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Abstract
We introduce a new strategy for the design of second-order accurate discretiza-
tions of non-linear second order operators of Bellman type, which preserves de-
generate ellipticity. The approach relies on Selling’s formula, a tool from lattice
geometry, and is applied to the Pucci equation, discretized on a two dimensional
Cartesian grid. Numerical experiments illustrate the robustness and the accuracy
of the method.

1 Introduction

Degenerate Ellipticity (DE) is a property of a class of partial differential operators,
often non-linear and of order at most two. When satisfied, it implies a generalized
comparison principle, from which can be deduced the existence, uniqueness and sta-
bility of a viscosity solution to the Partial Differential Equation (PDE), under mild
additional assumptions [CIL92]. Discrete degenerate ellipticity is the corresponding
property for numerical schemes, see Definition which has similarly strong impli-
cations and often turns the convergence analysis of solutions into a simple verifica-
tion [Obe06]. It is therefore appealing to design PDE discretizations preserving the
DE property, yet a strong limitation of the current approaches [BS91l, [Obe08|, [FJ17]
is their low consistency order, usually below one. Filtered schemes [FO13] attempt
to mitigate this issue by combining a DE scheme of low consistency order with a
non-DE scheme of high consistency order, but their use requires careful parameter
tuning, and theoretical results are lacking regarding their effective accuracy.

In this paper, we propose a new approach to develop second order accurate
DE schemes, which is the highest achievable consistency order [Obe06], on two
dimensional Cartesian grids. The operator must be given in Bellman form as follows

Au(z) = 21615 o + bat(z) — Tr(Do V2u(z)), (1)
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where A is an abstract set of parameters, and the coefficients a, € R, b, > 0, and
symmetric positive definite matrix D, may additionally depend on the position x.
A specific feature of our approach, that is tied to the structure of the addressed
problems, is that the parameter space A is not discretized. We apply this approach
to the two dimensional Pucci equation:

)‘min(VQU(w)) + N)\maX(V2u($)) = f(z), (2)

with Dirichlet boundary conditions, where Ay, and Apax denote the smallest and
largest eigenvalue of a symmetric matrix, and where g > 0. This PDE admits the
following Bellman form, when p < 1, which we assume for simplicity:

max — Tr(D(0, u)V3u(zx)) = —f(z), where D(6, 1) := Ry <1 0> RY, (3)
6€0,7] 0 u

cosf —siné
sinf  cosd
approach also applies in the case p > 1, with only the slight modification that
the max in is replaced with a min. Note that the optimization space in is
A = [0, 7], which is compact and one dimensional, thus easing the theoretical study
and the numerical implementation.

Motivation for this study. The Pucci equation interpolates between two fun-
damental problems in analysis: the Poisson problem when p = 1, and the (lower-
Jconvex envelope of the boundary conditions when p = 0 and f = 0. It is also an
excellent representative of the class of Pucci extremal operators, a.k.a. operators
which can be written in the form , perhaps replacing the inf with a sup. This
class also encompasses the Monge-Ampere operator, known for its applications in
optimal transport and optics, to which similar techniques may be applied [BCM16].

and where Ry := < > denotes the rotation matrix of angle 8 € R. Our

2 Discretization

We rely on a tool from algorithmic lattice geometry, known as Selling’s formula
which is particularly adequate for discretizing degenerate elliptic PDEs on Cartesian
grids of dimension two [BOZ04] or three [Mirl8 Mirl9, [FM14]. Throughout this
section 2 C R? denotes a bounded domain, and h > 0 a grid scale. Define

Qp, := hZ* N Q, cu(r) == ule + he) - 212(2:6) e he)? (4)

the discrete domain and the second order finite difference of a map u : QU2 — R
at © € Q, in the direction e € Z2. When z is adjacent to 99 the latter formula
becomes

. o 2 u(x 4+ hye) —u(x)  u(lx —h_e) —u(x)
W) = g ( L + h_ ) (5)

where h+ > 0 is the least value such that z £+ hye € Qp U 9S). Note that right)
is a second order consistent approximation of (e, V2u(z)e), whereas is only first
order consistent. Thus

Tr(ee? V2u(z)) = (e, Viu(z)e) = ASu(x) + O(h"), (6)

where r = 1 if z is adjacent to 02, and r = 2 otherwise.



2.1 Selling’s formula

Selling’s decomposition of an element of the set S5 * of symmetric positive definite
2 x 2 matrices, see Proposition can be regarded as a variant of the eigenvec-
tor/eigenvalue decomposition, but whose vectors have integer entries. We rely on
it to discretize non-divergence form linear and non-linear (|11)) operators, in a
manner that achieves discrete degenerate ellipticity, see Definition

Definition 2.1. A superbase of Z? is a triplet (eg,e1,e2) € (Z?)3 such that eq +
e1 +ex =0 and | det(e1,e2)| = 1. It is D-obtuse, where D € S;+, iff (ei, Dej) <0
for all i # j.

Proposition 2.2 (Selling [Sel74]). For each D € S there exists a D-obtuse super-
base (eq,e1,e2) of Z2, which can be obtained from Selling’s algorithm. Furthermore
one has Selling’s formula

D= Z piviv; with p; := —{ei—1, Dejy1) >0, w;:=e €Z%,  (7)
0<i<2

where et := (—b,a)" if e = (a,b)" € R%. The set {(p;, £v;); 0 < i < 2, p; > 0} is
uniquely determined. In , the indices i — 1 and i + 1 are understood modulo 3.

Based on this formula, one can consider the following finite differences operator:

APu(z) = Z piA} u(z). (8)

0<4i<2

Using @, , and the linearity of the trace operator on matrices, we obtain

Tr(DV?u(zx)) = Z pi Tr(vivl V2u(z)) = Albu(x) + O(h"),

0<i<2

where again r = 1 if z is adjacent to 0f2, and r = 2 otherwise.

We illustrate on Figure the relation between the anisotropy defined by
a symmetric positive definite matrix D € S;r *, and the corresponding offsets
+vg, £v1,+v2 € Z? in Selling’s formula. (The weights p; are illustrated on Fig-
ure ) For that purpose, we rely on a parametrization D of the 2 x 2 symmetric
positive definite matrices of unit trace, by the points (x,y) of the open unit ball:

/14>y 5 o
D(z,y) .—2< y 1_x>, where 7 + y~ < 1. 9)

This parametrization is closely related to the Pauli matrices in quantum mechanics.
A D(z,y)-obtuse superbase is known explicitly, depending on a suitable triangula-
tion of the unit disc, see Figure (|1} right).

Definition 2.3 (Discrete degenerate ellipticity [Obe06]). A numerical scheme on
a finite set X is a map F : U — U, where U := RX is the set of functions from X
to R, of the form:

Fu(x) = F(l‘, u(x), (’u,(:L') - u(y))yeX\{x})v (10)

for all w € U, x € X. It is Discrete Degenerate Elliptic (DDE) iff F is non-
decreasing w.r.t. the second argument u(z), and w.r.t. each u(z)—u(y), y € X \{x}.

3



Figure 1: (Left) Ellipsoid {v € R?* v"D(z)v = 1} for some points z of the unit disc,
see (@ Anisotropy degenerates as z moves toward the unit circle, shown blue. (Right)
D(z)-obtuse superbase, and opposites, for the same points z. This superbase is piecewise
constant on an infinite triangulation of the unit disk [Sch09], shown black.

Notation: the expression Fu(z) should only be regarded as a shorthand for the
accurate yet more verbose right). In our application X := Q.

The numerical scheme —Ag is DDE on 2, thanks to the non-negativity of the
weights (p;)o<i<2, and to the finite differences expression right) and , where
u is extended to 02 with the provided Dirichlet boundary values. On this basis we
obtain a DDE discretization of nonlinear second order operators in Bellman form

()

Apu(x) = 21613 Ao + bou(z) — A]}?au(m), Apu(x) = Au(z) + O(R"), (11)

where again r = 1 if x is adjacent to 02, and r = 2 otherwise, at least if A is
compact - which is the case for the Pucci operator. As shown in the next section,
the supremum in left) can be computed analytically in closed form, for the
Pucci PDE, so that the numerical scheme Ay, is explicit in terms of the unknown .
Efficient construction of the Jacobian matriz of the numerical scheme. We use a
Newton method to solve the discretized PDE, which requires assembling the sparse
Jacobian matrix of the numerical scheme . In order to describe this essen-
tial step, let us rewrite the scheme in the following form (omitting the scale h for
readability)
ma Fe, 2, u(@), (u(@) — ulpa(2)y) =0, (12)
In comparison with , the expression emphasizes (i) that F' is defined as a
maximum over a parameter set A, and (ii) that the active stencil y;(z), -, yr(z)
of a point x € €, only involves a small number of neighbors. The Jacobian matrix
construction, at a given u : 25, — R, involves the following steps:

1. Compute the maximizer o*(z) in (12)), for each x € Q.



Decomposition of a rotated matrix of eigenvalues 0.1 and 1
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Figure 2: Coefficients of Selling’s decomposition (7)) of the matrix D(6, n) for 6 € [0, 7]
and pu = 0.1, see . The vertical bars correspond to the angles 0 =60y < --- < fy =7
where the support eg, e1, e5 € Z? of the decomposition changes, see legend.

2. Differentiate the function F(a*(z), 2,6, (7;)L_,) w.r.t. parameters § and 11, --- , 7y,
at the values u(z) and u(x) — u(y;(z)), 1 <i < I, respectively.

3. Fill the corresponding entries of the sparse Jacobian matrix. More precisely,
omitting the arguments of F for readability

oF oF OF
= — _ _ 77 < . < '
Jm,z 95 + Z ani7 Jx,yi(m) 8771'7 1 <1< I

A custom automatic differentiation toolbox, open source and developed by the third
author, makes these operations transparent. The above computations rely on the
envelope theorem [Car(1], which states that the value function to an optimization
problem, here , over a compact set, here A, is differentiable w.r.t. the parame-
ters, here § and (m){zl, whenever the problem solution, here a*(z), is single valued
(which is a generic property). In addition the first order derivatives have the ex-
pression used above, obtained by freezing the optimization parameter o € A to the
optimal value o*(x).

2.2 The Pucci operator

The Bellman form of the Pucci operator involves a family of matrices D(6, ),
parameterized by the inverse 0 < pu < 1 of their condition number, and by an angle
0 < 0 <. As a starter, we rewrite those in the form @

D) = (1 +M)D(;Z 0(20)). (13)

where n(p) := (cos ¢, sin ¢). Note that the argument of D in (9) describes a circle

of fixed radius }jr—l‘j within the unit disc, see Figure Thus one can find 0 = 6§y <
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-+ < @y =m, where N = N(u), such that on each interval [0, 6,41] the superbase
(eg, e, ef) is D(6, u)-obtuse and the coefficients in ([7]) take the form

pi(0) = —{eily, D(0, peflr) = oi + Bj* cos(20) + 7" sin(26), (14)

for suitable constants oj', 3,7 € R, 0 < ¢ < 2,0 < n < N, see Figure One
finds that N(1/4) = 2, N(1/10) = 10, N(1/400) = 122, and one can show that
N(p) < Cu~Y|Inp| for some constant C' independent of y. By linearity of (8] one
also has

Af(e’”)u(ac) =" + " cos(20) + 7" sin(26) (15)

for all 0 € [0,,0,+1], whose coefficients o™, 5",4™ depend on p, h, u and z. There-
fore, evaluating the discretized Bellman operator associated with the Pucci
equation at a point = € ) amounts to solving a small number N of opti-
mization problems, whose value is explicit. These optimization problems, and their
value, take the following generic form

max « -+ Scosp+ysing

PE[prp*]
_ Jat+ VB +o? if arg(B + iv) €lex 7,
a + max{ cos v + ysin g, fcosp* + vysinp*} else,

where arg(w) denotes the argument of w € C, taken in [0, 27[. In view of (L5]), we
choose ¢, = 20, ©* = 20,11, a = ™, B = (", and v = 4™. Then, following , we
take the largest value among 0 <n < N.

3 Numerical experiments

We present numerical results for the Pucci equation, chosen to illustrate the qual-
itative behavior of the solutions, and validate the scheme robustness and accuracy
on synthetic problems with known solutions. Some of the considered domains are
neither smooth nor convex, and the chosen synthetic solutions range from smooth
to singular.

The numerical scheme is implemented as described in the previous section, and
a Newton method is used to solve the resulting coupled systems of non-linear equa-
tions. In practice, convergence to machine precision is achieved in a dozen of it-
erations, without damping, from an arbitrary guess. An open source Python®
notebook reproducing (most of) the illustrations of this paper is available on the
third author’s webpageﬂ

We illustrate on Figure |3| the transition of the Pucci equation from a strongly
elliptic Laplacian-like PDE to a combinatorial-type convex-envelope problem, as the
parameter u takes values 1/4 and 1/400. The chosen domain is non-smooth and
non-simply connected : Q := U \ U’ where U := B(0,1) U (]0,1[x] — 1,1]) and
U’ := kRp(U) is its image under a scaling (kK = 0.4) and a rotation (§ = 7/3).
The boundary condition is 1 on U, and 0 on QU’, and the r.h.s is f = 0. The
discretization grid size is 100 x 100, and the computation time is 1s for p = 1/4,
and 45s for p = 1/400. The time difference is attributable to the complexity of the

!Link : Github.com/Mirebeau/AdaptiveGridDiscretizations, see chapter 2.B.III.


Github.com/Mirebeau/AdaptiveGridDiscretizations
https://nbviewer.jupyter.org/github/Mirebeau/AdaptiveGridDiscretizations_showcase/blob/master/Notebooks_NonDiv/NonlinearMonotoneSecond2D.ipynb

numerical scheme, which involves N = 2 pieces for in the first case and N = 122
in the latter, due to the larger condition number of the diffusion tensors D(6, u),
see Nevertheless, the number N = N(u) is independent of the grid scale, and
both schemes are second order consistent. In the case p = 1/400, the PDE solution
is quite close to the convex envelope of the boundary conditions, whose gradient is
constant in some regions, and discontinuous across some lines, see Figure right).

On figure [d] we reconstruct some known synthetic solutions from their image by
the Pucci operator, with parameter p = 0.2, and their trace on the boundary. The
examples are taken from the literature [FJ17, [FO13], and the reconstruction errors
are provided in the L' and L norm.

e (Smooth example [FJ17]) u(z) = (z? + 3?)? on Q = B(0,1)u]0, 12
o (C! example [FO13]) u(z) = max{0, ||z — xo||* — 0.2) on Q =]0, 1[%.
e (Singular example [FO13]) u(z) = /2 — ||z|? on Q =0, 1[%.

Empirically, the L' numerical error behaves like O(h?), where h is the grid scale
(inverse of resolution in images). The L™ error behaves like O(h?) in the smooth
and C' examples, but decays more slowly for the singular solution. Note: we rotated
the Cartesian discretization grid by m/3 in these experiments, since otherwise the
perfect alignment of the domain boundary with the coordinate axes gives an unfair
advantage to grid based methods (like ours).

4 Conclusion

In this paper, we presented a new strategy for discretizing non-divergence form,
fully-nonlinear second order PDEs, and applied it to the Pucci equation. The steps
of this approach can be summarized as follows: (i) rewrite the problem in Bellman
form, as an extremum of linear equations, (ii) discretize the second order linear
operators using monotone finite differences based on Selling’s decomposition of pos-
itive definite matrices, (iii) solve the pointwise optimization problems involved in
the numerical scheme definition, either explicitly (as could be done here), or numer-
ically.

This methodology yields finite difference schemes which are degenerate elliptic,
second order consistent, and use stencils of fixed size, in contrast with existing ap-
proaches [Obe08] which cannot achieve all these desirable properties simultaneously.
Numerical experiments confirm that the proposed scheme can extract smooth PDE
solutions with second order accuracy, and that it remains stable and convergent for
harder problems involving a singularity at a point or along a line. Future research
will be devoted to extending the results to other PDEs, such as the Monge-Ampere
equation and its variants.
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