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des Maréchaux, F-91120 Palaiseau, France. E-mail: *
francesco.russo@ensta-paris.fr

We address our interest to the development of a theory of viscosity solutions à la Crandall-
Lions for path-dependent partial differential equations (PDEs), namely PDEs in the space of
continuous paths C([0, T ];Rd). Path-dependent PDEs can play a central role in the study of
certain classes of optimal control problems, as for instance optimal control problems with delay.
Typically, they do not admit a smooth solution satisfying the corresponding HJB equation
in a classical sense, it is therefore natural to search for a weaker notion of solution. While
other notions of generalized solution have been proposed in the literature, the extension of the
Crandall-Lions framework to the path-dependent setting is still an open problem. The question
of uniqueness of the solutions, which is the more delicate issue, will be based on early ideas
from the theory of viscosity solutions and a suitable variant of Ekeland’s variational principle.
This latter is based on the construction of a smooth gauge-type function, where smooth is
meant in the horizontal/vertical (rather than Fréchet) sense. In order to make the presentation
more readable, we address the path-dependent heat equation, which in particular simplifies the
smoothing of its natural “candidate” solution. Finally, concerning the existence part, we provide
a functional Itô formula under general assumptions, extending earlier results in the literature.

MSC 2010 subject classifications: 35D40, 35R15, 60H30.
Keywords: Path-dependent partial differential equations, viscosity solutions, functional Itô for-
mula.

1. Introduction

Path-dependent heat equation refers to the following second-order partial differential
equation in the space of continuous paths:











−∂Ht v(t,x)−
1

2
tr
[

∂Vxxv(t,x)
]

= 0, (t,x) ∈ [0, T )× C([0, T ];Rd),

v(T,x) = ξ(x), x ∈ C([0, T ];Rd).

(1.1)
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Here C([0, T ];Rd) denotes the Banach space of continuous paths x : [0, T ] → R
d equipped

with the supremum norm ‖x‖∞ := supt∈[0,T ] |x(t)|, with |·| denoting the Euclidean norm

on R
d. The terminal condition ξ : C([0, T ];Rd) → R is assumed to be continuous and

bounded. We refer to equation (1.1) as path-dependent heat equation. Similarly as for
the usual heat equation, it admits the following Feynman-Kac representation formula in
terms of the d-dimensional Brownian motion W = (W s)s∈[0,T ].

v(t,x) = E
[

ξ(W t,x)
]

, ∀ (t,x) ∈ [0, T ]× C([0, T ];Rd), (1.2)

where

W t,x
s :=

{

x(s), s ≤ t,

x(t) +W s −W t, s > t.

In the case of the classical heat equation ξ only depends on the terminal value W
t,x
T .

The peculiarity of equation (1.1) is the presence of the so-called functional or pathwise
derivatives ∂Ht v, ∂

V
xxv, where ∂

H
t v is known as horizontal derivative, while ∂Vxxv is the ma-

trix of second-order vertical derivatives. Those derivatives appeared in [54, 55] (under the
name of coinvariant derivatives) as building block of the so-called i-smooth analysis, and
independently in [1], where they were denoted Clio derivatives; later, they were rediscov-
ered by [30] (from which we borrow terminology and definitions), who adopted a slightly
different definition based on the space of càdlàg paths and in addition developed a related
stochastic calculus, known as functional Itô calculus, including in particular the so-called
functional Itô formula. Differently from the classical Fréchet derivative on C([0, T ];Rd),
the distinguished features of the pathwise derivatives are their finite-dimensional nature
and the property of being non-anticipative, which follow from the interpretation of t in
x(t) as time variable. This means that v(t,x) only depends on the values of the path x

up to time t; moreover, the horizontal and vertical derivatives at time t are computed
keeping the past values frozen, while only the present value of the path (that is x(t))
can vary. The related functional Itô calculus was rigorously investigated in [11, 12, 13].
In [14, 17] we also gave a contribution in this direction, exploring the relation between
pathwise derivatives and Banach space stochastic calculus, built on an appropriate notion
of Fréchet type derivative and firstly conceived in [25], see also [26, 27, 28, 24].

Partial differential equations in the space of continuous paths (also known as func-
tional or Clio or path-dependent partial differential equations) are mostly motivated by
optimal control problems of deterministic and stochastic systems with delay (or path-
dependence) in the state variable. Such control systems arise in many fields, as for
instance optimal advertising theory [47, 48], chemical engineering [45], financial man-
agement [38, 72], economic growth theory [2], mean field game theory [5], biomedicine
[46, 81], systemic risk [9]. The underlying deterministic or stochastic controlled differen-
tial equations with delay may be studied in two ways: first using a direct approach (see for
instance [50, 84, 54, 51, 56]), second by lifting them into a suitable infinite-dimensional
framework, leading to evolution equations in Hilbert (as in [10, 23, 41]) or Banach spaces
(as in [69, 70, 25]). The latter methodology turned out to be preferable to address gen-
eral optimal control problems with delay (see for instance [90, 49, 47, 39, 40, 44, 37]),
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although such an infinite-dimensional reformulation may require some additional artifi-
cial assumptions to be imposed on the original control problem. On the other hand, the
direct approach was adopted for special problems where the Hamilton-Jacobi-Bellman
equation reduces to a finite-dimensional differential equation, as in [35, 57]. This ap-
proach can now regain relevance thanks to a well-grounded theory of path-dependent
partial differential equations. To this regard, the path-dependent heat equation repre-
sents the primary test for such a theory, it indeed requires the main building blocks of
the methodology, without overloading the proofs with additional technicalities.

Path-dependent partial differential equations represent a quite recent area of research.
Typically, they do not admit a smooth solution satisfying the equation in a classical
sense, mainly because of the awkward nature of the underlying space C([0, T ];Rd). This
happens also for the path-dependent heat equation, which in particular does not have
the smoothing effect characterizing the classical heat equation, except in some specific
cases (as shown in [25, 29]) with ξ belonging to the class of so-called cylinder or tame
functions (therefore depending specifically on a finite number of integrals with respect to
the path) or ξ being smoothly Fréchet differentiable. It is indeed quite easy, relying on
the probabilistic representation formula (1.2), to see that the function v is not smooth
(in the horizontal/vertical sense mentioned above) for terminal conditions of the form

ξ(x) = sup
0≤t≤T

x(t), ξ(x) = x(t0),

for some fixed t0 ∈ (0, T ). For a detailed analysis of the first case above we refer to
Section 3.2 in [16] (see also Remark 3.8 in [17]). It is however worth mentioning that
some positive results on smooth solutions were obtained in [17, 76]. We also refer to
Chapter 9 of [25] and [29], where smooth solutions were investigated using a Fréchet
type derivative formulation.

It is therefore natural to search for a weaker notion of solution, as the notion of vis-
cosity solution, commonly used in the standard finite-dimensional case. The theory of
viscosity solutions, firstly introduced in [20, 21] for first-order equations in finite dimen-
sion and later extended to the second-order case in [59, 60, 61], provides a well-suited
framework guaranteeing the desired existence, uniqueness, and stability properties (for a
comprehensive account see [19]). The extension of such a theory to equations in infinite
dimension was initiated by [22, 62, 63, 64, 85, 88]. One of the structural assumption is
that the state space has to be a Hilbert space or, slightly more general, certain Banach
space with smooth norm, not including for instance the Banach space C([0, T ];Rd) (no-
tice however that in this paper we do not directly generalize those results to C([0, T ];Rd),
as we adopt horizontal/vertical, rather than Fréchet, derivatives on C([0, T ];Rd)).

First-order path-dependent partial differential equations were deeply investigated in
[68] using a viscosity type notion of solution, which differs from the Crandall-Lions def-
inition as the maximum/minimum condition is formulated on the subset of absolutely
continuous paths. Such a modification does not affect existence in the first-order case,
however it is particularly convenient for uniqueness, which is indeed established under
general conditions. Other notions of generalized solution designed for first-order equations
were adopted in [1] as well as in [65, 66, 67], where the minimax framework introduced
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in [86, 87] was implemented. We also mention [4], where such a minimax approach was
extended to first-order path-dependent Hamilton-Jacobi-Bellman equations in infinite di-
mension.Concerning the second-order case, a first attempt to extend the Crandall-Lions
framework to the path-dependent case was carried out in [74], even though a technical
condition on the semi-jets was imposed, namely condition (16) in [74], which narrows
down the applicability of such a result. In the literature, this was perceived as an almost
insurmountable obstacle, so that the Crandall-Lions definition was not further investi-
gated, while other notions of generalized solution were devised, see [32, 75, 89, 18, 58, 3, 8].
We mention in particular the framework designed in [32] and further investigated in
[33, 34, 78, 79, 80, 15], where the notion of sub/supersolution adopted differs from the
Crandall-Lions definition as the tangency condition is not pointwise but in the sense of
expectation with respect to an appropriate class of probability measures. On the other
hand, in [18] we introduced the so-called strong-viscosity solution, which is quite similar
to the notion of good solution for partial differential equations in finite dimension, that
in turn is known to be equivalent to the definition of Lp-viscosity solution, see for in-
stance [52]. We also mention [3], where the authors deal with semilinear path-dependent
equations and propose the notion of decoupled mild solution, formulated in terms of gen-
eralized transition semigroups; such a notion also adapts to path-dependent equations
with integro-differential terms.

In the present paper we adopt the natural generalization of the well-known definition
of viscosity solution à la Crandall-Lions given in terms of test functions and, under this
notion, we establish existence and uniqueness for the path-dependent heat equation (1.1).
The uniqueness property is derived, as usual, from the comparison theorem. The proof
of this latter, which is the most delicate issue, is known to be quite involved even in the
classical finite-dimensional case (see for instance [19]), and in its latest form is based on
Ishii’s lemma. Here we follow instead an earlier approach (see for instance Theorem II.1
in [61] or Theorem IV.1 in [62]), which in principle can be applied to any path-dependent
equation admitting a “candidate” solution v, for which a probabilistic representation
formula holds. This is the case for equation (1.1), where the candidate solution is given
by formula (1.2), but it is also the case for Kolmogorov type equations or, more generally,
for Hamilton-Jacobi-Bellman equations. This latter is the class of equations studied in
[61] and [62], whose methodology in a nutshell can be described as follows. Let u (resp.
w) be a viscosity subsolution (resp. supersolution) of the same path-dependent equation.
The desired inequality u ≤ w follows if we compare both u and w to the “candidate”
solution v, that is if we prove the two inequalities u ≤ v and v ≤ w. Let us consider
for instance the first inequality u ≤ v. In the non-path-dependent and finite-dimensional
case (as in [61]), this is proved proceeding as follows: firstly, performing a smoothing
of v through its probabilistic representation formula; secondly, taking a local maximum
of u − vn (here it is used the local compactness of the finite-dimensional underlying
space), with vn being a smooth approximation of v; finally, the inequality u ≤ vn is
proved proceeding as in the so-called partial comparison theorem (comparison between
a viscosity subsolution/supersolution and a smooth supersolution/subsolution), namely
exploiting the viscosity subsolution property of u with vn playing the role of test function.
In [62], where such a methodology was extended to the infinite-dimensional case, the
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existence of a maximum of u− vn is achieved relying on Ekeland’s variational principle,
namely exploiting the completeness of the space instead of the missing local compactness.

In this paper we generalize the methodology sketched above to the path-dependent
case. There are however at least two crucial mathematical issues required by such a proof,
still not at disposal in the path-dependent framework.

Firstly, given a candidate solution v, it is not a priori obvious how to perform a smooth
approximation of v itself starting from its probabilistic representation formula. Here we
exploit the results proved in [17] (Theorem 3.5) and [18] (Theorem 3.12), which are re-
ported and adapted to the present framework in Appendix D (Lemma D.1 and Lemma
D.2, respectively). Notice that such results apply to the case of the path-dependent heat
equation (1.1), where there is only the terminal condition ξ in the probabilistic repre-
sentation formula (1.2) for v. More general results are at disposal in [17] and [18], which
cover the case of semilinear path-dependent partial differential equations, characterized
by the presence of four coefficients b, σ, F , ξ (see, in particular, Theorem 3.16 in [18]
for more details). However, when those other coefficients appear in the path-dependent
partial differential equation, we need more information on the sequence {vn}n approxi-
mating v. For instance, we also have to estimate the derivatives of vn in order to proceed
as in [61] or [62]. Since such results are still not at disposal in the path-dependent setting,
in order to make the paper more readable and not excessively lengthy, here we address
the case of the path-dependent heat equation.

Secondly, concerning the existence of a maximum of u − vn, we rely on a generalized
version of Ekeland’s variational principle for which we need a smooth gauge-type function
with bounded derivatives, as explained below. Our equation is in fact formulated on the
non-locally compact space [0, T ]× C([0, T ];Rd) endowed with the pseudometric

d∞
(

(t,x), (t′,x′)
)

:= |t− t′|+ ‖x(· ∧ t)− x′(· ∧ t′)‖∞.

Recall that Ekeland’s variational principle, in its original form, applied to ([0, T ] ×
C([0, T ];Rd), d∞) states that a perturbation u(·, ·)−vn(·, ·)− δd∞((·, ·), (t̄, x̄)) of u(·, ·)−
vn(·, ·) has a strict global maximum, with the perturbation being expressed in terms of
the distance d∞ (the point (t̄, x̄) is fixed). As the map (t,x) 7→ d∞((t,x), (t̄, x̄)) is not
smooth, it cannot be a test function. In order to have a smooth map instead of d∞, we
need a smooth variational principle on Λ. To this end, the starting point is a generaliza-
tion of the so-called Borwein-Preiss smooth variant of Ekeland’s variational principle (see
for instance [7]), which works when d∞ is replaced by a so-called gauge-type function (see
Definition 3.1). For the proof of the comparison theorem, we have to construct a gauge-
type function which is also smooth and with bounded derivatives, recalling that smooth
in the present context means in the horizontal/vertical (rather than in the Fréchet) sense.
In Section 3 such a gauge-type function is built through a smoothing of d∞ itself (more
precisely, of the part concerning the supremum norm). This latter smoothing is performed
by convolution, firstly in the vertical direction, that is in the direction of the map 1[t,T ]

(Lemma 3.1), then in the horizontal direction (Lemmata 3.2 and 3.3), the ordering of
smoothings being crucial. Notice in particular that the supremum norm is already smooth
in the horizontal direction; however, after the vertical smoothing, we lose in general the
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horizontal regularity because of the presence of the term 1[t,T ]; for this reason we have
also to perform the horizontal smoothing. The resulting smooth gauge-type function with
bounded derivatives corresponds to the function ρ∞ defined in (3.7).

Regarding existence, we prove that the candidate solution v in (1.2) solves in the vis-
cosity sense equation (1.1). We proceed essentially as in the classical non-path-dependent
case, relying as usual on Itô’s formula, which in the present context corresponds to the
functional Itô formula. Such a formula was firstly stated in [30] and then rigorously proved
in [11, 12], see also [13, 42, 17, 58, 71]. In the present paper we provide a functional Itô
formula under general assumptions (Theorem 2.2). In particular, we do not require any
boundedness assumption on the functional u : [0, T ]×C([0, T ];Rd) → R, thus improving
(when the semimartingale process is continuous) the results stated in [11, 12]. The func-
tional Itô formula is proved following a similar approach as in [83], where the classical
non-path-dependent case was studied.

Finally, in the present paper we define pathwise derivatives in an alternative and self-
contained manner, as we are only interested in the case of continuous paths. Such an
approach, developed in detail in Section 2, is somehow minimalist compared to what
is usually done in the literature, where definitions require the space of càdlàg paths.
More precisely, in order to define the so-called vertical derivatives for a map u : [0, T ]×
C([0, T ];Rd) → R we consider a lifting of u, that is a map û defined on the enlarged
space [0, T ]×C([0, T ];Rd)×R

d. The third argument y in û(t,x,y) refers to the possible
jump of x at the present time t. Indeed, û is a lifting of u if it holds that

u(t,x) = û(t,x,x(t)), ∀ (t,x) ∈ [0, T ]× C([0, T ];Rd).

Therefore, when y = x(t) then there is no jump at time t, otherwise there is a jump of
size y − x(t). For this reason, we refer to the product space C([0, T ];Rd) × R

d as the
space of paths with at most one jump at the present time (concerning such a space see
also [41]). As already mentioned, in the literature the product space C([0, T ];Rd) × R

d

is replaced by the space of càdlàg paths D([0, T ];Rd).
The paper is organized as follows. Section 2 is devoted to pathwise derivatives and

functional Itô calculus. In particular, there is the functional Itô formula (Theorem 2.2)
whose complete proof is reported in Appendix A. In Section 3 we prove the smooth
variational principle on Λ, constructing the smooth gauge-type function with bounded
derivatives. In Section 4 we provide the (path-dependent) Crandall-Lions definition of vis-
cosity solution for a general path-dependent partial differential equation. We then study
in detail the path-dependent heat equation. In particular, we prove existence showing
that the so-called candidate solution v solves in the viscosity sense the path-dependent
heat equation (Theorem 4.1). We conclude Section 4 proving the comparison theorem
(Theorem 4.2).

2. Pathwise derivatives and functional Itô calculus

In the present section we define the pathwise derivatives and state the fundamental tool
of functional Itô calculus, namely the functional Itô formula. We refer to [30, 12, 42, 13]
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for more details. However, as already mentioned in the Introduction, we define vertical
derivatives without relying on the space of càdlàg paths (as it is generally done in the
literature); on the contrary, we employ the product space C([0, T ];Rd)× R

d, which can
be thought as the space of paths with at most one jump at the present time (Section
2.2).

2.1. Maps on continuous paths

Given T > 0 and d ∈ N
∗, we denote by C([0, T ];Rd) the set of continuous functions

x : [0, T ] → R
d. We denote by x(t) the value of x at t ∈ [0, T ]. We also denote by 0

the function x : [0, T ] → R
d identically equal to zero. We consider on C([0, T ];Rd) the

supremum norm ‖·‖∞, namely ‖x‖∞ := supt∈[0,T ] |x(t)|, where | · | denotes the Euclidean
norm on R

d (we use the same symbol | · | to denote the Euclidean norm on R
k, for any

k ∈ N).
We set Λ := [0, T ]× C([0, T ];Rd) and define d∞ : Λ×Λ → [0,∞) as

d∞
(

(t,x), (t′,x′)
)

:= |t− t′|+ ‖x(· ∧ t)− x′(· ∧ t′)‖∞.

Notice that d∞ is a pseudometric on Λ, that is d∞ is not a true metric because one may
have d∞((t,x), (t′,x′)) = 0 even if (t,x) 6= (t′,x′). We recall that one can construct a
true metric space (Λ∗, d ∗

∞), called the metric space induced by the pseudometric space
(Λ, d∞), by means of the equivalence relation which follows from the vanishing of the
pseudometric. We also observe that (Λ, d∞) is a complete pseudometric space. Finally,
we denote by B(Λ) the Borel σ-algebra on Λ induced by d∞.

Definition 2.1. A map (or functional) u : Λ → R is said to be non-anticipative (on
Λ) if it satisfies

u(t,x) = u(t,x(· ∧ t)),
for all (t,x) ∈ Λ.

Remark 2.1. Whenever u : Λ → R is Borel measurable, namely u is measurable with
respect to B(Λ), then u is non-anticipative on Λ.

Definition 2.2. We denote by C(Λ) the set of non-anticipative maps u : Λ → R which
are continuous on Λ with respect to d∞.

2.2. Lifted maps and their pathwise derivatives

In the sequel we consider the product space Λ×R
d, endowed with the product topology

induced by d∞ on Λ and | · | on R
d. We denote by B(Λ×R

d) the corresponding Borel σ-
algebra. On the subset [0, T )×C([0, T ];Rd)×R

d of Λ×R
d we consider the corresponding

subspace topology.
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Definition 2.3. A map (or functional) û : Λ×R
d → R is said to be non-anticipative

(on Λ× R
d) if it satisfies

û(t,x,y) = û(t,x(· ∧ t),y),

for all (t,x,y) ∈ Λ× R
d.

Remark 2.2. Whenever û : Λ×R
d → R is Borel measurable, namely û is measurable

with respect to B(Λ× R
d), then û is non-anticipative on Λ× R

d.

Definition 2.4. We denote by C(Λ×R
d) the set of non-anticipative maps û : Λ×R

d →
R which are continuous on Λ× R

d.

Definition 2.5 (Pathwise derivatives). Let û : Λ× R
d → R.

(i) Given (t,x) ∈ [0, T ) × C([0, T ];Rd), the horizontal derivative of û at (t,x) (if
the corresponding limit exists) is defined as

∂Ht û(t,x) := lim
δ→0+

û(t+ δ,x(· ∧ t),x(t)) − û(t,x,x(t))

δ
.

When the above limit exists for every (t,x) ∈ [0, T )× C([0, T ];Rd), then ∂Ht û is a
real-valued map with domain [0, T )× C([0, T ];Rd).

(ii) Given (t,x,y) ∈ Λ × R
d, the vertical derivatives of first and second-order of û

at (t,x,y) (if the corresponding limits exist) are defined as

∂Vxi
û(t,x,y) := lim

h→0

û(t,x,y + hei)− û(t,x,y)

h
,

∂Vxixj
û(t,x,y) := ∂Vxj

(∂Vxi
û)(t,x,y),

where e1, . . . , ed is the standard orthonormal basis of Rd.
When the above limits exist for every (t,x,y) ∈ Λ × R

d, then ∂Vxi
, ∂Vxixj

are real-

valued maps with domain Λ× R
d.

Finally, we denote ∂Vx û = (∂Vx1
û, . . . , ∂Vxd

û) and ∂Vxxû = (∂Vxixj
û)i,j=1,...,d.

Remark 2.3. We recall that our aim is to define pathwise derivatives for a map u : Λ →
R. In order to do it, as it will be stated in Section 2.3 (Definitions 2.9 and 2.10), we will
firstly consider a lift of u, that is a map û : Λ× R

d → R satisfying

u(t,x) = û(t,x,x(t)), ∀ (t,x) ∈ Λ.

Then, we will define the pathwise derivatives of u at (t,x) as the pathwise derivatives of û
(according to Definition 2.5) at (t,x,y) with y = x(t). The lifting û is only used to define
vertical derivatives (for which we need to consider discontinuous paths or, more precisely,
paths with at most a jump at the present time t, the jump size being given by y−x(t)).
On the other hand, in the definition of horizontal derivative only continuous paths are
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involved, so that the horizontal derivative could be directly defined for u (indeed, when
û is a lifting of u, the horizontal derivative of û coincides with that of u). We also notice
that we will not need to consider the horizontal derivative of û at a point (t,x,y) with
y 6= x(t).

Definition 2.6. We denote by C1,0(Λ×R
d) the set of û ∈ C(Λ×R

d) such that ∂Ht û
exists everywhere on [0, T )× C([0, T ];Rd) and is continuous.

Definition 2.7. We denote by C0,2(Λ×R
d) the set of û ∈ C(Λ×R

d) such that ∂V
x
û,

∂V
xx
û exist everywhere on Λ× R

d and are continuous.

Definition 2.8. We denote by C1,2(Λ× R
d) the set C1,0(Λ× R

d) ∩C0,2(Λ× R
d).

We can finally state the functional Itô formula for lifted maps, whose proof is reported
in Appendix A.

Theorem 2.1. Let û ∈ C1,2(Λ×R
d). Then, for every d-dimensional continuous semi-

martingale X = (Xt)t∈[0,T ] on some filtered probability space (Ω,F , (Ft)t∈[0,T ],P), with

X = (X1, . . . , Xd), the following functional Itô formula holds:

û(t,X,Xt) = û(0, X,X0) +

∫ t

0

∂Ht û(s,X) ds+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X,Xs) d[X

i, Xj]s

+

d
∑

i=1

∫ t

0

∂Vxi
û(s,X,Xs) dX

i
s, for all 0 ≤ t ≤ T, P-a.s.

Proof. See Appendix A.

2.3. Pathwise derivatives for maps on continuous paths

Definition 2.9. Let û : Λ×R
d → R and u : Λ → R. We say that û is a lifting of u if

u(t,x) = û(t,x,x(t)),

for all (t,x) ∈ Λ.

The following consistency property is crucial as it implies that, given a map u admit-
ting two liftings û1 and û2, their pathwise derivatives coincide on continuous paths (see
also Remark 2.4).

Lemma 2.1. If û1, û2 ∈ C1,2(Λ× R
d) are non-anticipative maps satisfying

û1(t,x,x(t)) = û2(t,x,x(t)), ∀ (t,x) ∈ Λ,
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then

∂Ht û1(t,x) = ∂Ht û2(t,x), ∀ (t,x) ∈ [0, T )× C([0, T ];Rd),

∂V
x
û1(t,x,x(t)) = ∂V

x
û2(t,x,x(t)), ∀ (t,x) ∈ Λ,

∂V
xx
û1(t,x,x(t)) = ∂V

xx
û2(t,x,x(t)), ∀ (t,x) ∈ Λ.

Proof. See Appendix B.

Thanks to Lemma 2.1 we can now give the following definition (see also Remark 2.4).

Definition 2.10. Let u : Λ → R. We say that u ∈ C1,2(Λ) if it admits a lifting
û : Λ× R

d → R satisfying û ∈ C1,2(Λ× R
d). Moreover, we define

∂Ht u(t,x) := ∂Ht û(t,x), ∀ (t,x) ∈ [0, T )× C([0, T ];Rd),

∂V
x
u(t,x) := ∂V

x
û(t,x,x(t)), ∀ (t,x) ∈ Λ,

∂V
xx
u(t,x) := ∂V

xx
û(t,x,x(t)), ∀ (t,x) ∈ Λ.

Remark 2.4. Notice that, by Lemma 2.1, if u ∈ C1,2(Λ) then the definition of the
pathwise derivatives of u is independent of the lifting û ∈ C1,2(Λ× R

d) of u.

Theorem 2.2. Let u ∈ C1,2(Λ). Then, for every d-dimensional continuous semi-
martingale X = (Xt)t∈[0,T ] on some filtered probability space (Ω,F , (Ft)t∈[0,T ],P), with

X = (X1, . . . , Xd), the following functional Itô formula holds:

u(t,X) = u(0, X) +

∫ t

0

∂Ht u(s,X) ds+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
u(s,X) d[X i, Xj]s (2.1)

+

d
∑

i=1

∫ t

0

∂Vxi
u(s,X) dX i

s, for all 0 ≤ t ≤ T, P-a.s.

Proof. Since u ∈ C1,2(Λ), by Definition 2.10 there exists a lifting û : Λ × R
d → R

satisfying û ∈ C1,2(Λ× R
d). By Theorem 2.1, the below Itô formula holds:

û(t,X,Xt) = û(0, X,X0) +

∫ t

0

∂Ht û(s,X) ds+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X,Xs) d[X

i, Xj]s

+

d
∑

i=1

∫ t

0

∂Vxi
û(s,X,Xs) dX

i
s, for all 0 ≤ t ≤ T, P-a.s.

Now, the claim follows identifying the pathwise derivatives of û with those of u.
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3. Smooth variational principle on Λ

The goal of the present section is the proof of a smooth variational principle on Λ, which
plays a crucial role in the proof of the comparison Theorem (Theorem 4.2). To this end,
we begin recalling a generalization of the so-called Borwein-Preiss smooth variant ([6])
of Ekeland’s variational principle ([31]), corresponding to Theorem 3.2 below. We state
it for the case of real-valued (rather than R ∪ {+∞}-valued as in [7]) maps on Λ. We
firstly recall the definition of gauge-type function for the specific set Λ.

Definition 3.1. We say that Ψ: Λ×Λ → [0,+∞) is a gauge-type function provided
that:

a) Ψ is continuous on Λ×Λ;
b) Ψ((t,x), (t,x)) = 0, for every (t,x) ∈ Λ;
c) for every ε > 0 there exists η > 0 such that, for all (t′,x′), (t′′,x′′) ∈ Λ, the inequality

Ψ((t′,x′), (t′′,x′′)) ≤ η implies d∞((t′,x′), (t′′,x′′)) < ε.

Theorem 3.1. Let G : Λ → R be an upper semicontinuous map, bounded from above.
Suppose that Ψ: Λ × Λ → [0,+∞) is a gauge-type function (according to Definition
3.1) and {δn}n≥0 is a sequence of strictly positive real numbers. For every ε > 0, let
(t0,x0) ∈ Λ such that

supG− ε ≤ G(t0,x0).

Then, there exists a sequence {(tn,xn)}n≥1 ⊂ Λ which converges to some (t̄, x̄) ∈ Λ
satisfying the following.

i) Ψ((t̄, x̄), (tn,xn)) ≤ ε
2nδ0

, for every n ≥ 0.

ii) G(t0,x0) ≤ G(t̄, x̄)−∑+∞
n=0 δn Ψ((t̄, x̄), (tn,xn)).

iii) For every (t,x) 6= (t̄, x̄),

G(t,x)−
+∞
∑

n=0

δn Ψ
(

(t,x), (tn,xn)
)

< G(t̄, x̄)−
+∞
∑

n=0

δn Ψ
(

(t̄, x̄), (tn,xn)
)

.

Proof. Theorem 3.2 follows trivially from Theorem 2.5.2 in [7], the only difference being
that the latter result is stated on complete metric spaces, while here Λ is a complete
pseudometric space.

The main ingredient of Theorem 3.2 is the gauge-type function Ψ. In the proof of the
comparison theorem we need such a gauge-type function to be also smooth as a map
of its first pair, namely (t,x) 7→ Ψ((t,x), (t0,x0)), and with bounded derivatives. The
most important example of gauge-type function is the pseudometric d∞ itself, which
unfortunately is not smooth enough. The major contribution of the present section is
the construction of such a smooth gauge-type function with bounded derivatives, which
corresponds to the function ρ∞ in (3.7). In order to do it, we perform a smoothing of
the pseudometric d∞ itself (more precisely of the part concerning the supremum norm),
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first in the vertical direction, and then in the horizontal direction. In particular, the next
result concerns the smoothing in the vertical direction. The precise form of the mollifier

ζ in (3.1) is used to get explicit bounds on κ̂
(t0,x0)
∞ and its derivatives.

Lemma 3.1. Let ζ : Rd → R be the probability density function of the standard normal
multivariate distribution:

ζ(z) :=
1

(2π)
d
2

e−
1
2 |z|

2

, ∀ z ∈ R
d. (3.1)

For every fixed (t0,x0) ∈ Λ, define the map κ̂
(t0,x0)
∞ : Λ× R

d → [0,+∞) as

κ̂(t0,x0)
∞ (t,x,y) :=

∫

Rd

∥

∥x(·∧t)−x0(·∧t0)−(y−x(t)+z)1[t,T ]

∥

∥

∞
ζ(z) dz−

∫

Rd

|z| ζ(z) dz,

for all (t,x,y) ∈ Λ× R
d. Moreover, let κ

(t0,x0)
∞ : Λ → [0,+∞) be given by

κ(t0,x0)
∞ (t,x) := κ̂(t0,x0)

∞ (t,x,x(t))

=

∫

Rd

∥

∥x(· ∧ t)− x0(· ∧ t0)− z1[t,T ]

∥

∥

∞
ζ(z) dz −

∫

Rd

|z| ζ(z) dz,

for every (t,x) ∈ Λ. Then, the following properties hold.

1) κ̂
(t0,x0)
∞ ∈ C0,2(Λ× R

d).

2) For every i, j = 1, . . . , d, ∂Vxi
κ̂
(t0,x0)
∞ is bounded by the constant 1 and ∂Vxixj

κ̂
(t0,x0)
∞ is

bounded by the constant
√

2
π .

3) κ
(t0,x0)
∞ (t,x) ≥ ‖x(· ∧ t)− x0(· ∧ t0)‖∞ − Cζ , for every (t,x) ∈ Λ, with

Cζ := κ(t0,x0)
∞ (t0,x0) =

∫

Rd

|z|ζ(z) dz =
√
2
Γ
(

d
2 + 1

2

)

Γ
(

d
2

) > 0, (3.2)

where Γ(·) is the Gamma function.
4) For every fixed d, there exists some constant αd > 0 such that

αd

(

‖x(· ∧ t)− x0(· ∧ t0)‖d+1
∞ ∧ ‖x(· ∧ t)− x0(· ∧ t0)‖∞

)

(3.3)

≤ κ(t0,x0)
∞ (t,x) ≤ ‖x(· ∧ t)− x0(· ∧ t0)‖∞,

for all (t,x) ∈ Λ.

Proof. See Appendix C.

Notice that the map

(

(t,x), (t0,x0)
)

7−→ |t− t0|2 + κ(t0,x0)
∞ (t,x)
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is already a gauge-type function. However, as a map of the first pair, it is not smooth
in the horizontal direction. As a matter of fact, the presence of 1[t,T ] in the definition of

κ
(t0,x0)
∞ (t,x) is an obstruction to horizontal regularity, therefore a further convolution in

the time variable t is needed. We now address the problem of smoothing the map κ
(t0,x0)
∞

with respect to the horizontal derivative. Notice that the map

(

(t,x), (t0,x0)
)

7−→ |t− t0|2 + κ(t0,x0)
∞ (t,x)

is already a gauge-type function. However, as a map of the first pair, it is not smooth

in the horizontal direction because of the second term κ
(t0,x0)
∞ (t,x). We now address the

problem of smoothing the map κ
(t0,x0)
∞ with respect to the horizontal derivative. To this

regard, the following lemma plays an important role.

Lemma 3.2. Let η : [0,+∞) → R be a function satisfying the following properties.

• η ∈ C1([0,+∞));
• η is non-negative;
•
∫ +∞

0
η(s) ds = 1;

• η(0) = 0.

Let û ∈ C0,2(Λ× R
d). The map v̂ : Λ× R

d → R given by

v̂(t,x,y) :=

∫ +∞

0

û
(

(t+ s) ∧ T,x(· ∧ t),y
)

η(s) ds, ∀ (t,x,y) ∈ Λ× R
d,

belongs to C1,2(Λ× R
d).

Proof. See Appendix C.

We now apply Lemma 3.2 to the map κ̂
(t0,x0)
∞ /(1+κ̂

(t0,x0)
∞ ), with κ̂

(t0,x0)
∞ being the map

introduced in Lemma 3.1. We apply it to such a map (rather than to κ̂
(t0,x0)
∞ directly)

in order to have bounded derivatives (see item 2 of Lemma 3.3). In order to get explicit

bounds for the derivatives of the map χ̂
(t0,x0)
∞ introduced in Lemma 3.3 below, we fix the

function η appearing in Lemma 3.2, taking η as in (3.4).

Lemma 3.3. Let η : [0,+∞) → R be given by

η(s) :=

√

s

2π
e−

1
2 s, ∀ s ≥ 0. (3.4)

For every fixed (t0,x0) ∈ Λ, let κ̂
(t0,x0)
∞ be the map defined in Lemma 3.1 and define the

map χ̂
(t0,x0)
∞ : Λ× R

d → [0,+∞) as

χ̂(t0,x0)
∞ (t,x,y) :=

∫ +∞

0

κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

1 + κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

η(s) ds,
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for all (t,x,y) ∈ Λ× R
d. Moreover, let χ

(t0,x0)
∞ : Λ → [0,+∞) be given by

χ(t0,x0)
∞ (t,x) := χ̂(t0,x0)

∞ (t,x,x(t)), ∀ (t,x) ∈ Λ. (3.5)

Then, the following properties hold.

1) χ̂
(t0,x0)
∞ ∈ C1,2(Λ× R

d).

2) The horizontal derivative of χ̂
(t0,x0)
∞ is bounded by the constant

√

2
πe

(

=
∫ +∞

0 |η′(s)| ds
)

;

the first-order vertical derivatives of χ̂
(t0,x0)
∞ are bounded by the constant 1; the second-

order vertical derivatives of χ̂
(t0,x0)
∞ are bounded by the constant

√

2
π + 2.

3) For every (t,x) ∈ Λ,

αd
‖x(· ∧ t)− x0(· ∧ t0)‖d+1

∞ ∧ ‖x(· ∧ t)− x0(· ∧ t0)‖∞
1 + ‖x(· ∧ t)− x0(· ∧ t0)‖∞

(3.6)

≤ χ(t0,x0)
∞ (t,x) ≤ ‖x(· ∧ t)− x0(· ∧ t0)‖∞ ∧ 1,

with the same constant αd as in (3.3).

Proof. See Appendix C.

In conclusion, by Lemma 3.3 it follows that the map ρ∞ : Λ×Λ → [0,+∞) given by

ρ∞
(

(t,x), (t0,x0)
)

= |t− t0|2 + χ(t0,x0)
∞ (t,x), ∀ (t,x), (t0,x0) ∈ Λ, (3.7)

with χ∞ as in (3.5), is the claimed gauge-type function, smooth as a map of the first
pair, namely (t,x) 7→ ρ∞((t,x), (t0,x0)), and with bounded derivatives.

We now apply Theorem 3.2 to the smooth gauge-type function ρ∞ with bounded
derivatives defined by (3.7), taking δ0 := δ > 0 and δn := δ/2n, for every n ≥ 1.

Theorem 3.2 (Smooth variational principle on Λ). Let δ > 0 and G : Λ → R be an
upper semicontinuous map, bounded from above. For every ε > 0, let (t0,x0) ∈ Λ satisfy

supG− ε ≤ G(t0,x0).

Then, there exists a sequence {(tn,xn)}n≥1 ⊂ Λ which converges to some (t̄, x̄) ∈ Λ such
that:

i) ρ∞((t̄, x̄), (tn,xn)) ≤ ε
2nδ , for every n ≥ 0.

ii) G(t0,x0) ≤ G(t̄, x̄)− δϕε(t,x), where the map ϕε : Λ → [0,+∞) is defined as

ϕε(t,x) :=

+∞
∑

n=0

1

2n
ρ∞

(

(t,x), (tn,xn)
)

, ∀ (t,x) ∈ Λ.

iii) For every (t,x) 6= (t̄, x̄), G(t,x)− δ ϕε(t,x) < G(t̄, x̄)− δ ϕε(t̄, x̄).
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Finally, the map ϕε satisfies the following properties.

1) ϕε ∈ C1,2(Λ) and is bounded.

2)
∣

∣∂Ht ϕε(t,x)
∣

∣ ≤ 2
(

2T +
√

2
πe

)

, for every (t,x) ∈ [0, T )× C([0, T ];Rd).

3) For every i, j = 1, . . . , d, ∂Vxi
ϕε is bounded by the constant 2 and ∂Vxixj

ϕε is bounded

by the constant 2
(
√

2
π + 2

)

.

Proof. Items i)-ii)-iii) follow directly from Theorem 3.2, while items 1)-2)-3) follow easily
from items 1)-2)-3) of Lemma 3.3.

4. Crandall-Lions (path-dependent) viscosity
solutions

4.1. Viscosity solutions

In the present section we consider the following second-order path-dependent partial
differential equation:







∂Ht u(t,x) = F
(

t,x, u(t,x), ∂V
x
u(t,x), ∂V

xx
u(t,x)

)

, (t,x) ∈ [0, T )× C([0, T ];Rd),

u(T,x) = ξ(x), x ∈ C([0, T ];Rd),
(4.1)

with F : [0, T ]× C([0, T ];Rd)× R
d × S(d) → R and ξ : C([0, T ];Rd) → R, where S(d) is

the set of symmetric d× d matrices.

Definition 4.1. We denote by C
1,2
pol(Λ) the set of ϕ ∈ C1,2(Λ) such that ϕ, ∂Ht ϕ,

∂Vx ϕ, ∂
V
xxϕ satisfy a polynomial growth condition.

Definition 4.2. We say that an upper semicontinuous map u : Λ → R is a (path-
dependent) viscosity subsolution of equation (4.1) if the following holds.

• u(T,x) ≤ ξ(x), for all x ∈ C([0, T ];Rd);
• for any (t,x) ∈ [0, T )× C([0, T ];Rd) and ϕ ∈ C

1,2
pol(Λ), satisfying

(u− ϕ)(t,x) = sup
(t′,x′)∈Λ

(u− ϕ)(t′,x′),

we have

−∂Ht ϕ(t,x) + F
(

t,x, u(t,x), ∂Vx ϕ(t,x), ∂
V
xxϕ(t,x)

)

≤ 0.

We say that a lower semicontinuous map u : Λ → R is a (path-dependent) viscosity
supersolution of equation (4.1) if:



16 A. Cosso and F. Russo

• u(T,x) ≥ ξ(x), for all x ∈ C([0, T ];Rd);
• for any (t,x) ∈ [0, T )× C([0, T ];Rd) and ϕ ∈ C

1,2
pol(Λ), satisfying:

(u− ϕ)(t,x) = inf
(t′,x′)∈Λ

(u− ϕ)(t′,x′),

we have

−∂Ht ϕ(t,x) + F
(

t,x, u(t,x), ∂Vx ϕ(t,x), ∂
V
xxϕ(t,x)

)

≥ 0.

We say that a continuous map u : Λ → R is a (path-dependent) viscosity solution of
equation (4.1) if u is both a (path-dependent) viscosity subsolution and a (path-dependent)
viscosity supersolution of (4.1).

4.2. Path-dependent heat equation

In the present section we focus on the path-dependent heat equation, namely when
F (t,x, r, p,M) = − 1

2 tr[M ]:











∂Ht u(t,x) +
1

2
tr
[

∂Vxxu(t,x)
]

= 0, (t,x) ∈ [0, T )× C([0, T ];Rd),

u(T,x) = ξ(x), x ∈ C([0, T ];Rd).

(4.2)

In the sequel we denote

Lu(t,x) := ∂Ht u(t,x) +
1

2
tr[∂Vxxu(t,x)]. (4.3)

We impose the following assumption on the terminal condition ξ.

(A) The function ξ : C([0, T ];Rd) → R is continuous and bounded.

Remark 4.1. The boundedness of ξ will be used in the proof of Theorem 4.2 (com-
parison). On the other hand, the proof that the function v in (4.4) is continuous and is
a viscosity solution of equation (4.2) (see the proof of Theorem 4.1) holds under weaker
growth condition on ξ (for instance, ξ having polynomial growth).

4.2.1. Existence

The “candidate solution” to equation (4.2) is

v(t,x) := E
[

ξ(W t,x)
]

, for all (t,x) ∈ Λ, (4.4)

where W = (W s)s∈[0,T ] is a d-dimensional Brownian motion on some probability space

(Ω,F ,P), and the stochastic process W t,x = (W t,x
s )s∈[0,T ] is given by

W t,x
s :=

{

x(s), s ≤ t,

x(t) +W s −W t, s > t.
(4.5)



Viscosity Solutions for Path-Dependent PDEs 17

Theorem 4.1. Under Assumption (A), the function v in (4.4) is continuous and
bounded. Moreover, v is a (path-dependent) viscosity solution of equation (4.2).

Proof. Step I. Continuity of v. Given (t,x), (t′,x′) ∈ Λ, with t ≤ t′, we have from
(4.5):

W t,x
s −W t′,x′

s =











x(s)− x′(s), s ≤ t,

x(t)− x′(s) +W s −W t, t < s ≤ t′,

x(t)− x′(t′) +W t′ −W t, s > t′.

Hence

sup
s∈[0,T ]

∣

∣W t,x
s −W t′,x′

s

∣

∣ ≤ ‖x(· ∧ t)− x′(· ∧ t′)‖∞ + sup
s∈[t,t′]

∣

∣W s −W t

∣

∣

≤ ‖x(· ∧ t)− x′(· ∧ t′)‖∞ +

d
∑

i=1

sup
s∈[t,t′]

∣

∣W i
s −W i

t

∣

∣,

where W = (W 1, . . . ,W d) and the second inequality follows from the fact the Euclidean
norm on R

d is estimated by the 1-norm. By the reflection principle, sups∈[t,t′] |W i
s −W i

t |
has the same law as |W i

t′ −W i
t |, therefore

E

[

sup
s∈[0,T ]

∣

∣W t,x
s −W t′,x′

s

∣

∣

]

≤ ‖x(· ∧ t)− x′(· ∧ t′)‖∞ +

d
∑

i=1

E
[

|W i
t′ −W i

t |
]

= ‖x(· ∧ t)− x′(· ∧ t′)‖∞ + d

√

2

π

√

|t− t′|.

Then, since ξ is bounded and continuous, the continuity of v follows from the above
estimate together with the Lebesgue dominated convergence theorem.

Step II. v is a viscosity solution of equation (4.2). For every t ∈ [0, T ], let Ft = (F t
s)s∈[t,T ]

be the filtration given by: F t
s := σ(W r − W t, r ∈ [t, s]), for all s ∈ [t, T ]. Now, fix

(t,x) ∈ Λ and t′ ∈ [t, T ]. We first prove that the following formula holds:

v(t,x) = E
[

v
(

t′,W t,x
)]

. (4.6)

To this end, we begin noting that by (4.5) we have

W t,x
· = x(· ∧ t) +W ·∨t −W t. (4.7)

Therefore
v(t,x) = E[ξ(x(· ∧ t) +W ·∨t −W t)]. (4.8)

Now, notice that, by (4.7),

W t′,W t,x

· = W
t,x
·∧t′ +W ·∨t′ −W t′ = W t,x

· .
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This proves the flow property W t,x
· = W t′,W t,x

· . Then, by the freezing lemma for con-
ditional expectation and formula (4.8), we obtain

v(t,x) = E
[

ξ(W t,x)
]

= E
[

ξ
(

W t′,W t,x)]

= E
[

ξ
(

W
t,x
·∧t′ +W ·∨t′ −W t′

)]

= E
[

E
[

ξ
(

W
t,x
·∧t′ +W ·∨t′ −W t′

)∣

∣F t
t′
]]

= E
[

v
(

t′,W t,x
·∧t′

)]

.

Finally, recalling that v is non-anticipative we deduce that v(t′,W t,x
·∧t′) = v(t′,W t,x).

This concludes the proof of formula (4.6).
Let us now prove that v is a viscosity solution of equation (4.2). We only prove the

viscosity subsolution property, as the supersolution property can be proved in a similar
way. We proceed along the same lines as in the proof of the subsolution property in
Theorem 3.66 of [37]. Let (t,x) ∈ [0, T )× C([0, T ];Rd) and ϕ ∈ C

1,2
pol(Λ), satisfying:

(v − ϕ)(t,x) = sup
(t′,x′)∈Λ

(v − ϕ)(t′,x′).

We suppose that (v − ϕ)(t,x) = 0 (if this is not the case, we replace ϕ by ψ(·, ·) :=
ϕ(·, ·) + v(t,x)− ϕ(t,x)). Take

ϕ(t,x) = v(t,x) = E
[

v
(

t+ ε,W t,x
)]

≤ E
[

ϕ
(

t+ ε,W t,x
)]

, (4.9)

where the last inequality follows from the fact that sup(v − ϕ) = 0, so that v ≤ ϕ on Λ.
Notice that the last expectation in (4.9) is finite, as ϕ has polynomial growth. Now, by
the functional Itô formula (2.1), we have

ϕ(t+ ε,W t,x) = ϕ(t,x) +

∫ t+ε

t

Lϕ(s,W t,x) ds+

d
∑

i=1

∫ t+ε

t

∂Vxi
ϕ(s,W t,x) dW i

s ,

where L was defined in (4.3). Since ∂Vxi
ϕ has polynomial growth, the corresponding

stochastic integral is a martingale. Then, plugging the above formula into (4.9) and
dividing by ε, we find

−E

[

1

ε

∫ t+ε

t

Lϕ(s,W t,x) ds

]

≤ 0.

Letting ε→ 0+, we conclude that

−Lϕ(t,x) ≤ 0,

which proves the viscosity subsolution property.

4.2.2. Comparison theorem

Theorem 4.2. Suppose that Assumption (A) holds. Let u,w : Λ → R be respectively
upper and lower semicontinuous, satisfying

supu < +∞, inf w > −∞.

Suppose that u (resp. w) is a (path-dependent) viscosity subsolution (resp. supersolution)
of equation (4.2). Then u ≤ w on Λ.
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Proof. The proof consists in showing that u ≤ v and v ≤ w on Λ (with v given by
(4.4)), from which we immediately deduce the claim. In what follows, we only report the
proof of the inequality u ≤ v, as the other inequality (that is v ≤ w) can be deduced
from the first one replacing u, v, ξ with −w, −v, −ξ, respectively.

We proceed by contradiction and assume that sup(u − v) > 0. Then, there exists
(t0,x0) ∈ Λ such that

(u− v)(t0,x0) > 0.

Notice that t0 < T , since u(T, ·) ≤ ξ(·) = v(T, ·). We split the rest of the proof into five
steps.

Step I. Let {ξN}N be the sequence given by Lemma D.2. Since ξ is bounded, we have
that ξN is bounded uniformly with respect to N . Now, denote

vN (t,x) := E
[

ξN (W t,x)
]

, for all (t,x) ∈ Λ.

Then, vN is bounded uniformly with respect to N . Moreover, by Lemma D.1 it follows
that, for every N , vN ∈ C1,2(Λ) and is a classical (smooth) solution of equation (4.2)
with terminal condition ξN . Finally, recalling from Lemma D.2 that {ξN}N converges
pointwise to ξ as N → +∞, it follows from the Lebesgue dominated convergence theorem
that {vN}N converges pointwise to v as N → +∞. Then, we notice that there exists
N0 ∈ N such that

(u− vN0)(t0,x0) > 0. (4.10)

We also suppose that (possibly enlarging N0)

|ξ(x0)− ξN0(x0)| ≤ 1

2
(u − vN0)(t0,x0). (4.11)

Step II. For every λ > 0, we set

uλ(t,x) := eλtu(t,x), ξλ(x) := eλT ξ(x), vλN0
(t,x) := eλtvN0(t,x), ξ

λ
N0

(x) := eλT ξN0(x).

for all (t,x) ∈ Λ. Notice that uλ is a (path-dependent) viscosity subsolution of the
path-dependent partial differential equation







∂Ht u
λ(t,x) + 1

2 tr[∂
V
x u

λ(t,x)] = λuλ(t,x), (t,x) ∈ [0, T )× C([0, T ];Rd),

uλ(T,x) = ξλ(x), x ∈ C([0, T ];Rd).
(4.12)

Similarly, vλN0
is a classical (smooth) solution of equation (4.12) with ξλ replaced by ξλN0

.
We finally notice that by (4.10) we have

(uλ − vλN0
)(t0,x0) > 0.

So, in particular,

sup(uλ − vλN0
)− ε = (uλ − vλN0

)(t0,x0) ≤ sup(uλ − vλN0
), (4.13)
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where ε := sup(uλ − vλN0
)− (uλ − vλN0

)(t0,x0).

Step III. Notice that uλ− vλN0
is upper semicontinuous and bounded from above. Then,

by (4.13) and the smooth variational principle (Theorem 3.2) with G = uλ − vλN0
, we

deduce that for every δ > 0 there exists a sequence {(tn,xn)}n≥1 ⊂ Λ converging to
some (t̄, x̄) ∈ Λ (possibly depending on ε, δ, λ,N0) such that:

i) ρ∞((tn,xn), (t̄, x̄)) ≤ ε
2nδ , for every n ≥ 0, where ρ∞ is the smooth gauge-type

function with bounded derivatives defined by (3.7).
ii) (uλ − vλN0

)(t0,x0) ≤
(

uλ − (vλN0
+ δϕε)

)

(t̄, x̄), where

ϕε(t,x) :=
+∞
∑

n=0

1

2n
ρ∞

(

(t,x), (tn,xn)
)

∀ (t,x) ∈ Λ.

iii) It holds that

(

uλ − (vλN0
+ δϕε)

)

(t̄, x̄) = sup
(t,x)∈Λ

(

uλ − (vλN0
+ δϕε)

)

(t,x). (4.14)

We also recall from Theorem 3.2 that ϕε satisfies the following properties.

1) ϕε ∈ C1,2(Λ) and is bounded.

2)
∣

∣∂Ht ϕε(t,x)
∣

∣ ≤ 2
(

2T +
√

2
πe

)

, for every (t,x) ∈ [0, T )× C([0, T ];Rd).

3) For every i, j = 1, . . . , d, ∂Vxi
ϕε is bounded by the constant 2 and ∂Vxixj

ϕε is bounded

by the constant 2
(
√

2
π + 2

)

.

In particular, ϕε ∈ C
1,2
pol(Λ).

Step IV. We prove below that t̄ < T . As a matter of fact, by item ii) of Step III we
have

(

uλ − (vλN0
+ δϕε)

)

(t̄, x̄) ≥ (uλ − vλN0
)(t0,x0). (4.15)

On the other hand, if t̄ = T we obtain

(

uλ−(vλN0
+δϕε)

)

(t̄, x̄) = eλT (ξ(x̄)−ξN0(x̄))−δϕε(T, x̄) ≤ eλT (ξ(x̄)−ξN0(x̄)), (4.16)

where the latter inequality comes from the fact that ϕε ≥ 0. Hence, by (4.15) and (4.16)
we get

eλt0(u− vN0)(t0,x0) ≤ eλT (ξ(x̄)− ξN0(x̄)).

Letting ε→ 0, it follows from item i) above with n = 0 and (3.6) that d∞((t̄, x̄), (t0,x0)) →
0. Therefore, letting ε→ 0 in the previous inequality, we obtain

eλt0(u− vN0)(t0,x0) ≤ eλT (ξ(x0)− ξN0(x0)).

By (4.11), we end up with eλt0 ≤ 1
2 e

λT . Letting λ→ 0, we find a contradiction.
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Step V. Here again λ > 0 is fixed. By (4.14) and the definition of viscosity subsolution
of (4.12) applied to uλ at the point (t̄, x̄) with test function vλN0

+ δϕε, we obtain

−L(vλN0
+ δϕε)(t̄, x̄) + λuλ(t̄, x̄) ≤ 0.

Recalling that vλN0
is a classical (smooth) solution of equation (4.12) with ξλ replaced by

ξλN0
, we find

λ (uλ − vλN0
)(t̄, x̄) ≤ δLϕε(t̄, x̄).

By item ii) in Step III (namely (4.15)), subtracting from both sides the quantity
λδϕε(t̄, x̄), we obtain

λ (uλ − vλN0
)(t0,x0) ≤ λ

(

uλ − (vλN0
+ δϕε)

)

(t̄, x̄) ≤ δLϕε(t̄, x̄)− λ δ ϕε(t̄, x̄).

Recalling that ϕε ≥ 0, we see that

λ (uλ − vλN0
)(t0,x0) ≤ λ

(

uλ − (vλN0
+ δϕε)

)

(t̄, x̄) ≤ δLϕε(t̄, x̄).

From items 2) and 3) above, it follows that Lϕε(t̄, x̄) is bounded by a constant (not
depending on ε, δ, λ). Therefore, letting δ → 0+, taking into account the notations of
Step II, we have

λ eλt0 (u− vN0)(t0,x0) = λ (uλ − vλN0
)(t0,x0) ≤ 0,

which gives a contradiction to (4.10).

Appendix A: Functional Itô’s formula for lifted maps

We start with a technical result.

Lemma A.1. Let û ∈ C1,0(Λ×R
d). Then, for every (t,x) ∈ [0, T )×C([0, T ];Rd)×R

d,
ε ∈ (0, T − t), the map φ : [0, (T − t)/ε) → R, defined as

φ(a) := û(t+ aε,x(· ∧ t),x(t)), ∀ a ∈ [0, (T − t)/ε),

is in C1([0, (T − t)/ε)) and

φ′(a) = ε ∂Ht û(t+ aε,x(· ∧ t)), ∀ a ∈ [0, (T − t)/ε).

Proof. Let a ∈ [0, (T − t)/ε). We have, for any δ ∈ (0, (T − t)/ε− a),

φ(a+ δ)− φ(a)

δ
=

û(t+ (a+ δ)ε,x(· ∧ t),x(t))− û(t+ aε,x(· ∧ t),x(t))
δ

−→
δ→0+

∂Ht û(t+ aε,x(· ∧ t)).

This shows that φ is right-differentiable on [0, (T − t)/ε) and that such a right-derivative
is continuous on [0, (T − t)/ε). Then, it follows for instance from Corollary 1.2, Chapter
2, in [73] that φ ∈ C1([0, (T − t)/ε)).
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We now introduce a special class of lifted maps, for which the proof of the functional
Itô formula will be easier.

Definition A.1. A strictly non-anticipative map (on Λ×R
d) is a non-anticipative

map û : Λ× R
d → R for which there exists δ0 > 0 such that, for all (t,x) ∈ Λ,

û
(

(t+ δ) ∧ T,x,x(t)
)

= û
(

(t+ δ) ∧ T,x(· ∧ t),x(t)
)

or, equivalently,

û
(

t,x,x((t− δ) ∨ 0)
)

= û
(

t,x(· ∧ ((t− δ) ∨ 0)),x((t− δ) ∨ 0)
)

,

for all δ ∈ [0, δ0].

Remark A.1. We give an example of delayed map. Let û : [0, T ]×C([0, T ];Rd)×R
d →

R be a non-anticipative map. Take δ0 > 0 and define the map ûδ0 : [0, T ]×C([0, T ];Rd)×
R

d → R as

ûδ0(t,x,y) := û
(

t,x(· ∧ ((t− δ0) ∨ 0)),y
)

, ∀ (t,x,y) ∈ Λ× R
d. (A.1)

Then, ûδ0 is a delayed map with delay δ0, in the sense of Definition A.1.

Lemma A.2. Let û ∈ C1,2(Λ×R
d) and δ0 > 0. Let also ûδ0 be given by (A.1). Then,

ûδ0 ∈ C1,2(Λ× R
d). Moreover

∂Ht ûδ0(t,x) = ∂Ht û
(

t,x(· ∧ ((t− δ0) ∨ 0))
)

, ∀ (t,x) ∈ [0, T )× C([0, T ];Rd),

∂V
x
ûδ0(t,x,y) = ∂V

x
û
(

t,x(· ∧ ((t− δ0) ∨ 0)),y
)

, ∀ (t,x,y) ∈ Λ× R
d,

∂Vxxûδ0(t,x,y) = ∂Vxxû
(

t,x(· ∧ ((t− δ0) ∨ 0)),y
)

, ∀ (t,x,y) ∈ Λ× R
d.

Proof. The claim follows easily from the definitions of horizontal and vertical derivatives,
see Definition 2.5.

The functional Itô formula is proved extending to the path-dependent setting the
approach of stochastic calculus via regularization. It is therefore useful to recall the
following standard definitions of stochastic calculus via regularization (for more details
we refer for instance to [83]).

Definition A.2. Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] be real-valued processes on
some probability space (Ω,F ,P), with X continuous. For every ε > 0, we denote

Iεt :=

∫ t

0

Ys
X(s+ε)∧T −Xs

ε
ds, ∀ t ∈ [0, T ].

If Iε converges in the ucp sense as ε→ 0+, we denote its limit by
∫ ·

0 Ys d
−Xs and call it

the forward integral.
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Definition A.3. Let X = (Xt)t∈[0,T ] be a d-dimensional continuous process on some

probability space (Ω,F ,P), with X = (X1, . . . , Xd). For every i, j = 1, . . . , d and any
ε > 0, we denote

[X i, Xj ]εt :=

∫ t

0

(

X i
(s+ε)∧T −X i

s

)(

Xj
(s+ε)∧T −Xj

s

)

ε
ds, ∀ t ∈ [0, T ]. (A.2)

We say that X has all its mutual brackets if, for every i, j = 1, . . . , d, [X i, Xj]ε

converges in the ucp sense as ε→ 0+. When i = j we denote [X i, X i]ε simply by [X i]ε.
We denote its limit by [X i, Xj]. When i = j we denote [X i, X i] simply by [X i].

The following technical result concerning the stability of Itô integral will be useful.

Lemma A.3. Let X = (Xt)t∈[0,T ] be a real continuous semimartingale on some filtered
probability space (Ω,F , (Ft)t∈[0,T ],P). Moreover, for every ε > 0, let Y ε = (Y ε

t )t∈[0,T ] be
a family of real progressively measurable processes such that

Y ε ucp−→
ε→0+

Y,

where Y = (Yt)t∈[0,T ] is a real progressively measurable process satisfying supt |Yt| <∞,
P-a.s.. Then

1

ε

∫ t

0

Y ε
s

(

X(s+ε)∧T −Xs

)

ds
ucp−→

ε→0+

∫ t

0

Ys dXs, (A.3)

where the latter is Itô integral.

Proof. We begin noting that (A.3) holds if and only if

1

ε

∫ t

0

Y ε
s

(

X(s+ε)∧t −Xs

)

ds
ucp−→

ε→0+

∫ t

0

Ys dXs. (A.4)

As a matter of fact, it holds that

1

ε

∫ t

0

Y ε
s

(

X(s+ε)∧T −Xs

)

ds− 1

ε

∫ t

0

Y ε
s

(

X(s+ε)∧t −Xs

)

ds

=
1

ε

∫ t

t−ε

Y ε
s

(

X(s+ε)∧T −X(s+ε)∧t

)

ds
ucp−→

ε→0+
0. (A.5)

The validity of (A.5) follows easily reasoning on subsequences in terms of P-a.s. pointwise
convergence and using the fact that supt |Yt| <∞, P-a.s..

It remains to prove (A.4). To this effect, we first remark that, for every t ∈ [0, T ],

1

ε

∫ t

0

Y ε
s

(

X(s+ε)∧t −Xs

)

ds =
1

ε

∫ t

0

(
∫ r

(r−ε)+
Y ε
s ds

)

dXr, (A.6)
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where (r−ε)+ = (r−ε)∨0 denotes the positive part of (r−ε). The validity of (A.6) follows
from the fact that, by stopping techniques, we can reduce to the case when the bounded
variation component of X , denoted AX , is bounded, the local martingale component,
denoted MX , is bounded and also its bracket [MX ]T is bounded. In addition, we can
suppose Y ε to be bounded. Then, (A.6) follows by the stochastic Fubini theorem, see for
instance Theorem 64, Chapter IV, of [77]. It remains to show that

∫ t

0

(

1

ε

∫ r

(r−ε)+
Y ε
s ds

)

dXr
ucp−→

ε→0+

∫ t

0

Yr dXr. (A.7)

In order to prove (A.7), recall that X = AX +MX , where AX is the bounded variation
component and MX is the local martingale component. We prove the validity of (A.7)
separately for AX and MX . Firstly, the ucp convergence (A.7) with AX in place of X
is a direct consequence of the Lebesgue dominated convergence theorem. Finally, (A.7)
with MX in place of X follows by Proposition 2.26, Chapter 3, of [53] and the fact that

∫ t

0

(

1

ε

∫ r

(r−ε)+

∣

∣Y ε
s − Ys

∣

∣ ds

)2

dMX
r

P−→
ε→0+

0.

We can now prove the functional Itô formula for strictly non-anticipative maps.

Proposition A.1. Let û ∈ C1,2(Λ × R
d). Suppose also that û is a strictly non-

anticipative map. Then, for every d-dimensional continuous semimartingale X = (Xt)t∈[0,T ]

on some filtered probability space (Ω,F , (Ft)t∈[0,T ],P), with X = (X1, . . . , Xd), the fol-
lowing functional Itô formula holds:

û(t,X,Xt) = û(0, X,X0) +

∫ t

0

∂Ht û(s,X) ds+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X,Xs) d[X

i, Xj ]s

+

d
∑

i=1

∫ t

0

∂Vxi
û(s,X,Xs) dX

i
s, for all 0 ≤ t ≤ T, P-a.s. (A.8)

where the integrals in the last summation are Itô integrals.

Proof. Let δ0 > 0 be the constant appearing in Definition A.1 of û. Given s ∈ [0, T ], for
any ε ∈ [0, δ0] we have

û((s+ ε) ∧ T,X,X(s+ε)∧T )− û(s,X,Xs) = I1(s, ε) + I2(s, ε),

where

I1(s, ε) = û((s+ ε) ∧ T,X,X(s+ε)∧T )− û((s+ ε) ∧ T,X,Xs),

I2(s, ε) = û((s+ ε) ∧ T,X,Xs)− û(s,X,Xs).



Viscosity Solutions for Path-Dependent PDEs 25

Notice that, by telescoping, we have

∫ ·

0

û((s+ ε) ∧ T,X,X(s+ε)∧T )− û(s,X,Xs)

ε
ds

ucp−→
ε→0+

û(·, X,X·)− û(0, X,X0).

It remains to investigate the convergence of 1
ε

∫ ·

0 I1(s, ε) ds and
1
ε

∫ ·

0 I2(s, ε) ds as ε→ 0+.

Convergence of 1
ε

∫ ·

0
I1(s, ε) ds as ε→ 0+. We have

I1(s, ε) = I11(s, ε) + I12(s, ε) + I13(s, ε) + I14(s, ε),

where

I11(s, ε) =

d
∑

i=1

∂Vxi
û((s+ ε) ∧ T,X,Xs)(X

i
(s+ε)∧T −X i

s),

I12(s, ε) =
1

2

d
∑

i,j=1

∂Vxixj
û(s,X,Xs)(X

i
(s+ε)∧T −X i

s)(X
j
(s+ε)∧T −Xj

s ),

I13(s, ε) =
1

2

d
∑

i,j=1

(

∂Vxixj
û((s+ ε) ∧ T,X,Xs)

− ∂Vxixj
û(s,X,Xs)

)

(X i
(s+ε)∧T −X i

s)(X
j
(s+ε)∧T −Xj

s ),

I14(s, ε) =
1

2

d
∑

i,j=1

∫ 1

0

(

∂Vxixj
û((s+ ε) ∧ T,X,Xs + a(X(s+ε)∧T −Xs))

− ∂Vxixj
û((s+ ε) ∧ T,X,Xs)

)

(X i
(s+ε)∧T −X i

s)(X
j
(s+ε)∧T −Xj

s ) da.

We begin noting that, by usual arguments (see for instance Proposition 1.2 of [82]), it
holds that

1

ε

∫ ·

0

I12(s, ε) ds
ucp−→

ε→0+

1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X,Xs) d[X

i, Xj]s.

On the other hand, we have that |
∫ t

0 I13(s, ε) ds| is bounded by

d
∑

i,j=1

sup
t∈[0,T ]

∣

∣∂Vxixj
û((t+ ε) ∧ T,X,Xt)− ∂Vxixj

û(t,X,Xt)
∣

∣ · 1
2

(

[X i]εT + [Xj]εT

)

,

with [X i]εT and [Xj]εT given by (A.2). Since X i is a semimartingale, then [X i]εT converges
in probability to [X i]T as ε → 0+, see for instance Section 3.3 in [83]. In particular [X ]
exists and it is the usual bracket. Now, for every fixed ω, since X(ω) is continuous and the
map (t, ε) 7→ ∂Vxixj

û((t+ε)∧T,X(ω), Xt(ω)) on [0, T ]× [0, δ0] is continuous and therefore
uniformly continuous, there exists a modulus of continuity ρ13 : [0,+∞) → [0,+∞) (not
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depending on t, ε, possibly depending on ω), which can be taken to be non-decreasing
and independent of i, j, such that

∣

∣

∣

∣

∫ t

0

I13(s, ε, ω) ds

∣

∣

∣

∣

≤ 1

2
ρ13(ε)

d
∑

i,j=1

(

[X i, X i]εT (ω) + [Xj, Xj]εT (ω)
)

.

Since X has all its mutual brackets, it follows that

1

ε

∫ ·

0

I13(s, ε) ds
ucp−→

ε→0+
0.

Similarly, we have

∣

∣

∣

∣

∫ t

0

I14(s, ε) ds

∣

∣

∣

∣

≤ 1

2

d
∑

i,j=1

∫ 1

0

sup
t∈[0,T ]

∣

∣∂Vxixj
û((t+ ε) ∧ T,X,Xt + a(X(t+ε)∧T −Xt))

− ∂Vxixj
û((t+ ε) ∧ T,X,Xt)

∣

∣ da · 1
2

(

[X i, X i]εT + [Xj , Xj]εT

)

.

For every fixed ω, since X(ω) is continuous and the map (t, a, ε) 7→ ∂Vxixj
û((t + ε) ∧

T,X(ω), Xt(ω) + a(X(t+ε)∧T (ω) − Xt(ω))) on [0, T ] × [0, 1] × [0, δ0] is continuous and
therefore uniformly continuous, there exists a modulus of continuity ρ14 : [0,+∞) →
[0,+∞) (not depending on t, a, ε, possibly depending on ω), which can be taken to be
non-decreasing and independent of i, j, such that

∣

∣

∣

∣

∫ t

0

I14(s, ε) ds

∣

∣

∣

∣

≤ 1

4

d
∑

i,j=1

∫ 1

0

sup
t∈[0,T ]

ρ14
(

a|X(t+ε)∧T −Xt|
)

da ·
(

[X i]εT + [Xj]εT

)

.

Recalling that ρ14 is non-decreasing, we find

∣

∣

∣

∣

∫ t

0

I14(s, ε) ds

∣

∣

∣

∣

≤ 1

4

d
∑

i,j=1

ρ14

(

sup
t∈[0,T ]

|X(t+ε)∧T −Xt|
)(

[X i]εT + [Xj]εT

)

.

Since X has all its mutual brackets, it follows that

1

ε

∫ ·

0

I14(s, ε) ds
ucp−→

ε→0+
0.

Finally, it remains to investigate the ucp convergence of the term 1
ε

∫ ·

0 I11(s, ε) ds.

Convergence of 1
ε

∫ ·

0
I2(s, ε) ds as ε→ 0+. Since ε ≤ δ0 and û is a delayed map with delay

δ0, we obtain

I2(s, ε) = û((s+ ε) ∧ T,X(· ∧ s), Xs)− û(s,X,Xs).

For every fixed ω, let φ : [0, 1] → R be given by

φ(a) = û((s+ aε) ∧ T,X(· ∧ s)(ω), Xs(ω)).
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By Lemma A.1 we deduce that φ ∈ C1([0, 1]). Then φ(1) = φ(0) +
∫ 1

0
φ′(a) da. So, in

particular,

I1(s, ε) = ε

∫ 1

0

∂Ht û((s+ aε) ∧ T,X(· ∧ s)) da.

Hence
∫ t

0

I1(s, ε) ds = ε

∫ t

0

(
∫ 1

0

∂Ht û((s+ aε) ∧ T,X(· ∧ s)) da
)

ds.

For every fixed ω, since X(ω) is continuous and the map (a, ε) 7→ ∂Ht û((s+aε)∧T,X(·∧
s)(ω)) on [0, 1]× [0, δ0] is continuous and therefore locally bounded, we conclude that

1

ε

∫ ·

0

I1(s, ε) ds
ucp−→

ε→0+

∫ ·

0

∂Ht û(s,X) ds.

We can finally prove the functional Itô formula, namely Theorem 2.1.

Proof (of Theorem 2.1). Let δ > 0 and define ûδ : [0, T ]×C([0, T ];Rd)×R
d → R as

ûδ(t,x,y) := û
(

t,x(· ∧ (t− δ)+),y
)

, ∀ (t,x,y) ∈ Λ× R
d.

By Remark A.1 we know that ûδ is a delayed map with delay δ, in the sense of Definition
A.1. Moreover, by Lemma A.2 we have that ûδ ∈ C1,2(Λ×R

d) and the following equalities
hold:

∂Ht ûδ(t,x) = ∂Ht û
(

t,x(· ∧ (t− δ)+)
)

, ∀ (t,x) ∈ [0, T )× C([0, T ];Rd),

∂Vx ûδ(t,x,y) = ∂Vx û
(

t,x(· ∧ (t− δ)+),y
)

, ∀ (t,x,y) ∈ Λ× R
d,

∂V
xx
ûδ(t,x,y) = ∂V

xx
û
(

t,x(· ∧ (t− δ)+),y
)

, ∀ (t,x,y) ∈ Λ× R
d.

By the above equalities and Proposition A.1, we obtain

ûδ(t,X,Xt) = ûδ(0, X,X0) +

∫ t

0

∂Ht û(s,X(· ∧ (t− δ)+)) ds

+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X(· ∧ (t− δ)+)), Xs) d[X

i, Xj]s

+

d
∑

i=1

∫ t

0

∂Vxi
û(s,X(· ∧ (t− δ)+)), Xs) dX

i
s, for all 0 ≤ t ≤ T, P-a.s.

Our aim is to obtain the functional Itô formula (A.8) letting δ → 0+ in the above equality,
for every fixed t ∈ [0, T ], and investigating the convergence of each term. We begin noting
that ûδ(0, X, 0) = û(0, X, 0). Moreover, for any fixed ω and t ∈ [0, T ],

ûδ(t,X(ω), Xt(ω)) −→
δ→0+

û(t,X(ω), Xt(ω)).
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Now, for any fixed ω and s, we have

∂Ht û(s,X(· ∧ (s− δ)+)(ω)) −→
δ→0+

∂Ht û(s,X(ω)), (A.9)

∂Vx û(s,X(· ∧ (s− δ)+)(ω), Xs(ω)) −→
δ→0+

∂Vx û(s,X(ω), Xs(ω)), (A.10)

∂V
xx
û(s,X(· ∧ (s− δ)+)(ω), Xs(ω)) −→

δ→0+
∂V
xx
û(s,X(ω), Xs(ω)). (A.11)

Notice that, for any fixed ω, the families (parametrized by δ) of continuous maps on
[0, T ] given by s 7→ ∂Ht û(s,X(· ∧ (s− δ)+)(ω)), s 7→ ∂Vx û(s,X(· ∧ (s− δ)+)(ω)), Xs(ω)),
s 7→ ∂V

xx
û(s,X(·∧(s−δ)+)(ω), Xs(ω)) are uniformly bounded and equicontinuous. Then,

by the Arzelà-Ascoli theorem we deduce that convergences (A.9)-(A.10)-(A.11) hold uni-
formly with respect to s ∈ [0, T ]. This implies that, for any fixed ω and t ∈ [0, T ],

∫ t

0

∂Ht û(s,X(· ∧ (s− δ)+)(ω)) ds −→
δ→0+

∫ t

0

∂Ht û(s,X(ω)) ds,

1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X(· ∧ (s− δ)+)(ω), Xs(ω)) d[X

i, Xj]s(ω)

−→
δ→0+

1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û(s,X(ω), Xs(ω)) d[X

i, Xj]s(ω).

It remains to study the convergence of the stochastic integral. Recall that X = M + V ,
whereM is a local martingale and V is bounded variation process, so that the stochastic
integral can be written as the sum of two integrals with respect toM and V , respectively.
The integral with respect to V can be treated along the same lines as the integral with
respect to [X i, Xj]. It remains to deal with the stochastic integral with respect to M .
By Proposition 2.26, Chapter 3, in [53] we know that the claim follows if, for every
i = 1, . . . , d,

∫ T

0

∣

∣∂Vxi
û(s,X(· ∧ (s− δ)+), Xs)− ∂Vxi

û(s,X,Xs)
∣

∣

2
d[X i]s

P−→
δ→0+

0, (A.12)

where the convergence is understood in the probability sense. Using again convergence
(A.10), uniform with respect to s ∈ [0, T ], we deduce that (A.12) holds in the P-a.s.
sense. This concludes the proof.

Appendix B: Consistency

Proof (of Lemma 2.1). The claim concerning the horizontal derivatives follows di-
rectly from their definition (Definition 2.5-(i)).

It remains to prove the claim concerning the vertical derivatives. To this end, let X =
(Xt)t∈[0,T ] be a d-dimensional continuous semimartingale on some filtered probability
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space (Ω,F , (Ft)t∈[0,T ],P), with X = (X1, . . . , Xd). Since û1, û2 ∈ C1,2(Λ × R
d), by

Theorem 2.1 the following functional Itô formulae hold:

û1(t,X,Xt) = û1(0, X,X0) +

∫ t

0

∂Ht û1(s,X) ds+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û1(s,X,Xs) d[X

i, Xj]s

+

d
∑

i=1

∫ t

0

∂Vxi
û1(s,X,Xs) dX

i
s, for all 0 ≤ t ≤ T, P-a.s.

and

û2(t,X,Xt) = û2(0, X,X0) +

∫ t

0

∂Ht û2(s,X) ds+
1

2

d
∑

i,j=1

∫ t

0

∂Vxixj
û2(s,X,Xs) d[X

i, Xj]s

+

d
∑

i=1

∫ t

0

∂Vxi
û2(s,X,Xs) dX

i
s, for all 0 ≤ t ≤ T, P-a.s.

Recalling that û1 and û2, together with their horizontal derivatives, coincide on con-
tinuous paths, identifying bounded variation and local martingale parts in the above
formulae, we obtain that the following equalities hold (up to a P-null set), for every
i, j = 1, . . . , d and any t ∈ [0, T ],

∂Vxi
û1(t,X,Xt) = ∂Vxi

û2(t,X,Xt), ∂Vxixj
û1(t,X,Xt) = ∂Vxixj

û2(t,X,Xt). (B.1)

Now, fix t ∈ [0, T ] and consider a semimartingale X whose law has full support on the set
of trajectories stopped at time t, namely {x ∈ C([0, T ];Rd) : x(s) = x(t), for every s ∈
[t, T ]}. An example of such an X is given by Xs := η + W s∧t, s ∈ [t, T ], where W =
(W s)s∈[0,T ] is a d-dimensional Brownian motion, while η : Ω → R

d is a d-dimensional
random variable with full support, independent of W . Then, for such a semimartingale
X , we deduce from (B.1) the following equalities at time t:

∂V
x
û1(t,x,x(t)) = ∂V

x
û2(t,x,x(t)), ∂V

xx
û1(t,x,x(t)) = ∂V

xx
û2(t,x,x(t)),

for every x ∈ C([0, T ];Rd). Since the above equalities hold for every t ∈ [0, T ], the claim
follows.

Appendix C: Smooth variational principle on Λ

C.1. Lemma 3.1

Proof of Lemma 3.1. We split the proof into several steps.

Step I. Proof of item 1). We first notice that κ̂
(t0,x0)
∞ is a non-anticipative and continuous

map on Λ × R
d, namely κ̂

(t0,x0)
∞ ∈ C(Λ × R

d). Now, let (t,x,y) ∈ Λ × R
d, h ∈ R\{0},
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and i = 1, . . . , d (recall that e1, . . . , en denotes the standard orthonormal basis of Rd),
then we have

κ̂
(t0,x0)
∞ (t,x,y + hei)− κ̂

(t0,x0)
∞ (t,x,y)

h

=

∫

Rd

∥

∥x(· ∧ t)− x0(· ∧ t0)− (y − x(t) + z)1[t,T ]

∥

∥

∞

ζ(z − hei)− ζ(z)

h
dz

h→0−→ −
∫

Rd

∥

∥x(· ∧ t)− x0(· ∧ t0)− (y − x(t) + z)1[t,T ]

∥

∥

∞
∂ziζ(z) dz,

where ∂ziζ(z) denotes the partial derivative of ζ in the ei-direction at the point z, which is

given by −zi ζ(z). This proves that κ̂(t0,x0)
∞ admits continuous first-order vertical deriva-

tives. In a similar way we can prove that κ̂
(t0,x0)
∞ also admits continuous second-order

vertical derivatives.

Step II. Proof of item 2). We begin noting that κ̂
(t0,x0)
∞ is Lipschitz in y uniformly with

respect to (t,x):

|κ̂(t0,x0)
∞ (t,x,y)− κ̂(t0,x0)

∞ (t,x,y′)|

=

∣

∣

∣

∣

∫

Rd

∥

∥x(· ∧ t)− x0(· ∧ t0)− (y − x(t) + z)1[t,T ]

∥

∥

∞
ζ(z) dz

−
∫

Rd

∥

∥x(· ∧ t)− x0(· ∧ t0)− (y′ − x(t) + z)1[t,T ]

∥

∥

∞
ζ(z) dz

∣

∣

∣

∣

≤ |y − y′|,

where we have used the fact that
∫

Rd ζ(z) dz = 1. It is then easy to see that, for every

i = 1, . . . , d, ∂Vxi
κ̂
(t0,x0)
∞ is bounded by the constant 1. Proceeding along the same lines as

for κ̂
(t0,x0)
∞ , we deduce that ∂Vxi

κ̂
(t0,x0)
∞ is Lipschitz in y uniformly with respect to (t,x),

with Lipschitz constant less than or equal to
∫

Rd |∂ziζ(z)| dz =
∫

Rd |zi| ζ(z) dz =
√

2
π .

This allows to prove that, for every i, j = 1, . . . , d, ∂Vxixj
κ̂
(t0,x0)
∞ is bounded by

√

2
π .

Step III. Proof of item 3). We begin noting that (using the fact that ζ is a radial
function)

κ(t0,x0)
∞ (t,x) + κ(t0,x0)

∞ (t0,x0) =

∫

[0,+∞)×Rd−1

∥

∥x(· ∧ t)− x0(· ∧ t0)− z1[t,T ]

∥

∥

∞
ζ(z) dz

+

∫

(−∞,0]×Rd−1

∥

∥x(· ∧ t)− x0(· ∧ t0)− z1[t,T ]

∥

∥

∞
ζ(z) dz

=

∫

[0,+∞)×Rd−1

∥

∥x(· ∧ t)− x0(· ∧ t0)− z1[t,T ]

∥

∥

∞
ζ(z) dz

+

∫

[0,+∞)×Rd−1

∥

∥x(· ∧ t)− x0(· ∧ t0) + z1[t,T ]

∥

∥

∞
ζ(z) dz. (C.1)
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Now, we observe that, for every z ∈ R
d, we have

∥

∥x(· ∧ t)− x0(· ∧ t0)− z1[t,T ]

∥

∥

∞

= max
{

∥

∥x(· ∧ t)− x0(· ∧ t ∧ t0)
∥

∥

∞
, max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0)− z
∣

∣

}

(C.2)

and similarly for ‖x(·∧ t)−x0(·∧ t0)+z1[t,T ]‖∞. Moreover, by the elementary inequality

|x− z|+ |x+ z| ≥ 2|x|, valid for every x, z ∈ R
d, we have

max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0)− z
∣

∣+ max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0) + z
∣

∣

≥ max
t≤s≤t∨t0

{

∣

∣x(t)− x0(s ∧ t0)− z
∣

∣+
∣

∣x(t)− x0(s ∧ t0) + z
∣

∣

}

≥ 2 max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0)
∣

∣.

Then, using the elementary fact that if a+ b ≥ 2c it holds that max{ℓ, a}+max{ℓ, b} ≥
2max{ℓ, c}, valid for all a, b, c, ℓ ∈ R, we find

max
{

∥

∥x(· ∧ t)− x0(· ∧ t ∧ t0)
∥

∥

∞
, max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0)− z
∣

∣

}

+max
{

∥

∥x(· ∧ t)− x0(· ∧ t ∧ t0)
∥

∥

∞
, max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0) + z
∣

∣

}

≥ 2max
{

∥

∥x(· ∧ t)− x0(· ∧ t ∧ t0)
∥

∥

∞
, max
t≤s≤t∨t0

∣

∣x(t)− x0(s ∧ t0)
∣

∣

}

.

By (C.2) it follows that the last quantity coincides with 2 ‖x(·∧t)−x0(·∧t0)‖∞. Therefore,

by (C.1) we obtain (also recalling that Cζ := κ
(t0,x0)
∞ (t0,x0))

κ(t0,x0)
∞ (t,x)+Cζ ≥ 2

∫

[0,+∞)×Rd−1

∥

∥x(·∧t)−x0(·∧t0)
∥

∥

∞
ζ(z) dz =

∥

∥x(·∧t)−x0(·∧t0)
∥

∥

∞
,

which proves item 3). The explicit expression of the constant Cζ , reported in (3.2), will
be derived in Step VI-4.

Step IV. Proof of the second inequality in (3.3). The second inequality in (3.3) follows
easily from an application of the triangular inequality, namely noting that ‖x(· ∧ t) −
x0(· ∧ t0)− z1[t,T ]‖∞ ≤ ‖x(· ∧ t)− x0(· ∧ t0)‖∞ + |z|.
Step V. Proof of the first inequality in (3.3) for the case ‖x(· ∧ t)−x0(· ∧ t0)‖∞ > 2Cζ .
When ‖x(· ∧ t)− x0(· ∧ t0)‖∞ > 2Cζ , we have, by item 3),

κ(t0,x0)
∞ (t,x) ≥ ‖x(· ∧ t)− x0(· ∧ t0)‖∞ − Cζ

= ‖x(· ∧ t)− x0(· ∧ t0)‖∞
(

1− Cζ

‖x(· ∧ t)− x0(· ∧ t0)‖∞

)

≥ 1

2
‖x(· ∧ t)− x0(· ∧ t0)‖∞
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≥ 1

2

(

‖x(· ∧ t)− x0(· ∧ t0)‖d+1
∞ ∧ ‖x(· ∧ t)− x0(· ∧ t0)‖∞

)

,

which proves the first inequality in (3.3) with αd := 1
2 , for the case ‖x(·∧t)−x0(·∧t0)‖∞ >

2Cζ .

Step VI. Proof of the first inequality in (3.3) for the case ‖x(·∧ t)−x0(·∧ t0)‖∞ ≤ 2Cζ .

Step VI-1. Our aim is to prove that for every fixed d there exists some constant αd > 0
such that
∫

Rd

max
{

a, |y − z|
}

ζ(z) dz −
∫

Rd

|z| ζ(z) dz (C.3)

≥ αd min{ad+1, a}+ αd min{|y|d+1, |y|}, ∀ (a,y) ∈ [0, 2Cζ]× R
d.

As a matter of fact, suppose for a moment that (C.3) holds true. Then, applying (C.3)
with a := ‖x(· ∧ t)− x0(· ∧ t ∧ t0)‖∞ and ys := x(t)− x0(s∧ t0), for every s ∈ [t, t∨ t0],
and taking the maximum over s ∈ [t, t ∨ t0], we find (using (C.2))

κ(t0,x0)
∞ (t,x) =

∫

Rd

max
{

a, max
t≤s≤t∨t0

|ys − z|
}

ζ(z) dz −
∫

Rd

|z| ζ(z) dz

=

∫

Rd

max
t≤s≤t∨t0

{

max{a, |ys − z|}
}

ζ(z) dz −
∫

Rd

|z| ζ(z) dz

≥ max
t≤s≤t∨t0

{
∫

Rd

max
{

a, |ys − z|
}

ζ(z) dz

}

−
∫

Rd

|z| ζ(z) dz

= max
t≤s≤t∨t0

{
∫

Rd

max
{

a, |ys − z|
}

ζ(z) dz −
∫

Rd

|z| ζ(z) dz
}

≥ max
t≤s≤t∨t0

{

αdmin{ad+1, a}+ αdmin{|ys|d+1, |ys|}
}

= αd min{ad+1, a}+ αd max
t≤s≤t∨t0

{

min{|ys|d+1, |ys|}
}

= αd min{ad+1, a}+ αd min
{

max
t≤s≤t∨t0

|ys|d+1, max
t≤s≤t∨t0

|ys|
}

.

Hence, by the elementary inequality

min{ad+1, a}+min{bd+1, b} ≥ min
{

max{ad+1, bd+1},max{a, b}
}

, ∀ a, b ≥ 0,

we conclude that

κ(t0,x0)
∞ (t,x) ≥ αd min

{

max
{

ad+1, max
t≤s≤t∨t0

|ys|d+1
}

,max
{

a, max
t≤s≤t∨t0

|ys|
}}

= αd min
{

‖x(· ∧ t)− x0(· ∧ t0)‖d+1
∞ , ‖x(· ∧ t)− x0(· ∧ t0)‖∞

}

,

where the last equality follows from (C.2) with z = 0. This yields the first inequality in
(3.3). It remains to prove (C.3).
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Step VI-2. Proof of (C.3). For every positive integer d and a ≥ 0, let Ga : R
d → R be

given by

Ga(y) :=

∫

Rd

max
{

a, |y − z|
}

ζ(z) dz −
∫

Rd

|z| ζ(z) dz, ∀y ∈ R
d. (C.4)

Moreover, let Fd : [0,+∞) → R be defined as (differently to the notation used for Ga,
we emphasize the dependence of Fd on the dimension d; we do this because of statement
(C.7) below which changes with d)

Fd(a) := Ga(0) =

∫

Rd

max
{

a, |z|
}

ζ(z) dz −
∫

Rd

|z| ζ(z) dz, ∀ a ∈ [0,+∞). (C.5)

Notice that Ga and Fd are convex functions on their domains.
Let us fix some notations. We denote by ∂yGa(y) and ∂yyGa(y) (resp. F

′
d(a), F

′′
d (a),

. . . , F
(n)
d (a)) the gradient and Hessian (resp. first-order derivative, second-order deriva-

tive, . . . , n-th order derivative) of Ga at y (resp. Fd at a). When a = 0, F ′
d(a), F

′′
d (a),

. . . , F
(n)
d (a) are right-derivatives. We also denote by I the d× d identity matrix. Finally,

given A and B in S(d), the inequality B ≤ A means that the symmetric matrix A − B
is positive semi-definite.

Our aim is to prove the following: for every d, there exist constants βd > 0 and Ld > 0
such that

∀ a ∈ [0, 2Cζ ], Ga ∈ C2(Rd), ∂yGa(0) = 0, ∂yyGa(0) ≥ βdI and (C.6)

∂yyGa(y) − ∂yyGa(0) ≥ −Ld |y| I, ∀y ∈ R
d

and

Fd ∈ Cd+1([0,+∞)), F ′
d(0) = · · · = F

(d)
d (0) = 0, F

(d+1)
d (0) ≥ βd and (C.7)

F
(d+1)
d (a)− F

(d+1)
d (0) ≥ −Ld a, ∀ a ≥ 0.

Suppose for a moment that (C.6) and (C.7) hold. Then, by (C.6) we show below that
there exist some constants δd, δ̃d ∈ (0, 1] such that

Ga(y) ≥ Ga(0) +
1

4
βd |y|2, ∀ |y| ≤ δd, ∀ a ∈ [0, 2Cζ], (C.8)

Fd(a) ≥ Fd(0) +
1

2(d+ 1)!
βd a

d+1, ∀ a ∈ [0, δ̃d]. (C.9)

As a matter of fact, for every fixed y ∈ R
d, set ϕa(λ) := Ga(λy), for every λ ∈ R. Since

ϕa ∈ C2(R), the Taylor expression given by

ϕa(1) = ϕa(0) + ϕ′
a(0) +

1

2
ϕ′′
a(0) +

∫ 1

0

(1− λ) (ϕ′′
a(λ) − ϕ′′

a(0)) dλ,
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which written in terms of Ga becomes (denoting by 〈·, ·〉 the scalar product in R
d)

Ga(y) = Ga(0) + 〈∂yGa(0),y〉 +
1

2
〈∂yyGa(0)y,y〉

+

∫ 1

0

(1− λ) 〈(∂yyGa(λy) − ∂yyGa(0))y,y〉 dλ

≥ Ga(0) + 〈∂yGa(0),y〉 +
1

2
βd|y|2 − Ld|y|3

∫ 1

0

λ (1− λ) dλ

= Ga(0) +
1

2
βd|y|2 −

1

6
Ld|y|3.

Hence

Ga(y) ≥ Ga(0) +
1

4
βd |y|2, ∀ |y| ≤ δd, where δd := 1 ∧

(

3

2

βd
Ld

)

.

This proves (C.8). Similarly, we consider the following Taylor expression for Fd:

Fd(a) =

d+1
∑

k=0

F
(k)
d (0)

k!
ak +

1

d!

∫ a

0

(

F
(d+1)
d (b)− F

(d+1)
d (0)

)

(a− b)d db.

By (C.7) we obtain

Fd(a) = Fd(0) +
F

(d+1)
d (0)

(d+ 1)!
ad+1 +

1

d!

∫ a

0

(

F
(d+1)
d (b)− F

(d+1)
d (0)

)

(a− b)d db

≥ Fd(0) +
βd

(d+ 1)!
ad+1 − Ld

d!

∫ a

0

b (a− b)d db

= Fd(0) +
βd

(d+ 1)!
ad+1 − Ld

(d+ 2)!
ad+2.

Hence

Fd(a) ≥ Fd(0) +
1

2

βd
(d+ 1)!

a(d+1), ∀ a ∈ [0, δ̃d], where δ̃d := 1 ∧
(

d+ 2

2

βd
Ld

)

.

This proves (C.9). Now, we notice that from (C.8) we obtain

Ga(y) ≥ Ga(0) +
1

4
βd |y|d+1, ∀ |y| ≤ δd, where δd := 1 ∧

(

3

2

βd
Ld

)

.

Moreover, since Ga is a convex function, it follows that

Ga(y) ≥ min
(

Ga(0) +
1

4
βd |y|d+1, Ga(0) +

1

4
βd δ

d
d |y|

)

≥ min
(

Ga(0) +
1

4
βd δ

d
d |y|d+1, Ga(0) +

1

4
βd δ

d
d |y|

)
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= Ga(0) +
1

4
βd δ

d
d

(

|y|d+1 ∧ |y|
)

, ∀y ∈ R
d. (C.10)

Proceeding along the same lines, we deduce by (C.9) that

Fd(a) ≥ Fd(0) +
1

4
βd δ̃

d
d

(

ad+1 ∧ a
)

, ∀ a ≥ 0. (C.11)

So, in particular, since Ga(0) = Fd(a) and Fd(0) = 0, we obtain, from (C.10) and (C.11),

Ga(y) ≥ 1

4
βd δ̃

d
d (a

d+1 ∧ a) + 1

4
βd δ

d
d

(

|y|d+1 ∧ |y|
)

, ∀ (a,y) ∈ [0, 2Cζ ]× R
d,

which proves (C.3) with αd := 1
4βd(δ̃

d
d ∧ δdd) for the case a ≤ 2Cζ . It remains to prove

(C.6) and (C.7).

Step VI-3. Proof of (C.7). From the definition (C.5) of Fd we see that Fd is continuous.
Moreover, by direct calculation we find

lim
h→0+

Fd(a+ h)− Fd(a)

h
=

∫

|z|≤a

ζ(z) dz, ∀ a ≥ 0,

lim
h→0+

Fd(a− h)− Fd(a)

−h =

∫

|z|≤a

ζ(z) dz, ∀ a > 0.

Hence, the first derivative of Fd exists everywhere and is given by F ′
d(a) =

∫

|z|≤a
ζ(z) dz,

∀ a ≥ 0. Notice that F ′
d(0) = 0. We also see that F ′

d is continuous on [0,+∞). Now, for
every r > 0 let Sd−1(r) denote the surface area of the boundary of the ball {z ∈ R

d : |z| ≤
r}, which is given by Sd−1(r) = 2πd/2

Γ(d/2)r
d−1, where Γ(·) is the Gamma function. Then,

recalling that ζ is a radial function and using d-dimensional spherical coordinates (see
for instance Appendix C.3 in [36]), we get

F ′
d(a) =

∫ a

0

1

(2π)
d
2

e−
1
2 r

2

Sd−1(r) dr, ∀ a ≥ 0.

So, in particular, the second derivative of Fd exists everywhere and is given by

F ′′
d (a) =

1

(2π)
d
2

e−
1
2a

2

Sd−1(a) =
21−

d
2

Γ
(

d
2

) ad−1 e−
1
2a

2

, ∀ a ≥ 0.

We deduce that Fd ∈ C∞([0,+∞)). We also observe that every derivative of Fd is

bounded, so in particular F
(d+1)
d is Lipschitz. As a consequence, there exists Ld > 0 such

that
F

(d+1)
d (a)− F

(d+1)
d (0) ≥ −Ld a, ∀ a ≥ 0.

Finally, let us prove by induction on d that F ′
d(0) = · · · = F

(d)
d (0) = 0 and F

(d+1)
d (0) > 0.

For d = 1 we have, by direct calculation, F1(0) = F ′
1(0) = 0 and F ′′

1 (0) = 1/
√
2π > 0. Let

us now suppose that the claim holds true for Fd, for some d ≥ 1, and let us prove it for
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Fd+1. By the explicit expressions of Fd+1 and F ′
d+1 we see that Fd+1(0) = F ′

d+1(0) = 0.
Moreover

F ′′
d+1(a) = Cd+1 a

d e−
1
2a

2

,

where Cd+1 := 21−(d+1)/2/Γ((d + 1)/2) > 0. So, in particular, F ′′
d+1(0) = 0. Now, we

observe that

F ′′′
d+1(a) = dCd+1 a

d−1 e−
1
2a

2 − Cd+1 a
d+1 e−

1
2a

2

=
Cd+1

Cd
(d− a2)F ′′

d (a),

where Cd := 21−d/2/Γ(d/2) > 0. Therefore

F iv
d+1(a) =

Cd+1

Cd

(

(d− a2)F ′′′
d (a)− 2 aF ′′

d (a)
)

.

Moreover, by the general Leibniz rule, we have

F
(3+n)
d+1 (a) =

Cd+1

Cd

n
∑

k=0

(

n

k

)

(d− a2)(n−k) F
(2+k)
d (a), for every n ≥ 2,

where (d − a2)(n−k) denotes the (n − k)-th derivative of the map a 7→ d − a2. Since
(d− a2)(n−k) is identically equal to zero whenever n− k ≥ 3, it follows that

F
(3+n)
d+1 (a) =

Cd+1

Cd

((

n

n− 2

)

(d− a2)(2) F
(2+n−2)
d (a)

+

(

n

n− 1

)

(d− a2)(1) F
(2+n−1)
d (a) +

(

n

n

)

(d− a2)F
(2+n)
d (a)

)

=
Cd+1

Cd

(

− n (n− 1)F
(2+n−2)
d (a)− 2n aF

(2+n−1)
d (a) + (d− a2)F

(2+n)
d (a)

)

.

In conclusion, we have

F ′′′
d+1(0) =

Cd+1

Cd
dF ′′

d (0),

F iv
d+1(0) =

Cd+1

Cd
dF ′′′

d (0),

F
(3+n)
d+1 (0) =

Cd+1

Cd

(

− n (n− 1)F
(2+n−2)
d (0) + dF

(2+n)
d (0)

)

, for every n ≥ 2.

From the formulae above it is straightforward to see that the claim holds. This concludes
the proof of (C.7).

Step VI-4. Proof of (C.6). From the definition (C.4) of Ga we see that Ga ∈ C∞(Rd).
Moreover, we have, for every i, j = 1, . . . , d,

∂yiGa(y) = −
∫

Rd

max
{

a, |y − z|
}

∂ziζ(z) dz =

∫

Rd

max
{

a, |y − z|
}

zi ζ(z) dz,



Viscosity Solutions for Path-Dependent PDEs 37

∂yiyjGa(y) =

∫

Rd

max
{

a, |y − z|
}

∂zizjζ(z) dz =

∫

Rd

max
{

a, |y − z|
} (

zi zj − δij
)

ζ(z) dz,

where δij is the Kronecker delta. Since ζ is a radial function, we have ζ(z) = ζ(−z), for
every z ∈ R

d, therefore ∂yiGa(0) = 0.
We now prove that for every fixed d there exists Ld > 0 such that, for every a ≥ 0,

we have
∂yyGa(y) − ∂yyGa(0) ≥ −Ld|y|I, ∀y ∈ R

d,

which can be equivalently written as

d
∑

i,j=1

(

∂yiyjGa(y) − ∂yiyjGa(0)
)

wiwj ≥ −Ld|y||w|2, ∀y,w ∈ R
d, (C.12)

where yi (resp. wi) denotes the i-th component of y (resp. w). We begin noting that,
for every i, j = 1, . . . , d, we have (we use the elementary inequality |max{a, b + c} −
max{a, c}| ≤ |b|, valid for every a, c ≥ 0 and b ∈ R, with b = |y − z| − |z| and c = |z|)
∣

∣∂yiyjGa(y)− ∂yiyjGa(0)
∣

∣ ≤
∫

Rd

∣

∣max{a, |y − z|} −max{a, |z|}
∣

∣

∣

∣∂zizjζ(z)
∣

∣ dz

=

∫

Rd

∣

∣max{a, |y − z| − |z|+ |z|} −max{a, |z|}
∣

∣

∣

∣∂zizjζ(z)
∣

∣ dz

≤
∫

Rd

|y| |∂zizjζ(z)| dz =
Ld

d
|y|,

with Ld

d =
∫

Rd |∂zizjζ(z)| dz. Then, for every w ∈ R
d, we obtain

∣

∣

∣

∣

d
∑

i,j=1

(

∂yiyjGa(y) − ∂yiyjGa(0)
)

wiwj

∣

∣

∣

∣

≤ Ld

d
|y|

d
∑

i,j=1

|wi||wj | ≤ Ld |y| |w|2,

which proves (C.12).

Finally, we prove that for every fixed d there exists β̂d > 0 such that, for every
a ∈ [0, 2Cζ],

∂yyGa(0) ≥ β̂dI. (C.13)

As a matter of fact, for every w ∈ R
d, we have

〈∂yyGa(0)w,w〉 =
d

∑

i,j=1

∂yiyjGa(0)wi wj =

d
∑

i,j=1

wi wj

∫

Rd

max
{

a, |z|
} (

zi zj − δij
)

ζ(z) dz

=

d
∑

i=1

w2
i

∫

Rd

max
{

a, |z|
} (

z21 − 1
)

ζ(z) dz −
∑

i6=j

wi wj

∫

Rd

max
{

a, |z|
}

z1 z2 ζ(z) dz.

Now, notice that
∫

Rd max{a, |z|} z1 z2 ζ(z) dz = 0, for every a ≥ 0. Hence

〈∂yyGa(0)w,w〉 = |w|2
∫

Rd

max
{

a, |z|
} (

z21 − 1
)

ζ(z) dz
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= |w|2 1
d

d
∑

i=1

∫

Rd

max
{

a, |z|
} (

z2i − 1
)

ζ(z) dz

= |w|2 1
d

∫

Rd

max
{

a, |z|
} (

|z|2 − d
)

ζ(z) dz.

Let H : [0,+∞) → R be defined as

H(a) :=

∫

Rd

max
{

a, |z|
} (

|z|2 − d
)

ζ(z) dz, ∀ a ∈ [0,+∞).

Notice that (C.13) follows if we prove the following (actually, it would be enough to
require that H(a) > 0 for every a ≥ 0 and H decreasing; (C.14) is a sufficient condition
for this):

H(0) > 0, lim
a→+∞

H(a) = 0, H is a decreasing function. (C.14)

As a matter of fact, if (C.14) holds, then

inf
a∈[0,2Cζ]

H(a) = H(2Cζ) > 0,

from which (C.13) follows with β̂d = 1
dH(2Cζ).

It remains to prove (C.14). Denoting by µχ2(d),p the moment of order p > 0 of a χ2-
distribution with d degrees of freedom, and recalling that Γ(·) is the Gamma function,
we have

H(0) = µχ2(d), 32
− dµχ2(d), 12

= 2
3
2
Γ
(

d
2 + 3

2

)

Γ
(

d
2

) − d 2
1
2
Γ
(

d
2 + 1

2

)

Γ
(

d
2

) = µχ2(d), 12
> 0.

Incidentally, we notice that Cζ = µχ2(d), 12
, which proves formula (3.2). Concerning the

function H , we also have that (we perform the change of variables z = aw under the
integral sign)

lim
a→+∞

H(a) = lim
a→+∞

∫

Rd

a2 max
{

1, |w|
} (

a2 |w|2 − d
)

ζ(aw) dw = 0,

where the limit follows from an application of the Lebesgue dominated convergence the-
orem.

Now, proceeding as in Step VI-3 for the function F , we deduce that H ∈ C∞([0,+∞))
and, for every a ≥ 0,

H ′(a) =

∫

|z|≤a

(

|z|2 − d
)

ζ(z) dz, H ′′(a) =
a2 − d

(2π)
d
2

e−
1
2a

2

Sd−1(a),

where Sd−1(a) denotes the surface area of the boundary of the ball {z ∈ R
d : |z| ≤ a}.

Notice that

H ′(0) = 0, lim
a→+∞

H ′(a) =

∫

Rd

(

|z|2 − d
)

ζ(z) dz = µχ2(d),1 − d = 0.

Then, we deduce from the sign of H ′′ that H ′(a) < 0, for every a > 0. This implies that
H is a strictly decreasing function and concludes the proof.
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C.2. Lemma 3.2

Proof of Lemma 3.2. We begin noting that v̂ is a non-anticipative and continuous
map on Λ×R

d, namely v̂ ∈ C(Λ×R
d). Now, let (t,x) ∈ [0, T )×C([0, T ];Rd) and δ > 0,

with δ ≤ T − t, then we have

v̂(t+ δ,x(· ∧ t),x(t))− v̂(t,x,x(t))

δ

=

∫ +∞

0

û
(

(t+ s) ∧ T,x(· ∧ t),x(t)
) η(s− δ)− η(s)

δ
ds

− 1

δ

∫ δ

0

û
(

(t+ s) ∧ T,x(· ∧ t),x(t)
)

η(s− δ) ds.

Notice that
∫ +∞

0

û
(

(t+ s) ∧ T,x(· ∧ t),x(t)
) η(s− δ)− η(s)

δ
ds

δ→0+−→ −
∫ +∞

0

û
(

(t+ s) ∧ T,x(· ∧ t),x(t)
)

η′(s) ds,

where η′(s) denotes the first-order derivative of η at s, and

1

δ

∫ δ

0

û
(

(t+ s) ∧ T,x(· ∧ t),x(t)
)

η(s− δ) ds
δ→0+−→ û

(

t,x(· ∧ t),x(t)
)

η(0) = 0,

where we have used that η(0) = 0. This proves that the horizontal derivative of v̂ exists
everywhere on [0, T )× C([0, T ];Rd) and is continuous.

Let us now consider the vertical derivatives of v̂. Given (t,x,y) ∈ Λ×R
d, h ∈ R\{0},

and i = 1, . . . , d, we have

v̂(t,x,y + hei)− v̂(t,x,y)

h

=

∫ +∞

0

û
(

(t+ s) ∧ T,x(· ∧ t),y + hei
)

− û
(

(t+ s) ∧ T,x(· ∧ t),y
)

h
η(s) ds.

Notice that the map f t,x,y
û : [0,+∞)× R → R, defined as

f t,x,y
û (s, h) :=











û
(

(t+ s) ∧ T,x(· ∧ t),y + hei
)

− û
(

(t+ s) ∧ T,x(· ∧ t),y
)

h
, h 6= 0,

∂Vxi
û
(

(t+ s) ∧ T,x(· ∧ t),y
)

, h = 0,

is continuous. Then, by the Lebesgue dominated convergence theorem, we obtain

∫ +∞

0

û
(

(t+ s) ∧ T,x(· ∧ t),y + hei
)

− û
(

(t+ s) ∧ T,x(· ∧ t),y
)

h
η(s) ds
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h→0−→
∫ +∞

0

∂Vxi
û
(

(t+ s) ∧ T,x(· ∧ t),y
)

η(s) ds.

This proves that v̂ admits continuous first-order vertical derivatives. In a similar way we
can prove that v̂ also admits continuous second-order vertical derivatives. We conclude
that v̂ ∈ C1,2(Λ× R

d).

C.3. Lemma 3.3

Proof of Lemma 3.3. We begin noting that the function η given by (3.4) satisfies all
the properties required in the statement of Lemma 3.2. Then, item 1) follows directly
from Lemma 3.2 and the fact that, by item 1) of Lemma 3.1, the map

(t,x,y) 7→ κ̂
(t0,x0)
∞ (t,x,y)

1 + κ̂
(t0,x0)
∞ (t,x,y)

belongs to C0,2(Λ× R
d).

Let us now prove item 2). By the proof of Lemma 3.2, we have

∂Ht χ̂
(t0,x0)
∞ (t,x,y) = −

∫ +∞

0

κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

1 + κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

η′(s) ds,

which proves the claim concerning the horizontal derivative. Concerning the first-order
vertical derivatives, for every i = 1, . . . , d, we have

∂Vxi
χ̂(t0,x0)
∞ (t,x,y) =

∫ +∞

0

∂Vxi
κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

(

1 + κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
))2 η(s) ds.

Recalling from item 2) in Lemma 3.1 that |∂Vxi
κ̂
(t0,x0)
∞ | is bounded by the constant 1, it

is easy to see that |∂Vxi
χ̂
(t0,x0)
∞ (t,x,y)| ≤

∫ +∞

0
η(s) ds, from which the claim follows. On

the other hand, regarding the second-order vertical derivatives, for every i, j = 1, . . . , d,

∂Vxixj
χ̂(t0,x0)
∞ (t,x,y) =

∫ +∞

0

∂Vxixj
κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

(

1 + κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
))2 η(s) ds

− 2

∫ +∞

0

∂Vxi
κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

∂Vxj
κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
)

(

1 + κ̂
(t0,x0)
∞

(

(t+ s) ∧ T,x(· ∧ t),y
))3 η(s) ds,

from which it is easy to see that the claim follows. Finally, item 3) is a direct consequence
of the two inequalities in (3.3).
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Appendix D: Cylindrical approximation

In the present Appendix we state two results already proved in [17, 18], namely Theorem
3.5 in [17] and Theorem 3.12 in [18], which correspond respectively to Lemma D.1 and
Lemma D.2 below. Notice however that in [17, 18] the pathwise derivatives are defined
in an alternative manner. For this reason, in order to help the reader, we prefer to report
the proof of these two results in the present setting.

D.1. The deterministic calculus via regularization

We begin recalling some results from the deterministic calculus of regularization, as
developed in Section 3.2 of [24] and Section 2.2 of [17], for which we refer for all the
details. The only difference with respect to [24] and [17] being that here we consider
R

d-valued paths (with d not necessarily equal to 1), even if, as usual, so that we rely on
the one-dimensional theory, as we work component by component.

Firstly, for every t ≥ 0 and any function f : [0, t] → R
d we define the following

extensions to the entire real line:

f (0,t](s) :=











0, s > t,

f (s), s ∈ [0, t],

f (0), s < 0,

f [0,t](s) :=











f(t), s > t,

f(s), s ∈ [0, t],

0, s < 0.

Definition D.1. Let f : [0, t] → R
d and g : [0, t] → R be càdlàg functions. When the

limit
∫

[0,t]

g(s) d−f(s) := lim
ε→0+

∫ +∞

−∞

g(0,t](s)
f [0,t](s+ ε)− f [0,t](s)

ε
ds

exists and it is finite, we denote it by
∫

[0,t] g d
−f and call it forward integral of g with

respect to f .

We recall from [17], Proposition 2.11, the following integration by parts formula, which
will be used several times in this Appendix.

Proposition D.1. Let f : [0, t] → R
d and g : [0, t] → R be càdlàg functions, with g

being of bounded variation. The following integration by parts formula holds:

∫

[0,t]

g(s) d−f(s) = g(t)f(t)−
∫

(0,t]

f(s) dg(s),

where
∫

(0,t]
f(s) dg(s) is a Lebesgue-Stieltjes integral on (0, t].
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D.2. Cylinder terminal condition ξ

Lemma D.1. Suppose that ξ is a cylinder (or tame) function, in the sense that it
admits the representation

ξ(x) = g

(
∫

[0,T ]

ψ0(t) d
−x(t), . . . ,

∫

[0,T ]

ψn(t) d
−x(t)

)

, x ∈ C([0, T ];Rd),

for some non-negative integer n, where we have the following.

• g : Rd(n+1) → R is of class C2(Rd(n+1)) and, together with its first and second-order
partial derivatives, satisfies a polynomial growth condition;

• ψ0, . . . , ψn : [0, T ] → R are continuous.

Then, the function v defined by (4.4) is in C1,2(Λ) and is a classical (smooth) solution
of equation (4.2).

Proof. Let (t,x) ∈ Λ and consider W t,x = (W t,x
s )s∈[0,T ] given by (4.5). From the

definition of v in (4.4), we have

v(t,x) = E

[

g

(
∫

[0,T ]

ψ0(s) d
−W t,x

s , . . . ,

∫

[0,T ]

ψn(s) d
−W t,x

s

)]

= E

[

g

(
∫

[0,t]

ψ0(s) d
−x(s) +

∫ T

t

ψ0(s) dW s, . . .

)]

,

where the second equality follows from the fact that the forward integral coincides with
the Itô integral when the integrator is the Brownian motion (or, more generally, a con-
tinuous semimartingale), see for instance Proposition 6, Section 3.3, in [83].

In order to prove that v ∈ C1,2(Λ), we consider the following lifting v̂ : Λ × R
d → R

of v:

v̂(t,x,y) = E

[

g

(

ψ0(t)(y − x(t)) +

∫

[0,t]

ψ0(s) d
−x(s) +

∫ T

t

ψ0(s) dW s, . . .

)]

,

for all (t,x,y) ∈ Λ× R
d. Notice that

v̂(t,x,y) = V̂

(

t , ψ0(t)(y − x(t)) +

∫

[0,t]

ψ0(s) d
−x(s) , . . .

)

,

where V̂ : [0, T ]× R
d(n+1) → R is given by

V̂ (t, z) = E

[

g

(

z0 +

∫ T

t

ψ0(s) dW s , . . . , zn +

∫ T

t

ψn(s) dW s

)]

,
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for all t ∈ [0, T ] and z ∈ R
d(n+1), with z = (z0, . . . , zn) and z0, . . . , zn ∈ R

d. Let
σ : [0, T ] → R

d(n+1)×d be given by

σ(t) =











ψ0(t) I
ψ1(t) I

...
ψn(t) I











(D.1)

where I denotes the d × d identity matrix. It is well-known (see, for instance, Theo-
rem 5.6.1 in [43]) that V̂ ∈ C1,2([0, T ] × R

d(n+1)) and satisfies (here ∂tV̂ (t, z) denotes
the standard time derivative, while ∂zzV̂ (t, z) is the standard Hessian matrix of spatial
derivatives)











∂tV̂ (t, z) +
1

2
tr
[

σ(t)σ⊺(t)∂zzV̂ (t, z)
]

= 0, (t, z) ∈ [0, T )× R
d(n+1),

V̂ (T, z) = g(z), z ∈ R
d(n+1).

(D.2)

Let us find the expression of the pathwise derivatives of v̂ in terms of V̂ . Concerning the
horizontal derivative at (t,x) ∈ Λ, t < T , we have

∂Ht v̂(t,x) = lim
δ→0+

v̂(t+ δ,x(· ∧ t),x(t))− v̂(t,x,x(t))

δ

= lim
δ→0+

1

δ

{

V̂

(

t+ δ, ψ0(t+ δ)(x(t)− x((t+ δ) ∧ t)) +
∫

[0,t+δ]

ψ0(s) d
−x(s ∧ t), . . .

)

− V̂

(

t, ψ0(t)(x(t)− x(t)) +

∫

[0,t]

ψ0(s) d
−x(s), . . .

)}

= lim
δ→0+

1

δ

{

V̂

(

t+ δ,

∫

[0,t]

ψ0(s) d
−x(s), . . .

)

− V̂

(

t,

∫

[0,t]

ψ0(s) d
−x(s), . . .

)}

= ∂tV̂

(

t,

∫

[0,t]

ψ0(s) d
−x(s), . . .

)

.

Concerning the first-order vertical derivatives at (t,x,y) ∈ Λ×R
d, for every i = 1, . . . , d,

we have

∂Vxi
v̂(t,x,y) = lim

h→0

v̂(t,x,y + hei)− v̂(t,x,y)

h

= lim
h→0

1

h

{

V̂

(

t , ψ0(t)(y + hei − x(t)) +

∫

[0,t]

ψ0(s) d
−x(s) , . . .

)

− V̂

(

t , ψ0(t)(y − x(t)) +

∫

[0,t]

ψ0(s) d
−x(s) , . . .

)}

=

〈

σi(t), ∂zV̂

(

t , ψ0(t)(y − x(t)) +

∫

[0,t]

ψ0(s) d
−x(s) , . . .

)〉

,
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where 〈·, ·〉 denotes the scalar product in R
d(n+1), σi(t) is the i-th column of the matrix

σ(t) in (D.1), and ∂zV̂ is the standard gradient of spatial derivatives of V̂ .
Concerning the second-order vertical derivatives, it holds that

∂V
xx
v̂(t,x,y) = σ⊺(t)∂zzV̂

(

t , ψ0(t)(y − x(t)) +

∫

[0,t]

ψ0(s) d
−x(s) , . . .

)

σ(t).

Since V̂ ∈ C1,2([0, T ]×R
d(n+1)), we deduce that v̂ ∈ C1,2(Λ×R

d), so that v ∈ C1,2(Λ).
Finally, since V̂ is a classical (smooth) solution of equation (D.2), using the relations
between the pathwise derivatives of v̂ (and hence of v) and the derivatives of V̂ , we
deduce that v is a classical (smooth) solution of equation (4.2).

D.3. Cylindrical approximation

Lemma D.2. Suppose that ξ : C([0, T ];Rd) → R is continuous and satisfies the poly-
nomial growth condition

|ξ(x)| ≤ M(1 + ‖x‖p∞), for all x ∈ C([0, T ];Rd),

for some positive constants M and p. Then, there exists a sequence {ξn}n, with ξn being
a map from C([0, T ];Rd) into R, such that the following holds.

I) {ξn}n converges pointwise to ξ as n→ +∞.
II) If ξ is bounded then ξn is bounded uniformly with respect to n.
III) For every n, ξn is given by

ξn(x) = gn

(
∫

[0,T ]

ψ0(t) d
−x(t), . . . ,

∫

[0,T ]

ψn(t) d
−x(t)

)

,

where

i) for every n, gn : R
d(n+1) → R is of class C∞(Rd(n+1)), with partial derivatives

of every order satisfying a polynomial growth condition; moreover, gn satisfies

|gn(z)| ≤ M ′
(

1 + |z|p′)

, for all z ∈ R
d(n+1),

for some positive constants M ′ and p′, not depending on n;

ii) the functions ψℓ : [0, T ] → R, ℓ ≥ 0, satisfy:

a) ψℓ is of class C∞([0, T ]);

b) ψℓ is uniformly bounded with respect to ℓ;

c) the first derivative of ψℓ is bounded in L1([0, T ]), uniformly with respect to
ℓ.

Proof. Step I. Let {eℓ}ℓ≥0 be the following orthonormal basis of L2([0, T ];R):

e0(t) =
1√
T
, e2ℓ−1(t) =

√

2

T
sin

(

2ℓπ
t

T

)

, e2ℓ(t) =

√

2

T
cos

(

2ℓπ
t

T

)

,
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for all ℓ ≥ 1 and t ∈ [0, T ]. Consider the linear operator Λ: C([0, T ];Rd) → C([0, T ];Rd)
given by

(Λx)(t) = x(T )
t

T
, for all t ∈ [0, T ], x ∈ C([0, T ];Rd).

Observe that (x− Λx)(0) = (x− Λx)(T ) = 0. Now, for every n ≥ 0, define

sn(x− Λx) =

n
∑

ℓ=0

(x− Λx)ℓ eℓ,

σn(x− Λx) =
s0(x− Λx) + · · ·+ sn(x− Λx)

n+ 1
=

n
∑

ℓ=0

n+ 1− ℓ

n+ 1
(x− Λx)ℓ eℓ,

where (x− Λx)ℓ is given by

∫ T

0

(x(t)− (Λx)(t))eℓ(t)dt =

∫ T

0

x(t)eℓ(t)dt − x(T )Eℓ(T ) + x(T )
1

T

∫ T

0

Eℓ(t)dt,

with Eℓ being a primitive of eℓ. In particular, we take

E0(t) =
t√
T
−
√
T

2
, E2ℓ−1(t) = −

√

T

2

1

ℓπ
cos

(

2ℓπ
t

T

)

, E2ℓ(t) =

√

T

2

1

ℓπ
sin

(

2ℓπ
t

T

)

,

for all ℓ ≥ 1 and t ∈ [0, T ]. Then

(x− Λx)ℓ =

∫ T

0

x(t)eℓ(t)dt− x(T )Eℓ(T ) = −
∫

[0,T ]

Eℓ(t) d−x(t),

for all ℓ ≥ 0. By Fejér’s theorem (see for instance Theorem III.3.4 in [91]), we have

‖σn(x−Λx)− (x−Λx)‖∞ n→∞−→ 0 and ‖σn(x−Λx)‖∞ ≤ ‖x−Λx‖∞,

for all x ∈ C([0, T ];Rd). Consider the linear operator Tn : C([0, T ];R
d) → C([0, T ];Rd)

given by (e−1(t) :=
t
T , for all t ∈ [0, T ])

Tnx = Λx+ σn(x− Λx)−
(

σn(x− Λx)
)

(0)

= x(T )e−1 +

n
∑

ℓ=1

n+ 1− ℓ

n+ 1
(x− Λx)ℓ (eℓ − eℓ(0)),

for all n ≥ 0, where for the latter equality we used the fact that e0 is constant. Then, for
any x ∈ C([0, T ];Rd), ‖Tnx−x‖∞ → 0, as n tends to infinity. Furthermore, there exists
a positive constant C, independent of n, such that

‖Tnx‖∞ ≤ C‖x‖∞, for all x ∈ C([0, T ];Rd), n ≥ 0. (D.3)

Then, we define ξ̃n(x) := ξ(Tnx). Notice that

ξ̃n(x) = ξ

(

x(T )e−1 +

n
∑

ℓ=1

n+ 1− ℓ

n+ 1
(x− Λx)ℓ (eℓ − eℓ(0))

)
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= ξ

(

x(T )e−1 −
n
∑

ℓ=1

n+ 1− ℓ

n+ 1

(
∫

[0,T ]

Eℓ(t) d−x(t)
)

(eℓ − eℓ(0))

)

= g̃n

(

x(T ) ,

∫

[0,T ]

E1(t) d−x(t) , . . . ,
∫

[0,T ]

En(t) d−x(t)
)

= g̃n

(
∫

[0,T ]

1 d−x(t) ,

∫

[0,T ]

E1(t) d−x(t) , . . . ,
∫

[0,T ]

En(t) d−x(t)
)

,

where the last inequality follows from the identity x(T ) =
∫

[0,T ] 1 d
−x(t), while g̃n is a

map from R
d(n+1) into R given by

g̃n(z) := ξ

(

z0e−1 −
n
∑

ℓ=1

n+ 1− ℓ

n+ 1
zℓ (eℓ − eℓ(0))

)

, (D.4)

for all z ∈ R
d(n+1), with z = (z0, . . . , zn) and z0, . . . , zn ∈ R

d. From now on we denote

ψ0(t) = 1, ψℓ(t) = Eℓ(t), ℓ ≥ 1. (D.5)

Step II. We begin introducing the double sequence {gn,k}n≥0,k≥1, with gn,k : R
d(n+1) →

R given by

gn,k(z) =

∫

Rd(n+1)

g̃n(z−w) ζn,k(w) dw,

where ζn,k(z) = kd(n+1)ζn(k z), for all z ∈ R
d(n+1), with

ζn(z) = cn

n
∏

ℓ=0

exp

(

1

z2ℓ − 2−2ℓ

)

1{|zℓ|<2−ℓ}, for all z = (z0, . . . , zn) ∈ R
d(n+1).

The constant cn > 0 is such that
∫

Rd(n+1) ζn(z) dz = 1. We also introduce the double

sequence {ξn,k}n≥0,k≥1, with ξn,k : C([0, T ];R
d) → R given by

ξn,k(x) = gn,k

(
∫

[0,T ]

ψ0(t) d
−x(t), . . . ,

∫

[0,T ]

ψn(t) d
−x(t)

)

, x ∈ C([0, T ];Rd),

with ψ0, . . . , ψn as in (D.5). Our aim is to apply Lemma D.1 in [18]. To this end, we need
to prove the following items:

a) ξn,k is continuous;

b) for every x ∈ C([0, T ];Rd), |ξn,k(x)− ξ̃n(x)| → 0 as k → +∞;
c) {ξn,k}n≥0,k≥1 is equicontinuous on compact sets.

Suppose for a moment that items a)-b)-c) hold true. Then, by Lemma D.1 in [18] we
deduce the existence of a subsequence {ξn,kn}n converging pointwise to ξ. Hence, we set
ξn := ξn,kn and gn := gn,kn . It is then easy to see that {ξn}n is the claimed sequence. It
remains to prove a)-b)-c). As items a) and b) can be easily proved, we only report the
proof of item c).
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Step III. Let us prove item c). We begin noting that gn,k can be rewritten as follows:

gn,k(z) =

∫

En

g̃n(z −w) ζn,k(w) dw,

where
En :=

{

z = (z0, . . . , zn) ∈ R
d(n+1) : |zℓ| ≤ 2−ℓ, ℓ = 0, . . . , n

}

.

Then, the claim follows if we prove that for any compact set K ⊂ C([0, T ];Rd) there
exists a continuity modulus ρK such that, for every n,

∣

∣

∣

∣

g̃n

(
∫

[0,T ]

ψ0(t) d
−x(t) + z0, . . . ,

∫

[0,T ]

ψn(t) d
−x(t) + zn

)

(D.6)

− g̃n

(
∫

[0,T ]

ψ0(t) d
−x′(t) + z0, . . . ,

∫

[0,T ]

ψn(t) d
−x′(t) + zn

)
∣

∣

∣

∣

≤ ρK(‖x− x′‖∞),

for all x,x′ ∈ K and z = (z0, . . . , zn) ∈ En. Let us prove (D.6). Given a compact set
K ⊂ C([0, T ];Rd), we denote

K :=

{

x ∈ C([0, T ];Rd) : x = Tnx̄+ z0e−1 −
n
∑

ℓ=1

n+ 1− ℓ

n+ 1
zℓ(eℓ − eℓ(0)),

for some x̄ ∈ K, z ∈ En, n ≥ 0

}

.

Recalling (D.4), we see that ifK is relatively compact then (D.6) follows from the uniform
continuity of ξ on compact sets (which in turn follows from the continuity of ξ). In
order to prove that K is relatively compact, we observe that K ⊂ K1 + K2 := {x ∈
C([0, T ];Rd) : x = x1 + x2, x1 ∈ K1, x2 ∈ K2}, where

K1 :=
{

x ∈ C([0, T ];Rd) : x = Tnx̄, for some x̄ ∈ K, n ≥ 0
}

,

K2 :=

{

x ∈ C([0, T ];Rd) : x = z0e−1−
n
∑

ℓ=1

n+ 1− ℓ

n+ 1
zℓ(eℓ − eℓ(0)), for some n, z ∈ En

}

.

If we prove that K1 and K2 are relatively compact, it follows that K is also relatively
compact.

• K1 is relatively compact. Let {xh}h be a sequence in K1. Let us prove that, up to
a subsequence, {xh}h converges. For each h, there exists x̄h ∈ K and nh ≥ 0 such
that xh = Tnh

x̄h. Suppose that, up to a subsequence, nh goes to infinity (the
proof is simpler when nh is bounded). Since {x̄h}h ⊂ K, there exists x̄ ∈ K such
that {x̄h}h converges, up to a subsequence, to x̄. Then

‖xh − x̄‖∞ = ‖Tnh
x̄h − x̄‖∞ ≤ ‖Tnh

x̄h − Tnh
x̄‖∞ + ‖Tnh

x̄− x̄‖∞.

By (D.3) and ‖Tnh
x̄− x̄‖∞ → 0, the claim follows.
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• K2 is relatively compact. Let {xh}h be a sequence in K2. In order to prove that,
up to a subsequence, {xh}h is convergent, we begin noting that

xh = z0,he−1 −
nh
∑

ℓ=1

nh + 1− ℓ

nh + 1
zℓ,h(eℓ − eℓ(0)),

for some nh ≥ 0 and zh = (z0,h, . . . , znh,h) ∈ Enh
. Suppose that, up to a sub-

sequence, nh goes to infinity, otherwise the proof is simpler. Notice that, each
sequence {zℓ,h}h converges, up to a subsequence, to some zℓ, with |zℓ| ≤ 2−ℓ. By
Cantor’s diagonal argument, there exists a subsequence of {xh}h, which we still
denote {xh}h, such that every {zℓ,h}h converges to zℓ. We construct this subse-
quence in such a way that, for every h, |z0,h − z0| + · · · + |znh,h − znh

| ≤ 1/h. It
follows that ‖xh − x‖∞ → 0, where x = z0e−1 −

∑∞
ℓ=1 zℓ(eℓ − eℓ(0)).
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‘
ech. Good and viscosity solutions of fully nonlinear

elliptic equations. Proc. Amer. Math. Soc., 130(2):533–542, 2002.
[53] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113

of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
[54] A. V. Kim. Functional differential equations, volume 479 ofMathematics and its Ap-

plications. Kluwer Academic Publishers, Dordrecht, 1999. Application of i-smooth
calculus.

[55] A. V. Kim. i-smooth analysis. Scrivener Publishing, Salem, MA; John Wiley &
Sons, Inc., Hoboken, NJ, 2015. Theory and applications.

[56] A. V. Kim and A. V. Ivanov. Systems with delays. JohnWiley & Sons, Inc., Hoboken,
NJ; Scrivener Publishing, Salem, MA, 2015. Analysis, control, and computations.

[57] B. Larssen and N. H. Risebro. When are HJB-equations in stochastic control of
delay systems finite dimensional? Stochastic Anal. Appl., 21(3):643–671, 2003.

[58] D. Leão, A. Ohashi, and A. B. Simas. A weak version of path-dependent functional
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Séminaire de Probabilités XL, volume 1899 of Lecture Notes in Math., pages 147–
185. Springer, Berlin, 2007.

[84] M. Scheutzow. Qualitative behaviour of stochastic delay equations with a bounded
memory. Stochastics, 12(1):41–80, 1984.

[85] H. M. Soner. On the Hamilton-Jacobi-Bellman equations in Banach spaces. J.
Optim. Theory Appl., 57(3):429–437, 1988.

[86] A. I. Subbotin. Generalization of the fundamental equation of the theory of differ-
ential games. Dokl. Akad. Nauk SSSR, 254(2):293–297, 1980.

[87] A. I. Subbotin and N. N. Subbotina. Necessary and sufficient conditions for the
piecewise smooth value of a differential game. Dokl. Akad. Nauk SSSR, 243(4):862–
865, 1978.

[88] A. Świ
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