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Abstract

Practically, every processing technology deals with complex multi-phase flows and predict-
ing the fluid flowbehaviour is crucial for these processes. Current study discusses the application
of a mesh-less numerical methodology, i.e. Incompressible Smoothed Particle Hydrodynamics
(ISPH) to investigate the behaviour of different multi-phase flow systems. This works is pre-
sented in a coherent way with increasing test problem difficulties and their concerned physical
complexities. A wide range of problems including Laplace’s law, bubble rising, bubble suspen-
sion under an external electric field are considered for a code validation purpose, while the nu-
merical results manifest very good accordance with the experimental and theoretical data. Fi-
nally, we show the effectiveness of using an external electric field for controlling a complex prob-
lem such as Couette flow for a range of electrical permittivity and electrical conductivity ratios.
It is noted that the Electrohydrodynamics (EHD) effect on a suspended droplet in Couette flow
case is simulated for the first time using the SPHmethod.
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1. Introduction1

Predicting the behaviour of multi-phase flow systems has attracted for decades the atten-2

tion of many industries due to their wide ranges of applications in the chemical engineering,3

aerospace engineering and renewable energy sectors, among others [1, 2, 3]. In multi-phase sys-4

tems two ormore fluids share interfaces which can deform/migrate as outcome of exerted forces5

and constitutional laws. Some applications of multi-phase systems include boiling, condensa-6

tion, water purification and petroleum refinement processes where these phenomena have been7

investigated mostly experimentally and theoretically. However, with the ever-increasing power8

of Computational Fluid Dynamics (CFD) methods, numerical simulations of these systems be-9

came of great interest among researchers [4, 5, 6].10

Smoothed Particle Hydrodynamics (SPH) is a relatively recent and promising mesh-less La-11

grangian method which discretizes the domain into a set of nodes, known as material particles.12

These particles can freely move inside the computational domain subject to an external force or13

particle-particle interactions. Initially introduced by Gingold andMonaghan [7], and Lucy [8]14

for astrophysics applications, SPH was soon found to be suitable for fluid dynamics problems,15

where complex geometries [9, 10, 11], large deformations [12, 13, 14], multi-phase [15, 16, 17] and16

multi-physics problems [18, 19, 20] are involved. A recent overview for the application of SPH17

can be found in [21].18

One of the most important engineering problems which involves many of above cases is the19

Electrohydrodynamics (EHD) one, where hydrodynamics of a fluid system is coupled with its20

response to an external electric field. In EHD problems, one may control the interface between21

the two fluids (here, the droplet and the bulk fluid) by controlling the flow conditions and fluid22

properties [22, 23]. In such problems, the coupling may lead to a large interfacial deformation23

(i.e. merge/breakup) or migration. Indeed, EHD is a very complex problem including multi-24

phase,multi-physics andmulti-scale phenomenawith strong topological changes of the interface25

shape [24, 25]. Although, there are many experimental and theoretical studies available in the26

literature on the coupled modeling of EHD problems [26, 27, 28]. Nevertheless, some discrep-27

ancies between experiments and analytical data still exist [28]. As such, numerical simulations28

have been developed to tackle these difficulties and provide insight into EHD problems.29

Considering the numerical simulations of EHDusing SPHmethod, Shadloo et al. [29]were30

the first group to provide a model for such problems. They validated their code with the simple31

EHD deformation of droplets suspended in a neutrally buoyant Newtonian fluid. Rahmat et32

al. have proposed a multi phase ISPHmethod based on the lubrication theory and the drainage33

model to simulate droplet electro-coalescence for wide ranges of simulation conditions. [30, 31].34

Rahmat et al. [32] also provided the first simulation results for the Rayleigh-Taylor instability35

under the combined effect of electric field and gravitational forces. Yet, step-by-step validation of36

the SPHmethod for each individual force using the samemethodology is not well-documented.37

Additionally, numerical simulation of a multi-phase flow under the effects of an electric field38
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using various scenarios ranging from low to high deformations, droplet migration, and effect of39

shear flowon the droplet’s deformationwould provide a broader perspective into the capabilities40

of the SPHmethod for such applications. To this end, this article aims at introducing amesh-less41

numerical methodology, i.e. Incompressible SPH (ISPH) approach, to deal with such complex42

problems. Additionally, we verify the applicability of some of the used algorithms for a range of43

problems including hydrodynamic, capillary, gravity, shear and EHD forces.44

This article is organized as follows: First, we introduce the mathematical formulation of the45

SPHmethod as well as the numerical discretization scheme.Then, we incorporate the governing46

equations of themulti-phase system including the conservation equations formass, momentum47

and electrical charges in a Lagrangian form. Thereafter, a code validation and numerical conver-48

gence study is asserted in the absence of electric field. Numerical results cover solutions with49

and without electric filed sections. Additionally, the effect of surface tension through Laplace50

law, the effect of gravitational force, and the Couette flow for amulti-phase system are examined51

and validated against analytical solution and available numerical data in the literature. Finally,52

conclusions are provided in the last section.53

2. Mathematical Formulation of SPH54

The idea of SPH comes from the fact that any field variable f (x) can be calculated by an55

exact mathematical relation as56

f (x) =
∫
Ω

f (x′)δ(x′)dx′. (1)

Upon approximating δ(x′) by an interpolation functionW(x − x′, h), this equation can be for-57

mulated as58

f (x) =
∫
Ω

f (x′)W(x − x′, h)dx′, (2)

where x and x′ are the position vectors and h is the smoothing length. In our case, h = ζdx59

where ζ=1.6 is a constant value, and dx is the initial particle spacing. The interpolation func-60

tion, also known as smoothing function or kernel function, should have, among others, the61

following properties [33]62

– Normalized over the domain63 ∫
Ω

W(x − x′, h)dx = 1. (3)

– Produces δ function for a small enough smoothing length64

lim
h→0

W(x − x′, h) = δ(x′). (4)
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– Remains monotonically decreasing throughout the entire domain.65

– Has a compact support, meaning that for |x − x′| > kh66

W(x − x′, h) = 0. (5)

– Is a symmetric function.67

Initially, the kernel functions were defined such that each particle should have interactions68

with all others [7]. By introducing the concept of Neighboring particles1, kernel function affect69

only a compact support around it were substituted (see Eq. (5)). Depending on the smoothing70

length parameter h, only a few number of particles in the entire space affect the approximated71

value of the kernel function (around 25 to 35 in 2D). In the current work, a cubic spline ker-72

nel function is used both for the balk fluid and the interface modeling while taking harmonic73

average.74

Wi j = A


2/3 − (r/h)2 + 1/2(r/h)3 r/h ∈ [0, 1)

1/6(2 − r/h)3 r/h ∈ [1, 2).

0 r/h ≥ 2

(6)

75

Hereafter, W(x − x′, h), will be shown by Wi j and A = 15
7πh2 . Also, i, j , and r represent the76

index of the particle of interest, the index of its neighbors, and the smoothing radius.77

To calculate the SPH gradients, one can show that it is sufficient to differentiate the kernel78

functionW(x− x′, h). In otherwords, in SPH there is no need to differentiate the field function79

f (x); instead one can differentiate the kernel function. The latter is one of the fascinating fea-80

tures of the SPH method which distinguishes this method from other mesh-based techniques.81

In this work, we use an improved version of the first derivative, presented in [34] as82

∂ f m
i

∂xk
i

akl
i =

∑
j

1

ψ j
( f m

j − f m
i )

∂Wi j

∂xl
i

. (7)

83

Also, the derivatives for vectorial and scalar quantities are calculated, respectively, as follows:84

85

∂2 f m
i

∂xk
i ∂xk

i

aml
i = 8

∑
j

1

ψ j
( f m

i − f m
j )
∂Wi j

∂xl
i

rm
i j

r2i j

, (8)

1particles that are locatedwithin the range of the kernel functionwith respect to the particle of interest. Outside
of this range, the kernel function has already dropped to zero.
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and86

∂2 fi
∂xk

i ∂xk
i

(2 + akk
i ) = 8

∑
j

1

ψ j
( fi − f j)

∂Wi j

∂xk
i

r k
i j

r2i j

, (9)

87

where ψ is the particle number density and akl
i represents a corrective second rank tensor to88

avoid particle inconsistencies[9].89

3. Governing Equations90

Assuming an immiscible two-phase Newtonian, viscous, incompressible, isothermal fluid91

system, the corresponding mass andmomentum conservations in a Lagrangian formulation are92

given as follows93

Dρ
Dt

= −ρ∇. ®V, (10)

and94

ρ
D ®V
Dt

= ∇.T + ®f b + ®f s + ®f e, (11)

where, ρ is the fluid density, D
Dt is the material time derivative operator2, ∇. ®V is the divergence95

of the velocity vector, T is the total stress tensor which is defined asT = −pI+ τ where p is the96

static pressure, I is the identity matrix and τ = µ(∇®V + (∇®V)T) is the viscous dissipation term97

for µ being the dynamic viscosity.98

Additionally, ®f b = ρ®g is the body force due to gravity and ®f s is the surface tension which can99

be calculated using the volumetric force proposed by Brackbill [35], so called the Continuum100

Surface Force (CSF) method, as101

®f s = γκ®nδs . (12)

Here, γ is the surface tension coefficient, κ = −∇.®n is the interface curvature, ®n = ∇C
|∇C | is the102

unit vector normal to the interface, and δs = |∇C | is surface Dirac-delta function, and finally,103

®f e is the electric field force.104

To avoid sharp discontinuities at the interface, the smoothed color function of the particle i105

is defined as106

Ci =

∑
j Wi jc j∑

j Wi j
, (13)

where the color function c assigns a unit value to one phase and zero to the other phase in a107

two-phase system such that108

2The material time derivative is a directional time derivative for a fixed point.
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109

c j =

{
1, fluid A
0, fluid B

.

Furthermore, this approach provides a clear definition for the volume fraction of each fluid,110

i.e. CA
i = Ci and CB

i = 1 − Ci define the volume fraction corresponding to the fluid A and111

fluid B, respectively, such that
∑

n Cn
i = 1 for all n phases, here n = 2.112

Asmentioned before, in this study the electrostatics and the hydrodynamics are coupled to-113

gether. This coupling is achieved through theMaxwell stress tensor. Maxwell equations provide114

a mathematical framework for the interaction and the connection between the electric and the115

magnetic fields [36]. Here, the EHD part of the system can be regarded as quasi-static model,116

and dynamic currents values are so low, hence the induced magnetic field effects are negligible.117

Therefore, the contribution from the induced magnetic field is neglected. Consequently, the118

volumetric electric force can be written as119

®f e = ∇.T E . (14)

In case of an application of the external electric field on a multi-phase fluid flow, this new120

term for the electric force, will be added to the right hand side of the momentum equation (see121

Eq. (11)), where the Maxwell’s stress tensor defines as122

T E = ®D ®E − 1

2
( ®D. ®E)I, (15)

where ®E is an external electric field, ®D = ε ®E is the dielectric displacement vector, and ε is123

the electrical permittivity. Also, based on the Gauss’s law [36]124

∇. ®D = qv, (16)

where qv is the free electric charge density.125

Application of Eqs. (15) and (14) will result in126

®f e = qv ®E − 1

2
®E . ®E∇ε . (17)

In this work both fluids are considered to be leaky dielectric, (i.e. electric relaxation time is127

much shorter compared to its viscous counterpart or te << tv).128

4. Time integration129

We apply a predictor-corrector scheme to advance the governing flow equations in time con-130

sidering a first-order Euler approach. The time-step is selected based on Courant-Friedrichs-131

Lewy (CFL) condition in which∆t= CCFLh/Vmax , with Vmax being the largest magnitude of132
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particle velocity and the CCFL is the constant taken as 0.25. During the predictor step, we first133

advance all the variables to an intermediate value denoted by (*), from the variables’ value at the134

n-th time-step denoted by superscript (n), as135

®r∗i = ®r(n)i + ®V (n)
i ∆t + δ®r(n)i , (18)

136

®V∗
i = ®V (n)

i +
RHS

ρ
(n)
i

∆t, (19)

137

ψ
(∗)
i = ψ

(n)
i −∆tψ(n)

i (∇. ®V∗
i ). (20)

RHS denotes the right hand side of Eq. (11), ψi =
∑

j Wi j , is the number density asso-138

ciated with the particle of interest i, which is calculated from the summation of kernel func-139

tion at all neighboring particles j, δri is the artificial particle displacement, defined as δr k
i =140

α
∑N

j (r
k
i j/r3i j)r

2
i,oVmax∆t, and its constant α is set to 0.05 according to [34].141

These intermediate values will then be used to solve the Poisson equation which gives the142

pressure value at the next time-step (n+1). Using this pressure, new velocity and displacement143

vectors are updated as following144

∇.
(
1

ρ∗i
∇p(n+1)

i

)
=

∇. ®V∗
i

∆t
, (21)

145

∇. ®V (n+1)
i = ®V∗

i − 1

ρ∗i
∇p(n+1)

i ∆t, (22)
146

®r(n+1)
i = ®r(n)i + 0.5( ®V (n)

i + ®V (n+1)
i )∆t + δ®r(n)i . (23)

5. Results147

5.1. Validation and convergence148

To ensure a suitable particle resolution based on the numerically computed pressure jump149

across the interface, in Fig.2 the data is represented for 60×60, 100×100 and 140×140 grids. To150

study numerical convergence, a droplet with the radius of r = 0.01[m] is situated at the center151

of a square domain, i.e. xo/r = yo/r = 2, with the side lengths of x/r = y/r = 4 (see Fig.152

1). While the Dirichlet (no-slip) boundary condition is set for the velocity at all four boundaries,153

namely,BC-X1, BC-X2, BC-Y1, andBC-Y2, theNeumannboundary condition is applied for the154

pressure field. As for the hydrodynamics properties, we keep both viscosity and density ratios155

equal to unity such that ρ1 = ρ2 = 1000 [kg/m3] and µ1 = µ2 = 0.1 [Pa.s] and set the156

surface tension to γ = 0.01 [N/m], given neither electrical nor gravitational force.157
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Figure (1) Schematic of the test case for validation and numerical convergence test, bubble rising as well as bubble
deformation under the effect of electrohydrodynamics (EHD). For the first test case ®g = 0 and ®E = 0, for the
second one ®g , 0 and ®E = 0while for the third one ®g = 0 and ®E , 0

This problem, known as Young-Laplace problem, has an analytical solution which is∆p =158

pi − po = γ/r = 1. As can be seen in Fig.2-Left, the pressure oscillations decrease by increasing159

the resolution from the coarser to the finest and the results, converging towards the analytical160

solution. It is noted that the relative error is less than 1% for the intermediate particle resolution.161

Therefore, we chose the 100×100 resolution for our simulations as it provides accurate results162

with reasonable computation cost. Similar simulations, with different surface tension coefficient163

are tested, while putting r = 0.5[m] and keeping x/r and y/r ratios constant to validate the164

accuracy of the used method. As can be seen in Fig.2-Right, the pressure jump increases by an165

increment in the surface tension confirming the capability of themethod to capture the physical166

jump across the interface. Once more for the reported simulations, the relative error is less than167

1%when the numerical results are compared to the Laplace’s law.168

It is noteworthy to discuss the reason behind the different values obtained for the theoretical169

and numerical pressure jump at the interface. As mentioned before, the pressure and other flow170

field variables (velocity, color function, etc.) are approximated using the numerical smoothing171

scheme which converts the sharp values at the interface to smoother ones resulting in a loss of172

accuracy and introduction of spurious oscillations near the surface of the droplet. Furthermore,173

it is found that these spurious currents are generated because of an inappropriate evaluation of174

the curvature of the circular droplet due to unreliable values for the unit normal vector (®n =175
∇C
|∇C | ) in the surface tension force calculation [37].176
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Figure (2) Comparison of (left) the pressure jump across the droplet interface for three particle resolutions and
(right) its comparison with the theoretical pressure jump, i.e. Laplace’s law, for different cases.

5.2. Bubble rising177

In this section, the ISPH method is applied to test and to validate the simulation of the178

bubble rising problem due to the gravitational force. The computational geometry for this test179

case is similar to the one shown in Fig. 1 except that the domain size is increased in the normal180

direction (orthogonal), i.e. x/r = 6 and y/r = 12, and the bubble is initially placed such181

that xo/r = 3 and yo/r = 2.4. The grid resolution is set to 240×480 in x and y direction,182

respectively. The velocity boundary conditions are set to be free slip for BC − X1 and BC − X2,183

and no slip for BC−Y1 and BC−Y2. Also, pressure boundary conditions are set to beDirichlet184

with a constant value at BC − Y2 and Neumann for the other three boundaries (∇p · ®n = 0)185

where ®n is normal direction to the given boundary.186

Here, both bubble and bulk phases are set to have stationary conditions at initial time step.187

The bubble starts to rise during the simulation due to the gravitational forces. This problem can188

be characterized by Reynolds and Bond numbers defined as following:189

Re =
ρ2g

0.5(2ro)
1.5

µ2
, (24)

and190

Bo =
ρ2g(2ro)

2

γ
. (25)

respectively.191

For the first simulation, a case with low density and viscosity ratios and high surface tension192

is considered, where ρ2/ρ1 = 10 with ρ1 = 100 [kg/m3], µ2/µ1 = 10 with µ1 = 1[Pa.s],193

and surface tension coefficient is γ = 24.5[N/m]. Additionally, the gravity is set to be ®g =194
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Figure (3) Time evolution of bubble rising problem with the density ratio of ρ1/ρ2 = 0.1 and viscosity ratio
of µ1/µ2 = 0.1 at different dimensionless times t∗ = 0.5, t∗ = 18.5, t∗ = 37 and t∗ = 64.8. Here the
dimensionless time is defined as t∗ = t

√
(g/D) and Reynolds and Bond numbers are Re = 35 and Bo = 10,

respectively. The left half of each snapshot shows the velocity streamlines in black and the droplet interface in red,
while the right half shows the velocity magnitude’s 10 highest levels’ contour in the range of [0, 4.5] [m/s].

−1[m/s2] in y direction such that it produces Reynolds number Re = 35, and the Bond num-195

berBo = 10 for this case. The time snapshot of this test case for dimensionless times of t∗ = 0.5,196

t∗ = 18.5, t∗ = 37 and t∗ = 64.8 are shown in Fig. 3. As observed in this figure, the bubble197

starts to rise straight upwards due to the gravity, while its velocity increases from zero to 0.36198

[m/s] and remains constant until it feels the pressure coming from the stationary upper-wall.199

Additionally, the bubble shape is changing from circular shape to a quasi elliptical one due to200

hydrodynamic pressures on its tip. The final shape comes from the competition among surface201

tension, gravitational, and viscous forces. As it is observed, the shape remains unchanged after202

some time steps which is the main reason for the bubble’s almost constant terminal velocity.203

Fig. 4 shows the mean migration velocity and the position of the droplet with respect to204

dimensionless time t∗ = t
√
(g/D), which are in agreement with the results of [31] and [38].205

Here, the velocity gradient near the stationary wall starts to deviates at the final times which206

could be due to the confinement effects.207

To show the applicability of the proposed algorithm for capturing larger deformations and208

breakups, we perform a second bubble rising test case. This time, the computational domain209

size is x/r = 6 and y/r = 10with the particle resolution of 240 × 400. The bubble is initially210

placed at xo/r = 3 and yo/r = 2. Here, all four boundaries haveno slip boundary condition for211

10



0 10 20 30 40 50 60 70

t∗

0.4

0.6

0.8

1

1.2

y
/r

0 10 20 30 40 50 60 70

t
∗

0

0.1

0.2

0.3

0.4

v

Figure (4) The average normalized central position of the droplet, ȳ (top) and its average vertical migration ve-
locity, v̄ (bottom) as a function of dimensionless time, t∗.

velocity. However, the pressure boundary conditions are kept the same as before. The gravity212

is selected as ®g = −1[m/s2] in y direction, while the surface tension coefficient is set to be213

γ = 20 [N/m]. Additionally, the density and viscosity ratios are ρ2/ρ1 = 1000 and µ2/µ1 =214

2.828/10with ρ1 = 1 [kg/m3] and µ1 = 1[Pa.s], respectively. These choices are formimicking215

the test case presented in [15] in order to produce the fluid flow systemwith Reynolds and Bond216

numbers of Re = 1000 and Bo = 200, respectively.217

The snapshots of our current simulations are illustrated (middle) in Fig. 5 for the dimension-218

less times between t∗ = 3.2 and t∗ = 5.6with a time increment of∆t∗ = 0.4. These snapshots219

are compared to their experimental (top) and Volume of Fluid method (bottom) counterparts,220

presented in [39] and [40], respectively. As canbe seen, the proposed ISPHapproach canpredict221

the large deformation and bubble breakup as accurate as its well establish mesh based method.222

The presented Volume of fluid (VoF) method uses a hybrid VoF-level-set method [40] to accu-223

rately capture the interface.224
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Figure (5) Comparison of bubble rising and break up due to gravitational and hydrodynamic forces using exper-
iment [39], SPH method and Volume of Fluid method [40], respectively from top to bottom rows. Here, the
density ratio ρ2/ρ1 = 1000 and viscosity ratio µ2/µ1 = 10 are applied. Reynolds and Bond numbers, as pre-
viously defined, are Re = 1000 and Bo = 200, respectively. The dimensionless time is defined as t∗ = t

√
g/ro,

starting from t∗ = 3.2 at the very fist frame on the left, up to t∗ = 5.6, with a time increment of 0.4 per frame.

5.3. EHD droplet deformation225

In this section, we consider a suspended circular droplet under the effect of an external ap-226

plied electric field. The schematic of the computational domain is similar to what is presented227

in Fig. 1 with an increment in the size of the domain. Here, we double the domain size in each228

direction, i.e. x/r = 8 and y/r = 8, in order to reduce the confinement effect. In Fig. 6-left,229

a particle resolution of 240 × 240 is used with a circular droplet initially placed at the center of230

computational domain. The initial zero velocity are assigned to both fluids and wall particles.231

Density ratio and viscosity ratio are set to unity with values of ρ1 = ρ2 = 1000 [kg/m3] and232

µ1 = µ2 = 1[Pa.s]. The surface tension coefficient γ = 1[N/m]. The velocity and pressure233

boundary conditions are exactly the same as those imposed in section 5.1. The electrical bound-234

ary conditions are Dirichlet (ϕ = cte.) and Neumann boundary (∇ϕ · ®n = 0) conditions for235

horizontal (i.e. BC −Y1 and BC −Y2) and vertical walls (i.e. BC − X1 and BC − X2), respec-236

tively, where ®n is normal direction to the given boundary.237

The deformation of a suspended circular droplet under such conditions is a commonly uti-238

lized test case for validation of a EHD solver, where two theories are available in the literature.239

Taylor [41] estimates the droplet deformation DT as240

DT =
9 fdT E2

o ε2ro

8(2 + R)2γ
, (26)
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where fdT is the discriminating function evaluated as241

fdT = R2 + 1 − 3.5S + 1.5R. (27)

For the same problem, Feng [42] suggests the following relation242

DF =
fdF E2

o ε1ro

3(1 + R)2Sγ
, (28)

where fdF is estimated from243

fdF = R2 + 1 − 3S + R. (29)

In Eqs. (26) and (28), ro is the initial droplet radius before its deformation and Eo is the244

electric field intensity in vertical directionwhich is calculated from Eo = (ϕ+−ϕ−)/H, H being245

the domain height. Additionally, the permittivity ratio and the conductivity ratio of droplet to246

the balk are called S and R, presented as247

S =
ε1
ε2
, R =

σ1
σ2
, (30)

where ε and σ are the electrical permittivity and conductivity, respectively. Also the subscripts248

1 and 2 show, droplet and bulk medium properties, respectively.249

Another point in the theory of droplet deformation is to investigate the velocity recirculation250

vectors inside and outside of the droplet when a vertical electric field is applied. The relative251

differences in the electric permittivity and conductivity of both constituent phases define the252

direction of the flow rotation in either phase. This is shown for two cases in Fig. 6. On the left253

side test case is adopted for S = 0.5 and R = 0.05with the electrical permittivity of the droplet254

(ε1) being 0.5 [F/m] which is half of that of the bulk fluid. Also, the electrical conductivity of255

the droplet (σ1) is set to 150 [S/m] which is three-times more than the background fluid. On256

the right side of Fig. 6, the test case has S = 0.5 and R = 3 with ε1 = 0.5 and σ1 = 1. As can257

be seen in the left sub-figure, the re-circulation zone in the first quarter (i.e. the top-right quarter258

inside the droplet) of the droplet orients clockwise. This should be the case for S > R and is259

consistent with the results of [29]. The opposite flow circulation pattern should be expected for260

the case of S < R as it also presented on the right side of the same figure.261

Additionally, Eqs. (27) and (29) define the sign of Eqs. (26) and (28), respectively. The pos-262

itive sign, so called prolate deformation, indicates that the droplet is elongated in the direction263

parallel to the electric field. The positive sign, so called oblate deformation, shows the droplet264

elongation in the opposite direction. For the comparison with the simulation results, we define265

the numerical deformation as266

DN =
A − B
A + B

, (31)
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Figure (6) Deformation of a suspended droplet in response to an external vertical electric field in the steady-state
simulation for the cases with (left) S = 0.5, R = 0.05 and (right) S = 0.5, R = 3.

where A and B are the elliptic droplet diameters, parallel and perpendicular to the direction of267

the external electric field, respectively, at the steady state condition. When this parameter is equal268

to zero, the droplet keeps its initial circular shape. On the other hand, more deviation from zero269

indicates more deformation from its initial shape.270

Fig. 7 provides comparison between the current ISPH results and the two aforementioned271

theories for multiple cases. As can be seen, numerical data reasonably follow the available the-272

ories. However, in most of the cases, an over-prediction is reported by the simulations. Some273

might be some possible reasons for such behaviour can be mentioned: (i) in the theory it is as-274

sumed that the droplet remains circular even after applying the electric field. This means the275

change in the curvature is not integrated in the deformation equation, but only the surface ten-276

sion coefficient. (ii) Another reason might be due to the confinement effect. In theories, it is277

assumed that the droplet is suspended in an unbounded domain for simplicity. However, pro-278

viding such domain numerically, or even with twice larger computational domain, is very ex-279

pensive computationally. Finally, the hydrodynamical properties of droplets such as density and280

viscosity are not taken into account theoretically and the problem is considered to be inviscid.281

5.4. Couette Flow282

This section investigates the deformation of a droplet suspended between two parallel plates283

subjected to a constant shear. The flow configuration, known as Couette flow, is presented in284

Fig. 8. In this case, the flow is driven by viscous forces or pressure gradients [43]. Different cases285
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Figure (7) Comparison of deformation for all cases. permittivity ratio, conductivity ratio and surface tension
coefficient of each simulation, S, R, γ, respectively, mentioned below or above the corresponding case.

with andwithout an external electric fieldwith themagnitude of unity perpendicular to the flow286

direction are simulated.287

The computational domain consists of a rectangle boxwith the size of x/r = 16 and y/r =288

4 discretized by a set of initially equally spaced 400×100 particles, arranged in a Cartesian grid.289

The two-phase system contains a droplet with the initial radius of ro, placed in themiddle of the290

domain, and the balk fluid with the same density of ρ1 = ρ2 = 1000 [kg/m3] and the dynamic291

viscosity of µ1 = µ2 = 0.2 [Pa.s]. The velocity boundary conditions are set to Dirichlet (no-292

slip) on the plates (i.e. BC−Y1 and BC−Y2) andperiodic for the inlet and outlets (i.e. BC−X1293

and BC − X2). The pressure boundary conditions is Dirichlet BC −Y2 and Neumann for the294

rest of boundaries. Also, the boundary conditions for electrical potential are of Dirichlet at the295

walls (i.e. ϕ = cte in BC−Y1 and BC−Y2) and periodic for the two other sides (i.e. BC−X1296

and BC − X2).297

Initially, the upper and the lower wall velocities are set to Uo/2 and −Uo/2, respectively,298

where Uo = 0.02 [m/s]. Additionally, particles inside the droplet are initialized to be at rest,299

while background fluid particles having undisturbed Couette flow velocity. The simulations300

are performed for a range of electrical permittivity and electrical conductivity ratios shown as301

(S, R), while neglecting the gravity and keeping the surface tension coefficient constant γ =302

0.02 [N/m]. The droplet radius is a quarter of the distance between two parallel plates (i.e.303

r = H/4). The dimensionless Reynolds, Weber and Electroinertial numbers, respectively, are304
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Figure (8) Schematic of the Couette flow test case.

as follows305

Re =
ρ2Uoro

µ2
, We =

ρ2U2
oro

γ
, Ei =

ρ2U2
o

ε2E2
o
, (32)

where Re = 1,We = 0.2, and Ei = 50.306

Fig.9 shows the time evolution of the droplets’ deformation under the same external electric307

field and the shear stress conditions, but for different working fluids having different electrical308

permittivity and conductivity ratios (i.e. only a change in S and R is considered here). In this309

figure, the dimensionless time is defined as t∗ = tUo/ro, while the droplet deformation is calcu-310

lated from311

D f =
Lmax − Lmin

Lmax + Lmin
, (33)

where Lmax and Lmin are major and minor droplet diameters, respectively. As can be seen in312

this figure, the droplet deformation increases when an external electric field is applied regardless313

of S and R. Additionally, at the constant electrical permittivity ratio, larger deformations can314

be achieved by an increment in the electrical conductivity ratio when S > R. However, for315

the similar condition (i.e. S = cte.), smaller deformations are seen by an increment in the316

electrical conductivity ratio when S < R. Similarly, at constant electrical conductivity ratio317

larger electrical permitivities result in larger droplet deformations for R < S, while decreases the318

same for S < R. It is noted that the (5.0, 0.2) and (5.0, 0.5) test problems did not reach a steady319

profile during the simulation time, here fixed at t∗ = 1 due to large computational costs. Fig.320

10 provides a comparison on the interface shape in the absence (in blue) and the presence of the321

electric field (in black) at this time. Following the previous figure, it can be seen that the droplets322

are more slender for larger deformation factors.323
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Figure (9) Numerical deformation for twelve cases (Left), a close-up look at the rate of deformation at the steady
state (Right). Cases without electric field are denoted by a black + sign. The pair number on the legend box,
corresponds to the electrical permittivity and electrical conductivity (S, R), respectively.

It is notable that the angle between the major axis of the elliptic droplet and the stream-wise324

direction become smaller with an increment in the conductivity ratio, while the cases of (5.0, 0.2)325

and (5.0, 0.5) are immediately distinguishable due to their larger deformations. This elongation326

is due to the suppression of surface tension forces which is the result of the larger electric field327

force at higher electrical conductivity ratios. It is also noted that the droplet is no longer elliptical328

and is suspected to have the breakup at larger time steps.329

Finally, the time snapshot of an extreme test case with the electrical permittivity ratio of S =330

10 and the electrical conductivity ratio of R = 0.2 is illustrated in Fig. 11 to show the ability of331

the presentedmethod to capture very large deformationswith the interfacial topological change.332

Here, the interface is representedby red color, while the velocity streamlines and electrical vectors333

are represented by blue and black arrows, respectively. In this case, the circular droplet becomes334

elliptical soon after the start of the simulation. The elliptical interface is elongated in the stream-335

wise axis direction due to the four re-circulation zones in the bulk flow just next to the interface.336

Soon after that, pairs of re-circulation merge with each other at the both tips of the droplet and337

cause the creation of the third re-circulation in its center. By time, the droplet gets folded in338

four different places and new re-circulation zones appear close to the interface which makes the339

droplet very susceptible to breakup. As can be seen, this is a promising test problem to show340

the ability of the present ISPH code to treat the complex multi-phase fluid behavior under an341

extreme EHD conditions with large interfacial deformation.342
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Figure (10) Bubble interface at t∗ = 1. The pair number above each case corresponds to the electrical permittivity
and electrical conductivity (S, R), respectively. If zero, the electric field is not applied.
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Figure (11) Deformation of a suspended droplet in Couette flow with S = 10 and R = 0.2 subject to electric
field at t∗ = 0, t∗ = 0.4, t∗ = 0.8, t∗ = 1.2 and t∗ = 1.6, respectively, from top to bottom where dimensionless
time is defined by t∗ = tUo/r . The velocity streamlines (in blue), the electric field vectors (in black) and the droplet
interface (in red) are shown at five moments.
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6. Summary343

In this work, we presented an effective multi-phase Incompressible Smoothed Particle Hy-344

drodynamics (ISPH) approach to simulate complexmulti-physics electrohydrodynamics (EHD)345

problems. We showed a step-by-step validation of the multiphase code for surface tensions, hy-346

drodynamic forces and electric forces, respectively, by solving Laplace’s law, bubble rising and347

buoyant droplet deformation under an applied electric field problems. Results are validated348

either against available analytical or numerical results. An overall satisfactory agreement were349

found. Finally, we presented, for the first time, results of droplet deformation under sheared350

Couette flow with external electric field for a range of simulation parameters. Different parame-351

ters such as time resolved topological changes, droplet deformationmagnitudes aswell as velocity352

field and electrical potential vectors were presented and comparedwith each other. It was shown353

that the current ISPH approach is able to be easily adopted for differentmulti-physics problems.354

It is also capable of predicting large interfacial topological changes such as folding and breakup.355

In future, our strategy would be to includemore complex transport andmulti-physics phenom-356

ena.357

Acknowledgment358

This work has benefited from the financial support of TOTAL SA within the framework359

of a call for projects with exploratory projects coordinated by TOTAL SA and the CNRS. The360

authors also acknowledge the access to French HPC resources provided by the French regional361

computing center of Normandy CRIANN (2017002). The first author acknowledges the fi-362

nancial supports provided by Normandy region. The second author acknowledge the support363

provided byAlexander vonHumboldt Foundation through the project FRA-1204799-HFST-E364

for the experienced researcher.365

References366

[1] Q.Xiong, S.-C.Kong, High-resolutionparticle-scale simulation of biomass pyrolysis, ACS367

Sustainable Chemistry & Engineering 4 (2016) 5456–5461.368

[2] M. Sarafraz, M. S. Shadloo, Z. Tian, I. Tlili, T. A. Alkanhal, M. R. Safaei, M. Goodarzi,369

M.Arjomandi, Convective bubbly flowofwater in an annular pipe: Role of total dissolved370

solids on heat transfer characteristics and bubble formation, Water 11 (2019) 1566.371

[3] A. Izadi,M. Siavashi, Q. Xiong, Impingement jet hydrogen, air and cuh2o nanofluid cool-372

ing of a hot surface covered by porous media with non-uniform input jet velocity, Inter-373

national Journal of Hydrogen Energy 44 (2019) 15933–15948.374

20



[4] M. V. Bozorg, M. H. Doranehgard, K. Hong, Q. Xiong, Cfd study of heat transfer and375

fluid flow in a parabolic trough solar receiver with internal annular porous structure and376

synthetic oil–al2o3 nanofluid, Renewable Energy 145 (2020) 2598–2614.377

[5] M. Y. A. Jamalabadi, M. DaqiqShirazi, A. Kosar, M. S. Shadloo, Effect of injection angle,378

density ratio, and viscosity on droplet formation in a microfluidic t-junction, Theoretical379

and Applied Mechanics Letters 7 (2017) 243–251.380

[6] R. Sadeghi, M. S. Shadloo, M. Hopp-Hirschler, A. Hadjadj, U. Nieken, Three-381

dimensional lattice boltzmann simulations of high density ratio two-phase flows in porous382

media, Computers &Mathematics with Applications 75 (2018) 2445–2465.383

[7] R.A.Gingold, J. J.Monaghan, Smoothed particle hydrodynamics: theory and application384

tonon-spherical stars, Monthly notices of the royal astronomical society 181 (1977) 375–389.385

[8] L. B. Lucy, Anumerical approach to the testing of the fissionhypothesis, The astronomical386

journal 82 (1977) 1013–1024.387

[9] M. S. Shadloo, A. Zainali, S.H. Sadek,M. Yildiz, Improved incompressible smoothed par-388

ticle hydrodynamics method for simulating flow around bluff bodies, Computer methods389

in applied mechanics and engineering 200 (2011) 1008–1020.390

[10] M. S. Shadloo, A. Zainali, M. Yildiz, A. Suleman, A robust weakly compressible sph391

method and its comparison with an incompressible sph, International Journal for Nu-392

merical Methods in Engineering 89 (2012) 939–956.393

[11] M. Hirschler, P. Kunz, M. Huber, F. Hahn, U. Nieken, Open boundary conditions for394

isph and their application to micro-flow, Journal of Computational Physics 307 (2016)395

614–633.396

[12] S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé, G. Graziani, δ-sph397

model for simulating violent impact flows, ComputerMethods inAppliedMechanics and398

Engineering 200 (2011) 1526–1542.399

[13] M. S. Shadloo, R. Weiss, M. Yildiz, R. A. Dalrymple, et al., Numerical simulation of long400

wave runup for breaking and nonbreaking waves, International Journal of Offshore and401

Polar Engineering 25 (2015) 1–7.402

[14] H. Gotoh, A. Khayyer, On the state-of-the-art of particle methods for coastal and ocean403

engineering, Coastal Engineering Journal 60 (2018) 79–103.404

21



[15] A. Zainali, N. Tofighi, M. S. Shadloo, M. Yildiz, Numerical investigation of newtonian405

and non-newtonianmultiphase flows using isphmethod, ComputerMethods in Applied406

Mechanics and Engineering 254 (2013) 99–113.407

[16] N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, B. Alessandrini, An hamiltonian408

interface sph formulation formulti-fluid and free surface flows, Journal of Computational409

Physics 228 (2009) 8380–8393.410

[17] M. S. Shadloo, M. Yildiz, Numerical modeling of kelvin–helmholtz instability using411

smoothed particle hydrodynamics, International Journal for Numerical Methods in Engi-412

neering 87 (2011) 988–1006.413

[18] C. Ulrich, M. Leonardi, T. Rung, Multi-physics sph simulation of complex marine-414

engineering hydrodynamic problems, Ocean Engineering 64 (2013) 109–121.415

[19] M.Hopp-Hirschler, M. S. Shadloo, U. Nieken, Viscous fingering phenomena in the early416

stage of polymer membrane formation, Journal of Fluid Mechanics 864 (2019) 97–140.417

[20] M. Hopp-Hirschler, M. S. Shadloo, U. Nieken, A smoothed particle hydrodynamics ap-418

proach for thermo-capillary flows, Computers & Fluids 176 (2018) 1–19.419

[21] M. Shadloo, G. Oger, D. Le Touzé, Smoothed particle hydrodynamics method for fluid420

flows, towards industrial applications: Motivations, current state, and challenges, Com-421

puters & Fluids 136 (2016) 11–34.422

[22] M. Rezavand, M. Taeibi-Rahni, W. Rauch, An isph scheme for numerical simulation of423

multiphase flows with complex interfaces and high density ratios, Computers andMathe-424

matics with Applications 75 (2018) 2658 – 2677.425

[23] Y. Hu, D. Li, X. Niu, Y. Zhang, Lattice boltzmann model for the axisymmetric electro-426

thermo-convection, Computers andMathematics with Applications 78 (2019) 55 – 65.427

[24] J. Weirather, V. Rozov, M. Wille, P. Schuler, C. Seidel, N. A. Adams, M. F. Zaeh, A428

smoothed particle hydrodynamics model for laser beam melting of ni-based alloy 718,429

Computers andMathematics with Applications (2018).430

[25] K. Abdella, H. Rasmussen, I. Inculet, Interfacial deformation of liquid drops by electric431

fields at zero gravity, Computers andMathematics with Applications 31 (1996) 67 – 82.432

[26] X.Huang, L.He, X. Luo,H. Yin,D. Yang, Deformation and coalescence ofwater droplets433

in viscous fluid under a direct current electric field, International Journal of Multiphase434

Flow 118 (2019) 1 – 9.435

22



[27] Q. Yang, B. Q. Li, Y. Ding, 3d phase field modeling of electrohydrodynamic multiphase436

flows, International Journal of Multiphase Flow 57 (2013) 1 – 9.437

[28] F. Alberini, D. Dapelo, R. Enjalbert, Y. V. Crombrugge, M. J. Simmons, Influence of dc438

electric field upon the production of oil-in-water-in-oil double emulsions in upwardsmm-439

scale channels at low electric field strength, Experimental Thermal and Fluid Science 81440

(2017) 265 – 276.441

[29] M. Shadloo, A. Rahmat,M. Yildiz, A smoothed particle hydrodynamics study on the elec-442

trohydrodynamic deformation of a droplet suspended in a neutrally buoyant newtonian443

fluid, Computational Mechanics 52 (2013) 693–707.444

[30] A. Rahmat, M. Yildiz, A multiphase isph method for simulation of droplet coalescence445

and electro-coalescence, International Journal of Multiphase Flow 105 (2018) 32–44.446

[31] A. Rahmat, N. Tofighi, M. Yildiz, Numerical simulation of the electrohydrodynamic ef-447

fects on bubble rising using the sphmethod, International Journal ofHeat and Fluid Flow448

62 (2016) 313 – 323.449

[32] A. Rahmat, N. Tofighi, M. Shadloo, M. Yildiz, Numerical simulation of wall bounded450

and electrically excited rayleigh–taylor instability using incompressible smoothed particle451

hydrodynamics, Colloids and Surfaces A: Physicochemical and Engineering Aspects 460452

(2014) 60–70.453

[33] M.Liu,G. Liu, K. Lam, Constructing smoothing functions in smoothedparticle hydrody-454

namics with applications, Journal of Computational and AppliedMathematics 155 (2003)455

263 – 284.456

[34] M. Shadloo, A. Zainali, M. Yildiz, Simulation of single mode rayleigh–taylor instability457

by sph method, Computational Mechanics 51 (2013) 699–715.458

[35] J. Brackbill, D. Kothe, Z. CA, A continuummethod formodeling surface tension, Journal459

of Computational Physics (1992) 335–354.460

[36] D. Fleisch, A guide to maxwell equations, Cambridge University Press (2008).461

[37] M. Sussman, E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method for Com-462

puting 3DandAxisymmetric IncompressibleTwo-Phase Flows, Journal ofComputational463

Physics 162 (2000) 301–337.464

[38] A.Zhang, Z.Guo,Q.Wang, S.Xiong, Three-dimensional numerical simulation of bubble465

rising in viscous liquids: A conservative phase-field lattice-boltzmann study, Physics of466

Fluids 31 (2019) 063106.467

23



[39] J. K. Walters, J. F. Davidson, The initial motion of a gas bubble formed in an inviscid468

liquid, Journal of Fluid Mechanics 17 (1963).469

[40] A. Asuri Mukundan, T. Ménard, A. Berlemont, J. C. C. Brändle De Motta, R. Eggels,470

Validation andAnalysis of 3DDNSof planar pre-filming airblast atomization simulations,471

in: In Proceedings of ILASS Americas, 30th Annual Conference on Liquid Atomization472

and Spray Systems. May 12th-15th, Tempe, Arizona, USA, Tempe, United States.473

[41] G. I. Taylor, A. D. McEwan, L. N. J. de Jong, Studies in electrohydrodynamics. i. the474

circulation produced in a drop by an electric field, Proceedings of the Royal Society of475

London. Series A. Mathematical and Physical Sciences 291 (1966) 159–166.476

[42] J.Q. Feng, Electrohydrodynamic behaviour of a drop subjected to a steadyuniformelectric477

field at finite electric reynolds number, Proceedings of theRoyal Society of London. Series478

A:Mathematical, Physical and Engineering Sciences 455 (1999) 2245–2269.479

[43] Deformation of a droplet in Couette flow subject to an external electric field simulated480

using ISPH, PARTICLES, Barcelona, Spain, 2015.481

24




