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TWISTED MONODROMY HOMOMORPHISMS AND MASSEY PRODUCTS

ANDREI PAJITNOV

ABSTRACT. Let ¢ : M — M be a diffeomorphism of a C® compact connected
manifold, and X its mapping torus. There is a natural fibration p : X — S1,
denote by ¢ € H'(X,7Z) the corresponding cohomology class. Let p : w1 (X, zo) —
GL(n, C) be a representation (here o € M); denote by H* (X, p) the corresponding
twisted cohomology of X. Denote by po the restriction of p to w1 (M, xo), and by
pz’; the antirepresentation conjugate to po. We construct from these data the twisted
monodromy homomorphism ¢y of the group Hy (M, p{). This homomorphism is a
generalization of the homomorphism induced by ¢ in the ordinary homology of M.
The aim of the present work is to establish a relation between Massey products in
H*(X, p) and Jordan blocks of ¢y.

We have a natural pairing H*(X,C) ® H*(X, p) —» H*(X, p); one can define
Massey products of the form (¢, . .., &, ), where x € H*(X, p). The Massey product
containing r terms £ will be denoted by (&, z),; we say that the length of this
product is equal to ». Denote by Mg(p) the maximal length of a non-zero Massey
product (¢, x), for x € H*(X,p). Given a non-zero complex number A define
a representation px : mw1(X,xz0) — GL(n,C) as follows: px(g) = A8 . p(g).
Denote by Ji (¢4, A) the maximal size of a Jordan block of eigenvalue A of the
automorphism ¢4 in the homology of degree k.

The main result of the paper says that Mg (px) = Jr(¢sx,A). In particular, ¢x
is diagonalizable, if a suitable formality condition holds for the manifold X. This is
the case if X a compact Kiahler manifold and p is a semisimple representation. The
proof of the main theorem is based on the fact that the above Massey products can
be identified with differentials in a Massey spectral sequence, which in turn can be
explicitly computed in terms of the Jordan normal form of ¢.
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1. INTRODUCTION

The relation between non-vanishing Massey products of length 2 in the coho-
mology of mapping tori and the Jordan blocks of size greater than 1 of the mon-
odromy homomorphism was discovered in the work of M. Fernandez, A. Gray, J.
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Morgan [7]. This relation was used by these authors to prove that certain mapping
tori do not admit a structure of a Kdhler manifold. In the work of G. Bazzoni, M.
Fernandez, V. Munoz [1] it was proved that the existence of Jordan blocks of size
2 implies the existence of a non-zero triple Massey product of the form (¢, £, a).

In the paper [14] we began a systematic treatment of this phenomena, relating
the maximal length of non-zero Massey products to the maximal size of Jordan
blocks of the monodromy homomorphism. The both numbers turn out to be less
by a unit than the number of the sheet where the formal deformation spectral
sequence degenerates. In that paper we dealt with the case of Massey products of
the form {,...,&, ) where £ is the 1-dimensional cohomology class determined
by the fibration of the mapping torus X over the circle, and « is an element in the
cohomology of X with coefficients in a 1-dimensional local system.

In the present paper we continue the study of this phenomena, and prove a the-
orem relating the Jordan blocks of the monodromy homomorphisms to the Massey
products of the form (¢, ..., £, ) where x is an element in the twisted cohomology
of X corresponding to an arbitrary representation m;(X) — GL(n,C). One tech-
nical problem here is that there is no immediate definition of the homomorphism
induced in the twisted homology of M by the diffeomorphism ¢ : M — M. We
construct such homomorphism in the present paper (Section 4). The construc-
tion is based on the techniques developed by P. Kirk and C. Livingston [9] in the
context of twisted Alexander polynomials.

One corollary is that if X is a compact Kihler manifold, then all the Jor-
dan blocks of this twisted monodromy homomorphism are of size 1, that is, the
twisted monodromy homomorphism is diagonalizable. This result imposes new
constraints on the homology of Kdhler manifolds.

2. OVERVIEW OF THE ARTICLE

Let ¢ : M — M be a diffeomorphism of a C* compact connected manifold,
and X its mapping torus. Choose a point ¢ € M, and put H = w1 (M, xo), G =
71 (X, zo). We have an exact sequence

p

(1) 1 H - @G 7 1

Let V be a finite dimensional vector space over C and p : G — GL(V) be a
representation; denote by pg its restriction to H. Put V* = Hom(V,C) and let
p* : G — GL(V*) be the antirepresentation of G conjugate to p. In Section 4 we
construct from these data an automorphism ¢, of the group H,. (M, py); we call
it the twisted monodromy homomorphism. This homomorphism can be considered
as a generalization of the map induced by ¢ in the ordinary homology. Observe
however, that the homomorphism ¢, is not entirely determined by ¢ and po, but
depends also on the values of the representation p on the elements of G\H.

In the particular case when pg is the trivial 1-dimensional representation, and
the representation p sends the positive generator u of G/H ~ Z to A € C*, the map
A¢, equals the homomorphism induced by ¢ in the ordinary homology (see the
details in Subsection 4.2).

The main result of the paper is the theorem A below. To state it we need some
terminology. Denote by H* (X, p) the twisted cohomology of X with respect to the
representation p. We have a natural pairing H*(X,C) ® H*(X, p) - H*(X, p);
one can define Massey products of the form (,...,£,x), where x € H*(X, p).
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The Massey product containing r terms £ will be denoted by (&, x),; we say that
the length of this product is equal to r. Denote by My (p) the maximal length
r of a non-zero Massey product ({,z), for x ¢ H*(X, p). For a number \ € C*
define a representation py : 71 (X, xz9) — GL(V) as follows: px(g) = AW - p(g).
Denote by Ji(¢«, A) the maximal size of a Jordan block of eigenvalue A of the
homomorphism ¢, of Hy (M, pj).

Theorem A. We have Ji(¢«, A) = My (px) for every k and A.

This theorem implies that the monodromy homomorphism ¢, has only Jordan
blocks of size 1 (that is, ¢, is diagonalizable) provided that the space X satisfies a
suitable formality condition. Such formality conditions are discussed in details in
Subsection 3.3. The main application of these ideas is the following theorem.

Theorem B. Assume that the mapping torus X of a diffeomorphism ¢ : M —
M is a compact Kéhler manifold. Let p : 71 (X,x9) — GL(n,C) be a semisimple
representation. Then the twisted monodromy homomorphism ¢, of H..(M, p{) is a
diagonalizable linear map.

The proofs of these theorems are given in Section 6. They are based on the
construction of the twisted monodromy homomorphism ¢, (Section 4), and the
computation of the Massey spectral sequences in terms of ¢, (Section 5). In Sub-
section 4.2 we discuss a particular case of special interest. Let us say that ¢ is
m1-split if the exact sequence (1) splits. For this case we give a natural geometric
construction of an automorphism ¢; of H.(M, p§) which is entirely determined
by ¢ and po (see the formula (14) and Remark 4.8 of the Subsection 4.2). Theorem
6.2 states the version of Theorem A for this particular case.

Let us mention a generalization of Theorem A to the case of an arbitrary mani-
fold Y endowed with a non-zero cohomology class a € H1(Y,Z) and a representa-
tion 0 : 71 (Y, yo) — GL(V) (the manifold Y is not assumed to be a mapping torus
any more). Assume that o is indivisible and consider the corresponding infinite
cyclic covering Y. Let L = C[t,t"!]. Similarly to the above, denote by 6, the re-
striction of 6 to 71(Y'), and by 6 its conjugate antirepresentation. The homology
Hy(Y,0}) is a finitely generated L-module; denote by .7 its torsion part. This is a
finite dimensional vector space over C endowed with an action of L. In particular
the element ¢ € L represents an automorphism of 7.

Theorem C. LetY be a connected compact manifold, For every k and X € C*
the maximal length v of a Massey product of the form{a, =), (where z € H*(Y, 85))
equals the maximal size of a Jordan block of eigenvalue A of the automorphism
t: 9 — .

Theorem D. LetY be a connected compact Kchler manifold, 6 : w1 (Y, yo) —
GL(V') a semisimple representation. Then the homomorphismt : 9, — 9, is diago-
nalizable for every k.

2.1. About the terminology. We will keep the notations from Section 2 through-
out the paper. Namely, X will always denote the mapping torus of a diffeomor-
phism ¢ of a compact connected manifold M ; the corresponding cohomology class
in H'(X,Z) will be always denoted by &, the ring C[t,t~!] is denoted by L, and
C[[z]] by A. There are two exceptions: in Subsection 3.3 G will denote any group,
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and in Subsection 5.1 G will denote the fundamental group of a topological space
Y.

2.2. Relations with other works. The case of the trivial representation po was
settled in the author’s paper [14]. The diagonalizability of the monodromy homo-
morphism in the ordinary homology for Kihler manifolds was also proved by N.
Budur, Y. Liu, B. Wang [2].

Another approach to the relation between the size of Jordan blocks and formal-
ity properties was developed by S. Papadima and A. Suciu [15], [16]. They prove
in particular that if the monodromy homomorphism has Jordan blocks of size
greater than 1, then the fundamental group of the mapping torus is not a formal

group.

3. FORMAL DEFORMATIONS AND MASSEY SPECTRAL SEQUENCES

The main aim of this section is to recall necessary definitions and results con-
cerning the Massey spectral sequences. There are different versions of these spec-
tral sequences in literature, see [5], [11], [12], [6], [10]. We will recall here the
versions described in [10], referring to this article for details and proofs.

The only new material in the present section is the definition of F-formal mani-
JSold, introduced in Subsection 3.3. This notion generalizes the classical notion of
formality (D. Sullivan [18]) incorporating to it differential forms with coefficients
in flat bundles.

3.1. Formal deformations of differential graded algebras. Let

A* = (AR} = {A° 4> 41 4. )

be a graded-commutative differential algebra (DGA) over C. Let N'* be a graded
differential module (DGM) over A*. We denote by .A*[[z]] the algebra of formal
power series over A* endowed with the differential extended from the differential
of A*. Let 0 € A! be a cocycle. Consider the A*[[z]]-module N*[[z]] and endow it
with the differential

Dix = dx + z0x.
Then N*[[z]] is a DGM over A*|[[z]], and we have an exact sequence of DGMs:
(2) 0 —— N*¥[[2]] == N*[[2]] == N* —= 0

where 7 is the natural projection z —— 0. The induced long exact sequence in
cohomology can be considered as an exact couple

*[[=11) .
x

3) H*(N H*(N*[[2]])
)

One can prove that the spectral sequence induced by the exact couple (3) depends
only on the cohomology class of 6 ([10], Prop. 2.1).
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Definition 3.1. Put a = [6]. The spectral sequence associated to the exact couple
(3) is called formal deformation spectral sequence and denoted by E*(N*, ). If the
couple (N*, ) is clear from the context, we suppress it in the notation and write
just E¥.

Thus E} = H*(N*), and it is easy to see that Ef ~ Ker L,/Im Lo, where L, is
the homomorphism of multiplication by «. The higher differentials in this spectral
sequence can be computed in terms of special Massey products. Let a € H*(N*).
An r-chain starting from a is a sequence of elements wy,...,w, € N* such that

dwy =0, [wi]=a, dws =0wi, ..., dw, = Ow,_1.

Denote by M Z5 the subspace of all a € H™(N*) such that there exists an r-
chain starting from a. Denote by M B}, the subspace of all 3 € H™ (N*) such

that there exists an (r — 1)-chain (w1,...,w,_1) With w,_; belonging to 8. It is
clear that MB{ « MZ7 for every ¢, j. Put

MH[) = MZ7 | MBJ.
In the next definition we omit the upper indices and write M H,.y, M Z, etc. in
order to simplify the notation.

Definition 3.2. Let a € H*(N*), and r > 1. We say that the r-tuple Massey
product @,...,0,a) is defined, if a € M Z,. In this case choose any r-chain
(w1,...,w,) starting from a. The cohomology class of fw, is in M Z(, (actually
it is in M Z () for every N) and it is not difficult to show that it is well defined
modulo M B(,y. The image of 6w, in MZ,)/M B, is called the r-tuple Massey
product of 8 and a:
<9,a>r = < 9,...,0, (0] > € MZ(T)/MB(T).
———

r

The correspondence a ——— (6, a), gives rise to a well-defined homomorphism
of degree 1
Ar : MH(,.) —— MH(,.)

The following result is proved in [10], Theorem 2.5.

Theorem 3.3. 1) For any r we have A2 = 0, and the cohomology group
H*(MH(*T), A,) is isomorphic to MH(*TH).
2) For any r there is an isomorphism

¢: MH},, —— E
commuting with differentials.

Therefore the differentials in the spectral sequence E; are equal to the higher
Massey products with the cohomology class of 6. Observe that these Massey prod-
ucts, defined above, have smaller indeterminacy than the usual Massey products.

Now let us consider some cases when the spectral sequences constructed above,
degenerate in their second term. Recall that a differential graded algebra A* is
called formal if it has the same minimal model as its cohomology algebra.

Theorem 3.4. [[10], Th. 3.14 ] Let A* be a formal differential algebra, o € H*(A*).
Then the spectral sequence E(A*, a) degenerates at its second term.
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Definition 3.5. A differential graded module N'* over a differential graded algebra
A* will be called formal if it is a direct summand of a formal differential graded
algebra B* over A*, that is,

(4) B* =N*® K",
where both N* and K* are differential graded .A*-submodules of B,.

Proposition 3.6. [[10], Th. 3.16 | Let N'* be a formal DG-module over A*, and
o € H'(A*). Then the spectral sequence E*(N*, a) degenerates at its second term.

In our applications N'* will be a DGM of differential forms on a manifold. Let
Y be a connected C* manifold, and p be a representation of the fundamental
group of Y. Put A* = Q*(Y,C) and let N* = Q*(Y, p) be the DGM of differen-
tial forms with coefficients in the flat bundle E,, induced by p. Then N* is a
DGM over A*, so for any cohomology class o € H!(Y,C) we obtain a spectral
sequence starting with the twisted cohomology H* (Y, p) (see the next subsection
for recollections about the twisted cohomology). The differentials in this spec-
tral sequence are the Massey products with the class . We denote this spectral
sequence by E¥(Y, p, o).

Corollary 3.7. In the above notations assume that N* = Q*(Y, p) is a formal differ-
ential graded module over A* = Q*(Y,C). Then the spectral sequence E} (Y, p, )
degenerates at its second term.

3.2. Homology with local coefficients and spectral sequences. Let us first re-
call the definition of homology and cohomology with local coefficients. Let R be a
commutative ring, and K a free module over R; denote by GL(K) the group of R-
automorphisms of K. Let Y be a connected topological space, and p : w1(Y, yo) —
GL(K) a representation. Define the R-module of p-twisted cochains of Y with
coefficients in p as follows:

(5) C*(Y, p) = Hom, (C.(Y), K).

Here Y denotes the universal covering of Y; we endow it with the canonical free
left action of 71 (Y, yo). We denote by C.(Y) the group of singular chains of Y; if
Y is a CW-complex we can replace it by the group of cellular chains. The group
C.(Y) of Y has a natural structure of a free left module over Zm;(Y, o). The
cohomology H*(C*(Y, p)) is called twisted cohomology of Y with coefficients in p,
or cohomology of Y with local coefficients in p.

Let 3 : w1(Y, yo) — GL(K) be an antirepresentation (that is, 3(g1g2) = B(g2)8(g1)
for every g1, g2 € w1 (Y, yo)); it determines a right action of w1 (Y, yo) on K. Define
the R-module of p-twisted chains of Y with coefficients in K as follows:

(6) Cﬂxm=K§&dW

The homology H.(C.(Y, 3)) is called twisted homology of Y with coefficients in 3,
or homology of Y with local coefficients in 3.

In this paper we will be dealing with the cases when R is one of the following
rings: C, L = C[t,t '], A = C[[z]]. Let V be a finite-dimensional vector space over
C, put

VIt = Ve, Vil - Ve
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If a € H(Y,Z) is a non-zero cohomology class, we can define two representations:
[a] : m1(Y, 90) — L% [al(g) = £, {a):m(Y,y0) — A%; {(a)(g) = €9

For a representation p : m1(Y, yo) — GL(V) put

(7) p:mi(Y,y0) » GL(V[t"]), B =p®][c],

®) p:m(Y,0) — GL(V[[2]]), 5=p® 0.
The representation p is a basic tool in the theory of twisted Alexander polynomials

(see [9], Section 2.1). Observe that p = Exp o p, where Exp : L — A is the
homomorphism sending ¢ to e*.

Applying the functor Hom to the exact sequence 0 - A ——> A — C — 0 we
obtain an exact sequence of groups of twisted cochains:

0 — C*(Y9ﬁ) —~— C*(Yaﬁ) - C*(Yap) — 0.

The corresponding long exact sequence of twisted homomorphism modules can be
considered as an exact couple

9) H

(Y, p) = H*(Y, p)
\ /
H*(Y,p)

This exact couple induces a spectral sequence D(Y, p, o) starting from the mod-
ule H*(Y, p). We have the following theorem

Theorem 3.8. [10], Th. 5.4] The spectral sequences E*(Y, p,a) and D*(Y, p, )
are isomorphic.

In particular the differentials in the spectral sequence D..(Y, p, «) are equal to
the Massey products {a, ‘).

3.3. Formality with respect to a family of representations of the fundamental
group. Let us start with a definition.

Definition 3.9. Let Y be a manifold, yo € Y, denote 71 (Y, yo) by G. Let F be
a family of complex representations of G, such that F is closed under tensor
products, that is, if p1, p2 € F then p; ® p2 € F. Put

Y, F) - @ (Yop).

Then Q" (Y, F) has a natural structure of a DGA. We say that Y is F-formal, if this
DGA is formal.

Examples.

1) If F is the trivial 1-dimensional representation, then the notion of F-formality
is the same as the classical notion of formality as introduced by D. Sullivan
(18], [4].

2) Let F be the family of all 1-dimensional representations of G. Then the no-
tion of F-formality is the same as the notion of strong formality introduced
in [10], see also [8]. All compact connected Kahler manifolds are strongly
formal, as it follows from C. Simpson’s theorem [17].



8 ANDREI PAJITNOV

3) Let G be a fundamental group of a compact connected Kdhler manifold, let
p be a semisimple representation of G. Consider the family F consisting
of all tensor powers of p (including the trivial representation of the same
dimension as p). It follows from theorem of K. Corlette [3] that F is closed
under tensor products, see also [17]. C. Simpson’s theorem [17] implies
that Y is F-formal.

Theorem 3.10. Assume that a manifold Y is F-formal. Let p € F and o €
H'(Y,C). Then the formal deformation spectral sequence D} (Y, p, o) degenerates
at its second term. All Massey products {a, x), vanish for every x € H*(Y, p) and
r > 2.

Proof. It suffices to apply Corollary 3.7 to the module Q*(Y, E,). O
The formality property of Example 3) above yields the following corollary.

Corollary 3.11. Assume thatY is a connected compact Kéhler manifold, and « €
H(Y, C) anon-zero cohomology class. Let p : w1 (Y, yo) — GL(n,C) be a semisimple
representation. Then the spectral sequence D} (Y, p, o) degenerates at its second
term. U

4. TWISTED MONODROMY HOMOMORPHISMS

Let ¢ : M — M be a diffeomorphism of a C* compact connected manifold,
and X its mapping torus. Choose a point g € M, and put H = m; (M, xg), G =
71(X, xo). Recall the exact sequence

1 H'>qg-2
Let W be a vector space of dimension n over C endowed with a right action
of G. Such action can be described as a map 8 : G — GL(W) ~ GL(n,C)
satisfying 3(g1g2) = B(g2)B(g1), that is, an antirepresentation of G. Set By =
B | H: H— GL(W). In this section we associate to these data an isomorphism
¢y + H.(M,B9) — H.(M,By) of vector spaces that we call twisted monodromy
homomorphism induced by ¢. This homomorphism can be considered as a gen-
eralization of the map induced by ¢ in the ordinary homology. Observe however,
that the homomorphism ¢, is not entirely determined by ¢ and po, but depends
also on the values of p on the elements of G\H (see the details in Subsection
4.1). The constructions of this section will be applied in Section 6 to the map
B : G — GL(W) which is conjugate to the given representation p : G — GL(W).

Z 1.

4.1. Definition of the twisted monodromy homomorphism. Choose any path
0 in M from x¢ to ¢(xo). This choice determines three more geometric objects:

A) An element u € G such that p(u) = 1. Namely let u be a composition of the
path 6 with the image of the path ¢(x¢) x [0, 1] in the mapping torus

X = M x[0,1]/(x,0) ~ ($(x), 1).

Observe that any element v with p(u) = 1 can be obtained this way with a
suitable choice of 6.

B) A lift of the map ¢ to a map <Z : M — M. Namely, represent a point x € M
by a path v in M starting at zo. The path ¢(v) = ¢ o v joins the points
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¢(m02 and ¢(x). The composition of paths 6 - ¢(y) joins ¢ and ¢(x). Now
put (v) = 0 - (7).

C) A homomorphism Ky : H — H defined by Ky(v) = 0¢(v)0~! where ~ is a
loop starting at xo.

These objects satisfy the following easily checked properties:
(10) ¢(hx) = Kg(h)p(x) for every he H and x € M;

(11) whu ! = Kg(h) for every h e H.
Now we can define the homomorphism ¢..

Definition 4.1. To simplify the notation, we shall abbreviate W ® C*(M ) to
Bo

~

W ® C, (M) up to the end of the present subsection.
Define a map
(12) a:W%}C*(M)—»W%)C*(M); a(v®o) :vu*1®(z(0'),

~

where v € W, and o is a simplex in C,(M) (here and elsewhere we denote by vg
the result of the action of g € G on the vector v € W).
Lemma 4.2. 1) The map « factors to an endomorphism A of W ® C*(M ).

2) The resulting map A is a chain map, and it does not depend on the choice of
the path 6.

Proof. 1) We have to check that a(vh® o) and a(v® ho) give the same element
in W ® C,(M) for every h € H. Observe that

a(vh®o) = (vh)u ' ® ¢(o) = vu™' - uhu ' Q@ d(o) = vu™' - Ko(h) ® ¢(o)
and this equals vu~! ® Kg(h)cg(a) inW® C*(M). Apply the formula (10) and the

proof of the first part of Lemma is over.

2) Let 6’ be another path joining zo and ¢(x¢), so that 8’ = v0 where ~ is a
loop in M starting at xo. The corresponding element v’ € G satisfies v’ = vu, and
@ = v, so that vu/~1 ® ¢/ (o) = vuy~! ® yvé(o) and the property 2) follows. O

Definition 4.3. The map induced by A in the homology groups H. (M, 3) will be
denoted by ¢..[3] and called the twisted monodromy homomorphism associated to
¢ and 3 (when the value of 3 is clear from the context we omit it in the notation).

Definition 4.4. For any antihomomorphism 3 : G — GL(W) and X € C* define
an antihomomorphism 8y : G — GL(W) as follows:

Balg) = X& - B(g).

The proof of the following proposition follows immediately from the definition of
¢, (see the formula (12)).

Proposition 4.5. We have

(13) 4)* [IBA] = : ¢* [ﬂ] U

1
A
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4.2. The case G = H x Z. The algebralically simplest case occurs when the exact
sequence (1) splits. This case can be characterized by the following simple lemma
(the proof will be omitted).

Lemma 4.6. The three following properties are equivalent:

1) For some path 0 from xq to ¢(xo) the homomorphism Ky : H — H is an inner
automorphism.

2) For every path 0 from xqg to ¢(xo) the homomorphism K¢ : H — H is an
inner automorphism.

3) The extension (1) splits. O

One can prove also that if the properties listed in the lemma hold for some
choice of a base point z(, then they hold for any other choice of the base point.

Definition 4.7. If the map ¢ satisfies the three equivalent properties of Lemma
(4.6) we say that ¢ is w1 -split.

Assume that ¢ is m;-split. Choose an element © € G commuting with H,
and such that p(u) = 1. Let 8 : H — GL(W) be any antirepresentation, and
let By be its restriction to H. Put B = 3(u), then B € GL(W). (Observe that in the
split case any antirepresentation of H can be extended to an antirepresentation
of G, sending u to a scalar matrix.)

1. Consider first the case when B is the identity map of W. The homomor-
phism ¢, in this case has an especially simple definition. Namely, choose a path
0 from xo to ¢(xo) in such a way that for any ~ € m; (M, o) we have 8¢ ()0~ = ~.

Then the corresponding lift é: M — M has the property
é(hx) = hp(z) for every h € w1 (M, o)

Denote such a lift by ¢°. The automorphism of H, (M, 3,) corresponding to this
choice will be denoted by ¢¢; it is defined by the following formula:

(14) ¢i(v®a):v®q~ﬁoa

(where o is a singular simplex of M). This homomorphism ¢;, is entirely deter-
mined by ¢ and 3y, and does not depend on the values of 3 on G\H. In the case
when g is the trivial representation the map ¢; is just the induced map in the
ordinary homology.

2. Now let B = A -Id where A € C*. Choosing for ¢ the same lift as in the
previous case, we obtain the following formula for ¢.:

1 ~ 1
P(v®0o) = XU®¢:(U) = X¢1(U®U)-

3. Now let B be an arbitrary element of GL(W). Since B commutes with H,
it induces a well-defined linear maps C. (M, By) — C«(M, Bo) and H.(M, Bo) —
H, (M, o), that will be denoted by the same letter B. We have then

av®0) = vu ' @ (o) = B~ (v ® ¢(0))
and finally
(15) by = B0 .
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Remark 4.8. In the case A = 1 it is possible to reformulate our definition of ¢,
in terms of induced representations of fundamental groups. To explain this, let
us proceed to a slightly more general framework. Let ¢ : X — Y be a map of
connected topological spaces, g € X, yo € Y. Let p : m1(Y,y0) — GL(W) be
a representation. Choose a path p from yo to ¢(xp). Define a representation
p (X, xg) — GL(W) as follows p'(g) = p(up(g)pn=?). It is easy to check that ¢
induces a homomorphism

by H*(Xa P/) - H*(Y’ p)a

defined on the chain level as v ® o0 — v ® qz o o. This homomorphism depends
obviously on p. In the case when X = Y and ¢ is 7 -split choose a path p in such
a way that u¢(h)u=1 = h for every h € m;(M,zo). Then p’ = p and we return to
the homomorphism ¢;, of the above definition.

4.3. Relation wih Kirk-Livingston’s setup. Let X be the infinite cyclic covering
of X corresponding to £&. Observe that 7;(X) ~ H, so that the twisted homology
H,(X, Bo) of X is defined. We have the following simple lemma; the proof follows

from the observation that X ~ M x R.

Lemma 4.9. The inclusion i : M “—— X induces an isomorphism

I:H.(M,Bo) — Hi(X,Bo)

In the work [9] P. Kirk and C. Livingston constructed an action of the group Z
on the space W ® C,(X). Namely, choose any element u € G such that p(u) = 1,
Bo

and let the generator t of Z act on W ® C,(X) by the following formula
Bo

tlv®o) = vu ! ® uo.

It is shown in [9] that that this action does not depend on the particular choice
of u. The next proposition follows readily from the definition of the monodromy
homomorphism ¢..

Proposition 4.10. The following diagram is commutative

H*(Y, 50) 415) H*(Y’ /30)

L

H. (M, Bo) — H(M, Bo)
(]

Remark 4.11. We worked in this section in the assumption that M is a com-
pact C* manifold; the homology groups were in coefficients in C, in view of the
applications to Kdhler manifolds.

However all the constructions and results of the section generalize without any
changes to the case when M is any CW-complex; the coefficient field C can be
replaced by an arbitrary field K.
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5. TWISTED MONODROMY MAPS AND FORMAL DEFORMATION SPECTRAL SEQUENCES

We begin with a discussion of a universal coefficient theorem for twisted co-
homology (Subsection 5.1). The next subsection contains the computation of the
formal deformation spectral sequences in terms of the monodromy maps. The
proof of the main theorem in Section 6 is based on these computations.

5.1. Universal coefficient theorem for twisted cohomology. Let Y be a con-
nected topological space endowed with a non-zero cohomology class n € H(Y, Z).
Denote by G the fundamental group w1 (Y, yo). Let V be a finite-dimensional vec-
tor space over C and p : G — GL(V) a representation. Let L = Z[t,t~'], denote by
V[t*] the free L-module V %) L. Recall from Subsection 3.2 the representation

p:G — GL(V[t*]); plg) = plg)t?.

The representation p determines an action from the left of G on V; put V* =
Hom(V, C), and consider the corresponding right action p* of G on V*. Similarly
we obtain a right action p* of G on V[t*]. If we choose a basis in V, then p*
is identified with an antihomomorphism G — GL(n,C) obtained from p by trans-
position (similarly for p*). Associated to p* there is the L-module of p*-twisted
chains

V[t*] ® C.(Y),

and its homology H,.(X,p*). Observe that for any right action x of G on a free
L-module W there is a natural isomorphism

Homp, (W@C*(?),L> 2. Hom,, (Cx(Y), W*);
x

the value of ® on an L-homomorphism a : W ® C,(Y) — L is defined by the
X
following formula:
(2(e)(@))(w) = a(w @ o)

(where w € W and o € C,(Y)). Applying this to the right action p* on W = V* we
obtain the following isomorphism (see [10], Lemma 4.3)

(16) H*(Y,p) ~ H* (HomL(C*(Y, V), L)).

The cohomology module in the right-hand side of (16) has the advantage that we
can apply to it the universal coefficient theorem:

Proposition 5.1. For every k we have an exact sequence
(17) 0 — Extl (Hk_l(Y,ﬁ*),L) — H"*(Y,p) — Homy (Hk(Y,b*), L) 0. O

We will now apply these results to mapping tori. In the rest of this subsection X
is the mapping torus of a homeomorphism ¢ : M — M (see Subsection 2.1 for the
notations). Endow the vector space Hy_1(M, pj) with the action of L as follows:
ta = ¢.(a), where ¢, is the twisted monodromy map from Subsection 4.1.

Proposition 5.2. We have an isomorphism of L-modules
H*(X,p) ~ He1(M, p}).
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Proof. By Theorem 2.1 of [9] we have
H*(X,p") ~ Hi(X, p§)-

Lemma 4.9 says that H, (X, pj§) ~ H.(M, p{), therefore this L-module is a finite
dimensional vector space over C, and hence a finitely generated torsion L-module.

Thus we have Homy, (Hk(X, ), L) =0 and
Ext} (Hy-1(X,5), L) ~ He 1(X, p§) ~ Hy-1(M, pj).
The proposition follows. O

5.2. Computation of deformation spectral sequences in terms of monodromy
maps. Our main aim here is to prove that the exact couples (18) and (19) induce
isomorphic spectral sequences. We have p = Exp o p, where Exp : L — A is the
ring homomorphism sending ¢ to e*. The exact couple (%p)

(18) H

H*(X, p)

*(X, p) =
\ /
H*(X, p)

is obviously isomorphic to the following exact couple (%)

(19) H*(X, p)

The exact couple (%) below

(20) H

*(X,P) H*(X,p)

H*(X,p)
maps to (%) via the homomorphism H, (X, p) — H.(X, p) induced by Exp, there-
fore the spectral sequences induced by (%-) and (%) are isomorphic. Applying

Proposition 5.2 we deduce that (%) is isomorphic to the exact couple (Z3) of the
form

Px—1

21) H, (M, pj) H..(M, pg)

H*(X, p)

where the maps j and k have the degrees respectively 1 and 0. We obtain finally
a homomorphism (2;5) — (%) of exact couples, which equals the identity map
on the term H*(X, p). Therefore the exact sequences derived from these exact
couples are isomorphic.
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Remark 5.3. Similary to the Section 4, all the constructions and results of the
section generalize without any changes to the case when M is any CW-complex.

6. PROOFS OF THE MAIN RESULTS

Now we can complete the proofs of the main results.

6.1. Theorem A. Let us first prove Theorem A for the case A = 1, that is, px = p.
According to the previous section the exact couples (%) and (%5) induce iso-
morphic spectral sequences. The differentials in the spectral sequence induced
by (2p) are equal to Massey products: d.(x) = (&, x),, therefore the spectral se-
quence degenerates in degree k at the term number My (p) + 1. It suffices to prove
that the spectral sequence induced by (Z3) degenerates at the term J(¢5) + 1 in
degree k. Denote by ngEkk)

Let Ax be the invariant linear subspace of eigenvalue 1 of ¢Ekk). Let By be the
sum of all invariant linear subspaces of ¢>(,<k) corresponding to the eigenvalues
different from 1. The restriction (¢£kk) — 1) | Ag is nilpotent of degree equal to
Ji(¢+«, 1), and the restriction ( Ekk) — 1) | Bg is an isomorphism of B onto itself.

The assertion of the theorem follows now from the following lemma ([14], Lemma
3.3).

the twisted monodromy homomorphism in degree k.

Lemma 6.1. Let & be a graded exact couple:

: D
N
E
Assume that the homomorphism i : Dy, — D;, decomposes as follows:

DT: A®PB > ADB

(22) D

where 4§ is nilpotent of degree m and T is injective.
1) Let degi = degl = 0, degj = 1. Then the spectral sequence induced by &
degenerates at the step m + 1 in degree k.
2) Letdegi = 0, degl = 1, degj = 0. Then the spectral sequence induced by &
degenerates at the step m + 1 in degree k — 1.
O

Now let us consider the case when A is an arbitrary non-zero complex num-
ber. According to the Proposition 4.5 the monodromy homomorphism ¢.[px] con-
structed from the representation pj equals %d)* [p]. Therefore the exact couple
(25) for the case of the representation p, has the following form

Tpx—1

(23) H. (M, pf) H,. (M, pf)
H*(Xa PA)

(where ¢, denotes the monodromy homomorphism corresponding to p). It remains
to observe that Ji(5 ¢4, 1) = Ji(ds, A).
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6.2. Theorem B. Let X be a connected compact Kdhler manifold, and p a semisim-
ple representation. In view of Theorem A it suffices to prove that My(py) = 1 for
every A € C*, or, equivalently, that the spectral sequence associated to the exact
couple

(24) H*(X, px) - H*(X, px)

‘\/

H*(Xapk)

degenerates at its second term. Observe that the representation p, is also semi-
simple; apply to it Corollary (3.11) and the proof of Theorem B is over.

6.3. The m;-split case. Recall from Subsection 4.2 that in this case we have an
automorphism ¢; determined by ¢ and by the representation of m; (M). Choose
an element u € G commuting with H and such that p(u) = 1. Let x : w1 (M, zg) —
GL(V) be any representation of the fundamental group of M. Let A € C*. Extend
x to a representation x» : m1 (X, x9) — GL(V) by x(u) = X (this is possible since
uw commutes with H).

Theorem 6.2. We have
1) Jk(d%sA) = Mi(xa)-
2) If moreover X is a compact Kcihler manifold, and the representation x is
semisimple, then ¢, is diagonalizable.

Proof. Part 1) follows immediately from Theorem A. As for the part 2), observe
that the representation x. is also semisimple, so we can apply to it the Theorem
B, and the proof is over. O

Remark 6.3. The particular case of the trivial representation x corresponds to
Theorems 3.1 and 5.1 of the paper [14].

6.4. Theorem C. We need some more terminology.

Definition 6.4. Let R be a finitely generated L-module, and a € L a polynomial
of degree 1. Denote by R, the a-primary part of R, that is, the submodule of all
x € R, such that a¥z = 0 for some N. Denote by Nil(R,a) the minimal number
N, such that aV R, = 0. The module R, is a finite-dimensional vector space,
and a determines a linear map of this space. The number Nil(R,a) equals the
maximal size of Jordan blocks of eigenvalue 0 of a.

Denote by My (e, 6,) the maximal length of a non-zero Massey product of the
form (o, z), where = € H*(Y, 0,). Consider the spectral sequence associated to
the exact couple

- t—1

(25) H*(Y,0)) H*(Y, 0,)

\/

H*(Y,0)

Applying the same argument as in the beginning of Subsection 6.1 we deduce that
M (a, 6x) + 1 equals the the number r of the sheet where this spectral sequence
degenerates. By Lemma 6.1 this number r equals Nil(H*"1(Y,0,),t—1). Observe
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that we have 05 = gxo0, where gy : L — L is the isomorphism given by the formula
gx(t) = X-t. Therefore the L-homomorphism t -1 : H*(Y,0,) —— H*(Y,0,) is
isomorphic to the L-homomorphism A=t —1 : H*(Y,0) —— H*(Y,0), and we
have Nil(H*"(Y,0x),t — 1) = Nil(H*"(Y,6),t — X). The torsion submodule of
H**1(Y,9) is isomorphic to Ext(H(Y,8 ), L) which is in turn isomorphic to the
torsion submodule .7} of Hy(Y, 5*). A theorem of P. Kirk and C. Livingston ([9],
Th. 2.1) says that we have an isomorphism

H.(Y,0") ~ Hy(Y,0}).

Therefore the module .7/ is isomorphic to the torsion submodule .7, of H, (Y, 63%),
so, finally, My («, 0)) = Nil(J,t — A) and the proof of Theorem C is complete.

6.5. Theorem D. It follows readily from Theorem C; the proof is similar to the
argument of Subsection 6.2.

6.6. Acknowledgments. I am grateful to Professor F. Bogomolov for valuable dis-
cussions and support.
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