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This paper addresses the distributed control by input-output lin-

earization of a non linear diffusion equation, which describes a par-

ticular but important class of distributed parameter systems. Both

manipulated and controlled variables are assumed to be distributed in

space. The control law is designed using the concept of characteristic

index from geometric control by using directly the PDE model without

any approximation or reduction. The main idea consists in the control

design in assuming an equivalent linear diffusion equation obtained by

use of the Cole-Hopf transformation. This framework helps to demon-

strate the closed-loop stability using some concepts from the power-

ful semi-group theory. The performance of the proposed controller

is successfully tested, through simulation, by considering a nonlinear

heat conduction problem concerning the control of the temperature

of a steel plate modeled by a non linear heat equation with Dirichlet

boundary conditions.

Keywords:distributed parameter system, diffusion system, Cole-Hopf trans-

formation, geometric control, semi-group theory, exponential stability
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1 Introduction

The dynamic behavior of most distributed parameter systems (DPS) is de-

scribed by partial nonlinear differential equations (PDE). Control of DPS

occupies an important place in control theory and constitutes an active re-

search area [1, 2]. Compared to the control theory for linear DPS, which has

been attained a certain level of maturity thanks to semi-group theory [3, 4],

the control theory of nonlinear DPS remains very challenging and many inter-

esting questions are open concerning control, stabilization and optimization

[1]. The book by Chen et al. [5] gives recent progress in control theory

of nonlinear systems and includes many results, applications and literature

citations.

Although, in recent years, an extensive effort has been made to investigate

the control of nonlinear DPS, however the available results, often developed

under some restrictive assumptions, are difficult to generalize and are valid

for specified particular classes, which limits their use [1, 2].

Control design methodologies of a non linear distributed system can be

split into two approaches [6, 7]. The first one called early lumping represents

the conventional approach. It consists in performing a reduction of the PDE

to derive a set of ordinary differential equations (ODE) that constitute an
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approximation, or a reduction, of the original PDE model [8, 9], and the con-

troller design is performed in the framework of the classical control theory of

lumped parameter systems (LPS) using potentially powerful techniques. It

must be noted that through early lumping, the fundamental control theoreti-

cal properties (controllability, observability and stability) are lost [6, 7]. This

approach, generally, leads to high dimension controllers which are difficult to

implement [6]. The second approach, termed as late lumping, uses the PDE

model for the controller design without approximation. The approximation is

performed only for implementation purposes of the controller. Late lumping

allows the control designer to avoid losing the distributed nature of the PDE

system and to take full advantage of their natural properties. However, di-

rect handling of PDEs is difficult and the hardest task is related to the proof

of the control theoretical properties, which needs sophisticated mathematical

tools. In recent years, several control methods that directly take into account

the distributed nature of the systems have been developed especially for the

linear case [3, 4, 10] and quasi-linear system [6].

For nonlinear distributed parameter systems, the examination of the lit-

erature dedicated to the control problem of this kind of systems reveals that

most contributions come from the early lumping approach and address the
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controller synthesis problem on the basis of low dimensional ODE approx-

imations of the PDE system (reduced model) using different reduction ap-

proaches [11] to achieve an accurate reduced model that characterizes the

dominant dynamic behavior [9, 8, 12, 13, 14, 15]. On the other hand, few ap-

plications of the late lumping approach have been reported in the literature

[16] and most of them are developed in the framework of geometric control

[17, 18, 19, 20, 21, 22, 23], and reveal that geometric control is an interest-

ing and suitable approach for designing controllers for distributed parameter

following the late lumping approach. The most important advantages of geo-

metric control is that the control law can be designed directly using the PDE

model, which leads to distributed control that increases the performances

[6]. In addition, the geometric control allows to take advantage of the full

potential of an existing control theory for lumped linear systems that of-

fers full powerful controller design techniques. Nevertheless, the difficulty for

the geometric control of nonlinear systems is that the closed-loop stability

is difficult to prove and needs some sophisticated mathematical tools from

functional analysis. Geometric control has been applied with success for lin-

ear and quasi-linear systems under some assumptions related to the system

characteristics [17, 18, 19, 20, 21, 22, 23]. An attempt to extend the geometric
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approach to nonlinear systems, with boundary actuation and punctual con-

trolled variable, is proposed by Maidi and Corriou [24]. As the control and

observation operators assumed are unbounded, this approach suffers from

the lack of efficient tools in proving closed-loop stability.

The investigations of the present work are intended as a contribution to

the geometric control of nonlinear diffusive systems, which is one of the most

important classes encountered in a wide variety of practical applications [14].

Thus, a design approach of the control law that enforces the desired perfor-

mance and stability is developed. The main idea consists in deriving a linear

equivalent model of the nonlinear diffusion system by use of the Cole-Hopf

transformation. This linear equivalent model will be used then for control

design and in particular for the proof of closed-loop stability using some con-

cepts from semi-group theory. The developed control method is illustrated

through a heat conduction problem modeled by a nonlinear diffusion equa-

tion.

The present paper is structured as follows. In Section 2, the addressed

control problem for a nonlinear diffusion system is presented. In Section 3,

the equivalent linear model is derived by means of Cole-Hopf transforma-

tion. Section 4 contains the main results associated with the control design
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approach proposed and the stability analysis based on the semi-group the-

ory. In Section 5, the performance of the designed controller following the

proposed approach is evaluated through simulation studies performed in an

illustrative example concerning the heating problem of a steel plate with a

nonconstant thermal conductivity. Finally, concluding remarks are provided

in Section 6.

2 Control problem formulation

The nonlinear class of DPS, considered here, are described by the one-

dimensional nonlinear diffusion equation with interior control distributed on

the space domain. The corresponding PDE model is

∂x(z, t)

∂t
=

1

ρ cp

[

∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)

+ ϑ(z, t)

]

in Ω×]0, t[ (1)

accompanied by Dirichlet boundary conditions

x(0, t) = x(l, t) = x∗ in ∂Ω×]0, t[ (2)
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and the initial condition

x(z, 0) = φ(z) in Ω (3)

where x(z, t) denotes the state, z ∈ Ω = [0, l] ⊂ ℜ is the spatial do-

main, ∂Ω are the spatial domain boundaries, t ∈ [0, ∞[ is the time variable,

k (x(z, t)) > 0 is the conductivity, and ρ cp the capacity of fluid or solid (in

the case of solids, c remplaces cp). Without loss of generality and to simplify

the presentation, the terminology from heat conduction transfer will be used.

Thus, k (x(z, t)) and ρ cp will denote the thermal conductivity and the heat

capacity, respectively.

The main space is defined as L2(0, l), which is the space of square-

integrable functions on Ω = [0, l], endowed with the usual norm ‖ . ‖L2(0, l)

and the inner product 〈 , 〉L2(0, l) defined as

〈f , g〉L2(0, l) =

∫ l

0

f(z) g(z) dz ; ∀f, g ∈ L2(0, l) (4)

‖ f ‖L2(0, l) = 〈f , f〉
1
2

L2(0, l) (5)

The distributed manipulated variable ϑ(z, t) ∈ L2 ([0, ∞[ ; L2(0, 1)) is
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given as follows :

ϑ(z, t) = b(z) u(t) (6)

where b(z) is a known smooth function of z assumed to be square integrable

on the interval [0, l] that is b(z) ∈ L2(0, l).

The output variable y(t) to be controlled by manipulating the uniformly

distributed control u(t) ∈ L2 ([0, ∞[ ; ℜ) is

y(t) = Cx(z, t) =

∫ l

0

c(z) x(z, t) dz ; C ∈ L
(

L2(0, l) ; ℜ
)

(7)

where C is a bounded linear operator, L is the space of all linear bounded

operators from L2(0, l) into ℜ, and c(z) is a known smooth function of z. In

practice, the selection of b(z) and c(z) is typically consistent, therefore the

following assumptions will be made

c(z) ∈ H2(0, l) (8)

and

c(0) = c(l) = 0 (9)

where H2(0, l) denotes a Hilbert space defined as the Sobolev space of order
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2 [25, 26], i.e.

H2(0, l) =

{

c(z) ∈ L2(0, l) :
dkc(z)

dzk
∈ L2(0, l) ; k = 1, 2

}

(10)

The two functions b(z) and c(z) are assumed not orthogonal, thus

〈b(z) , c(z)〉L2(0, l) =

∫ l

0

b(z) c(z) dz 6= 0 (11)

Remark 1 The control problem is formulated with Dirichlet boundary con-

ditions but the following development still holds for other types of boundary

conditions.

Remark 2 In the control problem formulated, a single spatial interval [0, l]

is considered but it can be formulated as the problem of controlling the output

y(t) at a finite number of spatial intervals as suggested by Christofides [17].

For this case, the control law proposed here remains valid.

3 Cole-Hopf transformation

The Cole-Hopf transformation is widely used for solving nonlinear diffusion

equation [27, 28, 29] but for control problems, it has not yet been exploited.
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This transformation consists in converting the nonlinear diffusion equation

into a linear one if the thermal diffusivity defined by the following ratio

α =
k (x(z, t))

ρ cp
(12)

is approximately constant. This hypothesis is accepted since in many cases

the variation of α with x(z, t) is much less important than that of k (x(z, t)),

so that this approximation is reasonable [30], therefore α ≈ constant.

To linearize the nonlinear diffusion equation (1) using the Cole-Hopf tech-

nique, one seeks a transformation of the form [27]

x(z, t) = h(w(z, t)) (13)

where h(x(z, t)) is a continuous bijective function (one-to-one function or

mapping).

By using the transform (13), the evaluation of the derivatives of the non-
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linear diffusion equation (1) gives

∂x(z, t)

∂t
=

∂h(w(z, t))

∂t

=
∂h(w(z, t))

∂w(z, t)

∂w(z, t)

∂t
(14)

and

∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)

=
∂

∂z

(

k (h(w(z, t)))
∂h(w(z, t))

∂z

)

=

[

k(h(w(z, t)))
d2h(w(z, t))

dw2(z, t)
+

dk(h(w(z, t)))

dh(w(z, t))

(

dh(w(z, t))

dw(z, t)

)2
]

(

∂w(z, t)

∂z

)2

+ k(h(w(z, t)))
dh(w(z, t))

dw(z, t)

∂2w(z, t)

∂z2

(15)

To make the right hand side of (15) linear, the term between square brackets

is set equal to zero,

k(h(w(z, t)))
d2h(w(z, t))

dw2(z, t)
+

dk(h(w(z, t)))

dh(w(z, t))

(

dh(w(z, t))

dw(z, t)

)2

= 0 (16)

this differential equation can be expressed in the following integrable form

d

dw(z, t)

[

k(h(w(z, t)))
dh(w(z, t))

dw(z, t)

]

= 0 (17)
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Integrating (17) gives

k(h(w(z, t)))
dh(w(z, t))

dw(z, t)
= c1 (18)

hence

∫

k(h(w(z, t))) dh(w(z, t)) =

∫

c1 dw(z, t)

= c1w(z, t) + c2 (19)

or equivalently

w(z, t) =
1

c1

∫

k(x(z, t)) dx(z, t)−
c2
c1

(20)

which can be written under the following form

w(z, t) = h−1(x(z, t)) =
1

c1

∫

k(x(z, t)) dx(z, t)−
c2
c1

(21)

where h−1( . ) is the inverse function of h( . ), which is continuous.

In summary, by using the transformation (13) with h satisfying (16), the
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nonlinear diffusion equation (1) will be converted to the following linear one

∂h(w(z, t))

∂w(z, t)

∂w(z, t)

∂t
=

k(x(z, t))

ρ cp

∂h(w(z, t))

∂w(z, t)

∂2w(z, t)

∂z2
+

1

ρ cp
ϑ(z, t)

∂w(z, t)

∂t
=

k(x(z, t))

ρ cp

∂2w(z, t)

∂z2
+

1

ρ cp
∂h(w(z, t))

∂w(z, t)

ϑ(z, t) (22)

Considering the expressions of diffusivity α and the integration constant

c1 given by (12) and (18), respectively, equation (22) takes the following form

∂w(z, t)

∂t
= α

∂2w(z, t)

∂z2
+

α

c1
ϑ(z, t) (23)

and according to (2), the transformation (20), with appropriate choice of the

integration constants c1 and c2, yields the inhomogeneous boundary condi-

tions

w(0, t) = w(l, t) = 0 (24)

with the initial condition

w(z, 0) = 0 (25)
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and the controlled output is

y(t) = Ch (w(z, t)) (26)

Remark 3 The Kirchhoff transformation is a particular case of the Cole-

Hopf transformation [27]. Compared to the Kirchhoff transformation that

uses a definite integral, the Cole-Hopf uses an indefinite integral, which allows

the adjustment of the transform by choosing adequate integration constants

c1 and c2. Consequently, desirable and simple practical transformation that

ensures homogeneous boundary conditions can be obtained using the Cole-

Hopf technique. The Kirchhoff transformation is obtained by choosing c1 = k0

(k0 = k(x(z, 0)) = k(x0)) and c2 = −
1

k0

[∫

k(x(z, t)) dx(z, t)
]

x(z, t)=x0
[27].

Thus,

w(z, t) =
1

k0

[
∫

k(x(z, t)) dx(z, t)

]

x(z, t)=x(z, t)

−
1

k0

[
∫

k(x(z, t)) dx(z, t)

]

x(z, t)=x0

=
1

k0

∫ x(z,t)

x0

k(x(z, t)) dx(z, t) (27)

Remark 4 The mapping h(x(z, t)) is a continuous bijective function (one-

to-one function), thus its inverse function h−1(x(z, t)) exists and is also con-

15



tinuous.

Remark 5 For control problem design, the determination of transformation

h(x(z, t)) is not necessary, but for proving the closed-loop stability, its con-

tinuity property will be exploited.

4 Distributed feedback design

The design of the control law u(t) of the control problem formulated is per-

formed in the framework of geometric control using the concept of character-

istic index [6, 17], which is a generalization of the concept of relative degree

[31, 32] used in lumped parameter systems (ODE systems) to PDE systems.

The characteristic index is the smallest order of the time derivative of a given

controlled variable which explicitly depends on the manipulated variable.

Considering the distributed control (6), the linear diffusion equation (23)

can be written under the following form

∂w(z, t)

∂t
= Aw(z, t) + B u(t) (28)
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where A and B are the following operators

A = α
∂2

∂z2
; B =

α

c1
b(z) (29)

4.1 Control law design

For the synthesis of the geometric control law, the linear diffusion equation

(28) will be considered. Hence, the first derivative of the controlled output

(26) is

dy(t)

dt
= C

{

∂h (w(z, t))

∂t

}

(30)

= C

{

dh(w(z, t))

dw(z, t)

∂w(z, t)

∂t

}

=
c1

α ρ cp
C

{

∂w(z, t)

∂t

}

=
c1

α ρ cp
C [Aw(z, t) + B u(t)]

=
c1

α ρ cp
CAw(z, t) +

c1
α ρ cp

C B u(t) (31)

The manipulated input u(t) appears linearly in the first time derivative

of the output. The development of the second term of the right-hand side of
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equation (31) leads to

c1
α ρ cp

C B u(t) =
c1

α ρ cp

∫ l

0

c(z)
α

c1
b(z) u(t) dz

=
1

ρ cp

{
∫ l

0

c(z) b(z) dz

}

u(t) (32)

=
1

ρ cp
〈b(z) , c(z)〉L2(0, l) u(t) (33)

as b(z) and c(z) are not orthogonal, hence

1

ρ cp
〈b(z) , c(z)〉L2(0, l) 6= 0 (34)

consequently, the characteristic index is σ = 1, which suggests requesting

the following input-output response for the closed-loop system (between the

controlled output y(t) and the reference input v(t))

τ
dy(t)

dt
+ y(t) = v(t) (35)

where τ is the desired time constant of the closed-loop system.

Thus, substituting (31) into equation (35), the distributed state-feedback
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control law can be easily deduced as follows

u(t) =
ρ cp

τ
∫ l

0
b(z) c(z) dz

[

v(t)− y(t)−
τ c1
α ρ cp

CAw(z, t)

]

(36)

Let us express the control law u(t) according to the state x(z, t). Re-

member that the expression (16) is made equal to zero by the transformation

(13), thus considering the relations (15) and (18), the term Aw(z, t) of the

control law (36) can be written as

Aw(z, t) = α
∂2w(z, t)

∂z2

=
α

c1

∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)

(37)

and the control law (36) takes the following form

u(t) =
ρ cp

τ
∫ l

0
b(z) c(z) dz

[

v(t)− y(t)−
τ

ρ cp
C

{

∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)}]

=
ρ cp

τ
∫ l

0
b(z) c(z) dz



v(t)− y(t)−
τ

ρ cp

l
∫

0

c(z)
∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)

dz





(38)

Remark 6 The control law (38) can be directly derived by considering the
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nonlinear diffusion equation (1) in evaluating the first derivative of y(t) given

by (7). In this case, it is difficult to show the closed-loop stability since

both system (1) and control law (38) are nonlinear. Thus, the purpose of

designing of the control law based on the linear diffusion equation (23) is to

prove the closed-loop stability using some concepts from semi-group theory as

it is shown in the next subsection.

Remark 7 The control law (38) is infinite-dimensional, thus for simulation

purpose or for on-line implementation, a finite-dimensional approximation of

the control law (38) has to be derived using discretization methods, such as

finite differences. According to Balas [33], to ensure the convergence of the

closed-loop system resulting from the PDE model plus a finite-dimensional

approximation of the infinite-dimensional control law to the closed-loop sys-

tem resulting from the PDE model plus the infinite dimensional control law,

the number of discretization points must be increased.

Remark 8 The control law (38) allows the application of the linear control

theory to the resulting linear reference input v(t)-controlled output y(t) system

(35) using powerful design approaches developed for linear lumped parameter

systems. Thus, to handle uncertainty and unmodeled dynamics, the reference

input v(t) can be defined by means of a robust controller [31, 32, 34, 35], that
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is

v(t) =

∫ t

0

G(t− ξ)[yd(t)− y(t)] dξ (39)

where yd(t) is the desired set point of the controlled output y(t) and the func-

tion G( . ), for instance, can be chosen as the inverse of an appropriate trans-

fer function.

This strategy has been applied with success for a counter-current heat

exchanger [20], a parallel-flow heat exchanger [22] and for a wave equation

[23].

Remark 9 The control law design approach proposed is developed for con-

trolling the output (7) defined as the spatial weighted average. In this case,

the control and observation operators B and C, respectively are bounded. The

proposed control law is still applicable in the case of a punctual output yp(t)

by adopting the control strategy proposed by [22, 24] where an external robust

controller is introduced to provide the desired reference for the internal con-

troller (see remark 8), that is yd(t), by taking the error between the controlled

punctual output yp(t) and its set point ydp(t), i.e.

yd(t) =

∫ t

0

Gp(t− ξ)[ydp(t)− yp(t)] dξ (40)
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For more details about this strategy, the reader is referred to Maidi et al.

[22] and Maidi and Corriou [24].

4.2 Closed-loop stability

The equivalent closed-loop system is given by

∂w(z, t)

∂t
= Aw(z, t) + B

{

ρ cp

τ
∫ l

0
b(z) c(z) dz

[

v(t)− y(t)−
τ c1
α ρ cp

CAw(z, t)

]

}

= (A+ F)w(z, t) +
ρ cp

τ
∫ l

0
b(z) c(z) dz

B {v(t)− y(t)} (41)

y(t) = Ch(w(z, t)) (42)

where

F = β b(z) CA, β =

[

−

∫ l

0

b(z) c(z) dz

]−1

(43)

By constraining the reference input v(t) and the controlled output y(t) to

zero (y(t) = Ch(w(z, t)) = 0, v(t) = 0), the zero dynamics associated with

the open-loop system results

∂w(z, t)

∂t
= (A+ F)w(z, t) (44)

y(t) ≡ 0 (45)
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with boundary conditions (24).

If the operator A + F generates a stable semi-group, it implies that the

zero dynamics is exponentially stable [6, 17]. Thus, according to theorem 1

given in appendix 7.1, the operator A + F generates a semi-group if the

operator A is a generator of a semi-group and the operator F is bounded on

L2(0, l).

The operator A with the boundary conditions (24) and initial condition

(25) generates an exponentially stable semi-group U(t) [3, 36], that is,

‖U(t)‖L2(0, l) ≤ M e−ω t (46)

with stability constants M = 1 and ω = α π2 > 0.

Let us, now, demonstrate that the operator F is bounded. According to

appendix 7.3, the operator F is bounded if there exists a constant C such

that

‖Fw(z, t)‖L2(0, l) ≤ C ‖w(z, t)‖L2(0, l) (47)

‖F w(z, t)‖L2(0, l) = ‖β b(z) CAw(z, t)‖L2(0, l)

=

∥

∥

∥

∥

β α b(z)

∫ l

0

c(z)
∂2w(z, t)

∂z2
dz

∥

∥

∥

∥

L2(0, l)

(48)
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Now, by integrating by parts and by considering boundary conditions (9)

and (24), the calculus gives

‖F w(z, t)‖2L2(0, l) =

∥

∥

∥

∥

β α b(z)

∫ l

0

c̈(z)w(z, t) dz

∥

∥

∥

∥

2

L2(0, l)

=

∫ l

0

[

β α b(z)

∫ l

0

c̈(z)w(z, t) dz

]2

dz

= β2 α2

∫ l

0

[

b(z)

∣

∣

∣

∣

∫ l

0

c̈(z)w(z, t) dz

∣

∣

∣

∣

]2

dz (49)

and the Cauchy-Schwarz inequality [26] yields

∣

∣

∣

∣

∫ l

0

c̈(z)w(z, t) dz

∣

∣

∣

∣

≤ ‖c̈(z)‖L2(0, l) ‖w(z, t)‖L2(0, l) (50)

hence

‖F w(z, t)‖2L2(0, l) ≤ β2 α2

∫ l

0

b2(z)
[

‖c̈(z)‖L2(0, l) ‖w(z, t)‖L2(0, l)

]2

dz

= β2 α2

∫ l

0

b2(z) ‖c̈(z)‖2L2(0, l) ‖w(z, t)‖
2
L2(0, l) dz

= β2 α2

∫ l

0

b2(z)

[
∫ l

0

[c̈(z)]2 dz

] [
∫ l

0

w2(z, t) dz

]

dz

= β2 α2

[
∫ l

0

[c̈(z)]2 dz

] [
∫ l

0

w2(z, t) dz

]
∫ l

0

b2(z) dz
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thus

‖F w(z, t)‖2L2(0, l) ≤ β2 α2 γ

∫ l

0

w2(z, t) dz

≤ β2 α2 γ ‖w(z, t)‖2L2(0, l) (51)

with γ =
[

∫ l

0
[c̈(z)]2 dz

] [

∫ l

0
b2(z) dz

]

.

From (51), it follows that

‖F w(z, t)‖L2(0, l) ≤ |β|αγ1/2 ‖w(z, t)‖L2(0, l) (52)

Recall that b(z) ∈ L2(0, l) and c(z) ∈ H2(0, l), hence the constant C =

|β|αγ1/2 exists, which means that F is bounded and ‖F‖L2(0, l) = |β|αγ1/2.

Now, according to the theorem 2 given in appendix 7.2 [37, Theorem 1.1,

page 76], the operator A+ F generates a semi-group V (t) such that

‖V (t)‖L2(0, l) ≤ M e(−ω+M ‖F‖L2(0, l)) t

≤ M e(−ω+M |β|αγ1/2) t

≤ e(−απ2+|β|αγ1/2) t

≤ e−(απ2−|β|αγ1/2) t (53)
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thus the semigroup V (t) is exponentially stable if the following stability con-

stant

ωw = α π2 − |β|αγ1/2 (54)

is positive, which yields

|β| γ1/2 < π2 (55)

This implies that the exponential stability of V (t) is related to the choice of

the functions b(z) and c(z) since both β and γ depend on these functions.

Consequently, in addition to the controllability condition ensured by (11),

the functions b(z) and c(z) should be chosen so that the stability condition

(55) is verified. In this case, the zero dynamics is exponentially stable and

the operator A + F generates an exponentially stable semi-group V (t). In

the following development, it is assumed that V (t) is stable.

Now, the closed-loop system (41–42) can be written in the form of the

following interconnected y-subsystem and w-subsystem

ẏ(t) = −
1

τ
y(t) +

1

τ
v(t) (56)

∂w(z, t)

∂t
= (A+ F)w(z, t) +

α ρ cp

c1 τ
∫ l

0
b(z) c(z) dz

b(z)W (t) (57)
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where W (t) = v(t)− y(t).

To verify the closed-loop stability, it is equivalent to verify that the cas-

cade interconnection is stable. Thus, it is sufficient to verify the closed-loop

stability of each subsystem, which is demonstrated in the following.

According to (35), as the time constant τ > 0, thus the y-subsystem (56)

of the interconnection is exponentially stable, consequently

|W (t)| ≤ KW |W (0)| e−ωW t, KW ≥ 1 and ωW > 0 (58)

with W (0) = v(0)− y(0).

Now, as the semi-group V (t), generated by the operator A + F , is ex-

ponentially stable, consequently, the state w(z, t) of the closed-loop system

(41–42) verifies [3]

‖w(z, t)‖L2(0, l) ≤ ‖w(z, 0)‖L2(0, l) e
−ωw t +

∫ t

0

e−ωw (t−ξ) α ρ cp ‖b(z)‖L2(0, l)

c1 τ
∫ l

0
b(z) c(z) dz

|W (ξ)| dξ

≤ ‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)

c1 τ
∫ l

0
b(z) c(z) dz

∫ t

0

e−ωw (t−ξ) |W (ξ)| dξ

(59)

where ωw = απ2 − |β|αγ1/2.
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Substituting |W (ξ)| by its expression (58) in (59) gives

‖w(z, t)‖L2(0, l) ≤ ‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)

c1 τ
∫ l

0
b(z) c(z) dz

∫ t

0

e−ωw (t−ξ)KW |W (0)| e−ωW ξ dξ

≤ ‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

e−ωw t

∫ t

0

e(ωw−ωW ) ξ dξ

(60)

Then, if ωw = ωW ,

‖w(z, t)‖L2(0, l) ≤ ‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

t e−ωw t

≤ ‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

1

ωw − ω
e−ω t

(61)

where 0 < ω < ωw. Thus, the closed-loop system is exponentially stable.
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Now, if ωw > ωW ,

‖w(z, t)‖L2(0, l) ≤‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

e−ωw t

[

e(ωw−ωW ) t − 1
]

ωw − ωW

≤‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

e−ωW t − e−ωw t

ωw − ωW

≤‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

e−ωW t

ωw − ωW

(62)

else if ωw < ωW ,

‖w(z, t)‖L2(0, l) ≤‖w(z, 0)‖L2(0, l) e
−ωw t +

α ρ cp ‖b(z)‖L2(0, l)KW |W (0)|

c1 τ
∫ l

0
b(z) c(z) dz

e−ωw t

|ωw − ωW |

(63)

in each case, the closed-loop system is exponentially stable. This implies that

limw(z, t) = 0 when t → ∞.

Let us now consider the stability of the state x(z, t) in closed loop, i.e.

the nonlinear diffusion equation (1) with the control law (38). Thus, accord-

ing to (13), lim x(z, t) when t → ∞ is equal to limh(w(z, t)) when t → ∞ or

equivalently to limh(w) when w → 0 (w(z, t) is exponentially stable). Since

h(w(z, t)) is a continuous bijective function, hence when w → 0, limh(w)
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exists that is, according to (13), lim x(z, t) when t → ∞ also exists, conse-

quently the state x(z, t) is bounded which means that x(z, t) is stable and

the closed-loop system

∂x(z, t)

∂t
=

1

ρ cp

∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)

+
b(z)

τ
∫ l

0
b(z) c(z) dz



v(t)− y(t)−
τ

ρ cp

l
∫

0

c(z)
∂

∂z

(

k (x(z, t))
∂x(z, t)

∂z

)

dz





(64)

is internally stable.

5 Application example

A steel plate is heated (Fig. 1), before crossing a rolling mill, by thermal

radiation applied only at the upper surface of the metallic plate [7] while

the lower surface is assumed as adiabatic, i.e. no flux is applied, either for

heating or cooling. The vertical sides of the plate are neglected so that

finally the heat flux is applied only on the upper part of the perimeter of

the cross-section. The heat flux q′′(t) is the manipulated variable and it is

assumed to be distributed uniformly at the upper surface of the plate. At
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two positions, considered as z = 0 and z = l, the plate is placed over rolls

which are maintained at fixed temperatures and impose these conditions to

the temperature of the plate itself. The control of the plate temperature is

performed between these two cylinders.

To ensure a rolling of good quality, the heat flux q′′(t) is to be controlled

in such a way that the temperature distribution, measured by a soft sensor

that provides the spatial weighted average temperature Tm(t), is kept at a

specified temperature T d
m(t). The plate has a thickness δ of 10−2m. The

distance l is taken as l = 1m. The width of the plate is denoted as r.

The thermo-physical properties of the steel [28] are ρ = 7740 kg .m−3,

c = 470 J . kg−1 . K−1, taken as constant, and the thermal conductivity k(T )

is a nonlinear function of temperature given as

k(T ) = 23.9 + 41 10−4 T + 10−7 T 2 (65)

where T is given in Celsius.

First, to establish the model, consider the general case of a metal plate

heated on all faces by a heat flux q′′. It is assumed that the heat conduction

is observed only along the z axis, i.e. the model has only one dimension,
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and the temperature is uniform on a cross-section Ac = r δ of the plate.

The energy balance formulated for a infinitesimal volume of the plate leads

to the following PDE that describes the spatio-temporal evolution of plate

temperature subject to the heat flux q′′(t)

Ac ρ c
∂T (z, t)

∂t
= Ac

∂

∂z

(

k (T (z, t))
∂T (z, t)

∂z

)

+ P q′′(t) (66)

where P is the heated perimeter corresponding to a cross-section and equal

to: P = 2 r + 2 δ.

In the present case, only the upper surface is heated by a radiative flux q′′

between z = 0 and z = l, the lower surface is adiabatic, the vertical faces are

neglected, so that the heated perimeter is reduced to P = r and the energy

balance can be written as

∂T (z, t)

∂t
=

1

ρ c

[

∂

∂z

(

k (T (z, t))
∂T (z, t)

∂z

)

+
q′′(t)

δ

]

(67)

Both boundary conditions of the plate are assumed identical and of Dirich-

let type

T (0, t) = T (l, t) = Tr ∀ t ≥ 0 (68)
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and the initial temperature distribution of the plate is assumed uniform

T (z, 0) = Tr ∀ 0 ≤ z ≤ l (69)

with Tr = 800K.

The temperature distribution of the plate is assessed by the following

measurement

Tm(t) =

∫ l

0

c(z) T (z, t) dz (70)

with c(z) = 0.25 cos(π/2 (1− z)).

From the model (67), it follows that b(z) = δ−1, thus according to (38),

the following control law results

q′′(t) =
6 δ ρ c

τ

[

T d
m(t)−Tm(t)−

τ

ρ c

l
∫

0

z (l−z)
∂

∂z

(

k(T )
∂T (z, t)

∂z

)

dz

]

(71)

For simulation purpose of the closed-loop system, the method of lines [38] is

applied with evaluation of the spatial partial derivatives by means of finite

differences based on N = 200 discretization points. The integral terms in

the control law are evaluated numerically using the trapezoidal method. The

desired constant time τ is taken equal to 300 s. The control is held constant
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over the sampling period equal to 30 s. To avoid the consequences due to

brutal set point steps, the set point T d
m(t) has been filtered by a first order

filter with a time constant equal to τf = 600 s. Hence, in the control law (71)

instead of set point T d
m(t), the filtered set point T d

mf
(t) defined by

τf
dT d

mf
(t)

dt
+ T d

mf
(t) = T d

m(t) (72)

is used.

To evaluate the performance of the control strategy, a set point step cor-

responding to T d
m(t) = 160K of the temperature is specified at t = 500 s.

Fig. 2 shows clearly that the controller behaves adequately and tracks per-

fectly the desired set point. Also, the control moves of the heat flux q′′(t) are

smooth and physically acceptable (Fig. 3). An analogous remark could be

made about the evolution of the temperature at different positions (Fig. 4).

The two-dimensional and the three-dimensional plots of the temperature pro-

files given by Figs. 5 and 6, respectively, during the tracking of the imposed

set point, confirm the good behavior of the controller.
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6 Conclusion

In this paper, a design approach of a distributed control, by input-output

linearization, for a nonlinear diffusion system is proposed. The design ap-

proach is developed based on the Cole-Hopf transformation that converts the

original nonlinear problem to a linear one, which allows to take advantage

of some concepts from semi-group theory to prove the closed-loop stability.

Thus, the distributed control law is derived using the concept of characteristic

index from geometric control and it is shown that under certain assumptions

concerning the control problem formulation, a first-order behavior results in

closed loop between a desired reference and the controlled output.

The control performances of the proposed design approach are evaluated

through numerical simulation by considering the problem of heating a steel

plate in view of a rolling process. The obtained simulation results show the

effectiveness of the developed control design.

This study demonstrates that the design of the control of PDE system, in

the framework of geometric control, is a very successful control approach since

it leads to a distributed control law that enhances the control performance by

preserving the fundamental control properties, consequently the distributed

nature of the PDE system. In addition, the use of the geometric control
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allows to take full advantage of the advances in control of linear lumped

parameter systems to design robust controllers to the obtained linearized

model. Nevertheless, the derived control law is infinite-dimensional, which

requires to estimate the entire state of the system for on-line implementation.

In practice, it is impossible to have the whole state, so its estimation from

available measurements is necessary. The question of state estimation for

nonlinear diffusion systems is an interesting challenge presently under the

investigation of the authors.

7 Appendix

7.1 Perturbations by bounded linear operators

According to the following theorem [37, Theorem 1.1, page 76], the property

of being a generator of a semi-group is preserved by the addition of bounded

operators.

Theorem 1 Let X be a Banach space and let A be the infinitesimal generator

of a C0 semi-group U(t) on X, satisfying ‖U(t)‖X ≤ M eω t. If B is a bounded

linear operator on X, then A+B is the infinitesimal generator of a C0 semi-

group V (t) on X, satisfying ‖V (t)‖X ≤ M e(ω+M ‖B‖X ) t.
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7.2 Perturbation theorem

The following perturbation theorem is a useful criterion to decide whether

or not a given family of infinitesimal generators is stable [37, Theorem 1.1,

page 76].

Theorem 2 Let A be a stable family of infinitesimal generators with stability

constants M and ω. Let B be bounded linear operators on X. If ‖B(t)‖ <

K then A + B is a stable family of infinitesimal generators with stability

constants M and ω +M K.

7.3 Bounded operator

Definition 1 A linear operator A from X to Y is said to be bounded if there

exists a constant C such that

‖Ax‖Y ≤ C‖x‖X (73)

If no such C exists, the operator is said to be unbounded.
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Figure 1: Heating of steel plate (sectional representation).
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Figure 2: Evolution of the controlled temperature Tm(t).
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Figure 3: Evolution of the heat flux q′′(t).
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Figure 4: Variation of temperature at different locations along the plate.
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Figure 5: Temperature profiles at different time instants.
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Figure 6: Temperature spatial profile.
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