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Originality-Significance Statement 

 

The observation that diatoms shape the biogeography of heterotrophic microbes in the 

Southern Ocean rather than geographic distance and environmental conditions represents the 

originality of the present study. Key diatom species were each associated with specific 

prokaryotic taxa across a large spatial scale, illustrating their potential role in shaping 

microbial diversity in this part of the ocean. 
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Summary 

The interplay among microorganisms profoundly impacts biogeochemical cycles in the ocean.  

Culture based work has illustrated the diversity of diatom-prokaryote interactions, but the 

question of whether these associations can affect the spatial distribution of microbial 

communities is open. Here, we investigated the relationship between assemblages of diatoms 

and of heterotrophic prokaryotes in surface waters of the Indian sector of the Southern Ocean 

in early spring. The community composition of diatoms and that of total and active 

prokaryotes were different among the major ocean zones investigated. We found significant 

relationships between compositional changes of diatoms and of prokaryotes. By contrast, 

spatial changes in the prokaryotic community composition were not related to geographic 

distance and to environmental parameters when the effect of diatoms was accounted for. 

Diatoms explained 30% of the variance in both the total and active prokaryotic community 

composition in early spring in the Southern Ocean. Using co-occurrence analyses we 

identified a large number of highly significant correlations between abundant diatom species 

and prokaryotic taxa. Our results show that key diatom species of the Southern Ocean are 

each associated with a distinct prokaryotic community, suggesting that diatom assemblages 

contribute to shaping the habitat type for heterotrophic prokaryotes. 
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Introduction 

Marine autotrophic and heterotrophic microbes are tightly coupled on spatial and 

temporal scales. The production and remineralization of dissolved organic matter (DOM) is a 

basic interaction that mediates the fluxes of large quantities of carbon and energy between 

these components of the microbial community (Ducklow, 2006). Roughly half of recent 

primary production is taken up by heterotrophic microbes, resulting in a respiration that is 

several-fold higher than the annual increase in atmospheric carbon dioxide (CO2) of 4 Gt 

(Ciais et al., 2014). Diatoms are ubiquitous phototrophic microbes known to produce large 

quantities of DOM (Biddanda and Benner, 1997; Myklestad, 2000). This group is abundant at 

high latitudes and dominates phytoplankton blooms in the nutrient-rich, cold surface waters of 

the Southern Ocean (Smetacek et al., 2004; Quéguiner, 2013; Assmy et al., 2013; Malviya et 

al., 2016), thereby influencing the dynamics of heterotrophic microbes.   

 

Phytoplankton blooms markedly affect the prokaryotic community composition (see 

reviews by Buchan et al., 2014; Bunse and Pinhassi, 2017). The successional shifts were 

linked to the temporal modifications in the quantity and quality of the phytoplankton-derived 

DOM providing new niches for either opportunistic prokaryotic taxa or those adapted in the 

preferential utilization of the compounds released (Rinta-Kanto et al., 2012; Sarmento and 

Gasol et al., 2012; Teeling et al., 2012; Li et al., 2018). Using the exudate of a common 

diatom species as growth substrate in an experimental approach and in situ observations 

allowed to establish a link between substrate preferences of several prokaryotic taxa and their 

presence during spring phytoplankton blooms in the Southern Ocean (Landa et al., 2016). The 

reported co-occurrence patterns between eukaryotic and prokaryotic taxa extend the potential 

importance of biotic interactions to larger temporal and spatial scales (Gilbert et al., 2012; 

Lima-Mendez et al., 2015; Milici et al., 2016; Needham and Fuhrman, 2016; Zhou et al., 
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2018). These networks could in part be driven by the exchange of a suite of metabolites, 

discovered in experimental studies using model organisms. 

 

The interplay between autotrophic and heterotrophic microbes could be governed by 

mechanisms that are species-specific (Amin et al., 2012). The production of compounds of 

the vitamin B group, such as B1 by Marinomonas sp. SBI22 (Paerl et al., 2017), B2 (Johnson 

et al., 2016) and B12 by Ruegeria pomeroyi DSS-3 (Durham et al., 2015) was shown to 

support the growth of the phototrophs Ostreococcus lucimarinus and Thalassiosira 

pseudonana, respectively. The exchange of nitrogen and carbon governs certain associations 

between the nitrogen fixing cyanobacterium UCYN-A and the unicellular algae 

Braarudosphaera bigelowii (Thompson et al., 2012; Zehr et al., 2015). The production of 

siderophores by Marinobacter sp. DG879 that help acquire iron could promote interactions 

with phytoplankton, such as the dinoflagellate Scrippsiella trochoidea (Amin et al., 2009). 

Diatom cell division was recently shown to be regulated by the excretion of hormones 

released by prokaryotes based on the co-cultured Pseudo-nitzschia multiseries with 

Sulfitobacter sp. SA11 and Thalassiosira pseudonana with Croceibacter atlanticus (Amin et 

al., 2015; van Tol et al., 2017). These findings in combination with the observed co-

occurrence of microbial taxa (Gilbert et al., 2012; Lima-Mendez et al., 2015; Milici et al., 

2016; Needham and Fuhrman, 2016; Zhou et al., 2018) raise the question of whether 

interactions have the potential to drive biogeographic patterns of microbial communities in 

the aquatic environment.  

 

The objective of the present study was to investigate the association between diatom 

assemblages and the prokaryotic community composition on a spatial scale. We specifically 

asked the question of whether diatom community composition can explain biogeographic 
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patterns of prokaryotes. Both the total and potentially active prokaryotic community was 

considered with the aim to identify differences in their respective associations with diatoms. 

We explored this question in surface waters of the Indian sector of the Southern Ocean in 

early spring, when diatoms are the major contributor to phytoplankton biomass. We 

concurrently tested for the possible effects of geographic distance and environmental 

parameters, key factors identified in previous biogeographic studies of prokaryotic 

communities (see review by Hanson et al., 2012).  

	

Results 

 

Environmental context 

Our study was conducted over a large spatial distance (≈ 3000 km) in the Indian sector 

of the Southern Ocean, covering four oceanic zones, the subtrophical zone (STZ), the 

subantarctic zone (SAZ), the polar front zone (PFZ) and the antarctic zone (AAZ) (Table 1; 

Fig. 1). Gradients in environmental parameters, determined in seawater collected at 10 m, 

were particularly pronounced between the STZ and the SAZ, while overall minor variations 

within surface waters of the PFZ and AAZ were detectable (see Table S1 for dissolved 

oxygen and salinity). Temperature decreased from 20.09 °C in the STZ to -1.12 °C at the 

southernmost station SI. Concentrations of DOC dropped from roughly 70 µM in the 

subtropical zone to 50 µM within and south of the SAZ. An opposite trend was observed for 

the major inorganic nutrients nitrate and nitrite, phosphate and silicic acid. Abundances of 

heterotrophic prokaryotes decreased by a factor of 3 from the STZ to the southernmost 

stations O11 and SI. The coastal site BDT (1 nautical mile from shore, 50 m overall depth) 

within a bay of Kerguelen Island was characterized by higher DOC concentrations and lower 

Synechococcus abundances, and much lower diatom abundances as compared to the stations 

located within the PFZ. Concentrations of chlorophyll a had no pronounced N to S gradient 
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and highest concentrations were detectable above the Kerguelen plateau (stations A3-1 and 

A3-2), paralleled by the highest diatom abundances. Diatoms dominated in terms of 

abundance over dinoflagellates at all sampling sites except at station O22 in the STZ. Diatom 

carbon biomass accounted for 2-14% of total phytoplankton biomass in subtropical waters, 

while its contribution was on average 59% for all other stations (Rembauville et al., 2017).			

	

Diatom community composition 

The composition of the diatom community, determined by microscopic observations, was 

significantly different among the 4 ocean zones (ANOSIM, R = 0.78, P < 0.01) based on 

Bray-Curtis dissimilarity. Samples originating from the SAZ (O25), the PFZ (O12 and TNS6) 

and the AAZ (A3, O11, KER, FS and SI) formed one main cluster, and samples originating 

from the STZ (O22 and O24) formed an independent branch, including the coastal site BDT 

(Fig. 2). Within the main group, separate clusters for the samples from the SAZ, the PFZ, 

station A3, located above the Kerguelen plateau, and the stations south of Kerguelen Island 

were detectable. Major diatoms in the STZ were small centric spp. (19-67% of total diatom 

abundance), corresponding to an assemblage of diatoms < 25 µm that could not be 

determined to the species level, and Pseudo-nitzschia spp. (8-59%), while in the SAZ 

Chaetoceros radicans (51%) and Chaetoceros socialis (18%) dominated. In the PFZ 

Thalassionema nitzschioides (~32%), small centric spp. (9-38%), Fragilariopsis kerguelensis 

(7-22%) and Eucampia antarctica (2-16%) were the main contributors to the diatom 

community (Fig. 2). These diatoms contributed also substantially to the community at station 

A3. However, the dominant species at this site was Chaetoceros curvisetus, accounting for 

53% of total diatom abundance, followed by Thalassionema nitzschioides (22-28%). In 

surface waters south of Kerguelen Island (O11, KER, FS and SI), Fragilariopsis kerguelensis 

contributed between 15 and 37% of total diatom abundance. Pseudo-nitzschia spp. (2-31%), 
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small centric spp. (3-21%), Chaetoceros curvisetus (3-18%), and Thalassionema nitzschioides 

(2-10%) accounted for overall lower and more variable fractions of diatom abundance at these 

sites. 

Composition of total and active prokaryotic communities  

From the 12 stations, each sampled in biological triplicates, we obtained 36 subsamples for 

the total (DNA) and 36 subsamples for the active (RNA) prokaryotic community. From the 

total of 72 subsamples, we obtained 1326 operational taxonomic units (OTUs) defined at 97% 

similarity based on the 16S rRNA gene amplicon sequencing targeted on the V4 - V5 region. 

A large number of OTUs (1217) were shared among the DNA and RNA data sets, with 1320 

and 1323 OTUs obtained from the DNA and RNA samples, respectively. Unshared OTUs 

were not abundant in either the DNA or the RNA data set. nMDS ordination analysis showed 

that prokaryotic communities were significantly different among ocean zones (ANOSIM, R = 

0.69, P < 0.01) (Fig. 3). The three biological replicates analysed from each station closely 

clustered together, illustrating the high replicability among samples for both DNA and RNA 

(Fig. S1). For the subsequent illustrations and analyses, the biological triplicates were pooled 

separately for the DNA and RNA data sets and the mean relative abundance was calculated 

for each OTU.  

According to OTU abundances, sample assemblages were dominated by Alphaproteobacteria 

(DNA 42% of the sequences of all samples pooled, RNA 38%), Bacteroidetes (DNA 28%, 

RNA 34%), Gammaproteobacteria (DNA 18%, RNA 16%) and Cyanobacteria (DNA 9%, 

RNA 8%), with SAR11, Flavobacteria, Thiomicrospirales and Synechococcales as major sub-

taxa respectively (Fig. S2). Deltaproteobacteria and Archaea were not abundant in surface 

waters (each < 0.6% of sequences pooled from all sites). Dominant OTUs (i.e. ≥ 1% of the 

sequences in at least one sample) represented similar proportions of the total (DNA) and 
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active (RNA) communities at a given site (Fig. S2). For clarity, the following brief description 

is focused on DNA data. Within Alphaproteobacteria, SAR11 was the most abundant taxon, 

with 2 distinct OTUs belonging to SAR11 Ia being abundant (2-16% of the sequences at a 

given site) either in the STZ or in the AAZ. Sphingomonadales were present in almost all 

samples. Within Gammaproteobacteria, one OTU belonging to Thiomicrospirales had high 

relative abundances in the SAZ, PFZ (except for BDT) and AAZ (3-9%), and groups such as 

SAR86, Pseudomonadales and Alteromonadales revealed abundances < 2%. Within 

Flavobacteria, 2 OTUs belonging to the NS2b marine group were abundant in the SAZ, PFZ 

(except for BDT) and AAZ (3-12%), with highest relative abundances at station SI. Marine 

group NS9 was present with relatively high abundance at station A3-2 (~ 4%). SAR324 

marine group belonging to Deltaproteobacteria represented 1-2% of the reads at the AAZ 

stations, except for A3-2. Cyanobacteria had high abundances in the STZ and at station BDT, 

represented by Synechococcus and Prochlorococcus. Archaeal Thaumarchaeota varied 

between 0.5-1% at stations KER, FS, A3-1 and A3-2. 

	

Linking prokaryotic and diatom community composition 

To explore the question of whether prokaryotic community composition was linked to the 

diatom assemblages, we calculated the dissimilarity for each pair of samples of both 

prokaryotic and diatom communities. Based on the Mantel test, we observed significant 

relationships between changes in the diatom assemblages and in the total (DNA) (Fig. 4; R = 

0.55; P < 0.01) and active (RNA) (Fig. S3; R = 0.55; P < 0.01) prokaryotic communities for 

the Southern Ocean samples (SAZ, PFZ and AAZ; excluding BDT). This illustrates that the 

dissimilarity in the composition of each the total and active prokaryotic community increases 

with an increasing dissimilarity of the diatom assemblages. Significant relationships were also 
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obtained for the entire data set, including the two stations in the STZ and station BDT (Fig. 

S4; R = 0.78, P < 0.01). We then tested the potential influence of geographic distance and 

environmental parameters. Geographic distance was not correlated to the changes in 

prokaryotic community composition (Mantel test, P > 0.05), as shown by the lack of any 

significant distance decay relationship (Fig. S5). To determine the potential influence of 

environmental parameters, we performed a canonical correspondence analysis. For the 

Southern Ocean, temperature explained in part the separate clustering of the SAZ sample 

(Fig. S6; ANOVA, P < 0.05). For the entire data set, temperature, salinity and DOC explained 

the separate clustering of the samples from the STZ (Fig. S6; ANOVA, P < 0.05). We then 

applied the partial Mantel test to consider concurrently the influence of diatoms and 

geographic distance, and diatoms and environmental parameters on prokaryotic community 

composition (Table 2). Diatoms explained significantly the variance of the prokaryotic 

community composition, whereas geographic distance or environmental variables alone could 

not when the effect of diatoms on prokaryotic communities was controlled for (Table 2; 

overall P < 0.05). In addition, within the AAZ, the relationship between prokaryotic 

communities and geographic distance was not significant with and without controlling for the 

effect of diatoms (P > 0.05). Diatom community composition explained 30% of the variance 

in both the total and active Southern Ocean prokaryotic community composition. Including 

the two stations in the STZ and BDT, the respective variances explained 70% and 50% (Table 

S2). It was interesting to note that in contrast to prokaryotes, diatom community composition 

could be explained by the combined environmental parameters and in particular, salinity, 

dissolved oxygen, nitrate and nitrite (Table S2). 

The potential relationships between dominant diatom species and prokaryotic OTUs were 

further investigated using co-occurrence analysis (Fig. 5). Diatom species and prokaryotic 

OTUs with ≥ 1% relative abundance in at least one sample were considered. The correlation 
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patterns were similar for total and active prokaryotic communities. The cluster analysis 

revealed several groups of diatoms, each associated with distinct prokaryotic assemblages. 

For the description of these groups we focus on a few representative diatom species. 

Fragilariopsis kerguelensis, Thalassionema nitzschoides and Chaetoceros curvisetus were 

numerically abundant at several Southern Ocean sites (Fig. 2), and revealed strong positive 

correlations (r ≥ 0.6) with distinct prokaryotic OTUs. Fragilariopsis kerguelensis was 

strongly positively correlated with several Flavobacteria OTUs belonging to groups NS5, 

NS9 and NS10. Positive correlations were also found with alphaproteobacterial OTUs 

belonging to the SAR11 I and SAR116 clades, and to Rhodobacterales, further with 

gammaproteobacterial OTUs belonging to Pseudomonadales, OM182 and SAR86, and to one 

OTU of the deltaprotebacterial SAR324 group. Thalassionema nitzschoides was positively 

correlated with Flavobacteria OTUs belonging to the NS4, NS7, NS9, Polaribacter and 

Ulvibacter groups, several Rhodobacterales OTUs as well as SAR11 Ib. Chaetoceros 

curvisetus, a diatom that accounted for 53% of the diatom abundance at station A3 above the 

plateau revealed strong correlations with Flavobacteria OTUs exclusively belonging to the 

NS9 group, one OTU belonging to the gammaproteobacterial Thiomicrospirales, and one 

OTU belonging to Thaumarchaeota. For comparison, Chaetoceros radicans and Chaetoceros 

socialis, dominant diatom species in the SAZ, revealed strong correlations to a distinct set of 

OTUs belonging to Flavobacteria groups NS2b, NS10 and NS4, to one OTU belonging each 

to Rhodobacterales, SAR11, SAR86 and Thiomicrospirales. Small centric spp. and Pseudo-

nitzschia spp., diatoms with overall higher relative abundances in subtropical waters were 

again associated with distinct OTUs belonging to all major groups. In addition, several strong 

(r ≥ 0.6) positive correlations between Cyanobacterial OTUs and diatoms abundant in the 

STZ and at BDT were detectable.  
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Discussion 

		

Contemporary environmental selection has widely been identified as one central mechanism 

for shaping the spatial distribution of heterotrophic microbes in the ocean (reviewed in 

Hanson et al., 2012). Dispersal and drift are additional factors that were identified in 

biogeographic studies (Lindström and Langenheder, 2012; Wilkins et al., 2013). By contrast, 

the potential influence of the community composition of microorganisms that can interact 

with heterotrophic microbes has only recently been taken into consideration in this context 

(Lima-Mendez et al., 2015; Milici et al., 2016, Zhou et al., 2018). The present study reveals 

that the spatial pattern in the community structure of heterotrophic microbes in surface waters 

is tightly associated to changes in the diatom assemblages, rather than to geographic distance 

and environmental conditions. Our survey covers the major oceanographic zones of the 

Southern Ocean where diatoms are dominant components of the autotrophic community and 

our results illustrate their potential role in shaping microbial diversity in surface waters of this 

part of the ocean.   

The key diatom species that we identified, based on their high relative abundances at several 

sites, could be indicative for two broad ecological niches in the Southern Ocean. 

Fragilariopsis kerguelensis, a chain forming, heavily silicified pennate diatom with overall 

low growth rates is typically associated with high-nutrient-low-chlorophyll (HNLC) systems 

(Smetacek et al., 2004; Quéguiner, 2013). By contrast, small diatoms (<25 µm), such as 

Chaetoceros spp., Thalassionema nitzschioides and Thalassiosira spp. are more lightly 

silicified and known to develop rapidly under favourable conditions, such as in response to 

iron supply by natural fertilization in the region east of Kerguelen Island (Blain et al., 2007; 

Lasbleiz et al., 2016) or to mesoscale artificial iron additions (Assmy et al., 2013). 

Fragilariopsis kerguelensis was associated to several OTUs of the SAR11 Ia and SAR116 
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clades and OTUs belonging to OM182 and SAR86, groups that were previously characterized 

as oligotrophs to be adapted to conditions of low resource supply (Sowell et al., 2009; 

Yooseph et al., 2010; Swan et al., 2013). Noticeably strong correlations were also found for 

deltaproteobacterial SAR324 OTUs. Members of this group are chemolithotrophic (Swan et 

al., 2011; Sheik, 2014) and thus likely better adapted to oligotrophic conditions. By contrast, 

Thalassionema nitzschoides and Chaetoceros curvisetus had strong correlations with OTUs 

that were previously identified as rapid responders to phytoplankton blooms, as for example 

the flavobacterial OTUs Polaribacter, Ulvibacter and OTUs from the NS7 group (Buchan et 

al., 2014). Among these, Polaribacter has frequently been observed in temperate (Teeling et 

al., 2012; Klindworth et al., 2014; Needham and Fuhrman, 2016) and polar regions under 

bloom conditions (Williams et al., 2013; Delmont, 2014; Luria et al., 2016; Dadaglio et al., 

2018) and in response to labile organic matter supply (Dinasquet et al., 2017; Luria et al., 

2017; Tada et al., 2017). Similarly, Rhodobacterales had a higher number of strong positive 

correlations with Thalassionema nitzschoides and Chaetoceros curvisetus than with 

Fragilariopsis kerguelensis. The rapid response of the above mentioned OTUs to 

phytoplankton blooms has been attributed to their uptake capacities of specific 

phytoplankton-derived substrates, using functional profiling based on metatranscriptomics 

(Teeling et al., 2012; Rinta-Kanto et al., 2012; Beier et al., 2015) and metaproteomics (Li et 

al., 2018).  

We expected the composition of total and active prokaryotes to be different, but the 

spatial distribution and the co-occurrence patterns revealed to be highly similar between these 

communities. The use of RNA-based approaches to distinguish the active microbial 

community members from inactive or dormant ones is based on the relationship between 

cellular content of ribosomal RNA (rRNA) and metabolic activity (Kerkhof and Ward, 1993; 

Poulsen et al., 1993). Several limitations were pointed out (Blazewicz et al., 2013), including 
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differences in the relationship between rRNA content and growth rate among taxa, and the 

possibly high rRNA content of dormant and inactive cells (Flärdh et al., 1992; Fegatella et al., 

1998). Previous investigations in the study region have shown that bulk prokaryotic 

production and growth rates in early spring are substantially lower as compared to mid- 

summer, in particular at bloom sites (Christaki et al., 2014). In contrast to the present study, 

total and active prokaryotic communities were different from each other in summer, both 

within the phytoplankton bloom above the Kerguelen plateau (Station A3) and in HNLC 

waters (West et al., 2008). These observations suggest that while prokaryotes are stimulated 

by phytoplankton growth in early spring, our approach does not allow to differentiate the 

active community members from those potentially inactive or dormant (Lennon and Jones, 

2011).  

Our observation that key diatom species are each associated to several distinct 

prokaryotic taxa raises the question on the underlying mechanisms. While the exact processes 

are not tractable with the present data set, we provide a possible scenario. In contrast to 

heterotrophic prokaryotes, the spatial distribution of diatoms was significantly correlated to 

some environmental parameters. Because our study took place in early spring when the effect 

of phytoplankton activity on inorganic nutrient drawdown is minor, this result suggests that 

environmental parameters are drivers of diatom assemblages, and that diatoms may be setting 

the pace for the observed spatial changes in prokaryotic community composition. Previous 

field studies and satellite observations have indicated that the onset of spring phytoplankton 

blooms occurring in the region off Kerguelen Island can differ by several weeks (Sallée et al., 

2015). Considering each site independently, the varying contributions of the most abundant 

diatom species could represent different stages of the spring phytoplankton development at a 

given location with potential consequences on the prokaryotic community composition. The 
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qualitative and quantitative differences in the DOM produced by the various diatoms are 

likely to present an important selection process (Landa et al., 2016; Sarmento et al., 2016). 

The pronounced association between assemblages of diatoms and heterotrophic 

microbes observed in the present study could be driven by two particular features of the 

Southern Ocean that are the growth-limiting concentrations of bioavailable iron and organic 

carbon in surface waters. Iron availability controls autotrophic and heterotrophic metabolism, 

but the lack of bioavailable organic carbon represents an additional constraint for 

heterotrophic microbes (Church et al., 2000; Obernosterer et al., 2015). In early spring, 

autotrophic plankton outcompete heterotrophs for the access to iron (Fourquez et al., 2015). 

Thus, diatom-derived organic matter is key in driving both heterotrophic microbial activity 

and diversity in this ocean region (Arrieta et al., 2004; Obernosterer et al., 2008; Landa et al., 

2016; Luria et al., 2016). The spatial distribution of the diatom assemblages as observed in 

the present study in early spring likely reflects their respective ecological niches driven by the 

light-nutrient regime, including iron availability. Our results let us conclude that diatom 

assemblages shape the habitat type for heterotrophic microbes and thereby directly influence 

their community composition.  

	

Experimental procedures 

 

Study area and sampling strategy 

 

The present study was performed during the Southern Ocean and Climate (SOCLIM) cruise 

(DOI:10.17600/16003300) aboard the R/V Marion Dufresne (October 08 to November 1 

2016). The 12 stations sampled for the present study were located in four oceanographic 
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zones, the subtropical zone (STZ), the subantarctic zone (SAZ), the polar front zone (PFZ), 

and the antarctic zone (AAZ) (Fig. 1; Table 1). In the AAZ, station A3, located above the 

Kerguelen plateau, was visited twice during the sampling period (stations A3-1 and A3-2). 

Station BDT (Baie de la Table) is a coastal site (50m overall depth) within a bay of Kerguelen 

Island. All environmental data and the samples for the diatom community composition were 

collected at 10m with 12L Niskin bottles mounted on a rosette equipped with a conductivity-

temperature-depth (CTD, Seabird SBE9+) sensor. Seawater samples for microbial diversity 

analyses were taken from the underway seawater supply system that collected water at 5m 

depth.  

The sampling, storage and analyses of common environmental parameters were done 

according to previously described protocols. The major inorganic nutrients nitrite (NO2
-), 

nitrate (NO3
-), phosphate (PO4

3-) and silicic acid (Si(OH)4) were determined using continuous 

flow analysis with a Skalar instrument (Aminot, 2007; Blain et al., 2014). Dissolved organic 

carbon (DOC) concentrations were determined by high temperature oxydation on a Shimadzu 

TOC-VCP analyser (Benner and Strom 1993; Obernosterer et al., 2015). Concentrations of 

chlorophyll a (Chl a) were determined by High Performance Liquid Chromatography (HPLC) 

analyses (Uitz et al., 2009). The abundance of heterotrophic and autotrophic prokaryotes, and 

pico-and nanoeukaryotes was done by flow cytometric analyses on a BD FACS canto (Marie 

et al., 2000; Obernosterer et al., 2008). For the identification and enumeration of the diatom 

and dinoflagellate assemblages, 100 mL of seawater were fixed with Lugol solution (1 % 

final concentration) and stored in the dark at 4°C for 2 months. Observations were done in an 

Utermöhl counting chamber (24h, dark) using an inverted microscope with phase contrast 

(Olympus IX70) with x400 magnification as described in Rembauville et al. (2017). 

For the analyses of the prokaryotic community composition, three 6L biological 

replicates were collected at each site, filtered on 60 µm nylon screens, and then through 0.8 
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µm polycarbonate filters (47-mm diameter, Nuclepore, Whatman, Sigma Aldrich, St Louis, 

MO, USA). Cells were then concentrated on 0.2 µm Sterivex filter units (Sterivex, Millipore, 

EMD, Billerica, MA, USA) using a peristaltic pumping system (Masterflex L/S Easy-Load II). 

The Sterivex filter units were kept at -80 °C until extraction.  

 

DNA and RNA extraction and sequencing preparation 

DNA and RNA were simultaneously extracted from one Sterivex filter unit using the AllPrep 

DNA /RNA kit (Qiagen, Hiden, Germany) with the following modifications. Filter units were 

thawed and closed with a sterile pipette tip end at the outflow. Lysis buffer was added (40 

mM EDTA, 50 mM Tris, 0.75 M sucrose) and 3 freeze and thaw cycles were performed using 

liquid nitrogen and a water bath at 65 °C. Lysozyme solution (0.2 mg ml-1 final concentration) 

was added and filter units were placed on a rotary mixer at 37°C for 45 minutes. Proteinase K 

(0.2 mg ml-1 final concentration) and SDS (1% final concentration) were added and filter 

units were incubated at 55 °C with gentle agitation every 10 minutes for 1 hour. To protect 

the RNA, 10 µl of β-mercaptoethanol was added to 1 ml of RLT plus buffer provided by the 

kit. To each filter unit, 1550 µl RLT plus-β-mercaptoethanol was added and inverted to mix. 

The lysate was recovered by using a sterile 5 ml syringe and loaded in three additions onto the 

DNA columns by centrifuging at 10,000 g for 30 seconds. DNA and RNA purification were 

performed following manufacturer’s guidelines (Qiagen, Germany) in which RNA was 

treated with DNase to avoid DNA contamination after the first wash step. 

RNA was converted to cDNA using SuperScript III Reverse Transcriptase according 

to the manufacturer’s instructions. Prior to reverse transcription, quality of RNA samples was 

examined by PCR test with general primer sets 341F (5’ - CCTACGGGNGGCWGCAG) and 

805R (5’- GACTACHVGGGTATCTAATCC) for the prokaryotic 16S rRNA gene, followed 
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by the examination of amplification products on 1% agarose electrophoresis. Based on the 

results of the PCR test, DNase was performed once more on the RNA extracts of those 

samples with contaminating DNA left, to completely remove the residual DNA. DNA and 

cDNA was amplified and pooled as described in Parada et al. (2016) with a modification to 

the PCR amplification step. Briefly, the V4 - V5 region of the 16S rRNA gene from DNA and 

cDNA samples was amplified with the primer sets 515F-Y (5’ - 

GTGYCAGCMGCCGCGGTAA) and 926R (5’ - CCGYCAATTYMTTTRAGTTT). 

Triplicate 10 µl reaction mixtures contained 2 µg DNA, 5 µl KAPA2G Fast HotStart 

ReadyMix, 0.2 µM forward primer and 0.2 µM reverse primer. Cycling reaction started with a 

3min heating step at 95 °C followed by 22 cycles of 95 °C for 45 s, 50 °C for 45 s, 68 °C for 

90 s, and a final extension of 68 °C for 5 min. The presence of amplification products was 

confirmed by 1 % agarose electrophoresis and triplicate reactions were pooled. Each sample 

were added with unique paired barcodes. The Master 25 µl mixtures contained 1 µl PCR 

product, 12.5 µl KAPA2G Fast HotStart ReadyMix (Kapa Biosystems, USA), 0.5 µl barcode 

1 and 0.5 µl barcode 2. The cycling program included a 30 s initial denaturation at 98°C 

followed by 8 cycles of 98 °C for 10 s, 60 °C for 20 s, 72 °C for 30 s, and a final extension of 

72 °C for 2 min. 3 µl PCR product were used to check for amplification on 1% agarose 

electrophoresis. The remaining 22 µl barcoded amplicon product was cleaned to remove 

unwanted dNTPs and primers by Exonuclease I and Shrimp Alkaline Phosphatase at 37 °C, 

30 min for treatment and 85 °C, 15 min to inactivate. The concentration of double-stranded 

DNA was quantified by PicoGreen fluorescence assay (Life Technologies). After calculating 

the PCR product concentration of each samples, they were pooled at equal concentrations 

manually. The pooled PCR amplicons were concentrated using Wizard SV gel and PCR 

clean-up system (Promega, USA) according to the manufacturer’s protocol. 16S rRNA gene 

amplicons were sequenced with Illumina MiSeq 2 x 300 bp chemistry on one flow-cell at 
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Fasteris SA sequencing service (Switzerland). Mock community DNA (LGC standards, UK) 

was used as a standard for subsequent analyses and considered as a DNA sample for all 

treatments.  

 

Data analysis 

All samples from the same sequencing run have been demultiplexed by Fasteris SA and 

barcodes have been trimmed off. A total number of 4 150 902 sequences was obtained. 

Processing of sequences were performed using the Usearch pipeline (Edgar, 2013). Paired-

end reads were merged using fastq-mergepairs. The positions of primers were checked using 

search_oligodb and fastx_subsample were used to subset a portion of all sequences to check 

(e.g. 5000 sequences). Primers were trimmed and merged reads in range of length from 336 to 

486 were kept using fastq-filter based on maximum expected error (Needham and Fuhrman, 

2016). 2 000 219 sequences were kept after quality filtering. Data were denoised and chimera 

were identified and removed using unoise3 with a minsize 10 according to mock community 

DNA (Edgar, 2016). During this step, singletons were discarded. Sequences were clustered 

using usearch_global and defined as OTUs at a 97% sequence similarity level. OTUs were 

assigned using assign_taxonomy.py against SILVA release 132 database (Quast et al., 2012). 

Sequences assigned to chloroplast were removed prior to subsequent analyses. 

 

Statistical analyses 

All statistical analyses were performed using R 3.4.2 version. The OTU and taxa tables were 

combined into one object using phyloseq R package. 
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Data were Hellinger transformed prior to the analyses based on Bray-Curtis dissimilarity 

(Legendre and Gallagher, 2001). Bray-Curtis dissimilarity matrices were generated via 

vegdist() function. Non-metric dimensional scaling (NMDS) ordinations was generated based 

on Bray-Curtis dissimilarity using monoMDS() function in the package Vegan (Oksanen et al., 

2015). Analysis of similarity (ANOSIM) was performed to test significant differences 

between sampling zones in microbial communities with R. Dendrograms were performed 

using hclust() with method “average” in the Vegan package.  

Mantel and partial Mantel tests were performed in Vegan using mantel() and mantel.partial() 

based on the Pearson correlation method. The linear model was applied for the relationship 

between prokaryotic communities versus diatom communities in R. Geographical coordinates 

were transformed using the Haversine formula (Sinnott, 1984). Prior to correlation analysis, 

environmental variables were z-score transformed. The amount of variance in prokaryotic 

community composition explained by diatoms were estimated as the square of the correlation 

coefficient (Rho2) based on partial Mantel test. 

Sequences alignment was carried out using MAFFT algorithm web services by defaults 

(Katoh et al., 2017). The phylogenetic tree was constructed using PhyML 3.0 online programs 

based on maximum likelihood method and 100 bootstraps with HKY85 substitution model 

(Guindon and Gascuel, 2003). The tree was visualized with SeaView version 4.7 and saved as 

rooted tree. Heat maps were generated using heatmap3 package and rows were reordered 

corresponding to phylogenetic tree. The correlation heatmaps were generated using spls() and 

cim() in the mixOmics package with log-transformed data (Chun and Keleş, 2010; Rohart et 

al., 2017).  
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Canonical correspondance analysis were performed using cca() in Vegan package with z-

score transformed data. The significance of environmental parameters was tested with an 

analysis of variance (ANOVA) using Vegan package in R.  
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Table Legends 

Table 1. Brief description of the study sites. All values are from 10m depth. 

Table 2. Partial Mantel test for prokaryotic and diatom community composition and 

geographic distance (a) and combined environmental parameters (b) for Southern Ocean 

samples.  

The values shown in the tables are Rho values. Each value represents the correlation between 

two matrices while controlling for the effect of the third matrix. ** P < 0.01, * P < 0.05 

 

Figure Legends 

Fig. 1. Map of the study region of the Southern Ocean and Climate (SOCLIM) cruise 

(October 2016) with stations sampled for the present study indicated by white dots. Surface 

chlorophyll a is derived from ocean color satellite images (COPERNICUS-GLOBCOLOR, 

October 2016, resolution 25km). Dotted and full lines indicate ocean zones and fronts, 

respectively. STZ-Subtropical Zone, STF- Subtropical Front, SAZ-Subantarctic Zone, SAF-

Subantarctic Front, PFZ-Polar Front Zone, PF-Polar Front, AAZ-Antarctic Zone.  

Fig. 2. Clustering of stations based on Bray-Curtis dissimilarity of the diatom community 

composition and relative abundances of diatom species. Diatom species with a relative 

abundance ≥ 1% in at least one station are shown. Samples from the 4 ocean zones were 

significantly different (ANOSIM,	 R = 0.78, P < 0.01). STZ-Subtropical Zone, SAZ-

Subantarctic Zone, PFZ-Polar Front Zone, AAZ-Antarctic Zone. Note: color codes and 

associated names are ordered from top to bottom of each panel. 

Fig. 3. Non-metric multidimensional scaling (NMDS) of total (DNA) and active (RNA) 

prokaryotic communities based on Bray-Curtis dissimilarity. Biological replicates of total and 

active prokaryotic communities are shown for each station. Samples from the 4 ocean zones 

were significantly different (2D stress = 0.08; ANOSIM,	 R = 0.69, P < 0.01). STZ-Subtropical 

Zone, SAZ-Subantarctic Zone, PFZ-Polar Front Zone, AAZ-Antarctic Zone.  

Fig. 4. Relationship between changes in the community composition of diatoms and of total 

prokaryotes for the Southern Ocean stations (SAZ, PFZ and AAZ excluding station BDT). 

Each point represents the Bray-Curtis dissimilarity between pairs of samples. The correlation 

coefficient was determined by the Mantel test. Dashed line denotes linear regression. 
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Fig. 5. Heatmap of correlations between dominant diatom species and prokaryotic OTUs from 

total communities based on Pearson correlations. Diatom species and prokaryotic OTUs with 

≥ 1% relative abundance in at least one sample are shown. Colour key:  Red and blue colours 

represent positive and negative correlations, respectively. a.t = ambiguous taxa 

 

 

Supporting information  

Additional Supporting Information may be found in the online version of this article:  

Fig. S1. Dendrograms of total (a) and active (b) prokaryotic communities based on Bray-

Curtis dissimilarity of biological triplicates. Triplicates were named with number of station 

followed by a, b and c.  

Fig. S2. Heatmap and phylogenetic tree of dominant prokaryotic OTUs that account for ≥ 1% 

in at least one sample of the total (a) or active (b) prokaryotic community. The taxonomy 

classification of each OTU was done according to their closest sequence match assigned by 

the SILVA database.  

Colour key:  dark red and light yellow colours represent high and low abundances, 

respectively. a.t = ambiguous taxa 

Fig. S3. Relationship between changes in the community composition of diatoms and of 

active prokaryotes. Each point represents the Bray-Curtis dissimilarity between pairs of 

samples. The correlation coefficient was determined by the Mantel test. Dashed lines denote 

linear regressions for the Southern Ocean stations (SAZ, PFZ and AAZ excluding station 

BDT). 

Fig. S4. Relationship between changes in prokaryotic and diatom communities. Each point 

represents the Bray-Curtis dissimilarity between pairs of samples. The correlation coefficients 

were determined by Mantel test. (a) Total prokaryotic communities. The full line denotes the 

linear regression across the entire transect (filled and empty circles combined). The dashed 

line denotes the linear regression across the Southern Ocean (SAZ, PFZ and AZ excluding 

sample BDT) regions (empty circles only). (b) Active prokaryotic communities. The full line 

denotes the linear regression across the entire transect (filled and empty squares combined). 
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The dashed line denotes the linear regression across the Southern Ocean (SAZ, PFZ and AZ 

excluding sample BDT) regions (empty squares only). 

Fig. S5. Distance-decay curves of dissimilarity of the composition of the total prokaryotic 

communities. Each point represents the Bray-Curtis dissimilarity between pairs of samples. 

The correlation coefficients were determined by Mantel test. (a) entire transect (b) Southern 

Ocean (SAZ, PFZ and AZ excluding sample BDT). Non-significant results were also obtained 

for the active prokaryotic communities (data not shown). 

Fig. S6. Canonical correspondence analysis of prokaryotic community composition and 

environmental parameters for (a) the entire transect and (b) for the Southern Ocean (SAZ, 

PFZ and AZ excluding sample BDT). Highly auto-correlated parameters are not shown (PO4
3- 

with NO3
- and dissolved oxygen with temperature). The significant parameters were 

temperature, salinity and DOC for the entire transect (a) and temperature for the Southern 

Ocean (b). Station BDT was not considered because chlorophyll a data was not available. 

 

Table S1. Additional environmental variables of the study sites. 

Table S2. Partial Mantel test for prokaryotic and diatom community composition and 

geographic distance (a) and environmental parameters (b) for the entire dataset and Southern 

Ocean samples. 
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Table 1. Brief description of the study sites. All values are from 10m depth.  

Station Date Lat/ 
Long 

Temp  
(°C) 

∑N 
(µM) 

PO4
3-

 
(µM) 

Si(OH)4 
(µM) 

DOC 
(µM) 

Chl a 
(µg L−1) 

BA  
(x108L-1) 

Synecho  
(x104L-1) 

PicoNano 
(x 106L-1) 

Diatoms 
(x 104L-1) 

Dinoflag  
(x 104L-1) 

Subtropical Zone 

O22 08-
Oct-16 

29.00°S 
58.93°E 20.09 0.04 0.04 1.75 76 0.06 5.51 170.0 1.13 0.24 1.96 

O24 10-
Oct-16 

38.00°S 
63.65°E 14.60 2.91 0.21 2.37 62 0.29 7.64 3160.0 12.07 14.75 3.55 

Subantarctic Zone 

O25 12-
Oct-16 

45.00°S 
67.77°E 7.61 19.06 1.25 2.03 51 0.42 5.05 902.0 9.65 63.20 1.55 

Polar Front Zone 

O12 25-
Oct-16 

47.00°S 
72.22°E 4.60 25.42 1.68 7.72 50 0.39 6.02 134.0 4.79 14.52 3.44 

TNS6 15-
Oct-16 

48.78°S 
72.28°E 2.92 26.51 1.93 13.93 52 1.02 3.94 57.4 3.86 64.40 11.40 

BDT 17-
Oct-16 

49.50°S  
69.21°E 2.94 26.30 1.81 14.29 68 n.a 4.46 47.7 6.74 1.51 0.19 

Antarctic Zone 

A3-1 18-
Oct-16 

50.63°S 
72.06°E 2.19 28.21 1.85 19.48 52 1.44 3.66 19.5 2.88 150.70 5.40 

A3-2 24-
Oct-16 

50.63°S 
72.06°E 2.06 28.11 1.84 19.85 51 1.64 4.88 17.6 1.59 138.30 4.50 

KER 18-
Oct-16 

50.68°S 
68.38°E 2.38 28.23 1.97 18.41 51 0.32 2.89 15.6 5.37 13.52 3.88 

FS 19-
Oct-16 

52.50°S 
67.00°E 2.00 29.36 1.96 21.90 52 0.28 2.81 9.4 5.23 10.07 2.15 

O11 20-
Oct-16 

56.50°S 
63.00°E 1.00 29.90 2.01 30.95 46 0.27 2.30 3.4 4.00 13.72 1.62 

SI 21-
Oct-16 

58.50°S 
61.50˚E -1.12 29.27 1.87 35.89 48 0.22 1.88 b.d. 2.23 13.36 3.10 



∑N = nitrate + nitrite; DOC = dissolved organic carbon; Chl a = chlorophyll a; BA = bacterial abundance; Synecho = Synechococcus; Pico-Nano 
= Pico-Nanophytoplankton; Dinoflag = Dinoflagellates; n.a = data not available; b.d. = below detection. Salinity and concentrations of dissolved 
oxygen are provided in Table S1. 
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