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Introduction

Predicting the behaviour of multi-phase flow systems has attracted for decades the attention of many industries due to their wide ranges of applications in the chemical engineering, aerospace engineering and renewable energy sectors, among others [START_REF] Xiong | High-resolution particle-scale simulation of biomass pyrolysis[END_REF][START_REF] Sarafraz | Convective bubbly flow of water in an annular pipe: Role of total dissolved solids on heat transfer characteristics and bubble formation[END_REF][START_REF] Izadi | Impingement jet hydrogen, air and cuh2o nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity[END_REF]. In multi-phase systems two or more fluids share interfaces which can deform/ migrate as outcome of exerted forces and constitutional laws. Some applications of multi-phase systems include boiling, condensation, water purification and petroleum refinement processes where these phenomena have been investigated mostly experimentally and theoretically. However, with the ever-increasing power of Computational Fluid Dynamics (CFD) methods, numerical simulations of these systems became of great interest among researchers [START_REF] Bozorg | Cfd study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil-al2o3 nanofluid[END_REF][START_REF] Jamalabadi | Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic t-junction[END_REF][START_REF] Sadeghi | Threedimensional lattice boltzmann simulations of high density ratio two-phase flows in porous media[END_REF].

Smoothed Particle Hydrodynamics (SPH) is a relatively recent and promising mesh-less Lagrangian method which discretizes the domain into a set of nodes, known as material particles.

These particles can freely move inside the computational domain subject to an external force or particle-particle interactions. Initially introduced by Gingold and Monaghan [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF], and Lucy [START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF] for astrophysics applications, SPH was soon found to be suitable for fluid dynamics problems, where complex geometries [START_REF] Shadloo | Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies[END_REF][START_REF] Shadloo | A robust weakly compressible sph method and its comparison with an incompressible sph[END_REF][START_REF] Hirschler | Open boundary conditions for isph and their application to micro-flow[END_REF], large deformations [START_REF] Marrone | δ-sph model for simulating violent impact flows[END_REF][START_REF] Shadloo | Numerical simulation of long wave runup for breaking and nonbreaking waves[END_REF][START_REF] Gotoh | On the state-of-the-art of particle methods for coastal and ocean engineering[END_REF], multi-phase [START_REF] Zainali | Numerical investigation of newtonian and non-newtonian multiphase flows using isph method[END_REF][START_REF] Grenier | An hamiltonian interface sph formulation for multi-fluid and free surface flows[END_REF][START_REF] Shadloo | Numerical modeling of kelvin-helmholtz instability using smoothed particle hydrodynamics[END_REF] and multi-physics problems [START_REF] Ulrich | Multi-physics sph simulation of complex marineengineering hydrodynamic problems[END_REF][START_REF] Hopp-Hirschler | Viscous fingering phenomena in the early stage of polymer membrane formation[END_REF][START_REF] Hopp-Hirschler | A smoothed particle hydrodynamics approach for thermo-capillary flows[END_REF] are involved. A recent overview for the application of SPH can be found in [START_REF] Shadloo | Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges[END_REF].

One of the most important engineering problems which involves many of above cases is the Electrohydrodynamics (EHD) one, where hydrodynamics of a fluid system is coupled with its response to an external electric field. In EHD problems, one may control the interface between the two fluids (here, the droplet and the bulk fluid) by controlling the flow conditions and fluid properties [START_REF] Rezavand | An isph scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios[END_REF][START_REF] Hu | Lattice boltzmann model for the axisymmetric electrothermo-convection[END_REF]. In such problems, the coupling may lead to a large interfacial deformation (i.e. merge/breakup) or migration. Indeed, EHD is a very complex problem including multiphase, multi-physics and multi-scale phenomena with strong topological changes of the interface shape [START_REF] Weirather | A smoothed particle hydrodynamics model for laser beam melting of ni-based alloy 718[END_REF][START_REF] Abdella | Interfacial deformation of liquid drops by electric fields at zero gravity[END_REF]. Although, there are many experimental and theoretical studies available in the literature on the coupled modeling of EHD problems [START_REF] Huang | Deformation and coalescence of water droplets in viscous fluid under a direct current electric field[END_REF][START_REF] Yang | 3d phase field modeling of electrohydrodynamic multiphase flows[END_REF][START_REF] Alberini | Influence of dc electric field upon the production of oil-in-water-in-oil double emulsions in upwards mmscale channels at low electric field strength[END_REF]. Nevertheless, some discrepancies between experiments and analytical data still exist [START_REF] Alberini | Influence of dc electric field upon the production of oil-in-water-in-oil double emulsions in upwards mmscale channels at low electric field strength[END_REF]. As such, numerical simulations have been developed to tackle these difficulties and provide insight into EHD problems.

Considering the numerical simulations of EHD using SPH method, Shadloo et al. [START_REF] Shadloo | A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant newtonian fluid[END_REF] were the first group to provide a model for such problems. They validated their code with the simple EHD deformation of droplets suspended in a neutrally buoyant Newtonian fluid. Rahmat et al. have proposed a multi phase ISPH method based on the lubrication theory and the drainage model to simulate droplet electro-coalescence for wide ranges of simulation conditions. [START_REF] Rahmat | A multiphase isph method for simulation of droplet coalescence and electro-coalescence[END_REF][START_REF] Rahmat | Numerical simulation of the electrohydrodynamic effects on bubble rising using the sph method[END_REF]. Rahmat et al. [32] also provided the first simulation results for the Rayleigh-Taylor instability under the combined effect of electric field and gravitational forces. Yet, step-by-step validation of the SPH method for each individual force using the same methodology is not well-documented.

Additionally, numerical simulation of a multi-phase flow under the effects of an electric field using various scenarios ranging from low to high deformations, droplet migration, and effect of shear flow on the droplet's deformation would provide a broader perspective into the capabilities of the SPH method for such applications. To this end, this article aims at introducing a mesh-less numerical methodology, i.e. Incompressible SPH (ISPH) approach, to deal with such complex problems. Additionally, we verify the applicability of some of the used algorithms for a range of problems including hydrodynamic, capillary, gravity, shear and EHD forces. This article is organized as follows: First, we introduce the mathematical formulation of the SPH method as well as the numerical discretization scheme.Then, we incorporate the governing equations of the multi-phase system including the conservation equations for mass, momentum and electrical charges in a Lagrangian form. Thereafter, a code validation and numerical convergence study is asserted in the absence of electric field. Numerical results cover solutions with and without electric filed sections. Additionally, the effect of surface tension through Laplace law, the effect of gravitational force, and the Couette flow for a multi-phase system are examined and validated against analytical solution and available numerical data in the literature. Finally, conclusions are provided in the last section.

Mathematical Formulation of SPH

The idea of SPH comes from the fact that any field variable f (x) can be calculated by an exact mathematical relation as

f (x) = ∫ Ω f (x )δ(x )dx . (1) 
Upon approximating δ(x ) by an interpolation function W(xx , h), this equation can be formulated as

f (x) = ∫ Ω f (x )W(x -x , h)dx , (2) 
where x and x are the position vectors and h is the smoothing length. In our case, h = ζ dx where ζ=1.6 is a constant value, and dx is the initial particle spacing. The interpolation function, also known as smoothing function or kernel function, should have, among others, the following properties [START_REF] Liu | Constructing smoothing functions in smoothed particle hydrodynamics with applications[END_REF] -Normalized over the domain

∫ Ω W(x -x , h)dx = 1. (3) 
-Produces δ function for a small enough smoothing length

lim h→0 W(x -x , h) = δ(x ). (4) 
-Remains monotonically decreasing throughout the entire domain.

-Has a compact support, meaning that for |x -

x | > k h W(x -x , h) = 0. (5) 
-Is a symmetric function.

Initially, the kernel functions were defined such that each particle should have interactions with all others [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF]. By introducing the concept of Neighboring particles1 , kernel function affect only a compact support around it were substituted (see Eq. ( 5)). Depending on the smoothing length parameter h, only a few number of particles in the entire space affect the approximated value of the kernel function (around 25 to 35 in 2D). In the current work, a cubic spline kernel function is used both for the balk fluid and the interface modeling while taking harmonic average.

W i j = A            2/3 -(r/h) 2 + 1/2(r/h) 3 r/h ∈ [0, 1) 1/6(2 -r/h) 3 r/h ∈ [1, 2). 0 r/h ≥ 2 (6) 
Hereafter, W(xx , h), will be shown by W i j and A = 15 7πh 2 . Also, i, j, and r represent the index of the particle of interest, the index of its neighbors, and the smoothing radius.

To calculate the SPH gradients, one can show that it is sufficient to differentiate the kernel function W(xx , h). In other words, in SPH there is no need to differentiate the field function f (x); instead one can differentiate the kernel function. The latter is one of the fascinating features of the SPH method which distinguishes this method from other mesh-based techniques.

In this work, we use an improved version of the first derivative, presented in [START_REF] Shadloo | Simulation of single mode rayleigh-taylor instability by sph method[END_REF] as

∂ f m i ∂ x k i a kl i = j 1 ψ j ( f m j -f m i ) ∂W i j ∂ x l i . (7) 
Also, the derivatives for vectorial and scalar quantities are calculated, respectively, as follows:

∂ 2 f m i ∂ x k i ∂ x k i a ml i = 8 j 1 ψ j ( f m i -f m j ) ∂W i j ∂ x l i r m i j r 2 i j , (8) 
and

∂ 2 f i ∂ x k i ∂ x k i (2 + a k k i ) = 8 j 1 ψ j ( f i -f j ) ∂W i j ∂ x k i r k i j r 2 i j , ( 9 
)
where ψ is the particle number density and a kl i represents a corrective second rank tensor to avoid particle inconsistencies [START_REF] Shadloo | Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies[END_REF].

Governing Equations

Assuming an immiscible two-phase Newtonian, viscous, incompressible, isothermal fluid system, the corresponding mass and momentum conservations in a Lagrangian formulation are given as follows

Dρ Dt = -ρ∇. ì V, (10) 
and

ρ D ì V Dt = ∇.T + ì f b + ì f s + ì f e , (11) 
where, ρ is the fluid density, D Dt is the material time derivative operator2 , ∇. ì V is the divergence of the velocity vector, T is the total stress tensor which is defined as T = -pI + τ where p is the static pressure, I is the identity matrix and τ = µ(∇ ì V + (∇ ì V) T ) is the viscous dissipation term for µ being the dynamic viscosity.

Additionally, ì f b = ρì g is the body force due to gravity and ì f s is the surface tension which can be calculated using the volumetric force proposed by Brackbill [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], so called the Continuum Surface Force (CSF) method, as

ì f s = γκ ì nδ s . ( 12 
)
Here, γ is the surface tension coefficient, κ = -∇.ì n is the interface curvature, ì n = ∇C |∇C| is the unit vector normal to the interface, and δ s = |∇C| is surface Dirac-delta function, and finally, ì f e is the electric field force.

To avoid sharp discontinuities at the interface, the smoothed color function of the particle i is defined as

C i = j W i j c j j W i j , (13) 
where the color function c assigns a unit value to one phase and zero to the other phase in a two-phase system such that

c j = 1, fluid A 0, fluid B .
Furthermore, this approach provides a clear definition for the volume fraction of each fluid, i.e. C A i = C i and C B i = 1 -C i define the volume fraction corresponding to the fluid A and fluid B, respectively, such that n C n i = 1 for all n phases, here n = 2.

As mentioned before, in this study the electrostatics and the hydrodynamics are coupled together. This coupling is achieved through the Maxwell stress tensor. Maxwell equations provide a mathematical framework for the interaction and the connection between the electric and the magnetic fields [START_REF] Fleisch | A guide to maxwell equations[END_REF]. Here, the EHD part of the system can be regarded as quasi-static model, and dynamic currents values are so low, hence the induced magnetic field effects are negligible.

Therefore, the contribution from the induced magnetic field is neglected. Consequently, the volumetric electric force can be written as

ì f e = ∇.T E . ( 14 
)
In case of an application of the external electric field on a multi-phase fluid flow, this new term for the electric force, will be added to the right hand side of the momentum equation (see Eq. ( 11)), where the Maxwell's stress tensor defines as

T E = ì D ì E - 1 2 ( ì D. ì E)I, (15) 
where ì E is an external electric field, ì D = ì E is the dielectric displacement vector, and is the electrical permittivity. Also, based on the Gauss's law [START_REF] Fleisch | A guide to maxwell equations[END_REF] ∇. ì

D = q v , (16) 
where q v is the free electric charge density.

Application of Eqs. ( 15) and ( 14) will result in

ì f e = q v ì E - 1 2 ì E. ì E∇ . (17) 
In this work both fluids are considered to be leaky dielectric, (i.e. electric relaxation time is much shorter compared to its viscous counterpart or t e << t v ).

Time integration

We apply a predictor-corrector scheme to advance the governing flow equations in time considering a first-order Euler approach. The time-step is selected based on Courant-Friedrichs-Lewy (CFL) condition in which ∆t= C CFL h/V max , with V max being the largest magnitude of particle velocity and the C CFL is the constant taken as 0.25. During the predictor step, we first advance all the variables to an intermediate value denoted by (*), from the variables' value at the n-th time-step denoted by superscript (n), as

ì r * i = ì r (n) i + ì V (n) i ∆t + δì r (n) i , (18) 
ì V * i = ì V (n) i + RHS ρ (n) i ∆t, (19) 
ψ ( * ) i = ψ (n) i -∆tψ (n) i (∇. ì V * i ). (20) 
RHS denotes the right hand side of Eq. ( 11), ψ i = j W i j , is the number density associated with the particle of interest i, which is calculated from the summation of kernel function at all neighboring particles j, δr i is the artificial particle displacement, defined as

δr k i = α N j (r k i j /r 3 i j )r 2 i,o V max ∆t,
and its constant α is set to 0.05 according to [START_REF] Shadloo | Simulation of single mode rayleigh-taylor instability by sph method[END_REF].

These intermediate values will then be used to solve the Poisson equation which gives the pressure value at the next time-step (n + 1). Using this pressure, new velocity and displacement vectors are updated as following

∇. 1 ρ * i ∇p (n+1) i = ∇. ì V * i ∆t , (21) 
∇. ì V (n+1) i = ì V * i - 1 ρ * i ∇p (n+1) i ∆t, (22) 
ì r

(n+1) i = ì r (n) i + 0.5( ì V (n) i + ì V (n+1) i )∆t + δì r (n) i . (23) 
5. Results

Validation and convergence

To ensure a suitable particle resolution based on the numerically computed pressure jump across the interface, in Fig. 2 This problem, known as Young-Laplace problem, has an analytical solution which is ∆p =

p i -p o = γ/r = 1.
As can be seen in Fig. 2-Left, the pressure oscillations decrease by increasing the resolution from the coarser to the finest and the results, converging towards the analytical solution. It is noted that the relative error is less than 1% for the intermediate particle resolution.

Therefore, we chose the 100×100 resolution for our simulations as it provides accurate results with reasonable computation cost. Similar simulations, with different surface tension coefficient are tested, while putting r = 0.5[m] and keeping x/r and y/r ratios constant to validate the accuracy of the used method. As can be seen in Fig. 2-Right, the pressure jump increases by an increment in the surface tension confirming the capability of the method to capture the physical jump across the interface. Once more for the reported simulations, the relative error is less than 1% when the numerical results are compared to the Laplace's law.

It is noteworthy to discuss the reason behind the different values obtained for the theoretical and numerical pressure jump at the interface. As mentioned before, the pressure and other flow field variables (velocity, color function, etc.) are approximated using the numerical smoothing scheme which converts the sharp values at the interface to smoother ones resulting in a loss of accuracy and introduction of spurious oscillations near the surface of the droplet. Furthermore, it is found that these spurious currents are generated because of an inappropriate evaluation of the curvature of the circular droplet due to unreliable values for the unit normal vector (ì n = ∇C |∇C| ) in the surface tension force calculation [START_REF] Sussman | A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows[END_REF]. 

Bubble rising

In this section, the ISPH method is applied to test and to validate the simulation of the bubble rising problem due to the gravitational force. The computational geometry for this test case is similar to the one shown in Fig. 1 where ì n is normal direction to the given boundary.

Here, both bubble and bulk phases are set to have stationary conditions at initial time step.

The bubble starts to rise during the simulation due to the gravitational forces. This problem can be characterized by Reynolds and Bond numbers defined as following:

Re = ρ 2 g 0.5 (2r o ) 1.5 µ 2 , (24) 
and

Bo = ρ 2 g(2r o ) 2 γ . ( 25 
)
respectively.

For the first simulation, a case with low density and viscosity ratios and high surface tension is considered, where ρ 2 /ρ 1 = 10 with ρ 1 = 100

[kg/m3], µ 2 /µ 1 = 10 with µ 1 = 1[Pa.s],
and surface tension coefficient is γ = 24.5[N/m]. Additionally, the gravity is set to be ì g = Additionally, the bubble shape is changing from circular shape to a quasi elliptical one due to hydrodynamic pressures on its tip. The final shape comes from the competition among surface tension, gravitational, and viscous forces. As it is observed, the shape remains unchanged after some time steps which is the main reason for the bubble's almost constant terminal velocity.

Fig. 4 shows the mean migration velocity and the position of the droplet with respect to dimensionless time t * = t (g/D), which are in agreement with the results of [START_REF] Rahmat | Numerical simulation of the electrohydrodynamic effects on bubble rising using the sph method[END_REF] and [START_REF] Zhang | Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-boltzmann study[END_REF].

Here, the velocity gradient near the stationary wall starts to deviates at the final times which could be due to the confinement effects.

To show the applicability of the proposed algorithm for capturing larger deformations and breakups, we perform a second bubble rising test case. This time, the computational domain size is x/r = 6 and y/r = 10 with the particle resolution of 240 × 400. The bubble is initially The snapshots of our current simulations are illustrated (middle) in Fig. 5 for the dimensionless times between t * = 3.2 and t * = 5.6 with a time increment of ∆t * = 0.4. These snapshots are compared to their experimental (top) and Volume of Fluid method (bottom) counterparts, presented in [START_REF] Walters | The initial motion of a gas bubble formed in an inviscid liquid[END_REF] and [START_REF] Asuri Mukundan | Validation and Analysis of 3D DNS of planar pre-filming airblast atomization simulations[END_REF], respectively. As can be seen, the proposed ISPH approach can predict the large deformation and bubble breakup as accurate as its well establish mesh based method.

The presented Volume of fluid (VoF) method uses a hybrid VoF-level-set method [START_REF] Asuri Mukundan | Validation and Analysis of 3D DNS of planar pre-filming airblast atomization simulations[END_REF] to accurately capture the interface.

Figure [START_REF] Jamalabadi | Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic t-junction[END_REF] Comparison of bubble rising and break up due to gravitational and hydrodynamic forces using experiment [START_REF] Walters | The initial motion of a gas bubble formed in an inviscid liquid[END_REF], SPH method and Volume of Fluid method [START_REF] Asuri Mukundan | Validation and Analysis of 3D DNS of planar pre-filming airblast atomization simulations[END_REF], respectively from top to bottom rows. Here, the density ratio ρ 2 /ρ 1 = 1000 and viscosity ratio µ 2 /µ 1 = 10 are applied. Reynolds and Bond numbers, as previously defined, are Re = 1000 and Bo = 200, respectively. The dimensionless time is defined as t * = t g/r o , starting from t * = 3.2 at the very fist frame on the left, up to t * = 5.6, with a time increment of 0.4 per frame.

EHD droplet deformation

In this section, we consider a suspended circular droplet under the effect of an external applied electric field. The schematic of the computational domain is similar to what is presented in Fig. 1 with an increment in the size of the domain. Here, we double the domain size in each direction, i.e. x/r = 8 and y/r = 8, in order to reduce the confinement effect. In Fig. 6 The deformation of a suspended circular droplet under such conditions is a commonly utilized test case for validation of a EHD solver, where two theories are available in the literature.

Taylor [START_REF] Taylor | Studies in electrohydrodynamics. i. the circulation produced in a drop by an electric field[END_REF] estimates the droplet deformation D T as

D T = 9 f dT E 2 o 2 r o 8(2 + R) 2 γ , ( 26 
)
where f dT is the discriminating function evaluated as

f dT = R 2 + 1 -3.5S + 1.5R. ( 27 
)
For the same problem, Feng [START_REF] Feng | Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric reynolds number[END_REF] suggests the following relation

D F = f dF E 2 o 1 r o 3(1 + R) 2 Sγ , ( 28 
)
where f dF is estimated from

f dF = R 2 + 1 -3S + R. ( 29 
)
In Eqs. ( 26) and ( 28), r o is the initial droplet radius before its deformation and E o is the electric field intensity in vertical direction which is calculated from E o = (ϕ + -ϕ -)/H, H being the domain height. Additionally, the permittivity ratio and the conductivity ratio of droplet to the balk are called S and R, presented as

S = 1 2 , R = σ 1 σ 2 , (30) 
where and σ are the electrical permittivity and conductivity, respectively. Also the subscripts 1 and 2 show, droplet and bulk medium properties, respectively.

Another point in the theory of droplet deformation is to investigate the velocity recirculation vectors inside and outside of the droplet when a vertical electric field is applied. The relative differences in the electric permittivity and conductivity of both constituent phases define the direction of the flow rotation in either phase. This is shown for two cases in Fig. 6. On the left side test case is adopted for S = 0.5 and R = 0.05 with the electrical permittivity of the droplet ( 1 ) being 0.5 [F/m] which is half of that of the bulk fluid. Also, the electrical conductivity of the droplet (σ 1 ) is set to 150 [S/m] which is three-times more than the background fluid. On the right side of Fig. 6, the test case has S = 0.5 and R = 3 with 1 = 0.5 and σ 1 = 1. As can be seen in the left sub-figure, the re-circulation zone in the first quarter (i.e. the top-right quarter inside the droplet) of the droplet orients clockwise. This should be the case for S > R and is consistent with the results of [START_REF] Shadloo | A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant newtonian fluid[END_REF]. The opposite flow circulation pattern should be expected for the case of S < R as it also presented on the right side of the same figure.

Additionally, Eqs. ( 27) and ( 29) define the sign of Eqs. ( 26) and ( 28), respectively. The positive sign, so called prolate deformation, indicates that the droplet is elongated in the direction parallel to the electric field. The positive sign, so called oblate deformation, shows the droplet elongation in the opposite direction. For the comparison with the simulation results, we define the numerical deformation as where A and B are the elliptic droplet diameters, parallel and perpendicular to the direction of the external electric field, respectively, at the steady state condition. When this parameter is equal to zero, the droplet keeps its initial circular shape. On the other hand, more deviation from zero indicates more deformation from its initial shape.

D N = A -B A + B , (31) 
Fig. 7 provides comparison between the current ISPH results and the two aforementioned theories for multiple cases. As can be seen, numerical data reasonably follow the available theories. However, in most of the cases, an over-prediction is reported by the simulations. Some might be some possible reasons for such behaviour can be mentioned: (i) in the theory it is assumed that the droplet remains circular even after applying the electric field. This means the change in the curvature is not integrated in the deformation equation, but only the surface tension coefficient. (ii) Another reason might be due to the confinement effect. In theories, it is assumed that the droplet is suspended in an unbounded domain for simplicity. However, providing such domain numerically, or even with twice larger computational domain, is very expensive computationally. Finally, the hydrodynamical properties of droplets such as density and viscosity are not taken into account theoretically and the problem is considered to be inviscid.

Couette Flow

This section investigates the deformation of a droplet suspended between two parallel plates subjected to a constant shear. The flow configuration, known as Couette flow, is presented in Fig. 8. In this case, the flow is driven by viscous forces or pressure gradients [START_REF]Deformation of a droplet in Couette flow subject to an external electric field simulated using ISPH[END_REF]. Different cases as follows

Re = ρ 2 U o r o µ 2 , W e = ρ 2 U 2 o r o γ , Ei = ρ 2 U 2 o 2 E 2 o , (32) 
where Re = 1, W e = 0.2, and Ei = 50. 

D f = L max -L min L max + L min , (33) 
where L max and L min are major and minor droplet diameters, respectively. As can be seen in this figure, the droplet deformation increases when an external electric field is applied regardless of S and R. Additionally, at the constant electrical permittivity ratio, larger deformations can be achieved by an increment in the electrical conductivity ratio when S > R. However, for the similar condition (i.e. S = cte.), smaller deformations are seen by an increment in the electrical conductivity ratio when S < R. Similarly, at constant electrical conductivity ratio larger electrical permitivities result in larger droplet deformations for R < S, while decreases the same for S < R. It is noted that the (5.0, 0.2) and (5.0, 0.5) test problems did not reach a steady profile during the simulation time, here fixed at t * = 1 due to large computational costs. Fig. 10 provides a comparison on the interface shape in the absence (in blue) and the presence of the electric field (in black) at this time. Following the previous figure, it can be seen that the droplets are more slender for larger deformation factors. It is notable that the angle between the major axis of the elliptic droplet and the stream-wise direction become smaller with an increment in the conductivity ratio, while the cases of (5.0, 0.2) and (5.0, 0.5) are immediately distinguishable due to their larger deformations. This elongation is due to the suppression of surface tension forces which is the result of the larger electric field force at higher electrical conductivity ratios. It is also noted that the droplet is no longer elliptical and is suspected to have the breakup at larger time steps.

Finally, the time snapshot of an extreme test case with the electrical permittivity ratio of S = 10 and the electrical conductivity ratio of R = 0.2 is illustrated in Fig. 11 to show the ability of the presented method to capture very large deformations with the interfacial topological change.

Here, the interface is represented by red color, while the velocity streamlines and electrical vectors are represented by blue and black arrows, respectively. In this case, the circular droplet becomes elliptical soon after the start of the simulation. The elliptical interface is elongated in the streamwise axis direction due to the four re-circulation zones in the bulk flow just next to the interface.

Soon after that, pairs of re-circulation merge with each other at the both tips of the droplet and cause the creation of the third re-circulation in its center. By time, the droplet gets folded in four different places and new re-circulation zones appear close to the interface which makes the droplet very susceptible to breakup. As can be seen, this is a promising test problem to show the ability of the present ISPH code to treat the complex multi-phase fluid behavior under an extreme EHD conditions with large interfacial deformation. 

Summary

In this work, we presented an effective multi-phase Incompressible Smoothed Particle Hydrodynamics (ISPH) approach to simulate complex multi-physics electrohydrodynamics (EHD)

problems. We showed a step-by-step validation of the multiphase code for surface tensions, hydrodynamic forces and electric forces, respectively, by solving Laplace's law, bubble rising and buoyant droplet deformation under an applied electric field problems. Results are validated either against available analytical or numerical results. An overall satisfactory agreement were found. Finally, we presented, for the first time, results of droplet deformation under sheared Couette flow with external electric field for a range of simulation parameters. Different parameters such as time resolved topological changes, droplet deformation magnitudes as well as velocity field and electrical potential vectors were presented and compared with each other. It was shown that the current ISPH approach is able to be easily adopted for different multi-physics problems.

It is also capable of predicting large interfacial topological changes such as folding and breakup.

In future, our strategy would be to include more complex transport and multi-physics phenomena.

  the data is represented for 60×60, 100×100 and 140×140 grids. To study numerical convergence, a droplet with the radius of r = 0.01[m] is situated at the center of a square domain, i.e. x o /r = y o /r = 2, with the side lengths of x/r = y/r = 4 (see Fig.

1 )

 1 . While the Dirichlet (no-slip) boundary condition is set for the velocity at all four boundaries, namely, BC-X1, BC-X2, BC-Y1, and BC-Y2, the Neumann boundary condition is applied for the pressure field. As for the hydrodynamics properties, we keep both viscosity and density ratios equal to unity such that ρ 1 = ρ 2 = 1000 [kg/m 3 ] and µ 1 = µ 2 = 0.1 [Pa.s] and set the surface tension to γ = 0.01 [N/m], given neither electrical nor gravitational force.

Figure ( 1 )

 1 Figure (1) Schematic of the test case for validation and numerical convergence test, bubble rising as well as bubble deformation under the effect of electrohydrodynamics (EHD). For the first test case ì g = 0 and ì E = 0, for the second one ì g 0 and ì E = 0 while for the third one ì g = 0 and ì E 0

Figure ( 2 )

 2 Figure[START_REF] Sarafraz | Convective bubbly flow of water in an annular pipe: Role of total dissolved solids on heat transfer characteristics and bubble formation[END_REF] Comparison of (left) the pressure jump across the droplet interface for three particle resolutions and (right) its comparison with the theoretical pressure jump, i.e. Laplace's law, for different cases.

  except that the domain size is increased in the normal direction (orthogonal), i.e. x/r = 6 and y/r = 12, and the bubble is initially placed such that x o /r = 3 and y o /r = 2.4. The grid resolution is set to 240×480 in x and y direction, respectively. The velocity boundary conditions are set to be free slip for BC -X1 and BC -X2, and no slip for BC -Y 1 and BC -Y 2. Also, pressure boundary conditions are set to be Dirichlet with a constant value at BC -Y 2 and Neumann for the other three boundaries (∇p • ì n = 0)

Figure ( 3 )

 3 Figure (3) Time evolution of bubble rising problem with the density ratio of ρ 1 /ρ 2 = 0.1 and viscosity ratio of µ 1 /µ 2 = 0.1 at different dimensionless times t * = 0.5, t * = 18.5, t * = 37 and t * = 64.8. Here the dimensionless time is defined as t * = t (g/D) and Reynolds and Bond numbers are Re = 35 and Bo = 10, respectively. The left half of each snapshot shows the velocity streamlines in black and the droplet interface in red, while the right half shows the velocity magnitude's 10 highest levels' contour in the range of [0, 4.5] [m/s].

placed at x o /r = 3 Figure ( 4 )

 34 Figure (4) The average normalized central position of the droplet, ȳ (top) and its average vertical migration velocity, v (bottom) as a function of dimensionless time, t * .

  -left, a particle resolution of 240 × 240 is used with a circular droplet initially placed at the center of computational domain. The initial zero velocity are assigned to both fluids and wall particles. Density ratio and viscosity ratio are set to unity with values of ρ 1 = ρ 2 = 1000 [kg/m 3 ] and µ 1 = µ 2 = 1[Pa.s]. The surface tension coefficient γ = 1[N/m]. The velocity and pressure boundary conditions are exactly the same as those imposed in section 5.1. The electrical boundary conditions are Dirichlet (ϕ = cte.) and Neumann boundary (∇ϕ • ì n = 0) conditions for horizontal (i.e. BC -Y 1 and BC -Y 2) and vertical walls (i.e. BC -X1 and BC -X2), respectively, where ì n is normal direction to the given boundary.

Figure ( 6 )

 6 Figure (6) Deformation of a suspended droplet in response to an external vertical electric field in the steady-state simulation for the cases with (left) S = 0.5, R = 0.05 and (right) S = 0.5, R = 3.

Figure ( 7 )

 7 Figure[START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] Comparison of deformation for all cases. permittivity ratio, conductivity ratio and surface tension coefficient of each simulation, S, R, γ, respectively, mentioned below or above the corresponding case.

Fig. 9

 9 Fig.9 shows the time evolution of the droplets' deformation under the same external electric field and the shear stress conditions, but for different working fluids having different electrical permittivity and conductivity ratios (i.e. only a change in S and R is considered here). In this figure, the dimensionless time is defined as t * = tU o /r o , while the droplet deformation is calculated from

Figure ( 9 )

 9 Figure (9) Numerical deformation for twelve cases (Left), a close-up look at the rate of deformation at the steady state (Right). Cases without electric field are denoted by a black + sign. The pair number on the legend box, corresponds to the electrical permittivity and electrical conductivity (S, R), respectively.

Figure ( 10 )

 10 Figure[START_REF] Shadloo | A robust weakly compressible sph method and its comparison with an incompressible sph[END_REF] Bubble interface at t * = 1. The pair number above each case corresponds to the electrical permittivity and electrical conductivity (S, R), respectively. If zero, the electric field is not applied.

Figure ( 11 )

 11 Figure (11) Deformation of a suspended droplet in Couette flow with S = 10 and R = 0.2 subject to electric field at t * = 0, t * = 0.4, t * = 0.8, t * = 1.2 and t * = 1.6, respectively, from top to bottom where dimensionless time is defined by t * = tU o /r. The velocity streamlines (in blue), the electric field vectors (in black) and the droplet interface (in red) are shown at five moments.

particles that are located within the range of the kernel function with respect to the particle of interest. Outside of this range, the kernel function has already dropped to zero.

The material time derivative is a directional time derivative for a fixed point.
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