Andrei Pajitnov 
email: andrei.pajitnov@univ-nantes.fr
  
TWISTED MONODROMY HOMOMORPHISMS AND MASSEY PRODUCTS

Keywords: 2010 Mathematics Subject Classification. 55N25, 55T99, 32Q15 mapping torus, Massey products, twisted cohomology, Kähler manifolds

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

The relation between non-vanishing Massey products of length 2 in the cohomology of mapping tori and the Jordan blocks of size greater than 1 of the monodromy homomorphism was discovered in the work of M. Fern ández, A. Gray, J.

Morgan [START_REF] Fern Ández | Compact symplectic manifolds with free circle actions and Massey products[END_REF]. This relation was used by these authors to prove that certain mapping tori do not admit a structure of a Kähler manifold. In the work of G. Bazzoni, M. Fern ández, V. Mu ñoz [START_REF] Bazzoni | Non-formal co-symplectic manifolds[END_REF] it was proved that the existence of Jordan blocks of size 2 implies the existence of a non-zero triple Massey product of the form xξ, ξ, ay.

In the paper [START_REF] Pajitnov | Massey products in mapping tori[END_REF] we began a systematic treatment of this phenomena, relating the maximal length of non-zero Massey products to the maximal size of Jordan blocks of the monodromy homomorphism. The both numbers turn out to be less by a unit than the number of the sheet where the formal deformation spectral sequence degenerates. In that paper we dealt with the case of Massey products of the form xξ, . . . , ξ, xy where ξ is the 1-dimensional cohomology class determined by the fibration of the mapping torus X over the circle, and x is an element in the cohomology of X with coefficients in a 1-dimensional local system.

In the present paper we continue the study of this phenomena, and prove a theorem relating the Jordan blocks of the monodromy homomorphisms to the Massey products of the form xξ, . . . , ξ, xy where x is an element in the twisted cohomology of X corresponding to an arbitrary representation π 1 pXq Ñ GLpn, Cq. One technical problem here is that there is no immediate definition of the homomorphism induced in the twisted homology of M by the diffeomorphism φ : M Ñ M . We construct such homomorphism in the present paper (Section 4). The construction is based on the techniques developed by P. Kirk and C. Livingston [START_REF] Kirk | Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants[END_REF] in the context of twisted Alexander polynomials.

One corollary is that if X is a compact Kähler manifold, then all the Jordan blocks of this twisted monodromy homomorphism are of size 1, that is, the twisted monodromy homomorphism is diagonalizable. This result imposes new constraints on the homology of Kähler manifolds.

OVERVIEW OF THE AR TICLE

Let φ : M Ñ M be a diffeomorphism of a C 8 compact connected manifold, and X its mapping torus. Choose a point x 0 P M , and put H " π 1 pM, x 0 q, G " π 1 pX, x 0 q. We have an exact sequence (1)

1 / / H i / / G p / / Z / / 1
Let V be a finite dimensional vector space over C and ρ : G Ñ GLpV q be a representation; denote by ρ 0 its restriction to H. Put V ˚" HompV, Cq and let ρ ˚: G Ñ GLpV ˚q be the antirepresentation of G conjugate to ρ. In Section 4 we construct from these data an automorphism φ ˚of the group H ˚pM, ρ 0 q; we call it the twisted monodromy homomorphism. This homomorphism can be considered as a generalization of the map induced by φ in the ordinary homology. Observe however, that the homomorphism φ ˚is not entirely determined by φ and ρ 0 , but depends also on the values of the representation ρ on the elements of GzH.

In the particular case when ρ 0 is the trivial 1-dimensional representation, and the representation ρ sends the positive generator u of G{H « Z to λ P C ˚, the map λφ ˚equals the homomorphism induced by φ in the ordinary homology (see the details in Subsection 4.2).

The main result of the paper is the theorem A below. To state it we need some terminology. Denote by H ˚pX, ρq the twisted cohomology of X with respect to the representation ρ. We have a natural pairing H ˚pX, Cq b H ˚pX, ρq Ñ H ˚pX, ρq; one can define Massey products of the form xξ, . . . , ξ, xy, where x P H ˚pX, ρq.

The Massey product containing r terms ξ will be denoted by xξ, xy r ; we say that the length of this product is equal to r. Denote by M k pρq the maximal length r of a non-zero Massey product xξ, xy r for x P H k pX, ρq. For a number λ P C define a representation ρ λ : π 1 pX, x 0 q Ñ GLpV q as follows: ρ λ pgq " λ ξpgq ¨ρpgq. Denote by J k pφ ˚, λq the maximal size of a Jordan block of eigenvalue λ of the homomorphism φ ˚of H k pM, ρ 0 q.

Theorem A. We have J k pφ ˚, λq " M k pρ λ q for every k and λ.

This theorem implies that the monodromy homomorphism φ ˚has only Jordan blocks of size 1 (that is, φ ˚is diagonalizable) provided that the space X satisfies a suitable formality condition. Such formality conditions are discussed in details in Subsection 3.3. The main application of these ideas is the following theorem.

Theorem B. Assume that the mapping torus X of a diffeomorphism φ : M Ñ M is a compact Kähler manifold. Let ρ : π 1 pX, x 0 q Ñ GLpn, Cq be a semisimple representation. Then the twisted monodromy homomorphism φ ˚of H ˚pM, ρ 0 q is a diagonalizable linear map.

The proofs of these theorems are given in Section 6. They are based on the construction of the twisted monodromy homomorphism φ ˚(Section 4), and the computation of the Massey spectral sequences in terms of φ ˚(Section 5). In Subsection 4.2 we discuss a particular case of special interest. Let us say that φ is π 1 -split if the exact sequence (1) splits. For this case we give a natural geometric construction of an automorphism φ ˝of H ˚pM, ρ 0 q which is entirely determined by φ and ρ 0 (see the formula [START_REF] Pajitnov | Massey products in mapping tori[END_REF] and Remark 4.8 of the Subsection 4.2). Theorem 6.2 states the version of Theorem A for this particular case.

Let us mention a generalization of Theorem A to the case of an arbitrary manifold Y endowed with a non-zero cohomology class α P H 1 pY, Zq and a representation θ : π 1 pY, y 0 q Ñ GLpV q (the manifold Y is not assumed to be a mapping torus any more). Assume that α is indivisible and consider the corresponding infinite cyclic covering Y . Let L " Crt, t ´1s. Similarly to the above, denote by θ 0 the restriction of θ to π 1 pY q, and by θ 0 its conjugate antirepresentation. The homology H k pY , θ 0 q is a finitely generated L-module; denote by T k its torsion part. This is a finite dimensional vector space over C endowed with an action of L. In particular the element t P L represents an automorphism of T k .

Theorem C. Let Y be a connected compact manifold, For every k and λ P C the maximal length r of a Massey product of the form xα, xy r (where x P H k pY, θ λ q) equals the maximal size of a Jordan block of eigenvalue λ of the automorphism t :

T k Ñ T k .
Theorem D. Let Y be a connected compact Kähler manifold, θ : π 1 pY, y 0 q Ñ GLpV q a semisimple representation. Then the homomorphism t : T k Ñ T k is diagonalizable for every k.

2.1. About the terminology. We will keep the notations from Section 2 throughout the paper. Namely, X will always denote the mapping torus of a diffeomorphism φ of a compact connected manifold M ; the corresponding cohomology class in H 1 pX, Zq will be always denoted by ξ, the ring Crt, t ´1s is denoted by L, and Crrzss by Λ. There are two exceptions: in Subsection 3.3 G will denote any group, and in Subsection 5.1 G will denote the fundamental group of a topological space Y .

2.2.

Relations with other works. The case of the trivial representation ρ 0 was settled in the author's paper [START_REF] Pajitnov | Massey products in mapping tori[END_REF]. The diagonalizability of the monodromy homomorphism in the ordinary homology for Kähler manifolds was also proved by N. Budur, Y. Liu, B. Wang [START_REF] Budur | The monodromy theorem for compact Khler manifolds and smooth quasi-projective varieties[END_REF].

Another approach to the relation between the size of Jordan blocks and formality properties was developed by S. Papadima and A. Suciu [START_REF] Papadima | Algebraic monodromy and obstructions to formality[END_REF], [START_REF] Papadima | Geometric and algebraic aspects of 1-formality[END_REF]. They prove in particular that if the monodromy homomorphism has Jordan blocks of size greater than 1, then the fundamental group of the mapping torus is not a formal group.

FORMAL DEFORMATIONS AND MASSEY SPECTRAL SEQUENCES

The main aim of this section is to recall necessary definitions and results concerning the Massey spectral sequences. There are different versions of these spectral sequences in literature, see [START_REF] Farber | Exactness of Novikov inequalities[END_REF], [START_REF] Novikov | Bloch homology, critical points of functions and closed 1-forms Soviet Math[END_REF], [START_REF] Pajitnov | Proof of a conjecture of Novikov on homology with local coefficients over a field of finite characteristic[END_REF], [START_REF] Farber | Topology of closed 1-forms and their critical points[END_REF], [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF]. We will recall here the versions described in [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF], referring to this article for details and proofs.

The only new material in the present section is the definition of F -formal manifold, introduced in Subsection 3.3. This notion generalizes the classical notion of formality (D. Sullivan [START_REF] Sullivan | Infinitesimal computations in topology[END_REF]) incorporating to it differential forms with coefficients in flat bundles.

Formal deformations of differential graded algebras. Let

A ˚" tA k u kPN " tA 0 d / / A 1 d / / . . .u be a graded-commutative differential algebra (DGA) over C. Let N ˚be a graded differential module (DGM) over A ˚. We denote by A ˚rrzss the algebra of formal power series over A ˚endowed with the differential extended from the differential of A ˚. Let θ P A 1 be a cocycle. Consider the A ˚rrzss-module N ˚rrzss and endow it with the differential

D t x " dx `zθx.
Then N ˚rrzss is a DGM over A ˚rrzss, and we have an exact sequence of DGMs:

(2) 0 / / N ˚rrzss z / / N ˚rrzss π / / N ˚/ / 0
where π is the natural projection z / / 0. The induced long exact sequence in cohomology can be considered as an exact couple Thus E 1 " H ˚pN ˚q, and it is easy to see that E 2 « Ker L α {Im L α , where L α is the homomorphism of multiplication by α. The higher differentials in this spectral sequence can be computed in terms of special Massey products. Let a P H ˚pN ˚q. An r-chain starting from a is a sequence of elements ω 1 , . . . , ω r P N ˚such that dω 1 " 0, rω 1 s " a, dω 2 " θω 1 , . . . , dω r " θω r´1 .

Denote by M Z m

prq the subspace of all a P H m pN ˚q such that there exists an rchain starting from a. Denote by M B m prq the subspace of all β P H m pN ˚q such that there exists an pr ´1q-chain pω 1 , . . . , ω r´1 q with θω r´1 belonging to

β. It is clear that M B m piq Ă M Z m pjq for every i, j. Put M H m prq " M Z m prq M M B m prq .
In the next definition we omit the upper indices and write M H prq , M Z prq etc. in order to simplify the notation. Definition 3.2. Let a P H ˚pN ˚q, and r 1. We say that the r-tuple Massey product xθ, . . . , θ, ay is defined, if a P M Z prq . In this case choose any r-chain pω 1 , . . . , ω r q starting from a. The cohomology class of θω r is in M Z prq (actually it is in M Z pN q for every N ) and it is not difficult to show that it is well defined modulo M B prq . The image of θω r in M Z prq {M B prq is called the r-tuple Massey product of θ and a:

xθ, ay r " A θ, . . . , θ looomooon r , a E P M Z prq M M B prq .
The correspondence a / / xθ, ay r gives rise to a well-defined homomorphism

of degree 1 ∆ r : M H prq / / M H prq .
The following result is proved in [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF], Theorem 2.5.

Theorem 3.3. 1)

For any r we have ∆ 2 r " 0, and the cohomology group

H ˚pM H prq , ∆ r q is isomorphic to M H pr`1q .
2) For any r there is an isomorphism

φ : M H prq « / / E r commuting with differentials.
Therefore the differentials in the spectral sequence E r are equal to the higher Massey products with the cohomology class of θ. Observe that these Massey products, defined above, have smaller indeterminacy than the usual Massey products. Now let us consider some cases when the spectral sequences constructed above, degenerate in their second term. Recall that a differential graded algebra A ˚is called formal if it has the same minimal model as its cohomology algebra. Theorem 3.4. [ [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF], Th. 3.14 ] Let A ˚be a formal differential algebra, α P H 1 pA ˚q. Then the spectral sequence E r pA ˚, αq degenerates at its second term. Definition 3.5. A differential graded module N ˚over a differential graded algebra A ˚will be called formal if it is a direct summand of a formal differential graded algebra

B ˚over A ˚, that is, (4) B ˚" N ˚' K ˚,
where both N ˚and K ˚are differential graded A ˚-submodules of B ˚.

Proposition 3.6. [ [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF], Th. 3.16 ] Let N ˚be a formal DG-module over A ˚, and α P H 1 pA ˚q. Then the spectral sequence E r pN ˚, αq degenerates at its second term.

In our applications N ˚will be a DGM of differential forms on a manifold. Let Y be a connected C 8 manifold, and ρ be a representation of the fundamental group of Y . Put A ˚" Ω ˚pY, Cq and let N ˚" Ω ˚pY, ρq be the DGM of differential forms with coefficients in the flat bundle E ρ , induced by ρ. Then N ˚is a DGM over A ˚, so for any cohomology class α P H 1 pY, Cq we obtain a spectral sequence starting with the twisted cohomology H ˚pY, ρq (see the next subsection for recollections about the twisted cohomology). The differentials in this spectral sequence are the Massey products with the class α. We denote this spectral sequence by E r pY, ρ, αq. Corollary 3.7. In the above notations assume that N ˚" Ω ˚pY, ρq is a formal differential graded module over A ˚" Ω ˚pY, Cq. Then the spectral sequence E r pY, ρ, αq degenerates at its second term.

Homology with local coefficients and spectral sequences.

Let us first recall the definition of homology and cohomology with local coefficients. Let R be a commutative ring, and K a free module over R; denote by GLpKq the group of Rautomorphisms of K. Let Y be a connected topological space, and ρ : π 1 pY, y 0 q Ñ GLpKq a representation. Define the R-module of ρ-twisted cochains of Y with coefficients in ρ as follows:

(5)

C ˚pY, ρq " Hom ρ `C˚p r Y q, K ˘.

Here r Y denotes the universal covering of Y ; we endow it with the canonical free left action of π 1 pY, y 0 q. We denote by C ˚pY q the group of singular chains of Y ; if Y is a CW-complex we can replace it by the group of cellular chains. The group C ˚p r Y q of r Y has a natural structure of a free left module over Zπ 1 pY, y 0 q. The cohomology H ˚pC ˚pY, ρqq is called twisted cohomology of Y with coefficients in ρ, or cohomology of Y with local coefficients in ρ.

Let β : π 1 pY, y 0 q Ñ GLpKq be an antirepresentation (that is, βpg 1 g 2 q " βpg 2 qβpg 1 q for every g 1 , g 2 P π 1 pY, y 0 q); it determines a right action of π 1 pY, y 0 q on K. Define the R-module of ρ-twisted chains of Y with coefficients in K as follows:

(6) C ˚pY, βq " K b β C ˚p r Y q.
The homology H ˚pC ˚pY, βqq is called twisted homology of Y with coefficients in β, or homology of Y with local coefficients in β.

In this paper we will be dealing with the cases when R is one of the following rings: C, L " Crt, t ´1s, Λ " Crrzss. Let V be a finite-dimensional vector space over C, put

V rt ˘s " V b C Crt, t ´1s, V rrzss " V b C Crrzss.
If α P H 1 pY, Zq is a non-zero cohomology class, we can define two representations:

rαs : π 1 pY, y 0 q Ñ L ' ; rαspgq " t xα,gy , xαy : π 1 pY, y 0 q Ñ Λ ' ; xαypgq " e zxα,gy .

For a representation ρ : π 1 pY, y 0 q Ñ GLpV q put (7)

ρ : π 1 pY, y 0 q Ñ GL `V rt ˘s˘, ρ " ρ b rαs, (8) 
p ρ : π 1 pY, y 0 q Ñ GL `V rrzss ˘, p ρ " ρ b xαy.
The representation ρ is a basic tool in the theory of twisted Alexander polynomials (see [START_REF] Kirk | Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants[END_REF], Section 2.1). Observe that p ρ " Exp ˝ρ, where Exp : L Ñ Λ is the homomorphism sending t to e z .

Applying the functor Hom to the exact sequence 0 Ñ Λ t / / Λ Ñ C Ñ 0 we obtain an exact sequence of groups of twisted cochains:

0 / / C ˚pY, p ρq z / / C ˚pY, p ρq / / C ˚pY, ρq Ñ 0.
The corresponding long exact sequence of twisted homomorphism modules can be considered as an exact couple In particular the differentials in the spectral sequence D r pY, ρ, αq are equal to the Massey products xα, ¨yr .

Formality with respect to a family of representations of the fundamental group.

Let us start with a definition. Definition 3.9. Let Y be a manifold, y 0 P Y , denote π 1 pY, y 0 q by G. Let F be a family of complex representations of G, such that F is closed under tensor products, that is, if

ρ 1 , ρ 2 P F then ρ 1 b ρ 2 P F . Put Ω ˚pY, F q " ' ρPF Ω ˚pY, ρq.
Then Ω ˚pY, F q has a natural structure of a DGA. We say that Y is F -formal, if this DGA is formal.

Examples.

1) If F is the trivial 1-dimensional representation, then the notion of F -formality is the same as the classical notion of formality as introduced by D. Sullivan [START_REF] Sullivan | Infinitesimal computations in topology[END_REF], [START_REF] Deligne | Real homotopy theory of Kahler manifolds[END_REF]. 2) Let F be the family of all 1-dimensional representations of G. Then the notion of F -formality is the same as the notion of strong formality introduced in [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF], see also [START_REF] Kasuya | Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems[END_REF]. All compact connected Kähler manifolds are strongly formal, as it follows from C. Simpson's theorem [START_REF] Simpson | Higgs bundles and local systems[END_REF].

3) Let G be a fundamental group of a compact connected Kähler manifold, let ρ be a semisimple representation of G. Consider the family F consisting of all tensor powers of ρ (including the trivial representation of the same dimension as ρ). It follows from theorem of K. Corlette [START_REF] Corlette | Flat G -bundles with canonical metrics[END_REF] that F is closed under tensor products, see also [START_REF] Simpson | Higgs bundles and local systems[END_REF]. C. Simpson's theorem [START_REF] Simpson | Higgs bundles and local systems[END_REF] implies that Y is F -formal.

Theorem 3.10. Assume that a manifold Y is F -formal. Let ρ P F and α P H 1 pY, Cq. Then the formal deformation spectral sequence D r pY, ρ, αq degenerates at its second term. All Massey products xα, xy r vanish for every x P H ˚pY, ρq and r 2.

Proof. It suffices to apply Corollary 3.7 to the module Ω ˚pY, E ρ q.

The formality property of Example 3) above yields the following corollary.

Corollary 3.11. Assume that Y is a connected compact Kähler manifold, and α P H 1 pY, Cq a non-zero cohomology class. Let ρ : π 1 pY, y 0 q Ñ GLpn, Cq be a semisimple representation. Then the spectral sequence D r pY, ρ, αq degenerates at its second term.

TWISTED MONODROMY HOMOMORPHISMS

Let φ : M Ñ M be a diffeomorphism of a C 8 compact connected manifold, and X its mapping torus. Choose a point x 0 P M , and put H " π 1 pM, x 0 q, G " π 1 pX, x 0 q. Recall the exact sequence

1 / / H i / / G p / / Z / / 1.
Let W be a vector space of dimension n over C endowed with a right action of G. Such action can be described as a map β : G Ñ GLpW q « GLpn, Cq satisfying βpg 1 g 2 q " βpg 2 qβpg 1 q, that is, an antirepresentation of G. Set β 0 " β | H : H Ñ GLpW q. In this section we associate to these data an isomorphism φ ˚: H ˚pM, β 0 q Ñ H ˚pM, β 0 q of vector spaces that we call twisted monodromy homomorphism induced by φ. This homomorphism can be considered as a generalization of the map induced by φ in the ordinary homology. Observe however, that the homomorphism φ ˚is not entirely determined by φ and ρ 0 , but depends also on the values of ρ on the elements of GzH (see the details in Subsection 4.1). The constructions of this section will be applied in Section 6 to the map β : G Ñ GLpW q which is conjugate to the given representation ρ : G Ñ GLpW q.

4.1. Definition of the twisted monodromy homomorphism. Choose any path θ in M from x 0 to φpx 0 q. This choice determines three more geometric objects:

A) An element u P G such that ppuq " 1. Namely let u be a composition of the path θ with the image of the path φpx 0 q ˆr0, 1s in the mapping torus

X " M ˆr0, 1s M px, 0q " pφpxq, 1q.
Observe that any element u with ppuq " 1 can be obtained this way with a suitable choice of θ.

B) A lift of the map φ to a map r φ : Ă M Ñ Ă M . Namely, represent a point x P Ă M by a path γ in M starting at x 0 . The path φpγq " φ ˝γ joins the points φpx 0 q and φpxq. The composition of paths θ ¨φpγq joins x 0 and φpxq. Now put r φpγq " θ ¨φpγq.

C) A homomorphism K θ : H Ñ H defined by K θ pγq " θφpγqθ ´1 where γ is a loop starting at x 0 .

These objects satisfy the following easily checked properties:

(10) r φphxq " K θ phq r φpxq for every h P H and x P Ă M ;

(11) uhu ´1 " K θ phq for every h P H.

Now we can define the homomorphism φ

˚.

Definition 4.1. To simplify the notation, we shall abbreviate W b β0

C ˚p Ă M q to W b C ˚p Ă M q up to
the end of the present subsection.

Define a map

(12) α : W b C C ˚p Ă M q Ñ W b C C ˚p Ă M q; αpv b σq " vu ´1 b r φpσq,
where v P W , and σ is a simplex in C ˚p Ă M q (here and elsewhere we denote by vg the result of the action of g P G on the vector v P W ).

Lemma 4.2. 1) The map α factors to an endomorphism

A of W b C ˚p Ă M q.
2) The resulting map A is a chain map, and it does not depend on the choice of the path θ. Apply the formula [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF] and the proof of the first part of Lemma is over.

2) Let θ 1 be another path joining x 0 and φpx 0 q, so that θ 1 " γθ where γ is a loop in M starting at x 0 . The corresponding element u 1 P G satisfies u 1 " γu, and r φ 1 " γφ, so that vu 1´1 b r φ 1 pσq " vuγ ´1 b γφpσq and the property 2) follows.

Definition 4.3. The map induced by A in the homology groups H ˚pM, βq will be denoted by φ ˚rβs and called the twisted monodromy homomorphism associated to φ and β (when the value of β is clear from the context we omit it in the notation).

Definition 4.4. For any antihomomorphism β : G Ñ GLpW q and λ P C ˚define an antihomomorphism β λ : G Ñ GLpW q as follows:

β λ pgq " λ xξ,gy ¨βpgq.
The proof of the following proposition follows immediately from the definition of φ ˚(see the formula ( 12)). Proposition 4.5. We have [START_REF] Pajitnov | Novikov homology, twisted Alexander polynomials, and Thurston cones[END_REF] φ ˚rβ λ s " 1 λ ¨φ˚r βs.

4.2.

The case G " H ˆZ. The algebralically simplest case occurs when the exact sequence (1) splits. This case can be characterized by the following simple lemma (the proof will be omitted).

Lemma 4.6. The three following properties are equivalent: 1) For some path θ from x 0 to φpx 0 q the homomorphism K θ : H Ñ H is an inner automorphism. 2) For every path θ from x 0 to φpx 0 q the homomorphism K θ : H Ñ H is an inner automorphism.

3) The extension (1) splits.

One can prove also that if the properties listed in the lemma hold for some choice of a base point x 0 , then they hold for any other choice of the base point. Assume that φ is π 1 -split. Choose an element u P G commuting with H, and such that ppuq " 1. Let β : H Ñ GLpW q be any antirepresentation, and let β 0 be its restriction to H. Put B " βpuq, then B P GLpW q. (Observe that in the split case any antirepresentation of H can be extended to an antirepresentation of G, sending u to a scalar matrix.)

1. Consider first the case when B is the identity map of W . The homomorphism φ ˚in this case has an especially simple definition. Namely, choose a path θ from x 0 to φpx 0 q in such a way that for any γ P π 1 pM, x 0 q we have θφpγqθ ´1 " γ. Then the corresponding lift r φ : Ă M Ñ Ă M has the property r φphxq " h r φpxq for every h P π 1 pM, x 0 q Denote such a lift by r φ ˝. The automorphism of H ˚pM, β 0 q corresponding to this choice will be denoted by φ ˝; it is defined by the following formula: [START_REF] Pajitnov | Massey products in mapping tori[END_REF] φ ˝pv b σq " v b r φ ˝σ (where σ is a singular simplex of Ă M ). This homomorphism φ ˝is entirely determined by φ and β 0 , and does not depend on the values of β on GzH. In the case when β 0 is the trivial representation the map φ ˝is just the induced map in the ordinary homology.

2. Now let B " λ ¨Id where λ P C ˚. Choosing for φ the same lift as in the previous case, we obtain the following formula for φ ˚:

φ ˚pv b σq " 1 λ v b r φ ˝pσq " 1 λ φ ˝pv b σq.
3. Now let B be an arbitrary element of GLpW q. Since B commutes with H, it induces a well-defined linear maps C ˚pM, β 0 q Ñ C ˚pM, β 0 q and H ˚pM, β 0 q Ñ H ˚pM, β 0 q, that will be denoted by the same letter B. We have then αpv b σq " vu ´1 b r φpσq " B ´1pv b r φpσqq and finally [START_REF] Papadima | Algebraic monodromy and obstructions to formality[END_REF] φ ˚" B ´1 ˝φ˝.

Remark 4.8. In the case λ " 1 it is possible to reformulate our definition of φ in terms of induced representations of fundamental groups. To explain this, let us proceed to a slightly more general framework. Let φ : X Ñ Y be a map of connected topological spaces, x 0 P X, y 0 P Y . Let ρ : π 1 pY, y 0 q Ñ GLpW q be a representation. Choose a path µ from y 0 to φpx 0 q. Define a representation ρ 1 : π 1 pX, x 0 q Ñ GLpW q as follows ρ 1 pgq " ρpµφpgqµ ´1q. It is easy to check that φ induces a homomorphism

φ ˚: H ˚pX, ρ 1 q Ñ H ˚pY, ρq, defined on the chain level as v b σ Þ Ñ v b r
φ ˝σ. This homomorphism depends obviously on µ. In the case when X " Y and φ is π 1 -split choose a path µ in such a way that µφphqµ ´1 " h for every h P π 1 pM, x 0 q. Then ρ 1 " ρ and we return to the homomorphism φ ˝of the above definition. 4.3. Relation wih Kirk-Livingston's setup. Let X be the infinite cyclic covering of X corresponding to ξ. Observe that π 1 pXq « H, so that the twisted homology H ˚pX , β 0 q of X is defined. We have the following simple lemma; the proof follows from the observation that X « M ˆR. Lemma 4.9. The inclusion i : M / / X induces an isomorphism

I : H ˚pM, β 0 q « / / H ˚pX , β 0 q.
In the work It is shown in [START_REF] Kirk | Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants[END_REF] that that this action does not depend on the particular choice of u. The next proposition follows readily from the definition of the monodromy homomorphism φ ˚.

Proposition 4.10. The following diagram is commutative

H ˚pX , β 0 q t / / H ˚pX , β 0 q H ˚pM, β 0 q I O O φ˚/ / H ˚pM, β 0 q I O O Remark 4.11.
We worked in this section in the assumption that M is a compact C 8 manifold; the homology groups were in coefficients in C, in view of the applications to Kähler manifolds. However all the constructions and results of the section generalize without any changes to the case when M is any CW-complex; the coefficient field C can be replaced by an arbitrary field K.

TWISTED MONODROMY MAPS AND FORMAL DEFORMATION SPECTRAL SEQUENCES

We begin with a discussion of a universal coefficient theorem for twisted cohomology (Subsection 5.1). The next subsection contains the computation of the formal deformation spectral sequences in terms of the monodromy maps. The proof of the main theorem in Section 6 is based on these computations. 5.1. Universal coefficient theorem for twisted cohomology. Let Y be a connected topological space endowed with a non-zero cohomology class η P H 1 pY, Zq. Denote by G the fundamental group π 1 pY, y 0 q. Let V be a finite-dimensional vector space over C and ρ : G Ñ GLpV q a representation. Let L " Zrt, t ´1s, denote by V rt ˘s the free L-module V b (where w P W and σ P C ˚p r Y q). Applying this to the right action ρ ˚on W " V ˚we obtain the following isomorphism (see [START_REF] Kohno | Novikov homology, jump loci and Massey products[END_REF], Lemma 4.3) [START_REF] Papadima | Geometric and algebraic aspects of 1-formality[END_REF] H ˚pY, ρq « H ˚´Hom L pC ˚pY, V ˚q, Lq ¯.

The cohomology module in the right-hand side of ( 16) has the advantage that we can apply to it the universal coefficient theorem:

Proposition 5.1. For every k we have an exact sequence

(17) 0 Ñ Ext 1 L ´Hk´1 pY, ρ ˚q, L ¯Ñ H k pY, ρq Ñ Hom L ´Hk pY, ρ ˚q, L ¯Ñ 0.
We will now apply these results to mapping tori. In the rest of this subsection X is the mapping torus of a homeomorphism φ : M Ñ M (see Subsection 2.1 for the notations). Endow the vector space H k´1 pM, ρ 0 q with the action of L as follows: ta " φ ˚paq, where φ ˚is the twisted monodromy map from Subsection 4.1.

Proposition 5.2. We have an isomorphism of L-modules H k pX, ρq « H k´1 pM, ρ 0 q. Proof. By Theorem 2.1 of [START_REF] Kirk | Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants[END_REF] we have H ˚pX, ρ ˚q « H ˚pX , ρ 0 q. Lemma 4.9 says that H ˚pX , ρ 0 q « H ˚pM, ρ 0 q, therefore this L-module is a finite dimensional vector space over C, and hence a finitely generated torsion L-module. Thus we have Hom L ´Hk pX, ρ ˚q, L ¯" 0 and Ext 1 L ´Hk´1 pX, ρ ˚q, L ¯« H k´1 pX, ρ 0 q « H k´1 pM, ρ 0 q.

The proposition follows.

Computation of deformation spectral sequences in terms of monodromy maps.

Our main aim here is to prove that the exact couples [START_REF] Sullivan | Infinitesimal computations in topology[END_REF] x x H ˚pX, ρq f f maps to pD 1 q via the homomorphism H ˚pX, ρq Ñ H ˚pX, p ρq induced by Exp, therefore the spectral sequences induced by pD 2 q and pD 0 q are isomorphic. Applying Proposition 5.2 we deduce that pD 2 q is isomorphic to the exact couple pD 3 q of the form (21) H ˚pM, ρ 0 q φ˚´1 / / H ˚pM, ρ 0 q j w w H ˚pX, ρq k g g where the maps j and k have the degrees respectively 1 and 0. We obtain finally a homomorphism pD 3 q Ñ pD 0 q of exact couples, which equals the identity map on the term H ˚pX, ρq. Therefore the exact sequences derived from these exact couples are isomorphic. Remark 5.3. Similary to the Section 4, all the constructions and results of the section generalize without any changes to the case when M is any CW-complex.

PROOFS OF THE MAIN RESULTS

Now we can complete the proofs of the main results. 6.1. Theorem A. Let us first prove Theorem A for the case λ " 1, that is, ρ λ " ρ. According to the previous section the exact couples pD 0 q and pD 3 q induce isomorphic spectral sequences. The differentials in the spectral sequence induced by pD 0 q are equal to Massey products: d r pxq " xξ, xy r , therefore the spectral sequence degenerates in degree k at the term number M k pρq `1. It suffices to prove that the spectral sequence induced by pD 3 q degenerates at the term J k pφ ˚q `1 in degree k. Denote by φ 

δ ' τ : A ' B Ñ A ' B
where δ is nilpotent of degree m and τ is injective. 1) Let deg i " deg l " 0, deg j " 1. Then the spectral sequence induced by E degenerates at the step m `1 in degree k.

2) Let deg i " 0, deg l " 1, deg j " 0. Then the spectral sequence induced by E degenerates at the step m `1 in degree k ´1. Now let us consider the case when λ is an arbitrary non-zero complex number. According to the Proposition 4.5 the monodromy homomorphism φ ˚rρ λ s constructed from the representation ρ λ equals 1 λ φ ˚rρs. Therefore the exact couple pD 3 q for the case of the representation ρ λ has the following form

(23) H ˚pM, ρ 0 q 1 λ φ˚´1
/ / H ˚pM, ρ 0 q j 1 w w H ˚pX, ρ λ q k 1 g g (where φ ˚denotes the monodromy homomorphism corresponding to ρ). It remains to observe that J k p 1 λ φ ˚, 1q " J k pφ ˚, λq.

Theorem B.

Let X be a connected compact Kähler manifold, and ρ a semisimple representation. In view of Theorem A it suffices to prove that M k pρ λ q " 1 for every λ P C ˚, or, equivalently, that the spectral sequence associated to the exact couple (24) H ˚pX, p ρ λ q z / / H ˚pX, p ρ λ q w w H ˚pX, ρ λ q g g degenerates at its second term. Observe that the representation ρ λ is also semisimple; apply to it Corollary (3.11) and the proof of Theorem B is over. 6.3. The π 1 -split case. Recall from Subsection 4.2 that in this case we have an automorphism φ ˝determined by φ and by the representation of π 1 pM q. Choose an element u P G commuting with H and such that ppuq " 1. Let χ : π 1 pM, x 0 q Ñ GLpV q be any representation of the fundamental group of M . Let λ P C ˚. Extend χ to a representation χ λ : π 1 pX, x 0 q Ñ GLpV q by χpuq " λ (this is possible since u commutes with H). Theorem 6.2. We have 1) J k pφ ˝, λq " M k pχ λ q.

2) If moreover X is a compact Kähler manifold, and the representation χ is semisimple, then φ ˝is diagonalizable.

Proof. Part 1) follows immediately from Theorem A. As for the part 2), observe that the representation χ λ is also semisimple, so we can apply to it the Theorem B, and the proof is over. Remark 6.3. The particular case of the trivial representation χ corresponds to Theorems 3.1 and 5.1 of the paper [START_REF] Pajitnov | Massey products in mapping tori[END_REF]. 6.4. Theorem C. We need some more terminology. Definition 6.4. Let R be a finitely generated L-module, and a P L a polynomial of degree 1. Denote by R a the a-primary part of R, that is, the submodule of all x P R, such that a N x " 0 for some N . Denote by N ilpR, aq the minimal number N , such that a N R a " 0. The module R a is a finite-dimensional vector space, and a determines a linear map of this space. The number N ilpR, aq equals the maximal size of Jordan blocks of eigenvalue 0 of a.

Denote by M k pα, θ λ q the maximal length of a non-zero Massey product of the form xα, xy r where x P H k pY, θ λ q. Consider the spectral sequence associated to the exact couple (25) H ˚pY, θ λ q t´1 / / H ˚pY, θ λ q w w H ˚pY, θ λ q g g Applying the same argument as in the beginning of Subsection 6.1 we deduce that M k pα, θ λ q `1 equals the the number r of the sheet where this spectral sequence degenerates. By Lemma 6.1 this number r equals N il `Hk`1 pY, θ λ q, t´1 ˘. Observe that we have θ λ " g λ ˝θ, where g λ : L Ñ L is the isomorphism given by the formula g λ ptq " λ ¨t. Therefore the L-homomorphism t ´1 : H ˚pY, θ λ q / / H ˚pY, θ λ q is isomorphic to the L-homomorphism λ ´1t ´1 : H ˚pY, θq / / H ˚pY, θq, and we have N il `Hk`1 pY, θ λ q, t ´1˘" N il `Hk`1 pY, θq, t ´λ˘. The torsion submodule of H k`1 pY, θq is isomorphic to Ext `Hk pY, θ ˚q, L ˘which is in turn isomorphic to the torsion submodule T 1 k of H k pY, θ ˚q. A theorem of P. Kirk and C. Livingston ([9], Th. 2.1) says that we have an isomorphism H ˚pY, θ ˚q « H ˚pY , θ 0 q.

Therefore the module T 1 k is isomorphic to the torsion submodule T k of H ˚pY , θ 0 q, so, finally, M k pα, θ λ q " N ilpT k , t ´λq and the proof of Theorem C is complete. 6.5. Theorem D. It follows readily from Theorem C; the proof is similar to the argument of Subsection 6.2. 6.6. Acknowledgments. I am grateful to Professor F. Bogomolov for valuable discussions and support.

Definition 3 . 1 .

 31 One can prove that the spectral sequence induced by the exact couple (3) depends only on the cohomology class of θ ([10], Prop. 2.1). Put α " rθs. The spectral sequence associated to the exact couple (3) is called formal deformation spectral sequence and denoted by E r pN ˚, αq. If the couple pN ˚, αq is clear from the context, we suppress it in the notation and write just E r .

( 9 )

 9 H ˚pY, p ρq z / / H ˚pY, p ρq x x H ˚pY, ρq f f This exact couple induces a spectral sequence D r pY, ρ, αq starting from the module H ˚pY, ρq. We have the following theorem Theorem 3.8. [[10], Th. 5.4] The spectral sequences E r pY, ρ, αq and D r pY, ρ, αq are isomorphic.

Proof. 1 )

 1 We have to check that αpvh b σq and αpv b hσq give the same element in W b C ˚p Ă M q for every h P H. Observe that αpvh b σq " pvhqu ´1 b r φpσq " vu ´1 ¨uhu ´1 b r φpσq " vu ´1 ¨Kθ phq b r φpσq and this equals vu ´1 b K θ phq r φpσq in W b C ˚p Ă M q.

Definition 4 . 7 .

 47 If the map φ satisfies the three equivalent properties of Lemma (4.6) we say that φ is π 1 -split.

  [START_REF] Kirk | Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants[END_REF] P.Kirk and C. Livingston constructed an action of the group Z on the space W b β0 C ˚pX q. Namely, choose any element u P G such that ppuq " 1, and let the generator t of Z act on W b β0 C ˚pX q by the following formula tpv b σq " vu ´1 b uσ.

CL.

  Recall from Subsection 3.2 the representation ρ : G Ñ GLpV rt ˘sq; ρpgq " ρpgqt ξpgq . The representation ρ determines an action from the left of G on V ; put V ˚" HompV, Cq, and consider the corresponding right action ρ ˚of G on V ˚. Similarly we obtain a right action ρ ˚of G on V rt ˘s. If we choose a basis in V , then ρ is identified with an antihomomorphism G Ñ GLpn, Cq obtained from ρ by transposition (similarly for ρ ˚). Associated to ρ ˚there is the L-module of ρ ˚-twisted chains V rt ˘s b ρ˚C ˚p r Y q, and its homology H ˚pX, ρ ˚q. Observe that for any right action χ of G on a free L-module W there is a natural isomorphism Hom L ˆW b χ C ˚p r Y q, L ˙Φ / / Hom ρ `C˚p r Y q, W ˚˘; the value of Φ on an L-homomorphism α : W b χ C ˚p r Y q Ñ L is defined by the following formula: ´Φpαqpσq ¯pwq " αpw b σq

Lemma 6 . 1 .

 61 pkq ˚the twisted monodromy homomorphism in degree k. Let A k be the invariant linear subspace of eigenvalue 1 of φ pkq ˚. Let B k be the sum of all invariant linear subspaces of φ pkq ˚corresponding to the eigenvalues different from 1. The restriction pφ pkq ˚´1q | A k is nilpotent of degree equal to J k pφ ˚, 1q, and the restriction pφ pkq ˚´1q | B k is an isomorphism of B k onto itself. The assertion of the theorem follows now from the following lemma ([14], Lemma 3.3). Let E be a graded exact couple: i : D k Ñ D k decomposes as follows:

  and (19) induce isomorphic spectral sequences. We have p ρ " Exp ˝ρ, where Exp : L Ñ Λ is the ring homomorphism sending t to e z . The exact couple pD 0 q

	(18)	H ˚pX, p ρq f f	z	/ / H ˚pX, p ρq
			x x	
			H ˚pX, ρq	
	is obviously isomorphic to the following exact couple pD 1 q
	(19)	H ˚pX, p ρq f f	e z ´1	/ / H ˚pX, p ρq
			x x	
			H ˚pX, ρq	
	The exact couple pD 2 q below		
	(20)	H ˚pX, ρq		

t´1

/ / H ˚pX, ρq