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Abstract. We prove that ω-regular languages accepted by Büchi or
Muller automata satisfy an effective automata-theoretic version of the
Baire property. Then we use this result to obtain a new effective property
of rational functions over infinite words which are realized by finite state
Büchi transducers: for each such function F : Σω → Γω, one can con-
struct a deterministic Büchi automaton A accepting a dense Π0

2-subset
of Σω such that the restriction of F to L(A) is continuous.
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1 Introduction

Infinitary rational relations were first studied by Gire and Nivat [8, 10]. The ω-
rational functions over infinite words, whose graphs are (functional) infinitary
rational relations accepted by 2-tape Büchi automata, have been studied by
several authors [4, 1, 18, 16].

In this paper we are mainly interested in the question of the continuity of
such ω-rational functions. Recall that Prieur proved that one can decide whether
a given ω-rational function is continuous [16, 17]. On the other hand, Carton,
Finkel and Simonnet proved that one cannot decide whether a given ω-rational
function f has at least one point of continuity [3]. Notice that this decision
problem is actually Σ1

1 -complete, hence highly undecidable [6]. It was also proved
in [3] that one cannot decide whether the continuity set of a given ω-rational
function f (its set of continuity points) is a regular (respectively, context-free)
ω-language. Notice that the situation was shown to be quite different in the
case of synchronous functions. It was proved in [3] that if f : Aω → Bω is an
ω-rational synchronous function, then the continuity set C(f) of f is ω-rational.
Moreover, if X is an ω-rational Π0

2 subset of Aω, then X is the continuity set
C(f) of some rational synchronous function f of domain Aω. Notice that these
previous works on the continuity of ω-rational functions had shown that decision
problems in this area may be decidable or not, while it is well known that most
problems about regular languages accepted by finite automata are decidable.



We establish in this paper a new effective property of rational functions
over infinite words. We first prove that ω-regular languages accepted by Büchi
or Muller automata satisfy an effective automata-theoretic version of the Baire
property. Then we use this result to obtain a new effective property of rational
functions over infinite words which are realized by finite state Büchi transducers:
for each such function F : Σω → Γω, one can construct a deterministic Büchi
automaton A accepting a dense Π0

2-subset of Σω such that the restriction of F
to this dense set L(A) is continuous.

The paper is organized as follows. We recall basic notions on automata and
on the Borel hierarchy in Section 2. The automatic Baire property for regular
ω-languages is proved in Section 3. We prove our main new result on ω-rational
functions in Section 4. Some concluding remarks are given in Section 5.

2 Recall of basic notions

We assume the reader to be familiar with the theory of formal (ω)-languages
[20, 18]. We recall some usual notations of formal language theory.

When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is |x| = k. The set of finite words (including the empty word ε whose length
is zero) over Σ is denoted Σ?.

The first infinite ordinal is ω. An ω-word over Σ is an ω-sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n).

The usual concatenation product of two finite words u and v is denoted
u · v and sometimes just uv. This product is extended to the product of a finite
word u and an ω-word v. The infinite word u · v is then the ω-word such that:
(u·v)(k) = u(k) if k ≤ |u| , and (u·v)(k) = v(k−|u|) if k > |u|. The concatenation
product can be extended in an obvious way to the concatenation of an infinite
sequence of finite words. The concatenation of a set U of finite words with a set
V of infinite words is the set of infinite words U · V = {u.v | u ∈ U and v ∈ V }.
If u is a finite word and V is a set of infinite words then u · V = {u · v | v ∈ V }.

The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language
over an alphabet Σ is a subset of Σω.

Definition 1. : A finite state machine (FSM) is a quadrupleM = (K,Σ, δ, q0),
where K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial
state and δ is a mapping from K × Σ into 2K . A FSM is called deterministic
iff: δ : K × Σ → {{q} | q ∈ K}. (As usual, by a clear identification, we might
consider in that case that δ : K × Σ→ K).

A Büchi automaton (BA) is a 5-tuple A = (K,Σ, δ, q0, F ) where M =
(K,Σ, δ, q0) is a finite state machine and F ⊆ K is the set of final states.

A Muller automaton (MA) is a 5-tuple A = (K,Σ, δ, q0,F) where M =
(K,Σ, δ, q0) is a FSM and F ⊆ 2K is the collection of designated state sets.

A Büchi or Muller automaton is said to be deterministic if the associated
FSM is deterministic.



Let σ = a1a2 . . . an . . . be an ω-word over Σ.
A sequence of states r = q1q2 . . . qn . . . is called an (infinite) run of M =

(K,Σ, δ, q0) on σ, starting in state p, iff: 1) q1 = p and 2) for each i ≥ 1,
qi+1 ∈ δ(qi, ai).

In case a run r of M on σ starts in state q0, we call it simply “a run of M
on σ”. For every (infinite) run r = q1q2 . . . qn . . . of M, In(r) is the set of states
in K entered by M infinitely many times during run r: In(r) = {q ∈ K | ∃∞i ≥
1 qi = q} is infinite}.

For A = (K,Σ, δ, q0, F ) a BA, the ω-language accepted by A is:
L(A) = {σ ∈ Σω | there exists a run r of A on σ such that In(r) ∩ F 6= ∅}.
For A = (K,Σ, δ, q0, F ) a MA, the ω-language accepted by A is:
L(A) = {σ ∈ Σω | there exists a run r of A on σ such that In(r) ∈ F}.

By R. Mc Naughton’s Theorem, see [15], the expressive power of deterministic
MA (DMA) is equal to the expressive power of non deterministic MA which is
also equal to the expressive power of non deterministic BA.

Theorem 2. For any ω-language L ⊆ Σω, the following conditions are equiva-
lent:

1. There exists a DMA that accepts L.
2. There exists a MA that accepts L.
3. There exists a BA that accepts L.

An ω-language L satisfying one of these conditions is called a regular ω-language.

Recall that, from a Büchi (respectively, Muller) automaton A, one can effec-
tively construct a deterministic Muller (respectively, non-deterministic Büchi)
automaton B such that L(A) = L(B).

A way to study the complexity of ω-languages accepted by various automata
is to study their topological complexity.

We assume the reader to be familiar with basic notions of topology which may
be found in [11, 18, 15]. If X is a finite alphabet containing at least two letters,
then the set Xω of infinite words over X may be equipped with the product
topology of the discrete topology on X. This topology is induced by a natural
metric which is called the prefix metric and is defined as follows. For u, v ∈ Xω

and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that
the u(n + 1) is different from v(n + 1). The topological space Xω is a Cantor
space. The open sets of Xω are the sets of the form W ·Xω, where W ⊆ X?. A
set L ⊆ Xω is a closed set iff its complement Xω −L is an open set. Closed sets
are characterized by the following:

Proposition 3. A set L ⊆ Xω is a closed set of Xω iff for every σ ∈ Xω,
[∀n ≥ 1,∃u ∈ Xω such that σ[n] · u ∈ L] implies that σ ∈ L.

Define now the next classes of the Borel hierarchy:



Definition 4. The classes Σ0
n and Π0

n of the Borel Hierarchy on the topological
space Xω are defined as follows: Σ0

1 is the class of open sets of Xω, Π0
1 is

the class of closed sets of Xω. And for any integer n ≥ 1: Σ0
n+1 is the class

of countable unions of Π0
n-subsets of Xω, and Π0

n+1 is the class of countable
intersections of Σ0

n-subsets of Xω.

Remark 5. The hierarchy defined above is the hierarchy of Borel sets of finite
rank. The Borel Hierarchy is also defined for transfinite levels (see [11]) but we
shall not need this in the sequel. Recall that the class of Borel subsets of a Cantor
space is the closure of the class of open sets under countable unions and countable
intersections.

It turns out that there is a characterization of Π0
2-subsets of Xω, involving the

notion of W δ which we now recall, see [18, 15].

Definition 6. For W ⊆ X?, we set: W δ = {σ ∈ Xω | ∃∞i such that σ[i] ∈W}.
(σ ∈W δ iff σ has infinitely many prefixes in W.)

Then we can state the following proposition.

Proposition 7. A subset L of Xω is a Π0
2-subset of Xω iff there exists a set

W ⊆ X? such that L = W δ.

It is easy to see, using the above characterization of Π0
2-sets, that every ω-

language accepted by a deterministic Büchi automaton is a Π0
2-set. Thus every

regular ω-language is a finite Boolean combination of Π0
2-sets, because it is

accepted by a deterministic Muller automaton and this implies that it is a finite
boolean combination of ω-languages accepted by deterministic Büchi automata.

Landweber studied the topological properties of regular ω-languages in [13].
He characterized the regular ω-languages in each of the Borel classes Σ0

1,Π
0
1,

Σ0
2,Π

0
2, and showed that one can decide, for an effectively given regular ω-

language L, whether L is in Σ0
1,Π

0
1, Σ0

2, or Π0
2. In particular, it turned out that

a regular ω-language is in the class Π0
2 iff it is accepted by a deterministic Büchi

automaton.
Recall that, from a Büchi or Muller automaton A, one can construct some

Büchi or Muller automata B and C, such that L(B) is equal to the topological
closure of L(A), and L(C) is equal to the topological interior of L(A), see [18,
15].

3 The automatic Baire property

In this section we are going to prove an automatic version of the result stating
that every Borel (and even every analytic) set has the Baire property.

We firstly recall some basic definitions about meager sets, see [11]. In a topo-
logical space X , a set A ⊆ X is said to be nowhere dense if its closure Ā has
empty interior, i.e. Int(Ā)= ∅. A set A ⊆ X is said to be meager if it is the
union of countably many nowhere dense sets, or equivalently if it is included in



a countable union of closed sets with empty interiors. This means that A is mea-
ger if there exist countably many closed sets An, n ≥ 1, such that A ⊆

⋃
n≥1An

where for every integer n ≥ 1, Int(An)= ∅. A set is comeager if its complement
is meager, i.e. if it contains the intersection of countably many dense open sets.
Notice that the notion of a meager set is a notion of a small set, while the notion
of a comeager set is a notion of a big set.

Recall that a Baire space is a topological space X in which every intersec-
tion of countably many dense open sets is dense, or equivalently in which every
countable union of closed sets with empty interiors has also an empty interior.
It is well known that every Cantor space Σω is a Baire space. In the sequel we
will consider only Cantor spaces.

We now recall the notion of Baire property. For any sets A,B ⊆ Σω, we
denote by A∆B the symmetric difference of A and B, and we write A =? B if
and only if A∆B is meager.

Definition 8. A set A ⊆ Σω has the Baire property (BP) if there exists an open
set U ⊆ Σω such that A =? U .

An important result of descriptive set theory is the following result, see [11,
page 47].

Theorem 9. Every Borel set of a Cantor space has the Baire property.

We are going to prove an automatic version of the above theorem. We first
give the following definition.

Definition 10. Let L = L(A) ⊆ Σω be a regular ω-language accepted by a Büchi
or Muller automaton A. The ω-language L is said to have the automatic Baire
property if one can construct from A some Büchi automata B and C such that
L(B) ⊆ Σω is open, L(C) ⊆ Σω is a countable union of closed sets with empty
interior, i.e. a meager Σ0

2-set, and L(A)∆L(B) ⊆ L(C).

We already know that the regular ω-languages have the Baire property since
they are Borel. We now state the following theorem which gives an automatic
version of this result.

Theorem 11. Let L = L(A) ⊆ Σω be a regular ω-language accepted by a Büchi
or Muller automaton A. Then one can construct Büchi automata B and C such
that L(B) ⊆ Σω is open, L(C) ⊆ Σω is a meager Σ0

2-set, and L(A)∆L(B) ⊆ L(C),
i.e. the ω-language L(A) has the automatic Baire property.

In order to prove this result, we first prove the following lemmas.

Lemma 12. Every regular ω-language which is open or closed has the automatic
Baire property.

Proof. Let L = L(A) ⊆ Σω be a regular ω-language accepted by a Büchi or
Muller automaton A.



If L = L(A) is an open set then we immediately see that we get the result
with B = A and C is any Büchi automaton accepting the empty set.

If L = L(A) is a closed set then L \ Int(L) is a closed set with empty inte-
rior. Moreover it is known that one can construct from the Büchi automaton A
another Büchi automaton B accepting Int(L), and then also a Büchi automaton
C accepting L \ Int(L). Then we have L(A)∆L(B) = L \ Int(L) = L(C), with
L(B) open and L(C) is a closed set with empty interior. �

Lemma 13. Every regular ω-language which is a Σ0
2-set has the automatic

Baire property.

Lemma 14. Let L ⊆ Σω be a regular ω-language which has the automatic Baire
property. Then its complement Σω \ L has also the automatic Baire property.

Lemma 15. The class of regular ω-languages having the automatic Baire prop-
erty is closed under finite union and under finite intersection.

End of Proof of Theorem 11. We now return to the general case of a regular
ω-language L ⊆ Σω, accepted by a Büchi or Muller automaton. We know that we
can construct a deterministic Muller automatonA = (K,Σ, δ, q0,F) accepting L.
Recall that F ⊆ 2K is here the collection of designated state sets. For each state
q ∈ K, we now denote by A(q) the automaton A but viewed as a (deterministic)
Büchi automaton with the single accepting state q, i.e. A(q) = (K,Σ, δ, q0, {q}).
We know that the languages L(A(q)) are Borel Π0

2-sets and thus satisfy the
automatic Baire property by Lemmas 13 and 14. Moreover we have the following
equality:

L(A) =
⋃
F∈F

[
⋂
q∈F

L(A(q)) \
⋃
q/∈F

L(A(q))]

This implies, from the previous lemmas about the preservation of the automatic
Baire property by Boolean operations, that we can construct Büchi automata
B and C, such that L(B) is open and L(C) is a meager Σ0

2-set, which satisfy
L(A)∆L(B) ⊆ L(C). Thus the ω-language L has the automatic Baire property.

�

Corollary 16. On can decide, for a given Büchi or Muller automaton A, whether
L(A) is meager.

Proof. Let A be a Büchi or Muller automaton. The ω-language L(A) has the
automatic Baire property and we can construct Büchi automata B and C, such
that L(B) is open and L(C) is a countable union of closed sets with empty
interiors, which satisfy L(A)∆L(B) ⊆ L(C). It is easy to see that L(A) is meager
if and only if L(B) is empty, since any non-empty open set is non-meager, and
it can be decided from the automaton B whether L(B) is empty. �

Remark 17. The above Corollary followed already from Staiger’s paper [19],
see also [14]. So we get here another proof of this result, based on the automatic
Baire property.



4 An application to ω-rational functions

4.1 Infinitary rational relations

We now recall the definition of infinitary rational relations, via definition by
Büchi transducers:

Definition 18. A 2-tape Büchi automaton is a 6-tuple T = (K,Σ, Γ, ∆, q0, F ),
where K is a finite set of states, Σ and Γ are finite sets called the input and the
output alphabets, ∆ is a finite subset of K × (Σ ∪ ε)× (Γ ∪ ε)×K called the set
of transitions, q0 is the initial state, and F ⊆ K is the set of accepting states.
A computation C of the automaton T is an infinite sequence of consecutive tran-
sitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F
and infinitely many integers i ≥ 0 such that qi = qf . The input word and output
word of the computation are respectively u = u1.u2.u3 . . . and v = v1.v2.v3 . . .
The input and the output words may be finite or infinite. The infinitary rational
relation R(T ) ⊆ Σω × Γω accepted by the 2-tape Büchi automaton T is the set
of pairs (u, v) ∈ Σω × Γω such that u and v are the input and the output words
of some successful computation C of T .

The 2-tape Büchi automaton T = (K,Σ, Γ, ∆, q0, F ) is said to be synchronous
if the set of transitions ∆ is a finite subset of K×Σ×Γ×K, i.e. if each transition
is labelled with a pair (a, b) ∈ Σ×Γ. An infinitary rational relation recognized by
a synchronous 2-tape Büchi automaton is in fact, via the natural identification
of Σω × Γω with (Σ× Γ)ω, an ω-language over the product alphabet Σ× Γ which
is accepted by a Büchi automaton. It is called a synchronous infinitary rational
relation. An infinitary rational relation is said to be asynchronous if it can not
be recognized by any synchronous 2-tape Büchi automaton.

Remark 19. In the above definition, we could have defined the set of transitions
∆ as a subset of K×Σ?×Γ?×K. We have chosen to define ∆ as a finite subset
of K × (Σ∪ ε)× (Γ∪ ε)×K to simplify the proofs. However this is done without
loss of generality because it is easy to see that this convention does not change
the class of infinitary rational relations.

If R(T ) ⊆ Σω × Γω is an infinitary rational relation recognized by the 2-tape
Büchi automaton T then we denote

Dom(R(T )) = {u ∈ Σω | ∃v ∈ Γω (u, v) ∈ R(T )}

and
Im(R(T )) = {v ∈ Γω | ∃u ∈ Σω(u, v) ∈ R(T )}.

It is well known that, for each infinitary rational relation R(T ) ⊆ Σω × Γω, the
sets Dom(R(T )) and Im(R(T )) are regular ω-languages and that one can con-
struct, from the Büchi transducer T , some (non-deterministic) Büchi automata
A and B accepting the ω-languages Dom(R(T )) and Im(R(T )).

Recall now the following undecidability result of Frougny and Sakarovitch.



Theorem 20 ([7]). One cannot decide whether a given infinitary rational re-
lation is synchronous.

We proved in [5] that many decision problems about infinitary rational rela-
tions are highly undecidable. In fact many of them, like the universality problem,
the equivalence problem, the inclusion problem, the cofiniteness problem, the un-
ambiguity problem, are Π1

2 -complete, hence located at the second level of the
analytical hierarchy.

4.2 Continuity of ω-rational functions

Recall that an infinitary rational relation R(T ) ⊆ Σω×Γω is said to be functional
iff it is the graph of a function, i.e. iff

[∀x ∈ Dom(R(T )) ∃!y ∈ Im(R(T )) (x, y) ∈ R(T )].

Then the functional relation R(T ) defines an ω-rational (partial) function FT :
Dom(R(T )) → Γω by: for each u ∈ Dom(R(T )), FT (u) is the unique v ∈ Γω

such that (u, v) ∈ R(T ).
An ω-rational (partial) function f : Σω → Γω is said to be synchronous if

there is a synchronous 2-tape Büchi automaton T such that f = FT .
An ω-rational (partial) function f : Σω → Γω is said to be asynchronous if

there is no synchronous 2-tape Büchi automaton T such that f = FT .
Recall the following previous decidability result.

Theorem 21 (Gire [9]). One can decide whether an infinitary rational relation
recognized by a given 2-tape Büchi automaton T is a functional infinitary rational
relation.

It is very natural to consider the notion of continuity for ω-rational functions
defined by 2-tape Büchi automata.

We recall that a function f : Dom(f) ⊆ Σω → Γω, whose domain is Dom(f),
is said to be continuous at point x ∈ Dom(f) if :

∀n ≥ 1 ∃k ≥ 1 ∀y ∈ Dom(f) [ δ(x, y) < 2−k ⇒ δ(f(x), f(y)) < 2−n ]

The continuity set C(f) of the function f is the set of points of continuity
of f . Notice that the continuity set C(f) of a function f : Σω → Γω is always a
Borel Π0

2-subset of Σω, see [3].
The function f is said to be continuous if it is continuous at every point

x ∈ Dom(f), i. e. if C(f) = Dom(f).
Prieur proved the following decidability result.

Theorem 22 (Prieur [16, 17]). One can decide whether a given ω-rational
function is continuous.

On the other hand the following undecidability result was proved in [3].



Theorem 23 (see [3]). One cannot decide whether a given ω-rational function
f has at least one point of continuity.

The exact complexity of this undecidable problem was given in [6]. It is Σ1
1 -

complete to determine whether a given ω-rational function f has at least one
point of continuity.

We now consider the continuity set of an ω-rational function and its possible
complexity. The following undecidability result was proved in [3].

Theorem 24 (see [3]). One cannot decide whether the continuity set of a given
ω-rational function f is a regular (respectively, context-free) ω-language.

The situation is quite different in the case of synchronous functions. The
following results were proved in [3].

Theorem 25 ([3]). Let f : Aω → Bω be a rational synchronous function. The
continuity set C(f) of f is rational.

Theorem 26 ([3]). Let X be a rational Π0
2 subset of Aω. Then X is the con-

tinuity set C(f) of some rational synchronous function f of domain Aω.

We are now going to prove another effective result about ω-rational functions.
We first recall the following result of descriptive set theory, in the particular

case of Cantor spaces Σω and Γω. A Borel function f : Σω → Γω is a function for
which the inverse image of any Borel subset of Γω, or equivalently of any open
set of Γω, is a Borel subset of Σω.

Theorem 27 (see Theorem 8.38 of [11]). Let Σ and Γ be two finite alphabets
and f : Σω → Γω be a Borel function. Then there is a dense Π0

2-subset G of Σω

such that the restriction of f to G is continuous.

We now state an automatic version of this theorem.

Theorem 28. Let Σ and Γ be two finite alphabets and f : Σω → Γω be an
ω-rational function. Then one can construct, from a 2-tape Büchi automaton
accepting the graph of the function f , a deterministic Büchi automaton accepting
a dense Π0

2-subset G of Σω such that the restriction of f to G is continuous.

Proof. Let Σ and Γ be two finite alphabets and f : Σω → Γω be an
ω-rational function whose graph is accepted by a 2-tape Büchi automaton A =
(K,Σ, Γ, ∆, q0, F ).

Notice that one can also consider the 2-tape automaton A reading pairs of
finite words (v, u) ∈ Σ? × Γ?. A partial computation of the 2-tape automaton A
reading such a pair (v, u) is simply a finite sequence of consecutive transitions

(q0, a1, b1, q1), (q1, a2, b2, q2), . . . (qi−1, ai, bi, qi), (qi, ai+1, bi+1, qi+1)

such that v = a1a2 . . . ai+1 and u = b1b2 . . . bi+1. This computation ends in state
qi+1.



We assume that we have an effective enumeration of the finite words over
the alphabet Γ given by (un)n≥1, un ∈ Γ?. For q ∈ K we also denote Aq the
automaton A in which we have changed the initial state so that the initial state
of Aq is q instead of q0.

Let us now consider the basic open set of the space Γω given by Un = un ·Γω.
We first describe f−1(Un). An ω-word x ∈ Σω belongs to the set f−1(Un) iff x
can be written in the form x = v ·y for some words v ∈ Σ? and y ∈ Σω, and there
is a partial computation of the automaton A reading (v, un) for which A is in
state q after having read the initial pair (v, un) ∈ Σ?×Γ? (where the finite words
v and un might have different lengths if the automaton A is not synchronous),
and y ∈ Dom(R(Aq)). Recall that R(Aq) ⊆ (Σ × Γ)ω is an infinitary rational
relation and that Dom(R(Aq)) is then a regular ω-language and that one can
construct from A a deterministic Muller automaton accepting this ω-language
Dom(R(Aq)) which will be denoted Lq. We also denote T (un, q) the set of finite
words v over Σ such that the automaton A may be in state q after having read
the initial pair (v, un) ∈ Σ? × Γ?. Then the following equality holds:

f−1(Un) =
⋃
q∈K

T (un, q) · Lq

We can now apply the automatic Baire property stated in the above Theorem 11.
Then for each regular ω-language Lq, one can construct a deterministic Muller
automaton accepting an open set Oq and a deterministic Muller automaton
accepting a countable union Wq of closed sets with empty interiors, such that
for each q ∈ K,

Lq∆Oq ⊆Wq

Now we set

Vn =
⋃
q∈K

T (un, q) ·Oq and Fn =
⋃
q∈K

T (un, q) ·Wq

Notice that each set T (un, q) is countable and that for each finite word u ∈
T (un, q) it is easy to see that the set u ·Oq is open and that the set u ·Wq is a
countable union of closed sets with empty interiors. Thus it is easy to see that
Vn is open, and that Fn is a countable union of closed sets with empty interiors.
Moreover it is easy to see that Vn and Fn are regular ω-languages since each set
T (un, q) is a regular language of finite words over the alphabet Σ. Moreover it
holds that:

f−1(Un)∆Vn ⊆ Fn
We now prove that F =

⋃
n≥1 Fn is itself a regular ω-language. It holds that

F =
⋃
n≥1

Fn =
⋃
n≥1

⋃
q∈K

T (un, q) ·Wq =
⋃
q∈K

⋃
n≥1

T (un, q) ·Wq

Consider now the 2-tape automaton Bq which is like the 2-tape automaton A
but reads only pairs of finite words in Σ? × Γ? and has the state q as unique



accepting state. Let then Cq be a finite automaton which reads only finite words
over the alphabet Σ and such that L(Cq) = ProjΣ?(L(Bq)) is the projection of the
language L(Bq) on Σ?. We can construct, from the automaton A, the automata
Bq and Cq for each q ∈ K. Now it holds that:

F =
⋃
n≥1

Fn =
⋃
q∈K

⋃
n≥1

T (un, q) ·Wq =
⋃
q∈K

L(Cq) ·Wq

On the other hand, for each finite word u ∈ Σ?, the set u ·Wq is a meager Σ0
2-set,

since Wq is a meager Σ0
2-set. Thus the set

F =
⋃
q∈K

L(Cq) ·Wq

is also a countable union of closed sets with empty interiors, since K is finite and
each language L(Cq) is countable. Moreover the ω-language F is regular and we
can construct, from the automata Cq and from the deterministic Muller automata
accepting the ω-languages Wq, a deterministic Muller automaton accepting F .

We can now set Gn = Σω \Fn and G =
⋂
n≥1Gn = Σω \

⋃
n≥1 Fn = Σω \F .

Then G is a countable intersection of dense open subsets of Σω, hence also a
dense Π0

2-subset G of Σω. Moreover we can construct a deterministic Muller
automaton and even a deterministic Büchi automaton (since G is a Π0

2-set, see
[15, page 41]) accepting G. We can now see that the restriction fG of the function
f to G is continuous. This follows from the fact that the inverse image of every
basic open set of Γω by the function fG is an open subset of G because for each
integer n ≥ 1, it holds that f−1G (Un) = f−1(Un) ∩G = Vn ∩G. �

Remark 29. The above dense Π0
2-subset G of Σω is comeager and thus Theo-

rem 28 shows that one can construct a deterministic Büchi automaton accepting
a “big” ω-rational subset of Σω on which the function f is continuous.

5 Concluding remarks

We have proved a new effective property of ω-rational functions. We hope this
property will be useful for further studies involving ω-rational functions. For
instance an ω-automatic structure is defined via synchronous infinitary rational
relations, see [2, 12]. On the other hand, any (synchronous) infinitary rational
relation is uniformizable by a (synchronous) ω-rational function, see [4]. Thus we
can expect that our result will be useful in particular in the study of ω-automatic
structures.

We also hope that the automatic Baire property will be useful in other stud-
ies involving regular ω-languages like the study of infinite games specified by
automata.
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