
HAL Id: hal-02383627
https://hal.science/hal-02383627

Submitted on 19 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unicode from a Linguistic Point of View
Yannis Haralambous, Martin Dürst

To cite this version:
Yannis Haralambous, Martin Dürst. Unicode from a Linguistic Point of View. Graphemics in the
21st Century, Brest 2018„ Jun 2018, Brest, France. pp.167 - 183, �10.36824/2018-graf-hara1�. �hal-
02383627�

https://hal.science/hal-02383627
https://hal.archives-ouvertes.fr

Unicode from a Linguistic Point of View
Yannis Haralambous & Martin Dürst

Abstract. In this paper we describe and comment, from a linguistic point of
view, Unicode notions pertaining to writing. After comparing characters with
graphemes, glyphs with graphs and basic shapes, character general categories
with grapheme classes, and character strings with graphemic sequences, we dis­
cuss two issues: the phenomenon of ligatures that stand at the boundary between
graphemics and graphetics, and the proposal for the introduction of “QID emo­
jis” which may end up being a turning point in human communication.

1. Introduction

Unicode is a computing industry standard for the encoding, representa­
tion, and handling of text. It has been introduced in 1991 and is nowa­
days practically the only text encoding standard worldwide. Unicode
uses architectural principles, but also has to deal with engineering re­
ality, legacy issues, and sometimes even political considerations:

The Unicode Standard is the product of many compromises. It has to
strike a balance between uniformity of treatment for similar characters and
compatibility with existing practice for characters inherited from legacy en­
codings. (The Unicode Standard. Version 12.0—Core Specification 2019, p. 159)

Unicode is the first encoding in the history of computing that instructs
the user wishing to write in various writing systems of the world: the
Unicode Consortium publishes a 1,018 pages long compendium (ibid.)

Yannis Haralambous 0000-0003-1443-6115
IMT Atlantique & LabSTICC UMR CNRS 6285
Brest, France
yannis.haralambous@imt-atlantique.fr

Martin Dürst 0000-0001-7568-0766
Aoyama Gakuin University
College of Science and Engineering
Sagamihara, Japan
duerst@it.aoyama.ac.jp

1

that is comparable, in size and in the amount of details, to the monumen­
tal World’s Writing Systems by Daniels and Bright (1996). And furthermore,
the Unicode Consortium has released 14 Standard Annexes, 7 Technical
Standards, 6 Technical Reports and 4 Stabilized Reports dealing with is­
sues as manifold as line breaking, bidirectional rendering, vertical text
layout, emojis, etc.

In its almost thirty years of existence, the Unicode Consortium has
patiently built a technical vocabulary to describe computing issues but
also (grapho)linguistic concepts. In this paper, after an introduction to
the issue of encoding text, we will consider Unicode’s approach to writ­
ing, from a linguistic point of view. For this we will adopt a task­oriented
approach and will compare two processes: on the one hand, a person
reading and understanding text that is displayed on an electronic device,
and on the other hand, a machine “reading” and analyzing text from an
input flow. Common to these two processes are their extremities: both
take Unicode­encoded text as input, both result in “understanding” the
text, in the sense of “accessing the various linguistic levels and extract­
ing semantics” contained in it.

The reason for comparing these two—seemingly quite different—
processes is that they reveal the double nature of Unicode: in order for
humans to read text on screen, Unicode has to supply sufficient informa­
tion for the text to be adequately rendered (with the help of a rendering
engine and information provided in fonts); in order for algorithms to
“read” text from an input flow, Unicode has to supply sufficient infor­
mation to convey all strata of linguistic information. These two needs
are complementary and Unicode has been engineered to handle both of
them.

This paper is structured as follows: in Section 2 we give a quick review
of the fundamentals of grapholinguistics, an introduction to the issues
underlying the encoding of text and some extreme cases of text difficult
to encode. Section 3 presents the “reading” processes we will refer to in
the following sections. Section 4 compares various Unicode terms with
grapholinguistic notions. Section 5 deals with ligatures, and Section 6
with emojis.

2. The Context

2.1. Linguistic Fundamentals

When Martinet (1970) defined double articulation, he considered phonemes
as the lowest level of articulation in the hierarchy of language. A phoneme
is a distinctive unit in a system and has no meaning per se. It is

2

through building sequences of phonemes that elementary units of mean­
ing emerge, which we call morphemes. This process is called second articula­
tion. To verify whether units are distinctive, Martinet used the method of
commutation: if by replacing a single elementary unit by another in a mor­
pheme, its meaning changes, then these two units are indeed phonemes:
“cat” vs. “hat,” “cat” vs. “cut,” “cat” vs. “car”; if not, then they are allophones
of the same phoneme. As for morphemes, their combination gives access
to higher levels of meaning through syntax, and this process is called first
articulation.

Anis (1988, p. 89) and Günther (1988, p. 77) use the same method to
define graphemes: in their approach, which is called autonomistic because
it does not involve phonemics, graphemes are units of written text that
have no meaning per se, but are distinctive members of a system. They
are defined by commutation, and through their catenation (a notion in­
troduced by Sproat (2000, p. 13), see also § 4.4) morphemes emerge:
in the English language, <c>, <a>, <t> and <s> have no meaning, but
their catenation as <cats> contains two morphemes: <cat>, which rep­
resents the concept of “cat,” and <s>, which represents the feature of
plural number.

Distinctive units are necessary because humans live in an analog
world. As an infinite variety of sounds is perceived by the ear and an
infinite variety of shapes is perceived by the eye, our brain has first to se­
lect those that participate in linguistic communication (which are called
phones and graphs, resprectively), and then to classify them into a finite
set of classes by which morphemes are formed. Graphs are studied by the
discipline of graphetics (Meletis, 2015), the name of which is inspired by
the analogous discipline phonetics which is studying sounds (called phones)
produced by humans in the frame of oral communication.

Besides graphs (the shapes) and graphemes (the elementary linguis­
tic units), Rezec (2009) introduces the intermediate notion of basic
shape, i.e., clusters in the space of possible graphs representing the same
grapheme, such as |a|1 and |ɑ| representing grapheme <a>, or |π| and |ϖ|
representing grapheme <π>. Note that these basic shapes do not com­
mute in the context of, e.g., English and Greek language (<cat> ≡ <cɑt>
and <πρός> ≡ <ϖρός>) but can very well commute in other contexts,
such as IPA notation system (where <a> and <ɑ> represent different
phones), or mathematical notation (where π and ϖ may represent dif­
ferent mathematical variables).

1. In this paper we use the following notation: <.> for graphemes, |.| for graphs,
/./ for phonemes and [.] for phones.

3

2.2. Encoding Text

The Cambridge Dictionary of English defines the verb “to encode” as

to put information into a form in which it can be stored, and which can only
be read using special technology or knowledge.

This definition involves three actions: “putting,” “storing,” and “read­
ing”. In our context, “putting” will be understood as “converting analog
information into digital form,” or “producing (digital) information on
a digital medium,” and we will restrict ourselves to information con­
tained in textual data, where “text” is taken in a rather broad sense, in­
cluding data in various notation systems such as mathematical formulas,
etc. “Storing” can be digital or analog (such as in physically printed ma­
terial), and “reading” can take different forms, depending on the actor:
a human can read an analog text (optically or haptically) produced by
mechanical means, or read an analog text produced by a digital device
(and hence using digital information), a machine can “read” an analog
text (by OCR), or “read” digital data in the sense of a program receiving
the data trough an input stream.

We will discuss “reading” processes in the next section. In this sec­
tion we will consider the form in which textual data are converted as a
result of the encoding process. Text in natural language (and this is the
main target of the Unicode encoding standard) is a complex object with
many strata of information. Even if we restrict ourselves to information
of linguistic nature, the “encoding” process can be manifold:

1. One of the most common input devices is the computer keyboard,
which is functionally a descendent of the typewriter. “Encoding” a
text via a typewriter amounts to keyboarding it. Keyboarding a text
amounts to selecting keys, pushing them and obtaining a 1­dimen­
sional graphetic sequence (Meletis, 2019, pp. 117–120) on the paper.
The size of the paper being limited, the typewriter’s carriage return
allows the writer to build an 2­dimensional graphetic sequence in
areal space. As for the computer keyboard, it also has a carriage­
return key, but its use is not necessary since computer memory can
be considered as a “page of infinite width” and therefore “encoding”
a text through a computer keyboard results in a long 1­dimensional
sequence of elementary information units corresponding to keys (or
key combinations) pushed by the keyboarder.

The result of this kind of “encoding” is a digital object called plain
text and this is the type of data Unicode claims to encode.

2. Other legacy text production techniques such as typography have a
wider spectrum of visual communication methods (italics, letterspac­
ing, color, etc.) which can be used for various linguistic or paralin­
guistic functions and therefore can be considered as an integral part

4

of text and need to be encoded as well. Markup languages such as
XHTML (Pemperton et al., 2018) or XSL­FO (Berglund, 2006) han­
dle this kind of encoding efficiently, the result being called rich text.

3. Natural language has two main modalities: the written modality and
the spoken modality. In languages with shallow orthography such as
Italian or fully voweled Standard Arabic, one can easily convert data
between these modalities, with little or no information loss; in lan­
guages with deep orthography, such as English or Greek, this process
requires elaborate algorithms and heavy linguistic resources. By pho­
netically annotating an (encoded) text, one has immediate access to both
modalities. A text encoded, e.g., in FoLiA format (Gompel and Rey­
naert, 2013) can have phonetic and/or phonological annotations.

4. Being a linguistic object, text can be analyzed using traditional lin­
guistic methods, and the results of this analysis can be marked in the
text, resulting into what is called annotated text. This may seem un­
necessary for a human reader who is knowledgeable of the natural
language of the text, but can be useful for a human reader learning
the language, or for the machine having to process linguistic data. In­
deed, the first step of most Natural Language Processing algorithms
is a morphosyntactic parse, and obtaining the representation of a text
in, e.g., CoNLL­U format (Marneffe et al., 2013) is another kind of
“text encoding,” where part­of­speech tags, lemmas and dependency
relations are explicitly included.

5. But why stop at the syntactic level? The next step is to perform se­
mantic annotation and to encode concepts present in the text and re­
lations between them by aligning them with ontologies, knowledge
bases and other semantic resources. This is possible through Seman­
tic Web technologies such as OWL (Bao et al., 2012) and RDF (Hayes
and Patel­Schneider, 2014) embedded into the generic markup lan­
guage XML (Bray et al., 2008). Encoding text in this way allows op­
timal processing by Natural Language Processing algorithms.

As we see, text “encoding” can be more or less elaborated and rich in in­
formation, depending on the target “reader”. When the “reader” is a hu­
man, then approaches 1 and 2 are clearly distinct from approaches 3–5.
Indeed, the former provide a visual result that can be read by the human,
while the latter enrich the text by adding additional information to it—
even though one can invent new methods of displaying the additional
information, such as interlinear annotations, special GUIs, etc. When
the “reader” is the machine, there is no visual stage and the distinction
becomes void.

Many large corpora adopt more than one encoding approach. For ex­
ample, the Digital Corpus of Sanskrit (Hellwig, 2010–2019) is a digital object
which can be “read” by a human in the traditional way, but also contains
full morphological and lexical data. These data can be presented to the
human user through a dedicated GUI or can be directly “read” by NLP

5

algorithms for processing of the text. The Quranic Arabic Corpus (Dukes,
Atwell, and Habash, 2013) goes even farther and contains dependency
syntax and semantic annotation information.

Sometimes the boundaries between the technologies we mentioned be­
come blurry. For example, to state only two examples involving Uni­
code:

1. In Japanese and Chinese, ruby can add the phonetic realization of a
morpheme (written in kanji/hanzi characters) using smaller charac­
ters from a syllabary (kana in Japanese, bopomofo in Chinese), the

latter placed above the former, as in
かいしゃ

会社 (“company,” pronouncedか
いしゃ kaisha). Even though Unicode proclaims that it encodes only
plain text, it provides nevertheless three interlinear annotation charac­
ters for marking the begin of the base sequence, the separation be­
tween base and annotation and the end of the annotation sequence.
XHTML also provides markup for ruby (the ruby element) and this
is the method recommended by the W3C (see Sawicki et al. 2001,
as well as Dürst and Freytag 2000). Ruby, as an annotation, is essen­
tially phonological and morphological since, traditionally, ruby bases
are morphemes and not individual characters—it therefore overlaps
approaches 3 and 4.

2. There exist Unicode characters with empty visual representation.
These characters carry information of morphological, syntactic or se­
mantic nature, e.g., the soft hyphen character marks boundaries of
graphical syllables (and is useful for obtaining correct hyphenation);
the ınvısıble separator character marks consecutive symbols as
being part of a list (a property of syntactic nature); and the ınvıs­
ıble tımes character marks consecutive symbols as being multiplied
(a binary algebraic operation with very precise semantics). The in­
formation carried by the ınvısıble separator and ınvısıble tımes
characters can also be represented by markup in a markup language
such as MathML (Carlisle, Ion, and Miner, 2014): the apply and times
elements.

The standard way of producing written text, as described in Meletis
(2019, pp. 117–120), is to catenate graphs into 1­dimensional graphetic se­
quences to fill linear space, until reaching the “page” boundary and then
continuing on the next line in order to fill areal space. This approach,
which is the standard approach of legacy typography, is used by Uni­
code and rendering engines. It inherently assumes that the geometry of
1­dimensional graphetic sequences—as long as there is no 2­dimensional
higher structure such as a list or a table—carries no syntactic or semantic
information.

There are cases where human creativity has transcended this model,
and we will present three examples (cf. Fig. 1). It is legitimate to raise the

6

question whether these cases can be “encoded” by the machine without
information loss. They are the following:

(a) a page from Mallarmé’s “Un coup de dés jamais n’abolira le hasard”
(“A throw of the dice will never abolish chance”) where the read­
ing process is spatially and temporally structured by horizontal and
vertical gaps, font size, font style and uppercasing. To achieve the
visual result with the appropriate precision while keeping access
to textual content, XHTML and XSL­FO are not sufficient and a
markup language for describing two­dimensional vector and mixed
vector/raster graphics, such as SVG (Bellamy­Royds et al., 2018) is
necessary;

(b) Apollinaire’s calligram “La colombe poignardée et le jet d’eau” (“The
stabbed dove and the fountain”), where not only graphemes form a
drawing, but text meaning and image are in constant interaction:
For example, the soft and immaculate character of the dove’s wings
is strengthened by the text fragments on their contours: “douces fi­
gures” (“soft figures”) and “lèvres fleuries” (“flourished lips”) and by
six female given names followed by the question “où êtes­vous ô
jeunes filles” (“where are you oh young girls?”). Also, the wound of
the stabbed dove is drawn with the words “et toi” (“and you”). Here
again a markup language such as SVG is necessary in order to place
graphemes on curved paths while maintaining the linearity of the
poem’s text, and to encode the correspondences between parts of the
drawing and text segments. One can even envision an abstract hi­
erarchical description of the drawing (involving the dove, its head,
wings and queue, wings being made of feathers, etc.) where each
element is linked to a text segment, so that the poem inherits the
graphical structure of the drawing and so that we have an alignment
between linguistic and pictorial hierarchical structures (see Fig. 2
for a small excerpt of such a structure). No less than that would
be necessary to capture the subtle interaction between image and
text;

(c) and finally a Kufic calligraphy of a Quranic verse: ࣌ ࣇّ҇ ҋإ ӯًنفَْس ُ ЫّٰЪЩا ւَُُِّཱཱིྀي وسُْعهӯََ﴾﴿ࣇ࣌ (“God does not burden any soul beyond its capacity,” 2:286),
written as a spiral starting from the lower right corner and going
clockwise inwards so that the last word is in the middle of the draw­
ing. Here, the act of recognizing the text inside the labyrinthian
drawing symbolizes, in the frame of Muslim religion, the discovery
of the word of God in the world, which is His book.

For such a calligraphy to have a dual text/image nature, a markup
language such as SVG is again necessary, but also an ad hoc font
with glyphs dynamically drawn out of generic “metagraphs” for the

7

(a) (b)

﴾ӯََوسُْعه ࣌ ࣇّ҇ ҋإ ӯًنفَْس ُ ЫّٰЪЩا ւَُُِّཱཱིྀي ﴿ࣇ࣌

(c)

Fıgure 1. Three examples where the size, style, position and form of graphetic
sequences participate in meaning production

8

calligram

title dove water fountain/mouth/eye

head bodytail wings

heart left wing right wing

edge feathersedge feathers

poignardées Chères lèvres f leuriesDouces f igures

ADJ ADJ NOUN ADJADJ NOUN

NPNP

verseverse

poem

Graphical
structure

Graphs

Graphemes

POS

Syntax

…

…

…

…

Fıgure 2. Levels of analysis of a small fragment of Apollinaire’s “La colombe
poignardée et le jet d’eau”

specific textual utterance (André and Borghi, 1990; Bayar and Sami,
2010).

The aim of this section was to introduce the reader to the problematics
of “text encoding,” to the various technologies available, to their mu­
tual boundaries and overlaps, and to their limits illustrated by three
examples of texts, the visual methods of which exceed the common
meso/macrographetic model2.

2. These terms have been introduced in Meletis (2015) and were inspired by the
terms “meso­” and “macrotypography,” introduced by Stöckl (2004, p. 22).

9

In the remainder of this paper we will adopt a task­oriented approach
and examine Unicode in the frame of three “reading” processes, differing
by their actors: human or machine.

3. Three “Reading” Processes

The field of perceptual graphetics (Meletis, 2015) deals with the influence of
the materiality of writing on perception, recognition and reading, and
there has been abundant research on the particular case of perceptual
graphetics of electronic devices (computer screen, tablets, smartphones,
etc.). In this research domain, the displayed text is considered as a start­
ing point and the objects of study are mainly the human perception of
the signal emitted by the machine and the cognitive processes involved
in recognition and understanding of textual data.

We will extend the “reading” process to the situation where the emit­
ter and receiver are machines, and the channel is purely digital (so that
no optical intermediation is involved). We therefore describe three sit­
uations where text is “read,” corresponding to three different processes,
illustrated by Fig. 3 where the text consists of the morpheme “cat”:

cat
Mental
concept

of cat

Mental
concept

of cat

cat

cat http://www.

wikidata.org

/wiki/Q146

cat

H-H

M-H

M-M

Fıgure 3. Processes H-H , M-H and M-M involving the morpheme <cat> and the
concept of cat. Grey background denotes the digital world.

10

– H-H (“Human → Human”) is the process of reading from paper (ei­
ther manuscript or printed): The eye sees graphs in the material form
of ink on a the paper surface, the brain recognizes graphemes, com­
bines them into morphemes and accesses the mental concepts they
represent;

– M-H (“Machine → Human”) is the same process, but this time the
reading surface is a computer monitor or other electronic device. The
computer has the word cat stored, encoded in Unicode, and transmits
this information to a rendering engine which extracts data from a
font, builds an image, and transmits this image to a display device.
At the boundary between the digital (grey background in the figure)
and the analog world, the device receives the data and displays the
word on its surface. The rest of M-H is the same as H-H ;

– M-M (“Machine → Machine”) is the process of accessing the same
concept through Natural Language Processing algorithms. The in­
put is the same: the word cat encoded in Unicode. NLP algorithms
have to (a) detect the current language; (b) use this information
to detect words/morphemes; (c) use the context and linguistic re­
sources to find POS tags; (d) disambiguate: is “cat” the felid? or a
jazz enthusiast? or the pointed piece of wood that is struck in the
game of tipcat? or is it a sturdy merchant sailing vessel?3 Once dis­
ambiguated, the intended (or most probable) concept is represented
by an IRI (Internationalized Resource Identifier, see Dürst and Suignard
(2005)) pointing to an item of the knowledge base Wikidata, namely
http://www.wikidata.org/wiki/Q146. This item represents the concept
of “cat” as a felid.4

The diagram of Fig. 3 obviously oversimplifies the real processes—its
purpose is to show the dual purpose of Unicode, which has to provide suf­
ficient information to a rendering engine to be able to correctly render
graphemes on the display so that process M-H can succeed, but also to
provide sufficient information to NLP algorithms for the process M-M
to succeed as well.

In process M-M , Natural Language Processing algorithms need to
have sufficient information to access all facets of the input considered
as a linguistic object. Unicode has been engineered to allow this kind of
process. But it also allows process M-H : in this case, the system trans­
mits the string of Unicode characters to a rendering engine, which will
load a font that maps characters to images (called glyphs) displayed to the
reader (cf. Haralambous 2007).

3. The various meanings of the word “cat” listed here are taken from the English
Wiktionary entry https://en.wiktionary.org/wiki/cat.

4. We have chosen Wikidata as an example, but other knowledge bases also exist,
such as WordNet or Yago. See §6 for additional information on Wikidata.

11

Usually the choice of the font involved in the rendering process de­
pends on the knowledge domain (computer science and mathematics
publications are often typeset in Computer Modern, most other sci­
entific disciplines in Times) or on the publisher’s graphical signature,
and therefore its contribution to meaning production is secondary and
mostly connotative. For that reason Unicode does not encode fonts and
this information has to be added using higher protocols such as markup
languages5 or stylesheets. Once again there are cases where human

Fıgure 4. Austrian pub­
licity: “Go vote! Other+ do
it too.” (Also in Dürscheid
2016, p. 232 and Schopp
2008.)

creativity has transcended this conven­
tion and has raised the choice of font
to the status of important factor in the
production of meaning. The reader can
see an example in Fig. 4, an Austrian
publicity: “Gehen Sie wählen! Andere tun
e+ auc.” (“Go vote! Other+ do it too.”),
where the change to a broken script in
the second sentence narrows the refer­
ent of the noun “others” to right­wing
extremists6 and thereby denotes polit­
ical orientation.

For the time being, cases involv­
ing font choice or specific geometric
arrangements of text can successfully
go through the M-H process but, to
the authors’ knowledge, no NLP al­
gorithm is yet capable of extracting
the meaning produced by geometric
and graph(et)ic features, mainly be­
cause NLP relies on the “plain text”
model and discards any information of
graphetic nature.

This leads us to the two main ques­
tions of this text:
1. How does Unicode model writing, in order to handle both the M-H

process and the M-M process?
2. What are the fundamental notions of Unicode, and how do they relate

to linguistic notions and processes?
In the following sections we will explore the Unicode notions of char­
acter, character category, glyph, and character string, and relate them

5. The SVG (Bellamy­Royds et al., 2018) markup­language not only allows choice
of font by name, but also provides XML markup for designing entire fonts which can
be stored internally in the document or be used remotely.

6. Which is actually ironic, since it was Hitler who prohibited the use of broken
scripts in 1943, cf. Haralambous (1991).

12

to the linguistic notions of grapheme, grapheme class, graph and basic
shape, 1­dimensional graphetic sequence, etc.

4. Unicode

4.1. Characters vs. Graphemes

The atomic unit of Unicode is the character. This term has its roots in the
encodings of the stone age of computing (FIELDATA in 1960, ASCII in
1963, see Mackenzie 1980 and Haralambous 2007). In the early sixties,
a “character” was a “specific bit pattern7 and an assigned meaning”. The
“meaning” was either a “control meaning” (ringing a bell, delete the pre­
vious character, etc.) or a “graphic meaning”. A “graphic meaning” was
either an “alphabetic,” or a “numeric,” or a “special” (i.e., punctuation
and logographs such as %, #, @, etc.). “Alphabetics” were defined as “let­
ters in the alphabet of a country” (Mackenzie, 1980, p. 16). This naive
and Eurocentric approach is due to the limited use of text in computers
of that period.

Unicode being a descendent of ASCII, it inherited the “character”
term and introduced a panacea of additional technical terms, some of
which we will try to consider in the following, from a linguistic point of
view.

Probably to avoid conflict with the ancestral ASCII standard, the
term “character” per se is never defined in the Unicode specification.
Defined are four specializations of this term: “abstract character,” “en­
coded character,” “deprecated character,” and “noncharacter”.

According to the Unicode specification, an abstract character is defined
as

a unit of information used for the organization, control, or representation of
textual data. (D7 in U§3.48)

We can’t help notice that this definition takes the notion of “textual data”
and its perimeter for granted. This comes as no surprise since the no­
tion of “text” is polysemic and depends on the disciplinary context. In
the Cambridge Dictionary of Linguistics (Brown and Miller, 2013), “text” is
defined as follows:

7. On the lowest level of computer memory, bits are binary values bi, their con­
catenation bnbn−1 . . . b1b0 allows the representation of integer numbers through the
formula

∑n
i=0 2bi . A “bit pattern” is a sequence of bit values, for example 01100001

corresponds to number 97.
8. In the following we will denote, for the sake of brevity, a section ** from the

Unicode Standard Version 12.0 (The Unicode Standard. Version 12.0—Core Specification
2019) by “U§**”.

13

The term originally denoted any coherent sequence of written sentences
with a structure, typically marked by various cohesive devices. It has been
extended to cover coherent stretches of speech.

But then again, in the same dictionary, there are no entries for “writ­
ten sentence” and for “writing,” used in this definition. A “sentence” is
defined as

the largest unit handled by grammar,

and “grammar” is defined as either (in the narrow sense) the “morphol­
ogy and syntax of a language,” or (in the broad sense) the “morphology,
syntax, phonology, semantics and even the pragmatics of a language”.

A more general definition of “text” is given in Wikipedia:

In literary theory, a text is any object that can be “read,” whether this ob­
ject is a work of literature, a street sign, an arrangement of buildings on a city
block, or styles of clothing. It is a coherent set of signs that transmits some
kind of informative message,

followed by a reference to Lotman (1977). If we apply this definition to
processes M-H and M-M we come to the fact that the purpose of text is
to be “read,” be it by a human or by a machine. “Reading,” in our case,
comes down to:

1. detecting and identifying the text’s elementary units,
2. applying second articulation to extract morphemes from their com­

bination, and then
3. applying first articulation to obtain meaning from the combination

of morphemes.

Our statement is that these three operations apply not only to process
M-H , but also to process M-M . To start, the machine is informed by var­

ious mechanisms that it is “reading” Unicode characters and not, for ex­
ample, pixel data. It is also informed on the way of reading these data, in
order to convert them appropriately to elementary text units9. Once the
machine is aware of the fact it is reading Unicode characters, identifying
them becomes possible through the notion of “encoded character”:

An encoded character is an association (or mapping) between an abstract
character and a code point, (U§3.4)

where a code point is defined as follows:

9. The details on the various ways of storing elementary text units on the machine
level, that is using bits and bytes, have no incidence on the linguistic study of Unicode.
The interested reader is invited to read U§2.5 and U§2.6.

14

A code point is any value in the Unicode codespace (U§3.4)

and the Unicode codespace is

the range of integers {0, . . . , 1,114,111}. (U§3.4)

In other words, in the frame of process M-M , step 1 of the “reading”
process, namely identification of elementary units (called “encoded charac­
ters”) is trivial for the machine, since they are represented in memory
by unique numbers10. No extra effort is required.

Not so for the human in the frame of process M-H , where elemen­
tary units are distinctive elements of a system and, as such, must be
recognized by the readers, provided they are knowledgeable of the cor­
responding writing system or notation system. Here, the “elementary
unit” (of text) corresponds to the linguistic notion of grapheme, as de­
fined by Anis (1988) and Günther (1988).

So how do the notions of “character” (abstract or encoded) and
“grapheme” compare?

The Unicode Consortium avoids taking position in favor or against
the autonomistic approach and avoids using the term “grapheme”. In­
deed, in the Unicode specification it is stated that

A character does not necessarily correspond to what a user thinks of as a
“character” and should not be confused with a grapheme. (U§3.4)

As a critique to this statement we argue that:

– in the frame of process M-H , a character is exactly the information that,
after being channeled through rendering engines, allows the human
to recognize a grapheme without ambiguity, so it functionally corre­
sponds to a grapheme;

– in the frame of process M-M , a character is exactly the information
that is necessary to the machine to perform natural language pro­
cessing, similarly to graphemes that are the information necessary to
the human to process language,

and therefore one can conclude that, functionally, the notions of char­
acter and grapheme are quite close.

Nevertheless characters do not always represent graphemes. The
main discrepancy between the two notions is due to the fact that some
scripts (such as the Latin script or the Cyrillic script) are used for more

10. In some sense, encoded characters can be considered as signs, code points being
their signifiers and abstract characters their signifieds. As with Saussurean signs, the
relationship between signifier and signified is arbitrary, in the sense that there is no
reason why the abstract character latın letter a is represented by code point 97.

15

than one language, and Unicode targets all languages simultaneously. To
take two examples, according to Grzybek and Rusko (2009, p. 33), there
is a <ch> grapheme in the Slovak language, and according to Wmffre
(2008, p. 598), there is a <c’h> grapheme in the Breton language—none
of these is a Unicode character. This comes from the fact that Unicode
is bound to follow conventions such as national encodings or keyboard
layouts, and there has never been a Slovak encoding or keyboard featur­
ing <ch> or a Breton encoding or keyboard featuring <c’h>.

There are even Unicode characters that do not correspond to
graphemes in any language, such as invisible Unicode characters (var­
ious spaces, soft hyphen, etc.), pictographs, emojis, etc. Also there is a
large amount of characters that are graphemes in one language but not
in another language using the same script (such as <č> used in Czech
but not in German). More interesting is the case of characters which
are graphemes in language A, are not graphemes in language B, but can
still be used in B as allographs of some grapheme. For example, the let­
ters <ڪ> and <ک> which commute in Sindhi: <ռڪن> (“ear”) ̸=

<ռکن> (“sugar”); in Arabic and other Arabic­script languages they are
just allographs of the Arabic ,<ك> and hence do not commute: <كـتӯب>

≡ <ڪتӯب> (both “book” in Arabic).

Fıgure 5. French logos using allographs that are graphemes in other languages

This phenomenon is easier to observe in graphic design, where the
use of allographs is a creative design method. In the French­language
examples of Fig. 5 one can observe the use of allographs <İ>, <Ē>,
<Ā>, and <í>, instead of <I>, <É>, <Â> and <i>; these allographs are
graphemes in other languages (Turkish for <İ>, Latvian for <Ē> and
<Ā>, Italian, Spanish and elsewhere for <í>) and therefore are accessi­
ble to the designer through Unicode­encoded fonts.

4.2. Glyphs vs. Graphs and Basic Shapes

Meletis (2015, p. 117) defines graphs for the German language as follows:

Die kleinste, nicht weiter durch Leerstellen getrennte Einheit ist der
Graph (dies gilt insbesondere für Druckschrift und nur eingeschränkt für

16

Handschrift), der jeweils einen einzigen segmentalen Raum ausfüllt und im
alphabetischen Schrifttyp durch Buchstaben, aber auch nicht­alphabetische
Graphen wie Interpunktions­ und Sonderzeichen sowie Ziffern verkörpert
wird.11

This definition can easily be applied to scripts with separated atomic
units (alphabetic scripts, South­East Asian scripts, Chinese script). In
the case of scripts systematically connecting atomic units (Arabic and
Syriac scripts, Devanagari, etc.) the condition of “smallest entity not
separated by blank spaces” cannot be applied. In the case of printed text,
one can refer to the historical segmentation of the connected script into
types to obtain a (not perfect but reasonable) solution to the problem
how to segment a shape into its constituent graphs. In the case of hand­
writing there is no clear segmentation and fuzzy logic has to be applied
to the mapping of each part of the drawing to individual graphs con­
tained in it.

The advantage of this definition of graph is that it doesn’t presuppose
knowledge of graphemes and of higher linguistic units: one can take
a printed text in an unknown language, subdivide it into elementary
graphical units and move on to the next graphetic levels (1­dimensional
graphetic sequences in linear space, 2­dimensional graphetic sequences
in areal space, page).

In the Unicode Standard there is no proper definition of glyph. The clos­
est we can get to obtain a definition would be through the following
sentence:

Glyphs represent the shapes that characters can have when they are ren­
dered or displayed. (U§2.2)

What is understood in this definition is that the glyphs must be rendered
or displayed in such a way that the characters they represent can be
visually recognized by readers knowledgeable of at least one language
in which the characters are used.12

All occurrences of the term “glyph” in the Unicode Standard refer to
shapes obtained by rendering characters. This excludes shapes drawn
by hand in a drawing application, and any text obtained by a means
different than Unicode characters rendered by a rendering engine.

11. “The graph is the smallest entity [of the model] that is not separated by blank
spaces (this is valid predominantly for printed text and only partially for handwritten
text) and that occupies a single segmental space. In alphabetic writing systems, graphs
are materialized by letters but also by non­alphabetic signs such as punctuation and
special signs and digits.”

12. Technically the rendering of an arbitrary Unicode character is provided by ren­
dering engines, which use data from fonts, and in font technologies there is absolutely
no restriction on the shape that can be used for a specific Unicode character: one can
easily create a font rendering the character latın capıtal letter a by the glyph |B|.

17

So, if we stick to this excerpt of the Unicode Standard, then (a) glyphs
are an aspect of characters for which Unicode takes absolutely no re­
sponsibility, (b) absolute freedom is granted to font vendors to render
characters as they like and (c) only the degree of commercial success
of a font can determine the legitimacy of its glyphs as representatives
of given characters. This may seem an overstatement for the common
scripts, but becomes a real problem for rare scripts for which only very
few fonts exist: Dürscheid (2018, §4) qualifies the Unicode Consortium
as a “gatekeeper” of characters, in a similar way the font industry be­
comes the “gatekeeper” of glyphs of rare scripts13.

Fortunately Unicode avoids this anarchy situation by introducing an
additional notion: the one of representative glyph:

The identity of a character is established by its character name and repre­
sentative glyph in the code charts.

A character may have a broader range of use than the most literal inter­
pretation of its name might indicate; the coded representation, name, and
representative glyph need to be assessed in context when establishing the
identity of a character. For example, full stop can represent a sentence pe­
riod, an abbreviation period, a decimal number separator in English, a thou­
sands number separator in German, and so on. The character name itself is
unique, but may be misleading.

Consistency with the representative glyph does not require that the im­
ages be identical or even graphically similar; rather, it means that both im­
ages are generally recognized to be representations of the same character. Represent­
ing the character latın small letter a by the glyph “X” would violate its
character identity. (U§3.3, emphasis introduced by us)

Representative glyphs for all Unicode characters can be found in the
Unicode Code Charts14. The notion of representative glyph is very in­
teresting because

1. it reveals the insufficiency of the intensional description of charac­
ters;

2. it induces an operational definition of glyphs: a glyph is a shape that is
generally recognized to be a representation of a character. This definition still
involves Unicode characters, but not the rendering process anymore;

3. it shows that the relation between characters and glyphs has a socio­
linguistic facet: a glyph represents a given character if and only if
there is a community of people recognizing it as such.

The notions of graph in linguistics and glyph in Unicode may intuitively
seem equivalent, but the ways they are defined makes them difficult to

13. In the sense that a Unicode user without the necessary competency for creating
a font with the appropriate glyphs is forced to use glyphs provided in existing fonts.

14. https://www.unicode.org/charts/.

18

compare: graphs are defined as units in a graphetic system, while glyphs
are defined as socially recognizable renderings of a given character.

It is interesting to note that in Unicode, kanji/hanzi characters have
not one but as many as six representative glyphs, corresponding to
graphs used in China, Hong Kong, Taiwan, Japan, Korea and Vietnam.
For example, the character 伶 with codepoint 4F3616 (“clever,” “actor”)
is presented in the following way in the Unicode code chart:

As the reader can see there are three shape families: (a) the first and sixth
graphs (China and Vietnam) have a drop­like diǎn stroke |㇔| under the
“roof”; (b) the second and third graphs (Hong Kong and Taiwan) have
a straight horizontal héng stroke |㇐| under the “roof”; (c) the fourth and
fifth graphs (Japan and Korea) have a different lower­right component,
consisting of a héng­zhé­gōu stroke |㇆| and a shù stroke |㇑| (see Haralam­
bous 2007, pp. 154–155 and Myers 2019, pp. 13–14).

We claim that these three graphs belong in fact to three different basic
shapes, in the sense of Rezec (2009). As they are obtained by the use of
different fundamental strokes, the graphs will necessarily remain differ­
ent in all possible realizations belonging to three disjoint clusters. There
will never be “intermediate” cases since the fundamental strokes have to
be recognizable by design as distinctive parts of the system.

4.3. Character General Categories vs. Grapheme Classes

Let us now turn to issues of classification. In the usual classification of
graphemes into logograms and phonograms, the latter are defined by their
relation to speech. Dürscheid (2016, p. 74) defines phonograms as fol­
lows:

Phonogramme (= Lautzeichen) sind Zeichen, die ausschließlich auf die laut­
liche Ebene des Sprachsystems bezogen sind.15

Such a definition is not compatible with Anis’s autonomistic approach,
which considers writing without any a priori relation to speech. Anis
(1988) divides graphemes into three classes, namely alphagrams, topograms
and logograms. His definition of an alphagram is as follows:

ces unités distinctives, dénuées de sens par elles­mêmes, sont les composantes
des unités significatives. Comme les phonèmes, les alphagrammes relèvent de
la seconde articulation.16

15. “Phonograms (= Signs for sound) are signs that refer exclusively to the oral level
of the language system.”

16. “These distinctive units, meaningless per se, are components of significative
units. Like phonemes, alphagrams are part of second articulation.”

19

A topogram (Anis, 1988, p. 116) is essentially punctuation: topograms con­
tribute to the structure and segmentation of sequences of alphagrams
and logograms. As for logograms, they are global units having a signified
(ibid., p. 139)17.

Typical examples of alphagrams are members of alphabets, of ab­
jads, of abugidas, of syllabaries. Typical examples of logograms are
graphemes such as <&>, <§>, currency signs <$>, <€>, etc., mathe­
matical symbols <5>, <∇>, etc., general symbols <♲>, <♂>, <☭>, etc.

Unicode provides a similar classification of characters in the form of
a mandatory normative18 property of characters, called general category
(U§4.5). This classification is quite different from the linguistic one:
1. all alphagrams belong to general category “L” (for “Letter”), with the

following subcases: “Lu” (“uppercase”), “Ll” (“lowercase”), “Lt” (“ti­
tlecase”), “Lm” (“modifier”) or “Lo” (“other”). The general category
“L” is the most populated in Unicode: it amounts to 89.84% of the to­
tal set of characters. Among them, 96.13% are caseless and therefore
belong to category “Lo” (caseless alphabets, abjads, abugidas and syl­
labaries, and most importantly, all Chinese characters);

2. many logograms19 such as <&>, <@>, <%>, etc., are of Unicode gen­
eral category “Po” (“punctuation, other”), a contradiction to their lin­
guistic classification;

3. in the case of mathematical symbols, Unicode uses two general cate­
gories: “N*” for numbers, and “Sm” for other mathematical symbols,
such as <+>, <≤>, etc. The “N*” general category contains the subcat­
egories “Nd” (decimal digits), “No” (fractions, numbers larger than 9,
circled or parenthesized numbers) and “Nl” (Roman, Hangzhou, Ba­
mum, Greek acrophonic, Gothic, Old Persian and Cuneiform numer­
als);

4. The general category “So” (“symbol, other”) is a catch­all. It in­
cludes symbols such as <©>, <°>, <☮>, but also emojis, musi­
cal symbols, technical drawing symbols, circled or parenthesized
letters/ideograms/syllables, box drawing symbols, Braille patterns,
Chinese radicals, Chinese fundamental strokes, hexagrams, Phaistos
disk signs, sign­writing gestures, Mahjong and domino tiles, playing
cards, alchemical symbols, as well as the single (!!) character arabıc
lıgature bısmıllah ar­rahman arraheem

17. Anis does not distinguish between the iconic and the indexical semiotic func­
tion and therefore considers pictograms as being a special case of logograms. We will
not adopt his choice and will consider pictograms as being distinct from logograms,
even though the distinction can sometimes be blurry.

18. In the sense that Unicode­compliant software has to respect it.
19. Other than Chinese characters, which are not pure logograms since they can

have different amounts of semanticity and phoneticity, cf. Haralambous (2013). As
already mentioned, Chinese characters belong to category “L” (“letters”).

20

<﷽>

representing the Arabic sentence “In the name of Allah, the Benefi­
cent, the Merciful”. Category “So” characters represent 5% of the total
number of characters.

The linguistic classification of graphemes and the Unicode classification
of characters differ in their finalities:

– the former focuses on the way graphemes contribute to meaning ex­
traction: alphagrams are part of second articulation, and hence mean­
ing emerges from their catenation; topograms structure grapheme
sequences, and hence serve on the syntactic level; logograms repre­
sent morphemes;

– the latter focuses on the way characters are used by software: char­
acters that serve in linguistic processes (“letter” category) are sepa­
rated from punctuation, from mathematical symbols, and from sym­
bols in general (among which numerous emojis). General categories
are used in texts such as the Unicode Standard Annex on Text Segmentation
(Davis, 2019b), which defines the boundaries of a “word” or of a “sen­
tence” using general categories, or the Unicode Standard Annex on Line
Breaking (Heninger, 2019), which gives guidelines to line breaking al­
gorithms, based on general categories.

4.4. Character Strings vs. Grapheme Sequences

A text rarely consists of a single grapheme20. Most often humans pro­
duce sequences of graphemes. Contrary to phonemic input which is lin­
ear due to the structure of human speech production organs, grapheme
sequences are usually materialized on a 2­dimensional surface. The lin­
ear order of phonemes is often represented by a similarly linear order
of graphemes (like the ones the reader is reading at this moment), but
there are exceptions. A nice example is the Khmer script: the sequence
of graphemes representing phonemes /kk/ is written <ក្ក> and when
one adds an additional grapheme representing the /r/ phoneme, the se­
quence representing the phonemic sequence /kkr/ is written as <្រក្ក>
(the <រ> grapheme is written to the left of the previous ones), and if one
adds a vowel /ɨə/ this will surround the preceding graphemes: <េ្រក្កឿ>
(example taken from Haralambous 1994b).

In linguistics, grapheme sequences have been studied by Sproat
(2000), in the frame of generative phonology theory introduced by

20. As always, there are exceptions to this rule, such as the title of the recently
published book 心 (Kazuo, 2019).

21

Chomsky and Halle (1968). In this theory one admits the existence of
two levels of representation of phonological data: the underlying form and
the surface form (with the possibility of any number of intermediate lev­
els). The latter is obtained by sequentially applying phonological rules
to the data of the former (every intermediate level being the output of
some rule). A sequence of rule applications going from underlying to
surface level is called a derivation. Sproat (2000) states that graphemes can
be obtained by using derivations from the same underlying representation as phonemes,
i.e., the graphemic surface representation can be obtained by derivations
of the same underlying representation used to obtain surface phonemes.
Sproat furthermore claims that this derivation is a regular relation in the
sense of finite state transducers (Kaplan and Kay, 1994), and that it is
consistent throughout the vocabulary of a given language.

Regular relations are context­free, therefore if γ is a derivation and a·b
is the catenation of two underlying representation units, then γ(a · b) =
γ(a) · γ(b). In fact, according to Sproat (2000), we have not a single but
five catenation operators, namely →· , ←· , ↓·, ↑·, and ⊙, representing placement
of the second grapheme on the right, on the left, underneath, on top of,
or around the first grapheme.

For example, the derivation rules for Korean hangul are as follows
(ibid., p. 43):

1. for syllables σ1 and σ2, γ(σ1 · σ2) := γ(σ1)
→
· γ(σ2);

2. for onset­nucleus ων and coda κ, γ(ων · κ) := γ(ων)↓·γ(κ);
3. when the coda κ is complex: κ = κ1 · κ2, then γ(κ1 · κ2) := γ(κ1)

→
· γ(κ2);

4. for onset ω and nucleus ν, either
(a) γ(ω · ν) := γ(ω)

→
· γ(ν), when ν belongs to the vertical jamo class, or

(b) γ(ω)
↓
·γ(ν), when ν belongs to the horizontal jamo class;

5. (rule added by us) sometimes the nucleus ν is complex and hence can
be written as ν = ν1 · ν2 where ν1 is horizontal and ν2 is vertical, then
we first apply rule 4(a) to ων1 · ν2 and then rule 4(b) to ω · ν1.

As an illustration, let us apply these rules to Hangul syllable <굃>: it
consists of an onset <ﾡ>, a nucleus containing two jamos <ￌ> and <ￜ>

of which the first is horizontal and the second vertical, and a coda con­
sisting of two jamos <ﾩ> and <ﾾ>. According to rule 5, we first apply
rule 4(a) to [<ﾡￌ>]·<ￜ> to get [[<ﾡￌ>]→· <ￜ>] and then rule 4(b) to
<ﾡ>·<ￌ> inside it, to obtain [[<ﾡ>

↓
·<ￌ>]→·<ￜ>]. Then we apply rule 3

to the coda <ﾩ>·<ﾾ> to obtain [<ﾩ>
→
· <ﾾ>], and finally rule 2 to join

onset­nucleus and coda, in order to obtain

[[<ﾡ>
↓
·<ￌ>]

→
· <ￜ>]

↓
·[<ﾩ>

→
· <ﾾ>]

as decomposition of <굃>. Sproat calls this kind of formal grammar, a
planar regular grammar.

Among the various applications of these rules there is also diacritiza­
tion: the grapheme <â> can be represented by <a>

↑
·<̂>.

22

It is noteworthy that planar catenators can be applied on all graphic
levels: inside a grapheme, between grapheme and diacritic, between
graphemes to form morphemes, between morphemes to form lines of
text, between lines of text to form paragraphs and pages, between pages
to form books, similarly to the graphetic model of Meletis (2015).

In Unicode, there are two notions corresponding to the linguistic notion
of grapheme sequence:

1. combining character sequences, where we deal with a single “base” charac­
ter and one or more diacritics, and

2. character strings, where we deal with more than one base character.

In the first case, we use the operation of combination: a character,
which has to be of category other than “M” (“combining mark”) is fol­
lowed by one or more combining characters, i.e., characters of category “M”.
For example, to obtain the rendering |â| one can use two characters:
latın letter a followed by combınıng cırcumflex accent. In other
words: when rendering this sequence of Unicode characters, Unicode­
compliant software has to place the glyph of the circumflex accent upon
the glyph of the character preceding it.

Combination is a very powerful feature because
one can combine any sequence of combining char­
acters (there are 2,268 of them) with any of the
121,490 graphic characters, which results in an
astronomical number of combinations. Interscript
combination is not very frequent but it may hap­
pen, as in the logo of the popular Japanese coffee
chain “Saint­Marc Café” <サンマルクカフェ́ > where
the last kana carries an acute accent as in the “é”

of the French word “Café,” which is transcribed: the French diacritic is
transplanted into the kana syllabary.

Not all combining marks are placed on the same position relatively
to the base character, and there are no less than 54 classes of combin­
ing characters with respect to the relative position of the diacritic. Such
classes are “Above” as in <â>, “Kana_voicing” as in <ポ>, etc.

The rendering of combining character sequences is the responsibility
of rendering engines, which combine glyphs in a very precise way, using
information stored in the font, namely attachment points placed around
glyphs by the font designer.

The second case of character sequencing is the one of character string. A
character string is a sequence of characters. The order that must be given
to characters to obtain graphotactically correct grapheme sequences in
the frame of the M-H process is called logical order. As U§2.2 puts it:

23

The order in which Unicode text is stored in the memory representation is
called logical order. This order roughly corresponds to the order in which text
is typed in via the keyboard; it also roughly corresponds to phonetic order.

As hinted by the word “roughly,” there are exceptions to this definition,
the most notorious one being the encoding of Thai and Lao scripts: to
represent the /ke:/ syllable in Khmer, the logical order agrees with the
phonetic order and places the character khmer letter ka <ក> before
the character kmher vowel sıgn e <េ>, even though the grapheme of
the latter is on the left of the grapheme of the former: <េក>; to obtain
the analogous grapheme sequence in Thai or in Lao, the logical order is
to place the character thaı character sara e <เ> (resp. lao vowel
sıgn e <ເ>) before the character thaı character ko kaı <ก> (resp.
lao vowel ko <ກ>): <เก> (resp. <ເກ>) and not after the consonant as
in Khmer. In other words, logical order agrees with phonetic order in
Khmer, but not in Thai and Lao, even though these scripts are histori­
cally very closely related. The reason is compatibility with preexisting
Thai/Lao encodings and typewriter practice.

The greatest advantage of Unicode’s “logical order” is that it solves—
at least in computer memory—the problem of mixed left­to­right and
right­to­left scripts, such as Latin and Arabic (or Hebrew, or Syriac). In
memory, both Latin and Arabic characters are stored in phonetic order.
The difficulty arises when such mixed texts have to be displayed. For
that, Unicode attaches a default (horizontal) direction to every charac­
ter: Latin characters have default left­to­right direction (even though
Da Vinci wrote the other way around) and Arabic characters have default
right­to­left direction. The Unicode bidirectional algorithm (Davis, 2019c)
provides the order of glyphs for character strings containing characters
with different default directions. Because of nested phrases and punc­
tuation marks without default direction, the bidi algorithm sometimes
fails to provide the correct result. In that case, the user can insert special
characters, such as rıght­to­left embeddıng and pop dırectıonal
formattıng, which will change the algorithm’s output. Here is an ex­
ample: in the sentence <Did he say “Welcome”?> the question mark is
placed outside the quoted <“Welcome”> because it belongs to the noun
phrase <Did he say…> and not to the quoted welcome greeting. Trans­
lating <“Welcome”> into Hebrew, one gets:

|Did he say הבא“? ,|”ברוך
where the question mark is placed to the left of the quoted phrase, while
it should be placed to its right, as it applied to the whole “Did he say ***?”
sentence. We avoid this by inserting a left­to­rıght mark character
just before the question mark, resulting in the correct rendering:

|Did he say הבא“ .|?”ברוך
This problem would be avoided if there were two distinct exclamation
marks in Unicode (a left­to­right one and a right­to­left one), which is

24

not the case. Only those punctuation marks that have different basic
shapes in the two directions have their right­to­left counterparts in­
cluded in Unicode, e.g., arabıc questıon mark ,<؟> arabıc comma
<،> and arabıc semıcolon .<؛>

We can conclude that the formal approach of Sproat (2000) can repre­
sent both Unicode combining sequences and character strings, but lacks
fine details such as the 54 combining character classes, etc. On the other
hand, Unicode logical order comes in handy for people to know in which
order they have to type characters, even though it suffers from inconsis­
tencies due to compatibility with legacy encodings. Finally, the Unicode
bidirectional algorithm is a good solution for encoding character strings
of scripts in different directions, but one need to take care of ambiguities
due to nesting of phrases and to neutral­direction punctuation marks.

5. Ligatures

When a character string is handed over to a rendering engine as input of
the M-H process, in most cases Sproat’s regularity principle applies, so
that the derivation of a sequence of adjacent underlying linguistic units
is simply the planar catenation of the derivations of individual units.
There are nevertheless language­dependent exceptions to this principle,
namely ligatures.

Ligatures are graphs obtained by merging adjacent graphs. They can
be optional or mandatory (optional in the sense that the adjacent graphs
may also, under some conditions, remain unchanged), and their use may
or may not be taken into account in linguistic analysis.

– Mandatory ligatures are those occurring systematically when two given
graphs are adjacent. The most prominent example is the Arabic lam­
alif |ࣇ࣌| (compare with the hypothetical unligatured *|ӯ ل|). The use of
the lam­alif ligature is a fundamental rule of the Arabic writing sys­
tem from its very beginnings, as in the following sentence typeset in
undotted 6th century CE Mashq Kufi (Mousavi Jazayeri, Michelli, and
Abulhab, 2017):

سَمعت ولا رأيتُ لا
(ԑُع႟َ႐ وࣇ࣌ ௎ُமرأ ,ࣇ࣌ “I have neither seen, nor heard”). The lam­alif liga­
ture is used in all Arabic­script languages. It is also noteworthy that
it has been taught for centuries in schools as being part of the Arabic
alphabet (Dichy, in this volume) and that Arabic typewriters contain
a key for it, even though it is not considered as a letter of the Arabic
alphabet. Nevertheless, despite its universal presence in the Arabic

25

script, lam­alif remains a ligature and hence there is no lam­alif Uni­
code character21.

– Discretionary ligatures are those that occur under certain conditions
when two given graphs are adjacent. Their use may or not have an
incidence on linguistic layers.

We subdivide discretionary ligatures into two classes: esthetic ligatures
and linguistically motivated ligatures (cf. Haralambous 1995):

– Esthetic ligatures only contribute to legibility and esthetic quality of the
written text. Typical examples are the Latin |fi|, the Arabic |ช༺| and
the Armenian |վն| (compared with the unligatured |f i|, |م ֨| and |վ ն|).
The reasons for using esthetic ligatures are purely visual: to avoid
overlapping of bulb and dot in the case of |fi|, to compress text by
writing |ช༺| vertically, to avoid excessive blank space between graphs
in the case of |վ ն|.

It should be noted that even though esthetic ligatures have no lin­
guistic motivation, their use may be language­dependent. For exam­
ple, Turkish language does not use ligatures |fi| and |ffi| because the
Turkish graphemic system has graphemes <i> and (dotless) <ı>, and
the use of the ligatures would cancel their distinctive potential and
introduce ambiguity.

– Linguistically motivated ligatures have an ambiguous status between
stand­alone graphemes and grapheme sequences. Typical examples
are the French <œ> and the Dutch <ĳ>. Both have a grapheme­like
behavior when it comes to case, since they are uppercased as stand­
alone graphemes: <Œttingen>, <Ĳmegen> (and not *|Oettingen| or
*|Ijmegen|). On the other hand, and unlike the Arabic lam­alif, they
do not appear on typewriters22. They can be qualified as second­class
citizens of the graphemic system: they do not appear in prescriptive
grammars, are hardly taught in school, and are difficult to access on
computer keyboards.

The distinction between esthetic and linguistically involved ligatures
can be blurry: for example, in the German language, the f­ligatures are
indirect morphological markers since they are only used intramorphemically.
In German typographic practice, ligatures crossing morpheme bound­
aries are avoided: |Kauf leute|, |Auf fassung|, etc.

21. In fact there is a “presentation form” character arabıc lıgature lam wıth
alıf ısolated form, but its usage is highly discouraged: “[Presentation form char­
acters] are included here for compatibility with preexisting standards and legacy im­
plementations that use these forms as characters. Instead of these, letters from the
[standard] Arabic block should be used for interchange”. (U§9.2)

22. But they were present on the keyboards of localized Monotype/Linotype type­
setters in the late 19th and most of the 20th century.

26

Ligatures are interesting from a theoretical point of view because they
challenge the definition of script as a system of distinctive elementary
units that allow double articulation. As Nehrlich (2012, p. 30) writes:

Die Ligatur stellt die Hauptmerkmale des Schriftsystems in Frage: Die
wohl grundlegendste Anfechtung besteht in der Tatsache, dass das Vorhan­
densein von Ligaturen das Konzept des Buchstabens problematisiert. Buch­
staben sind die Grapheme, aus denen das Alphabet besteht, doch taugen sie
ausschließlich als abstrakte Vorstellung. Sobald es um die materielle Realisie­
rung von Schrift geht, verliert der Begriff des Buchstabens an Gültigkeit: Das
Vorkommen von Ligaturen falsifiziert die Bestimmung von Buchstaben als
das, was innerhalb eines Wortes durch Lücken getrennt ist.23

Indeed, from a systemic point of view, (esthetic) ligatures are unnec­
essary since they do not carry any linguistic information, and unnec­
essary features tend to disappear in an evolving system. But ligatures
happen to exist for as long as writing exists and do not seem to face a
risk of extinction in the near future. Ligatures make us realize that, just
like light has a dual particle/wave nature, graphemes also have a dual
nature since they carry both graphical and linguistic information. Simi­
larly to Young’s double­slit experiment that has revealed the dual nature
of light, ligatures reveal (at least in Western languages) the dual nature
of graphemes.

The dual nature of graphemes (and hence also of Unicode characters
that represent them in the digital world) is the core difference between
M-H and M-M processes, and it comes as no surprise that the Unicode

Consortium has very carefully examined the issue of ligatures.
Indeed, Unicode draws a clear line between linguistically motivated

ligatures on the one side, and esthetic or mandatory ligatures on the
other. The former are first­class citizens of the encoding (for example,
<œ> is encoded as latın small lıgature oe and <ĳ> as latın small
lıgature ıj). This is not the case of for esthetic and mandatory liga­
tures24.

Esthetic ligatures are handled by rendering engines, but the user can
prevent their use by introducing a special “ligature­breaking” character,
called zero wıdth non­joıner. This is, for example, what is needed in
German language to avoid intermorphemic ligatures.

23. “Ligatures challenge the main characteristics of writing systems: the most fun­
damental challenge is the fact that the existence of ligatures makes the concept of
letter problematic. Letters are graphemes out of which the alphabet is built, but they
are valid only as abstract perception. As soon as we deal with material realization of
writing, the concept of letter loses its validity: the occurrence of ligatures falsifies the
definition of letters as what is separated by gaps inside a word.”

24. In fact, many of them do appear in Unicode, but only for reasons of compati­
bility with legacy encodings, and their use is discouraged.

27

Contrary to the Latin script, the members of which are usually rep­
resented by separate graphs, the Arabic and the Syriac script have two
levels of interaction between graphs:

1. on the primary level, a 4­form graph25 is necessarily connected with
the graph following it26. Connecting strokes are horizontal and al­
ways occur at the baseline, as in ;|ج ـ֨|

2. on a secondary level, discretionary esthetic ligatures occur. In this
case graphs are assembled vertically or diagonally, as in |ช༖| (Har­
alambous, 1994a).

Since there are two distinct levels of interaction between graphs, one
may want to interfere on the first level (separate two graphs that are nor­
mally connected) or on the second level (avoid the use of a ligature and
return to the standard pair of connected graphs). To allow this two­level
interaction, Unicode recommends the use of two distinct characters:

1. the zero wıdth non­joıner character (already mentioned above)
that acts on the first level and separates graphs by changing their
contextual form (the first graph will turn from initial to isolated and
from medial to final, the second graph will turn from medial to initial
and from final to isolated);

2. the zero wıdth joıner character that acts on the second level, by
preventing any esthetic ligature but keeping the mandatory connec­
tion (and therefore not changing the graphs’ contextual forms).

As an example, compare the following three:

– standard: ช༖ ;
– with zero wıdth joıner: ;ج ـ֨
– with zero wıdth non­joıner: .ج ج

Contextual form is a graphetic property of Arabic, but in some cases
it can contribute to meaning production and can change the status of
a grapheme from phonographic to logographic. For example, |ه | (the
initial form of grapheme (<ه> is often used as the abbreviation of يך ೠಾي سنך
“year of the Hegira,” and is therefore a logogram. It can also have other
meanings: for example, in the French­Arabic dictionary (Mounged de poche
français­arabe 1991), several abbreviations are written in initial form: |م |
for feminine gender (Ӿمڇم), |ج | for plural number (Ӿႍၿ), |ه | for pronouns
with nonhuman referents, and the same letter in isolated form |ه| for

25. In the Arabic writing system, graphs ا| د ذ ر ز |و are 2­form graphs (isolated and
final form), graph |ء| has only one contextual form and all other graphs are 4­form
graphs (isolated, initial, medial and final form).

26. Except for experimental versions of the Arabic script like those described
in Haralambous (1998).

28

pronouns with human referents. Notice that no abbreviation dot is used
so that their contextual form is the only indicator of their abbreviative
nature.

Transgressing contextual rules for Arabic (or Syriac) graphs is part
of the function or the zero wıdth non­joıner character: to obtain the
(initial) abbreviation |ه | through the M-H process, the arabıc letter
heh character must be followed by the zero wıdth non­joıner char­
acter. As this operation changes the nature of the grapheme into a logo­
graph with a specific meaning given by the context, the zero wıdth
non­joıner is necessary also in the frame of the M-M process, even
though the machine does not need to visualize Arabic in order to process
it.

6. Emojis

Emojis are described in the Unicode Technical Report (Davis, 2019e). The
word “emoji” comes from the Japanese絵文字 (“e” = “picture” and “moji”
= “written character”). Emojis are defined in Davis (ibid.) as

A colorful pictogram that can be used inline in text. Internally the repre­
sentation is either (a) an image, (b) an encoded character, or (c) a sequence
of encoded characters. (ibid., §1.4)

As many emojis are depicting humans, soon after their introduction
questions began to arise about equal depiction of genders, ethnicities,
religious minorities, etc. In 2016, the feminine brand Always started an
advertisement campaign showing young women discussing gender rep­
resentation in emojis, with slogans such “There aren’t enough emojis to
show what girls can do”. To this the then First Lady Michelle Obama
replied, on Women’s Day, March 8th, by a tweet:

Hey @Always! We would love to see a girl studying emoji. Education em­
powers girls around the world. #LetGirlsLearn #LikeAGirl

Following this presidential encouragement to emojis creators and
smartphone manifacturers (see Stewart, Maria 2016), the Unicode Con­
sortium faced the problem of sudden emoji multiplication: retaining
only masculine white­skin forms was not politically correct, requiring
a fixed number of variants for each emoji was unfeasible because of the
risk of combinatorial explosion and because whatever the size of the set
of variants, it had strong chances of ending up being incomplete in the
long run.

The Unicode Consortium adopted a structuralist approach by grad­
ually introducing dimensions in the set of emoji variants:

1. the type of presentation (typographic B&W or pictorial color);

29

Fıgure 6. Two ways of rendering emojis: “emoji presentation” on the right, and
“text presentation” on the left.

2. gender;
3. color of skin;
4. color of hair;
5. as in Egyptian hieroglyphics, emojis sometimes picture humans or

animals sidewise. According to cultural conventions (and, in particu­
lar, to direction of the dominant writing direction in a given culture),
picturing a human or an animal facing/moving to the left or to the
right do not have the same connotation, so a fifth dimension has been
added: direction of sidewise presented human or animal.

To position an emoji in this 5­dimensional space, Unicode provides the
mechanism of emoji sequences. As with combining sequences, the writer
adds, after the “emoji base character” additional Unicode characters cor­
responding to the intended transformations; rendering engines then, af­
ter loading the font, select the appropriate emoji glyph whenever this is
possible, or use a fallback mechanism when there is no glyph precisely
fullfiling the writer’s demand.

There are five mechanisms allowing to obtain emoji variant glyphs:

1. presentation sequences, where a given emoji is followed by varıatıon
selector­15 in order to be presented in B&W typographical style,
or followed by varıatıon selector­16 in order to be presented in
colorfull emoji style (see Fig. 6);

2. modifier sequences, where an emoji containing some part of human skin
is followed by a character that will set the skin color, in five steps
from light to dark:

Default image: ; skin color 1: ; 2: ; 3: ; 4: and 5: .

30

Unicode recommends that the default image (without modifier)
should use “a generic, non­realistic skin tone” (usually: yellow27);

3. ZWJ sequences, where some emojis are connected28 by the zero wıdth
joıner character, as in ligatures. The result of the ZWJ­joining of
emojis is implementation dependent: it should result in the rendering
of a single emoji incorporating visual elements from all joined emojis.

A recommended use of ZWJ sequences is to have gender appear
explicitly in the emoji. For that, there are two mechanisms. Either an
emoji depicting a person in a specific role is followed by a ZWJ char­
acter and then female sıgn ♀ or male sıgn ♂, or an object is pre­
ceded by the emoji man or woman and the ZWJ character. Preceding
the base emoji by the adult emoji instead of man or woman will
produce a gender­neutral appearance. Here is an example: is a male
worker, this emoji followed by ♂ will remain as is, and followed by ♀
will become .

As can be seen in Fig. 7, in the specific case of the Apple Color
Emoji font, the “gender­neutral” adult emoji is a morphed interme­
diate version between man and woman, bearing anatomic character­
istics and social conventions of both and (according to Western social
conventions) having neither a moustache like man nor dyed lips like
woman.

man adult woman

Fıgure 7. A closer look to the “generic” man, woman and gender­neutral adult
emojis, in the Apple Color Emoji font

In a similar manner, one can modify hair color of a face emoji by
using ZWJ sequences with emoji components red­haıred, curly­
haıred, whıte­haıred and bald. Notice that brown/black hair is

27. It can be debated whether non­realistic yellow skin color is indeed politically cor­
rect, especially when it is combined with blond hair as in the example displayed.

28. While these mechanisms theoretically allow a very wide range of combinations,
the Unicode Consortium also publishesWeb pages and data files that list the combina­
tions that implementers (font designers and keyboard designers) are expected to sup­
port, e.g., http://www.unicode.org/emoji/charts/full-emoji-list.html#1f46d. For ex­
ample, there is an expectation that for a ‘person in lotus position,’ there is also a man
and a woman in lotus position, whereas for a ‘person taking bath,’ there is no expec­
tation for gender­specific variants.

31

default for face emojis, and therefore needs no extra component.
Here are the effects of these modifications to the emoji: red­haired

, curly­haired , white­haired , and bald .
Finally one can indicate facing direction for emojis displaying hu­

mans, by using ZWJ sequences with arrow emojis.
The recommended order of components in an ZWJ sequence is
the following: (1) base, (2) emoji modifier or presentation selector,
(3) hair component, (4) gender component, (5) direction indicator.

4. A flag sequence is a special emoji displaying a black flag , followed by
two ASCII characters representing a country (as in Davis (2019d)).
One then obtains the flag of the country, for example fr should pro­
duce ;

5. a tag sequence is again a mechanism for obtaining flags, but this time
for specific parts of countries, for example Wales as part of the United
Kingdom. The approach is different: instead of having the black flag
emoji character followed by exactly two ASCII characters, one writes
an arbitrary number of “tag characters,”29 and closes the sequence by
a specific tag character called cancel tag. The only constraint is
that the total length of the sequence (including the black flag and the
cancel tag) must be less or equal to 32. So, for example, to obtain the
flag of Wales one will write followed by tag characters gbwls and
the cancel tag character;

In linguistic terms, most emojis are pictograms; the exceptions to this
rule are mostly cases where symbols are represented, such as , , ,
etc. In Peirce’s semiotics they are iconic signs since they physically resem­
ble their real­world referents. Emojis are included in text, either in an
adjunctive or in a substitutive way, and thus contribute to meaning pro­
duction. Most of them are inherently ambiguous: a smiling face emoji

can mean “I’m happy” or “don’t take it seriously, It’s just a joke” and
many other interpretations according to the context. This playful and
sometimes poetic ambiguity has certainly contributed to their popular­
ity.

As all Unicode characters, emojis have names such as grınnıng face
, rocket or zombıe . Nevertheless, users are not necessarily

aware of names: they choose emojis only according to their shape, and
thus attach their own meaning to each emoji. During the act of commu­
nication these choices are then confronted to similar choices by other

29. “Tag characters” are ASCII characters transposed to the E000016 area, in the
following sense: if the code point of latın small letter a is hexadecimal 6116 (that
is decimal 97), then the code point of the corresponding tag latın small letter a
character is E000016 + 6116 = E006116 (decimal 917,601). In this text we will represent
tag characters by underlined typewriter glyphs to prevent confusion with ordinary
ASCII characters.

32

people, and this process results in a series of constantly evolving con­
sensuses. In addition to that, on every new smartphone system release,
a few hundred new emojis are added, enlarging the semantic spectrum
available to users. C. Servais and V. Servais (2009) claim that “misun­
derstanding is the basic pattern of communication,” this is even more
true when we consider communication by emojis.

To cut short this situation of ambient ambiguity and to solve once
and for all the problem of emoji proliferation, the President of the Uni­
code Consortium, Mark Davis, submitted a groundbreaking proposal for
indefinitely extending the number of emojis while precisely pinpointing
their semantics.

The QID Emoji Proposal

The proposal (Davis, 2019a) was submitted to the Unicode Technical
Committee on May 2nd, 2019, and at the time of writing of this paper it
is not known whether it will be accepted.

Before describing the proposal, let us introduce the Wikidata Project.
Wikidata is a collaborative knowledge base. It was launched by the Wiki­
media Foundation in October 2012.

Wikidata has a graph30 structure with items, literals and media files as
vertices, and statements as edges. Items can be topics, concepts or ob­
jects. Statements connect items between them, items with literals (char­
acter strings or numbers), or items with media files. Each statement is
an instance of a property. Each item has an identifier: the letter “Q” fol­
lowed by a number; each property has an identifier: the letter “P” fol­
lowed by a number. Statements may have qualifiers which are additional
pieces of information. As of today (October 16th, 2019) Wikidata con­
tains 63,573,864 data items and 6,762 properties.

As an example, the city of Brest (located in Brittany, France) is rep­
resented by item Q12193. Here are some of its statements:

Property Value

P31 (instance of) Q484170 (commune de France)
P31 (instance of) Q1549591 (big city)
P17 (country) Q142 (France)
P1313 (office held by head of govern­
ment)

Q62266917 (Mayor of Brest)

P6 (head of government) Q3084338 (François Cuillandre)

30. In this section the term “graph” refers to the mathematical structure (a set of
binary relations) and not to the elementary material unit of writing, as in the rest of
the paper.

33

By following these links we find out that the item “Brest” represents a
big city in France, governed by a “Mayor Of Brest,” and this position is
occupied by the referent of item Q3084338, called “François Cuillandre”.
These are only 5 among the 136 statements provided for the item “Brest”
in Wikidata.

Wikidata follows an intensional approach to information: items of
the real world are entirely represented by their properties. These prop­
erties link items with other items, building a graph of relations between
them. A human can retrieve information by following the relations of
this graph and an inference engine can reply to queries formulated by
humans.

Let us now describe the QID Emoji Proposal: Mark Davis proposes
the establishment of a one­to­one correspondence between emojis and Wikidata
items31. On a technical level, every emoji would be identified by a new
kind of tag sequence, starting with a special generic emoji emojı tag
base, followed by a Wikidata QID identifier written in tag charac­
ters, and finally a cancel tag character. For example, an emoji for
the town of Brest would be obtained by the tag sequence [emojı tag
base]Q12193[cancel tag].

The consequences of this initiative, if it is adopted, can be impor­
tant. On the technical level, the size of the set of Unicode­encoded emo­
jis will go from a few thousands to more than 60 millions. Smartphone
providers will need to invent new ways of sharing fonts on the Web to
provide emoji glyphs to any user requesting them—and for emojis not
yet drawn, fallback glyph selection algorithms have to be applied.

But the most important consequence will be on the level of human
communication: the new kind of emojis will be significantly less ambiguous
than written text. For example, the textual sentence “I live in Brest” is am­
biguous since there are at least 9 towns or villages with that name in the
world (in Belarus, Bulgaria, Croatia, Czech Republic, France, Germany,
Poland, Serbia and Slovenia), but the sentence “I live in [Q12193 emoji]”
(potentially displayed as “I live in ”) is unambiguous32.

Furthermore we will witness a progressive shift from process M-H
to process M-M : in process M-M the machine identifies concepts in lin­
guistic data and replaces them with, for example, Wikidata identifiers.
Using QID emojis in the M-H process, one will get a visual result similar
to the existing one, but the Unicode data used to obtain it will already

31. With the possible exception of existing emojis, for which we don’t know
whether they will be assigned to QIDs.

32. It is the code “Q12193” which is unambiguous, not the image of the emoji, where
we see a tower that probably only an inhabitant or native of Brest will recognize as
being the Tour Tanguy.

34

contain the necessary information for the NLP algorithm to unambigu­
ously identify the meaning of the emoji that is part of the text.

For the moment, Wikidata items are only nouns, but one may very
well imagine an extension to verbs (similar to WordNet, which has sec­
tions for nouns, verbs, adjectives and advebs). This would allow the re­
placement of the verb “I live” by an “extended­QID” emoji, so that all
lexical morphemes of the sentence “I live in Brest” are replaced by ref­
erences to Wikidata. This process, known as semantic annotation, is very
common in Artificial Intelligence.

Considering QID emojis with a large amount of optimism, one could
say that, thanks to them, semantic annotation will become part of every­
day human communication, and this may very well result in being a ma­
jor turning point in human communication. But in fact, our optimism
is limited since QID emojis could also create a range of problems and
misunderstandings:

1. QIDs imply well­curated semantics, but emojis may quickly be repur­
posed. As an example, the peach emoji was already overloaded with
meaning beyond that of the literal fruit. But in fall 2019, in a matter
of weeks if not days, it acquired an additional meaning of “impeach,”
based on the sudden prominence of the political topic in the USA
and the phonetic similarity. Any hope of keeping the meaning of any
emoji in any way limited to that of the underlying QID seems totally
hopeless from the very start. There is no “emoji police,” and writers
use emoji based on appearance, imagination, and consensus, rather
than based on name or formal definition.

2. As a consequence of the previous point, it would be impossible for
NLP software to put too much confidence in any kind of QID being
used in an emoji. In many cases, somewhat paradoxically, deriving
semantics from words (such as “peach”) might be considerably easier
than deriving semantics from an emoji with a QID.

3. Although this may seem implied by the use of a QID grounded in
ontology, there is no guarantee that a particular such emoji would
be recognized as a depiction of the intended signifier. As an exam­
ple, even the most prominent building or monument standing for
(French) Brest may not be known to a wide range of people, even
if these people have no problem to quickly identify Brest as a city in
France.

4. While emojis are not specified to a single design, for many of them,
the design is informed by the proposals made during the approval
process and by the files depicting the newly accepted emojis. Major
changes in interpretation, such as when the design of the pistol emoji
was changed from a handgun to a water pistol (ABC News, 2018),
happen only rarely. With QID emojis, if two people independently
create emojis for the same QID, there is no guarantee that there is
any kind of image similarity between the two emojis.

35

5. QID emojis may give the impression that literally everybody can start
to use an emoji for any kind of concept. But experience with encoding
existing minor scripts has shown that it is very difficult to make sure
that the necessary fonts are widely available, even for well­defined
language communities. And “install this font to read this Webpage”
is a more realistic request than “install this font to view this emoji”.
So realistically, QID emojis can only be introduced by major vendors,
i.e., the groups that currently publish emoji fonts.

6. Emoji demand exists not only for well­defined ontological concepts,
but also for combinations of concepts (e.g., cat with smiling face and
tears). Such emojis cannot be created using QIDs, unless Wikidata
gets diluted with such combinations.

7. Because each tag character needs four bytes for encoding, whereas
ASCII characters need only one byte, it can easily be more efficient to
use markup to add ontologically grounded meaning to text (includ­
ing emojis) than to combine the meaning layer and the appearance
in a single code. Using markup to add meaning also leads to a clear
separation of concerns and a general solution (because it works for
all kinds of text, not only a subset of emojis).

Conclusion

As an encoding, Unicode is a pervasive technology which probably will
continue to exist as long as humanity will use text, be it in material or in
desembodied form. But Unicode also provides a framework for the de­
scriptive analysis of writing systems, which deserves to be scrutinized
from a linguistic point of view, and this is what we attempted. We hope
that this will be the starting point for research that will bring the com­
munity of Unicode aficionados and the community of (grapho)linguists
closer together, and will result in a better understanding of the rationale
of this wonderful human achievement.

References

ABC News (2018). “Gun Emoji Replaced with Toy Water Pistol across
All Major Platforms”. https://perma.cc/V8DQ-ANKN.

André, Jacques and B. Borghi (1990). “Dynamic Fonts”. In: PostScript Lan­
guage Journal 2.3, pp. 4–6.

Anis, Jacques (1988). L’écriture, théorie et descriptions. Bruxelles: De Boeck.
Bao, Jie et al. (2012). “OWL 2 Web Ontology Language Document

Overview”. https://www.w3.org/TR/owl2-overview/.

36

Bayar, Abdelouahad and Khalid Sami (2010). “Towards a Dynamic Font
Respecting the Arabic Calligraphy”. In: Handbook of Research onE­services
in the Public Sector: E­government Strategies and Advancements. Ed. by Abid
Thyab Al Ajeeli and Yousif A. Latif Al­Bastaki. Hershey PA: IGI
Global, pp. 359–379.

Bellamy­Royds, Amelia et al. (2018). “Scalable Vector Graphics (SVG) 2”.
https://www.w3.org/TR/SVG2/.

Berglund, Anders (2006). “Extensible Stylesheet Language (XSL) Ver­
sion 1.1”. https://www.w3.org/TR/xsl11/.

Bray, Tim et al. (2008). “Extensible Markup Language (XML) 1.0”.
https://www.w3.org/TR/xml/.

Brown, Keith and Jim Miller (2013). The Cambridge Dictionary of Linguistics.
Cambridge: Cambridge University Press.

Carlisle, David, Patrick Ion, and Robert Miner (2014). “Mathematical
Markup Language (MathML) Version 3.0”. https://www.w3.org/TR/
MathML3/.

Chomsky, Noam and M. Halle (1968). The Sound Pattern of English. New
York: Harper & Row.

Daniels, Peter and William Bright (1996). The World’s Writing Systems.
2nd ed. Oxford: Oxford University Press.

Davis, Mark (2019a). “QID Emoji Proposal”. http://www.unicode.org/L2/
L2019/19082r-qid-emoji.pdf.

(2019b). “Unicode Standard Annex 29. Unicode Text Segmen­
tation”. https://www.unicode.org/reports/tr29/.

(2019c). “Unicode Standard Annex 9. Unicode Bidirectional Al­
gorithm”. https://www.unicode.org/reports/tr9/.

(2019d). “Unicode Technical Standard 35. Unicode Locale
Data Markup Language”. https://www.unicode.org/reports/tr35/.

(2019e). “Unicode Technical Standard 51. Unicode Emoji”.
http://www.unicode.org/reports/tr51/.

Dichy, Joseph (in this volume). “On the Writing System of Arabic. The
Semiographic Principle as Reflected in Nasḫī Letter Shapes”.

Dukes, Kais, Eric Atwell, and Nizar Habash (2013). “Supervised Collab­
oration for Syntactic Annotation of Quranic Arabic”. In: Language Re­
sources and Evaluation 47.1, pp. 33–62.

Dürscheid, Christa (2016). Einführung in die Schriftlinguistik. 5th ed. Göttin­
gen: Vandenhoeck & Ruprecht.

(2018). “Bild, Schrift, Unicode”. In: Sprache – Mensch – Maschi­
ne. Beiträge zu Sprache und Sprachwissenschaft, Computerlinguistik und Infor­
mationstechnologie für Jürgen Rolshoven aus Anlass seines sechsundsechzigsten
Geburtstages. Ed. by Guido Mensching et al. Köln: Kölner Universität­
sPublikationsServer, pp. 269–285.

Dürst, Martin and Asmus Freytag (2000). “Unicode in XML and Other
Markup Languages”. https://www.w3.org/TR/2000/NOTE-unicode-xml-
20001215/.

37

Dürst, Martin and M. Suignard (2005). “Internationalized Resource
Identifiers (IRIs)”. Request for Comments 3987.

Gompel, Maarten van and Martin Reynaert (2013). “FoLiA: A Practi­
cal XML Format for Linguistic Annotation—a Descriptive and Com­
parative Study”. In: Computational Linguistics in the Netherlands Journal 3,
pp. 63–81.

Grzybek, Peter and Milan Rusko (2009). “Letter, Grapheme and (Allo­
)Phone Frequencies: The Case of Slovak”. In: Glottotheory 2, pp. 30–
48.

Günther, Hartmut (1988). Schriftliche Sprache: Strukturen geschriebener Wörter
und ihre Verarbeitung. Tübingen: Niemeyer.

Haralambous, Yannis (1991). “Typesetting Old German: Fraktur, Schwa­
bacher, Gotisch and Initials”. In: TUGboat 12.1, pp. 129–138.

(1994a). “The Traditional Arabic Typecase Extended to the
Unicode Set of Glyphs”. In: Electronic Publishing—Origination, Dissemina­
tion, and Design 8.2/3, pp. 125–138.

(1994b). “Typesetting Khmer”. In: Electronic Publishing—Origina­
tion, Dissemination, and Design 7.4, pp. 197–215.

(1995). “Tour du monde des ligatures”. In: Cahiers GUTenberg 22,
pp. 69–70.

(1998). “Simplification of the Arabic Script: Two Different Ap­
proaches and Their Implementations”. In: Springer Lecture Notes in Com­
puter Science. Vol. 1375: Electronic Publishing, Artistic Imaging, and Digital Ty­
pography, pp. 138–156.

(2007). Fonts & Encodings. From Advanced Typography to Unicode and
Everything in Between. Sebastopol, CA: O’Reilly.

(2013). “New Perspectives in Sinographic Language Process­
ing Through the Use of Character Structure”. In: Springer Lecture Notes
in Computer Science. Vol. 7816: CICLing 2013: 14th International Conference on
Intelligent Text Processing and Computational Linguistics, Samos, pp. 201–217.

Hayes, Patrick J. and Peter F. Patel­Schneider (2014). “RDF 1.1 Seman­
tics”. https://www.w3.org/TR/rdf11-mt/.

Hellwig, Oliver (2010–2019). “DCS—The Digital Corpus of Sanskrit”.
http://www.sanskrit-linguistics.org/dcs/.

Heninger, Andy (2019). “Unicode Standard Annex 14. Unicode Line
Breaking Algorithm”. https://www.unicode.org/reports/tr14/.

Kaplan, Ronald M. and Martin Kay (1994). “Regular Models of Phono­
logical Rule Systems”. In: Computational Linguistics 29, pp. 331–378.

Kazuo, Inamori [稲盛和夫] (2019). 心 [The Mind]. Tokyo: サンマーク出版
[Sunmark Publishing].

Lotman, Jurij (1977). Michigan Slavic Contributions. Vol. 7: The Structure of the
Artistic Text. Ann Arbor: The University of Michigan.

Mackenzie, Charles E. (1980). Coded Character Sets, History and Development.
Reading, MA: Addison­Wesley.

38

Marneffe, Marie­Catherine de et al. (2013). “More Constructions, More
Genres: Extending Stanford Dependencies”. In: Proceedings of the Second
International Conference on Dependency Linguistics (DepLing 2013). Prague:
Matfyzpress, pp. 187–196.

Martinet, André (1970). “La double articulation du langage”. In: La lin­
guistique synchronique. Paris: PUF, pp. 7–41.

Meletis, Dimitrios (2015). Graphetik. FormundMaterialität von Schrift. Glück­
stadt: Verlag Werner Hülsbusch.

(2019). “Naturalness in scripts and writing systems: Outlining
a Natural Grapholinguistics”. PhD thesis. University of Graz.

Mounged de poche français­arabe (1991). Beyrouth: Dar el­Machreq.
Mousavi Jazayeri, S.M.V., Perette E. Michelli, and Sadd D. Abulhab

(2017). A Handbook of Early Arabic Kufic Script. New York: Blautopf Pub­
lishing.

Myers, James (2019). The Grammar of Chinese Characters. Productive Knowl­
edge of Formal Patterns in anOrthographic System. London, New York: Rout­
ledge.

Nehrlich, Thomas (2012). “Phänomenologie der Ligatur. Theorie und
Praxis eines Schriftelements zwischen Letter und Lücke”. In: Von Let­
tern undLücken: zurOrdnung der Schrift imBleisatz. Ed. by Mareike Giertier
and Rea Köppel. Paderborn: Wilhelm Fink, pp. 13–38.

Pemperton, Steven et al. (2018). “XHTML 1.0 The Extensible HyperText
Markup Language”. https://www.w3.org/TR/xhtml1.

Rezec, Oliver (2009). “Zur Struktur des deutschen Schriftsystems.
Warum das Graphem nicht drei Funktionen gleichzeitig haben
kann, warum ein <a> kein <ɑ> ist und andere Konstruktionsfehler
des etablierten Beschreibungsmodells. Ein Verbesserungsvorschlag”.
PhD thesis. Ludwig­Maximilians­Universität Munich.

Sawicki, Marcin et al. (2001). “Ruby Annotation”. https://www.w3.org/
TR/2001/REC-ruby-20010531/.

Schopp, Jürgen F. (2008). “In Gutenbergs Fußstapfen: Translatio typo­
graphica. Zum Verhältnis von Typografie und Translation”. In: Meta
53, pp. 167–183.

Servais, Christine and Véronique Servais (2009). “Le malentendu
comme structure de la communication”. In: Questons de communication
15, pp. 21–49.

Sproat, Richard (2000). A Computational Theory of Writing Systems. Cam­
bridge: Cambridge University Press.

Stewart, Maria (2016). “Michelle Obama Just Suggested a New Emoji to
Empower Girls”. https://www.huffpost.com/entry/michelle-obama-
always-emoji_n_56df3feee4b03a40567a78c3?guccounter=1.

Stöckl, Harmut (2004). “Typographie: Gewand und Körper des Textes
– Linguistische Überlegungen zu typographischer Gestaltung”. In:
Zeitschrift für angewandte Linguistik 41, pp. 5–48.

39

The Unicode Standard. Version 12.0—Core Specification (2019). Mountain View,
CA: The Unicode Consortium.

Wmffre, Iwan (2008). Contemporary Studies in Descriptive Linguistics. Vol. 23:
Breton Orthographies and Dialects: The Twentieth­Century Orthography War in
Brittany. Bern: Peter Lang.

40

