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Abstract

We introduce a new strategy for the design of second-order accurate discretiza-
tions of non-linear second order operators of Bellman type, which preserves degener-
ate ellipticity. The approach relies on Selling’s formula, a tool from lattice geometry,
and is applied to the Pucci and Monge-Ampere equations, discretized on a two di-
mensional cartesian grid. In the case of the Monge-Ampere equation, our work is
related to both the stable formulation [FJ17] and the second order accurate scheme
[BCM16]. Numerical experiments illustrate the robustness and the accuracy of the
method.

1 Introduction

Degenerate Ellipticity (DE) is a property of a class of partial differential operators,
often non-linear and of order at most two. When satisfied, it implies a generalized
comparison principle, from which can be deduced the existence, uniqueness and
stability of a viscosity solution to the Partial Differential Equation (PDE), under
mild additional assumptions [CIL92]. Discrete degenerate ellipticity is the corre-
sponding property for numerical schemes, see Definition 2.3, which has similarly
strong implications and often turn the convergence the analysis of solutions into
a simple verification [Obe06]. It is therefore appealing to design PDE discretiza-
tions preserving the DE property, yet a strong limitation of the current approaches
[BS91, Obe08, FJ17] is their low consistency order, usually below one. Filtered
schemes [FO13] attempt to mitigate this issue by combining a DE scheme of low
consistency order with a non-DE scheme of high consistency order, but their use
requires careful parameter tuning, and theoretical results are lacking regarding their
effective accuracy.

In this paper, we propose a new approach to develop second order accurate
DE schemes, which is the highest achievable consistency order [Obe06], on two
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dimensional Cartesian grids. The operator must be given in Bellman form as follows

Λu(x) = sup
α∈A

aα + bαu(x)− Tr(Dα∇2u(x)), (1)

where A is an abstract set of parameters, and the coefficients aα ∈ R, bα ≥ 0, and
symmetric matrix Dα � 0 may additionally depend on the position x. A specific
feature of our approach, that is tied to the structure of the addressed problems, is
that the parameter space A is not discretized. Special handling is required when
the condition number of the matrices (Dα)α∈A is unbounded, see §2.3. We apply
this approach to the Pucci and Monge-Ampere equations in dimension two:

λmin(∇2u(x)) + µλmax(∇2u(x)) = fP(x), det(∇2u(x)) = f0MA(x), (2)

both having Dirichlet boundary conditions, where λmin and λmax denote the smallest
and largest eigenvalue of a symmetric matrix, and where µ > 0 and f0MA ≥ 0. For
simplicity, we assume that µ ≤ 1. These PDEs admit the following Bellman form,
taken from [FJ17] in the Monge-Ampere case:

max
θ∈[0,π]

−Tr(D(θ, µ)∇2u(x)) = −fP(x) where D(θ, µ) := Rθ

(
1 0
0 µ

)
RTθ ,

(3)

sup
Tr(D)=1
D�0

fMA(x)
√

det(D)− Tr(D∇2u(x)) = 0 where fMA := 2
√
f0MA. (4)

2 Discretization

We rely on a tool from algorithmic lattice geometry, known as Selling’s formula §2.1,
which is particularly adequate for discretizing degenerate elliptic PDEs on cartesian
grids of dimension two [BOZ04] or three [Mir18, Mir17, FM14]. This technique is
applied to the Pucci operator in §2.2, and to the Monge-Ampere equation in §2.3.
Throughout this section Ω ⊂ R2 denotes a bounded domain, and h > 0 a grid scale.
Define

Ωh := hZ2 ∩ Ω, ∆e
hu(x) :=

u(x+ he)− 2u(x) + u(x− he)
h2

, (5)

the discrete domain and the second order finite difference of a map u : Ωh∪∂Ω→ R
at x ∈ Ωh in the direction e ∈ Z2. When x is close to ∂Ω the latter formula becomes

∆e
hu(x) :=

2

h+ + h−

(u(x+ h+e)− u(x)

h+
+
u(x− h−e)− u(x)

h−

)
, (6)

where h± > 0 is the least value such that x± h±e ∈ Ωh ∪ ∂Ω. Note that (5, right)
is a second order consistent approximation of 〈e,∇2u(x)e〉, whereas (6) is only first
order consistent.
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2.1 Selling’s formula

Selling’s decomposition of an element of the set S++
2 of symmetric positive definite

2 × 2 matrices, see Proposition 2.2, can be regarded as a variant of the eigenvec-
tor/eigenvalue decomposition, but whose vectors have integer entries. We rely on
it to discretize non-divergence form linear (8) and non-linear (9) operators, in a
manner that achieves discrete degenerate ellipticity, see Definition 2.3.

Definition 2.1. A superbase of Z2 is a triplet (e0, e1, e2) ∈ (Z2)3 such that e0 +
e1 + e2 = 0 and |det(e1, e2)| = 1. It is D-obtuse, where D ∈ S++

2 , iff 〈ei, Dej〉 ≤ 0
for all i 6= j.

Proposition 2.2 (Selling [Sel74]). For each D ∈ S++
2 there exists a D-obtuse super-

base (e0, e1, e2) of Z2, which can be obtained from Selling’s algorithm. Furthermore
one has Selling’s formula

D =
∑

0≤i≤2
ρiviv

>
i with ρi := −〈ei−1, Dei+1〉 ≥ 0, vi := e⊥i ∈ Z2, (7)

where e⊥ := (−b, a)> if e = (a, b)> ∈ R2. The set {(ρi,±vi); 0 ≤ i ≤ 2, ρi > 0} is
uniquely determined.

Based on this formula, on can consider the following finite differences approxi-
mation, which is second-order accurate far enough from ∂Ω:

∆D
h u(x) :=

∑
0≤i≤2

ρi∆
vi
h u(x), ∆D

h u(x) = Tr(D∇2u(x)) +O(h2). (8)

Only first order consistency is achieved when x is close to ∂Ω, due to the use of (6).

Definition 2.3 (Discrete degenerate ellipticity [Obe06]). A numerical scheme on
a finite set X is a map F : U → U , where U := RX is the set of functions from X
to R, of the form:

Fu(x) = F (x, u(x), (u(y)− u(x))y 6=x),

for all u ∈ U , x ∈ X. It is Discrete Degenerate Elliptic (DDE) iff F is non-
decreasing w.r.t. the second argument u(x), and non-increasing w.r.t. each u(y) −
u(x), y 6= x.

The numerical scheme −∆D
h is DDE on Ωh, thanks to the non-negativity of the

weights (ρi)0≤i≤2, and to the finite differences expression (5, right) and (6), where
u is extended to ∂Ω with the provided Dirichlet boundary values. On this basis we
obtain a DDE discretization of nonlinear second order operators in Bellman form
(1), which is second-order accurate if x is far enough from ∂Ω:

Λhu(x) := sup
α∈A

aα + bαu(x)−∆Dα
h u(x), Λhu(x) = Λu(x) +O(h2). (9)

Again, only first order consistency is achieved when x is close to ∂Ω, depending
on the width of the discretization stencil (7) of Dα, α ∈ A. As shown below, the
supremum in (9, left) can be computed analytically in closed form, for the Pucci
and Monge-Ampere PDEs, so that the numerical scheme Λh is explicit in terms of
u.
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Figure 1: (Left) Ellipsoid {v ∈ R2; vTD(z)v = 1} for some points z of the unit disc,
see (10, right). Anisotropy degenerates as z moves toward the unit circle, shown blue.
(Center) D(z)-obtuse superbase, and opposites, for the same points z. This superbase
is piecewise constant on an infinite triangulation of the unit disk [Sch09], shown black.
(Right) Coefficients of the decomposition of D(θ, µ) for θ ∈ [0, π] and µ = 0.1.

2.2 The Pucci operator

The Bellman form of the Pucci operator (3) involves a family of matrices D(θ, µ),
parametrized by the inverse 0 < µ ≤ 1 of their condition number and an angle
0 ≤ θ ≤ π. As a starter, we rewrite those in the following normal form

D(θ, µ) =
1 + µ

2
D
(1− µ

1 + µ
n(2θ)

)
, D(z) :=

(
1 + z0 z1
z1 1− z0

)
, (10)

where n(ϕ) = (cosϕ, sinϕ) left, and z = (z0, z1) right. The anisotropy defined by
D(z), ‖z‖ < 1, is illustrated on Figure 1 (left). A D(z)-obtuse superbase is known
explicitly for each ‖z‖ < 1, depending on a suitable triangulation T of the unit
disc, see Figure 1 (center). Note that the argument of D in (10, left) describes a
circle of fixed radius 1−µ

1+µ , hence intersects finitely may elements of T . Thus one
can find 0 = θ0 < · · · < θN = π such that on each interval [θn, θn+1] the superbase
(en0 , e

n
1 , e

n
2 ) is D(θ, µ)-obtuse and the coefficients in (7) take the form

ρi(θ) = −〈eni−1, D(θ, µ)eni+1〉 = αni + βni cos(2θ) + γni sin(2θ), (11)

for suitable constants αni , β
n
i , γ

n
i ∈ R, 0 ≤ i ≤ 2, 0 ≤ n < N . See Figure 1 (right).

By linearity of (8) one also has ∆
D(θ,µ)
h u(x) = αn+βn cos(2θ)+γn sin(2θ) for all

θ ∈ [θn, θn+1], whose coefficients αn, βn, γn depend on ρ, h, u and x. Therefore, eval-
uating the discretized Bellman operator (9) associated with the Pucci equation (3)
at a point x ∈ Ωh amounts to solving a small number N of optimization problems,
whose value is explicit:

max
ϕ∈[ϕ∗,ϕ∗]

α+ β cosϕ+ γ sinϕ

=

{
α+

√
β2 + γ2 if arg(β + iγ) ∈]ϕ∗, ϕ

∗[,

α+ max{β cosϕ∗ + γ sinϕ∗, β cosϕ∗ + γ sinϕ∗} else,

where arg(ω) denotes the argument of ω ∈ C, taken in [0, 2π[. Choose ϕ∗ = 2θn,
ϕ∗ = 2θn+1, α = αn, β = βn, and γ = γn, and take the largest value among
0 ≤ n < N . Numerical results are presented in Section 3.

4



2.3 The Monge-Ampere equation

For discretizing the Monge-Ampere equation, we use Selling’s formula (7) to generate
all D ∈ S++

2 , rather than to decompose them. Given a superbase B = (e0, e1, e2)
and non-negative coefficients (ρ0, ρ1, ρ2) consider the positive semi-definite tensor

D =
∑

0≤i≤2
ρieie

>
i , obeying Tr(D) =

∑
0≤i≤2

ρi‖ei‖2, det(D) =
∑

0≤i≤2
ρiρi+1. (12)

By Selling’s formula (7), any D ∈ S++
2 is of this form. (We implicitly used that

the vectors (v0, v1, v2) in Proposition 2.2 are also a superbase.) The formula (12,
right) is obtained by computing the determinant of D in the frame (e1, e2). If the
superbase B is fixed, then the discretization (9) of Bellman’s form of the Monge-
Ampere equation (4) writes as:

ΛBh u(x) := max
ρ∈R3

+

fMA(x)

√ ∑
0≤i≤2

ρiρi+1 −
∑

0≤i≤2
ρi∆

ei
h u(x), s.t.

∑
0≤i≤2

ρi‖ei‖2 = 1.

Note that the linear constraints define a compact and convex set, actually a triangle
TB ⊂ R3

+ with vertices (‖e0‖−2, 0, 0) (0, ‖e1‖−2, 0) (0, 0, ‖e2‖−2). The optimized

functional is concave, since
√

det is concave on S++
2 , hence it suffices to find a

stationary point. Interestingly, a problem with the exact same algebraic form arises
in discretizing the eikonal equation, see (4) in [Mir14]. The solution ρopt has a closed
form, easily deduced from the optimality conditions. In more detail, if ρopt ∈ R3

+

lies in the interior of TB, then it is positively proportional to a vector defined in
terms of the solution t ∈ R to a univariate quadratic equation (13, right):

ρopt ∝ Q−1(tω + δ) where (tω + δ)>Q−1(tω + δ) = fMA(x)2. (13)

We denoted ω = (‖ei‖2)0≤i≤2, δ = (∆ei
h u(x))0≤i≤2, and Q = 1

2

(
0 1 1
1 0 1
1 1 0

)
the matrix

of the determinant (12, right) seen as a quadratic form. On the other hand, ρopt
is easily determined if it lies on the boundary of TB, which is the union of three
segments.

Eventually, we fix a finite set B of superbases, and define the numerical scheme

Λhu(x) := max
B∈B

ΛBh u(x).

This scheme is second order consistent (only first order near the boundary) provided
the solution is smooth, uniformly convex, and the condition number of ∇2u(x) is
bounded by a constant depending on B. Extending the set B of superbases indeed
allows to represent more matrices in the form (12), see Figure 1, and improves
the consistency properties. On the opposite spectrum, the scheme degenerates if
fMA(x) = 0 into a standard [Obe13, Obe08] discretization of −λmin(∇2u(x)):

Λhu(x) = max
B∈B

max
0≤i≤2

−
∆ei
h u(x)

‖ei‖2
.

3 Numerical experiments

We present numerical results for the discretization schemes described in this paper,
which illustrate the qualitative behavior of the solutions in various examples, and
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validate the scheme robustness and accuracy on synthetic problems with known
solutions. Some of the domains considered are neither smooth nor convex, and the
considered synthetic solutions range from smooth to singular.

The numerical schemes are implemented as described in the previous section,
and a Newton method is used to solve the resulting coupled systems of non-linear
equations. In practice, convergence to machine precision is achieved in a dozen
of iterations, without damping, from an arbitrary guess. We take advantage of
the envelope theorem to efficiently differentiate the numerical scheme (9) w.r.t.
the unknown and assemble its Jacobian matrix. An open source Python R© im-
plementation is available on the third author’s webpage: Github.com/Mirebeau/

AdaptiveGridDiscretizations.

3.1 Pucci equation

We illustrate on Figure 2 the transition of the Pucci equation from a strongly elliptic
Laplacian-like PDE to a combinatorial-type convex-envelope problem, as the param-
eter µ takes values 1/4 and 1/400 (α := µ in image titles). The chosen domain is non-
smooth and non-simply connected : Ω := U\U ′ where U := B(0, 1)∪ (]0, 1[×]−1, 1[)
and U ′ := kRθ(U) is its image under a scaling (k = 0.4) and a rotation (θ = π/3).
The boundary condition is 1 on ∂U , and 0 on ∂U ′.

On figure 3, we reconstruct some known synthetic solutions from their image by
the Pucci operator, with parameter µ = 0.2, and their trace on the boundary. The
examples are taken from the literature [FJ17, FO13], and the reconstruction errors
are provided in the L1 and L∞ norm.

• (Smooth example [FJ17]) u(x) = (x2 + y2)2 on Ω = B(0, 1)∪]0, 1[2

• (C1 example [FO13]) u(x) = max{0, ‖x− x0‖2 − 0.2) on Ω =]0, 1[2.

• (Singular example [FO13]) u(x) =
√

2− ‖x‖2 on Ω =]0, 1[2.

Empirically, the L1 numerical error behaves like O(h2), where h is the grid scale
(inverse of resolution in images). The L∞ error behaves like O(h2) in the smooth
and C1 examples, but decays more slowly for the singular solution. Note: we rotated
the Cartesian discretization grid by π/3 in these experiments, since otherwise the
perfect alignment of the domain boundary with the coordinate axes gives an unfair
advantage to grid based methods (like ours).

3.2 Monge-Ampere equation

Our discretization of the Monge-Ampere equation requires to choose a finite set B
of superbases. We consider three possibilities, featuring 2, 6 and 10 superbases,
whose support defines the stencil of the numerical scheme, see Figure 4 .

The impact of the stencil choice is clearly visible when reconstructing the piece-
wise linear function u(x) = |x+ y/

√
10|, by solving the degenerate Monge-Ampere

equation det(∇2u) = 0 (equivalent to the convex envelope problem) with Dirichlet
boundary conditions, see Figure 4. In addition, the convergence curves on Fig-
ure 5, on the same test cases as for the Pucci operator, show that numerical error
eventually stalls if an excessively small stencil is used. Empirical error is O(h2)
otherwise.
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Figure 2: Solution of the Pucci PDE with α = 1/4 (left), α = 1/400 (center, right:
gradient norm)

Figure 3: Numerical error as a function of grid size, for synthetic solutions to the Pucci
equation.

On figure 6 (left, center) we solve the Monge-Ampere equation det(∇2u) = 1
with null boundary conditions, on both a convex and a non-convex domain. In
the second case, the solution is only locally convex, and it is discontinuous at the
boundary, as expected [FJ17]. Figure 6 (right) shows a solution to det(∇2u) = 1−1U
where U is an angular sector, thus the r.h.s. is discontinuous and is vanishing on
part of the domain. Null boundary conditions are applied on the boundary of the
unit disk.
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