β , called the input gain,
which controls the amplitude of the external input signal, that is, the degree of perturbation of the reservoir. The generation of
the interconnection matrix W res

i j requires two additional parameters: a scaling factor γ and a density ρ . Since the echo-state
network paradigm50 requires the interconnection matrix to be sparse, W res

i j is generated from a random distribution over the
interval [−1,1] with ρ×N2 non-zero elements. The matrix is then multiplied by a global scaling factor γ , which determines
the strength of connections between different neurons within the network. The diagonal elements of W res

i j , which define the
feedback of each neuron to itself, are defined separately. Since we want all neurons to exhibit the same internal dynamics, we
set the diagonal elements of W res

i j to α , a parameter called the feedback gain.
In summary, the dynamics of the system are defined by four hyperparameters – the input gain β , the feedback gain α , the

interconnection gain γ , and the interconnection density ρ . The optimisation of hyperparameters is performed through grid
search (i.e. parameter sweep) – an exhaustive search through all possible combinations of manually specified values of all
the parameters. Table 3 presents the intervals used for the optimisation, and the optimal values for selected reservoir sizes,
considered both numerically and experimentally.

Hyperparameters optimisation have shown the input and feedback gains to be important variables, i.e. accurate values are
required to obtain the best performance, while the characteristics of interconnection matrix play a minor role. We managed
to obtain comparable scores with significantly different W res

i j matrices in terms of density and amplitude of the off-diagonal
elements.

4.4 The KTH dataset
The original KTH video database23 contains four different scenarios. In this work, for simplicity, we limited the dataset to the
first scenario, referred to as “s1”, containing outdoor videos (illustrated in Fig. 4a). All videos were recorded over homogeneous
background with a static camera and 25 fps, then downsampled to the spatial resolution of 160× 120 pixels. Each single
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(a) Examples of KTH frames (b) Example of HOG features

Figure 4. (a) Examples of action frames from the KTH database, from left to right: boxing, hand clapping, hand waving,
jogging, running, and walking. Six different subjects are illustrated out of the total of 25. All videos have been taken outdoors
over a homogeneous background, which corresponds to the “s1” subset of the full database. (b) Example of HOG features
computed in Matlab for a frame of the KTH dataset. The HOG features are visualised using a grid of rose plots. The grid
dimensions (20×15 here) are determined by the ratio between the image and cell sizes. Each rose plot shows the distribution
of gradient orientations within a HOG cell. The length of each petal of the rose is proportional to the contribution of each
orientation within the histogram. The plot thus displays the edge directions, which are normal to the gradient directions. In this
example, it allows to capture the pose of the subject.

action movie has a length of four seconds in average. The subjects repeat each action 4 times. In total, our dataset contains
25×6×4 = 600 sequences for each combination of 25 subjects, 6 actions, and 4 repetitions. The DIVX-compressed videos
are first uncompressed and split into 160×120 grayscale frames. Different sequences vary in length and contain between 24
and 239 frames.

4.5 Histograms of oriented gradients
The histograms of oriented gradients (HOG) algorithm, introduced by Dalal and Triggs24, is based on Scale-Invariant Features
transform (SIFT) descriptors51. To calculate a HOG descriptor, first, horizontal and vertical gradients are computed by filtering
the image with the following kernels25:

Gx = (−1,0,1) and Gy =

 −1
0
1

 . (9)

Then, magnitude m(x,y) and orientation θ(x,y) of gradients are computed for each pixel, using

m(x,y) =
√

D2
x +D2

y and θ(x,y) = arctan
(

Dy

Dx

)
, (10)

where Dx and Dy are the approximations of horizontal and vertical gradients, respectively.
The creation of histograms starts with the division of the image into small cells. Each cell is assigned a histogram of

typically 9 bins, corresponding to angles 0,20,40, . . .160, and containing the sums of magnitudes of the gradients within the
cell. The main purpose of this operation is to provide a compact, yet truthful description of a patch of an image. That is, a
typical cell of 8×8 grayscale pixels is described with 9 numbers instead of 64. As gradients of an image are sensitive to overall
lighting, the algorithm is completed with block normalisation, by dividing the histograms by their euclidean norm computed
over bigger-sized blocks.

The computation of HOG features was performed in Matlab, using the built-in extractHOGFeatures function,
individually for each frame of every sequence, with a cell size of 8× 8 and a block size of 2× 2. Given the frame size of
160×120 pixels, the function returns 19×14×4×9 = 9576 features per frame. Figure 4b illustrates the resulting gradients
superimposed on top of a video-frame from the KTH dataset.

Data availability statement
The KTH dataset can be downloaded here: http://www.nada.kth.se/cvap/actions/. The numerical and exper-
imental data can be downloaded from the data folder in our GitHub repository: https://github.com/pantonik/
rc_slm_kth/ (DOI: 10.5281/zenodo.3474559).
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Code availability statement
The code used in this study can be downloaded from the scripts folder in our GitHub repository: https://github.
com/pantonik/rc_slm_kth (DOI: 10.5281/zenodo.3474559).
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