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Abstract

A Stefan problem represents a distributed parameter system with
a time-dependent spatial domain. This paper addresses the boundary
control of the position of the moving liquid-solid interface in the case
of nonlinear Stefan problem with Neumann actuation. The main idea
consists in deriving an equivalent linear model by means of Cole-Hopf
tangent transformation, i.e. under a certain physical assumption, the
original nonlinear Stefan problem is converted to a linear one. Then,
the geometric control law is deduced directly from that developed,
by the authors of the present paper, for the linear Stefan problem.
Based on the fact that the Cole-Hopf transformation is bijective, it
is shown that the developed control law yields a stable closed-loop
system. The performance of the controller is evaluated through nu-
merical simulation in the case of stainless steel melting characterized
by a temperature-dependent thermal conductivity, which is nonlinear.
The objective is to control the position of the liquid-solid interface by
manipulating a heat flux at the boundary.
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1 Introduction

Physical systems involving phase change phenomenon are characterized by
a moving interface that separates the solid and liquid phases [1]. To cite a
few, melting, solidification, casting, chemical reaction, heat and mass transfer
belong to this class of systems, which is commonly termed Stefan problems
in the literature [1, 2]. The characteristic variables of this kind of systems
depend both on space and time variables. These systems are classified as
distributed parameter systems (DPSs), which are of infinite dimension and
characterized by a time-dependent spatial domain [3, 4].

The dynamic behavior modeling of Stefan problems leads to a hybrid
model [1, 5] involving coupled partial and ordinary differential equations
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together with initial and boundary conditions. The partial differential equa-
tions (PDEs) describe the system dynamic behavior while the movement
of the solid-liquid interface, that forms actually a moving boundary of the
system, is modeled by an ordinary differential equation (ODE).

The control of DPSs represents a very challenging field and occupies an
important place in control theory [6]. Note that most contributions are based
on the early lumping approach [7, 8], i.e. the controller design is achieved
using an equivalent ODEs model, denoted as a reduced model, that approx-
imates the original PDEs one. This reduced model is derived using some
powerful reduction techniques that achieve an accurate approximation char-
acterizing the dominant dynamic behavior of the distributed parameter sys-
tem (DPS) described by the PDEs model [9]. This reduced model is obtained
by approximating either the PDEs (for instance by discretization using either
finite differences or finite elements methods) or their solutions (using for ex-
ample Galerkin’s method). This design procedure, denoted as early lumping
approach, leads to a high dimension controller with a limited performance
due to the approximation process that masks the spatially distributed nature
of the DPS [6, 10]. Nevertheless, during these last years, significant efforts
have been made to develop sophisticated control strategies that enhance sig-
nificantly the closed-loop performance following the early lumping approach
11, 12].

An interesting alternative to the early lumping approach is the late lump-
ing approach that consists in designing the controller using directly the PDEs
model without any approximation [7] The late lumping approach preserves
the spatially distributed nature and the fundamental control theoretical prop-
erties of the DPS, which allows to increase the controller performance [6, §].
Several successful applications of the late lumping are reported in the liter-
ature [6, 13, 14, 15, 4]. Nevertheless, most developed control strategies and
applications assume a fixed spatial domain, hence control of DPSs with a
time-dependent domain constitutes a very challenging field. In this area, few
contributions are reported in the literature [16, 17, 3, 18, 19, 20] and most
of them are based on the early lumping approach [16, 17, 18].

The Stefan problem has been investigated in literature and, in most con-
tributions, it is formulated as an inverse geometry problem [3, 21, 22] that
is solved in open loop. The approach developed here is based on closed-loop
control and thus differs by a large extent. To the best of our knowledge,
the first application of the late lumping approach to the DPSs with time-
dependent spatial domain has been done by the authors of the present paper



in the case of a linear Stefan problem [4]. In their contribution, the authors
tackle the closed-loop control of a linear Stefan problem, that is, a linear
diffusion process with a time-dependent spatial domain. Thus, a boundary
geometric control law that enforces the solid-liquid interface position track-
ing was developed using the concepts of characteristic index [6, 8] and the
closed-loop stability was demonstrated using the Lyapunov stability test.
The performance of the developed control law was evaluated by simulation
in the case of a zinc melting process.

In recent years, geometric control emerged as an interesting and suitable
approach for designing controllers for DPSs using the late lumping approach
6, 23, 24, 13, 4]. Geometric control presents the following advantages:

e the controller can be easily designed using the PDE model by performing
only successive time derivatives of the controlled variable [6, 13, 4],

e it allows the use of the full potential of an existing control theory for lumped
linear systems that offers powerful controller design techniques to enhance
the performance of the obtained linearized system [6, 23, 24],

e in the case of linear DPSs, it is easy to show, using some concepts from semi-
group and Lyapunov theories, the stability of closed-loop system [6, 13, 4].

The advantages cited above and the results developed by the authors
of the present paper in the case of linear Stefan problem [4] motivate the
extension of the geometric control to a nonlinear diffusion process with time-
dependent domain. Thus, based on their original results, the authors address
the control of the solid-liquid interface position in the case of a nonlinear
Stefan problem. It is shown that by using the Cole-Hopf tangent trans-
formation [25, 26], an equivalent PDE linear model of the nonlinear Stefan
problem can be easily derived. The resulting control law, that enforces po-
sition tracking of the liquid-solid interface, of the assumed nonlinear Stefan
problem can be derived directly from the control law of the linear Stefan
problem. Then, based on the fact that the Cole-Hopf tangent transforma-
tion is bijective, it is demonstrated that the obtained controller yields a stable
closed-loop system. The performance of the developed controller is shown by
numerical simulation in the case of melting of stainless steel characterized by
a temperature-dependent thermal conductivity, which makes it a nonlinear
diffusion process. The objective is to control the position of the liquid-solid
interface by manipulating a heat flux applied at the boundary.

The paper is structured as follows: Section 2 is devoted both to the
general Stefan problem and to the control problem formulation. The mathe-
matical model of the Stefan problem is presented in Section 3. Section 4 gives
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the geometric control law in the case of a linear Stefan problem. The bound-
ary geometric of the nonlinear Stefan problem is investigated in Section 5.
The performance of the controller is evaluated, by numerical simulation, in
Section 6 in the case of stainless steel melting. Section 7 concludes the paper.

Note that the present study addresses the control of a nonlinear diffusion
with a time-dependent space domain, thus without loss of generality, the ter-
minology from heat conduction transfer will be used in this paper to simplify
the presentation.

2 Stefan problem and control problem for-
mulation

A schematic representation of a melting process of a finite strip of a solid
material of length L is given in Figure 1. The heat flux ¢(¢) applied at the
left boundary z = 0 causes the melting process that moves in the positive
z direction. The system is thus composed of two phases, liquid and solid,
separated by a moving liquid-solid interface. At the position z = I(t) corre-
sponding to the liquid-solid interface, the temperature of the liquid is equal
to the melting temperature 7 of the considered material.

In the Stefan problem, the aim is to move the liquid-solid interface I(t) to
a desired position [¢(t) by manipulating the heat flux ¢(¢) at the boundary
z = 0. Thus, the control problem consists in designing a control profile ¢(t)
that ensures this objective in a finite time. The design of this control law
needs to set the formulated control problem under a mathematical model
form which is given in the following Section.

Liquid-Solid interface

. Liquid phase .
G(t) ——» Solid phase
T(z,t)

0 z=1(t) i

Figure 1: Schematics of material melting.



3 Mathematical model of Stefan problem

Assuming that the heat conductivity of the liquid phase is temperature-
dependent, the evolution of the liquid phase temperature is modeled by the
following nonlinear diffusion equation [5]

po 5t = & (w(rte ) ) 0

with the following fixed boundary conditions

—k(r0.0) TR i) 2)
T(U), t) =Ty (3)

and the initial condition
T(z, 0) = Ty(2) (4)

with 0 < 2z < [(t) < L. The PDE (1) is quasilinear, that is a kind of nonlinear
PDEs [27].
The motion of the liquid-solid interface is described by the following ODE
1, 5]
di(t)

par; M _(raq, ) 2D

0z 2=1(t)

(5)

In this model, T'(z,t) is the temperature of liquid phase, z the space vari-
able, t € [0, oo the time variable, I(t) the position of the moving boundary
(liquid-solid interface). The spatial domain at time ¢ is denoted by Q, =
0, I(t)] € Q with Q = [0, L] the largest spatial domain, i.e., 0 < [(¢) < L.
G(t) denotes the manipulated heat flux at boundary z = 0. The parameters
p, ¢p, k, AHy and T are the liquid density, liquid specific heat, liquid heat
conductivity, latent heat of fusion and melting temperature of the material,
respectively.

Note that, in the case where both ¢, and k are constant, i.e. independent
of the temperature T'(z, t), the nonlinear PDE (1) is reduced to a linear one.
In this case, the control problem formulated in Section 2 has been solved by
Maidi [4] in the framework of geometric control. The main results of their
work used in the present study are summarized in the following section.



4 Geometric control of linear Stefan problem

Assuming that k is temperature-independent, i.e. constant, the nonlinear
model (1)—(5) is reduced to the following linear model

8T(8zt, t) _ N 827;;, t)’ o p_kc;p (©)

—k % = (1) (7)
0. 1) = 7; ®)

T(z, 0) =To(2) 9)

pAH; %t) — K aT((;, ) (10)

z=I(t)

which corresponds to the linear Stefan problem. In this case, the control of
the position of liquid-interface by manipulating the heat flux ¢(¢) has been
solved by the authors of the present paper [4]. To give more generality to
their results, a dimensionless model of (6)—(10) has been used in both control
design and closed-loop stability analysis. The dimensionless variables used
e T(z 1) =T, {
<, — L min « z

w(&ﬂ—m, T 1 S—E (11)
which yields the following dimensionless model

ow(, ) Pw(E, T)

T R lo(T) <1 (12)
owE, )| o Lq(t)
- - 8§ o - Qa(T)> Qa(T) - k (Tmax o Tmin) (13)
w(la(7), 7) = wy (14)
w(&, 0) = wo(S) (15)
AHpdl(r) ey owlE )
¢ dr (o = Trin) 3 e=la(r) (16)

where the dimensionless variables wy, wy, ¢, and [, are the solid melting tem-
perature, initial solid strip temperature, heat flux and liquid-solid interface
position, respectively. T, and Ty, are arbitrary temperatures adequately
chosen for dimensionless reasons.



The control law developed by Maidi [4], in the framework of geometric
control, using the concept of the characteristic index introduced by Christofides
6], is given as follows

Ga(T) 7[m() m()]
pr (Tmax Tmm) 8w(§, T)
N [1 B : AHf a& L:la(T) (17)

where w,,(7) is an auxiliary output defined as the dimensionless spatial av-
erage temperature of the liquid phase, along the spatial domain 2., defined
as follows

win(r) = / (e, 7)de (18)

which is introduced to ensure the controllability condition, i.e. to have a
finite characteristic index o of the input-output system with input ¢(7) and
the output w,,(7) since, in the case of the output [,(7), the characteristic
index o does not exist (¢ — 00). v and w? (7) are the dimensionless closed-
loop time constant and desired set point of the controlled output w,,(7),
respectively.

The developed control (17) yields the following closed-loop system

dw,, (T)
" dr

and it is shown that, using the Lyapunov stability test, the internal dynam-
ics is stable. Note that the developed control law (17) ensures the output
tracking of the auxiliary variable w,,(7) but our objective is to control the
position of the liquid-solid interface I, (7). Hence, to solve the original control
problem, a simple control strategy has been proposed based on the steady
state relation between the spatial average temperature of the liquid phase
Wy, (7) and the position of the liquid-solid interface [,(7).

In this section, the authors summarize only the necessary results that
will be used later in the present study. Geometric control of a linear Stefan
problem has been studied extensively by Maidi [4], thus more details about
the derivation of the control law (17), the stability analysis of the resulting
closed-loop system and the general control strategy proposed can be found
in this original work.

T wi(r) = wl(7) (19)



By assuming the dimensionless variables (11), the dimensional control
law ¢(t) derived from the dimensionless control law (17) is

g(t) =22

. T () = Ton(t) =

_ Cp Tf 8T(z, t)
pa |:1 AHf:| 82

] (20)
z=I(t)

where g is the dimensional closed-loop time constant and T,,(¢) is the di-
mensional spatial average temperature of the liquid phase T'(z, t) defined
as
T(t) = CT(z, t) = / (= 1) d (21)
Q¢

and T¢(t) is its desired set point. C is a bounded linear operator.

The results presented in this section are exploited to derive the geometric
control law of the nonlinear Stefan problem (1)—(5), which is discussed in the
following section.

5 Geometric control of nonlinear Stefan prob-
lem

If the control theory of the linear DPSs has reached a certain level of matu-
rity thanks to the well-established and powerful semi-group theory [28], the
control theory of nonlinear DPSs is a challenging field with many interesting
open questions [10]. Concerning the control problem of nonlinear DPSs, most
contributions come from the early lumping approach [29, 30]. Recently, the
late lumping approach has been applied, in the framework of geometric con-
trol, to control nonlinear DPSs and particularly nonlinear diffusion systems
[13].

Tangent transformations play a key role in studying and solving nonlin-
ear PDEs. They allow to convert nonlinear PDEs to linear ones [25]. For
instance, under a certain assumption, the nonlinear diffusion equation (1)
can be easily converted to a linear diffusion equation using the Cole-Hopf
transformation [26]. This transformation has been exploited in the case of a
nonlinear diffusion process, with a distributed control, to design a controller



following the late lumping approach [13] and to study the controllability pro-
priety of a nonlinear diffusion system [31]. In the following, the Cole-Hopf
transformation is used to deduce the control of the nonlinear Stefan problem
(1)—(5) from the control law (20) obtained in the case of the linear Stefan
problem.

5.1 Cole-Hopf Transformation

The Cole-Hopf transformation consists in converting the nonlinear diffusion
equation (1) into a linear one if the thermal diffusivity defined by the follow-
ing ratio

 k(T(21))
a= v (22)

is approximately constant. This hypothesis is accepted in many cases since
the variation of a with T'(z, t) is much less important than that of k (T'(z, t)),
so that this approximation is reasonable [32].

To linearize the nonlinear diffusion equation (1), using the Cole-Hopf
technique, one seeks a transformation of the form [26]

T(z,t) = ¢(0(z, 1)) (23)

where ¢( . ) is a nonlinear function.

From a physical point of view, the liquid phase temperature T'(z, t) can-
not undergo discontinuities in a single-phase medium and, to each tempera-
ture T'(z, t), corresponds one temperature 6(z, t). Consequently, the nonlin-
ear function (. ) is a bijective mapping and both temperatures 7'(z, t) and
0(z, t) are continuous functions with respect to z, that is, they are spatially
differentiable.

By using the transformation (23), the evaluation of the derivatives of the
left-hand side of (1) gives

OT(z,t)  dp(0(z,t)) 00(z, t)

ot di(z 1) ot (24)
and for the right-hand side of (1), one obtains
d T (2, 1)\ a0(z, t)\*
a (k; 1z, 1y 2120 ) Y (TZ )
(oo, 1) D) TV D (29

do(z, t) 022
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with
d*o(0(z 1))
M =k(p(0(z, t))) T4z 1)
L k(02 1)) (dp(0(z 1)\
de(0(z, 1)) do(z, t)
To make the right-hand side of (25) linear, the term M is set equal to

zero. This term is a differential equation, which can be expressed in the
following integrable form

(26)

g et a5 o 7
Integrating (27) gives
kot 1) ErE ) — (28)

hence

[ o6z, ) ooz, ) = [ evaviz

=c10(z, t)+ ¢ (29)
or equivalently
0(z, t) =~ (T(2, 1))
:01—1 KT (e, ) dT(z, 1) — 2 (30)

where ¢71(.) is the inverse function of ¢(.) and ¢; # 0. According to the
discussion in Subsection 5.1, as the mapping ¢(.) is a continuous bijective
function, it follows that its inverse ¢~ !(.) exists and is also a continuous
function. The two arbitrary constants ¢; and ¢y can be chosen as follows [26]

c=k(0) 5 cr=— [/ k(T) dT} . (31)

Thus ¢, is the primitive integral of the heat conductivity k(T") taken at 7" = 0.
This leads, as demonstrated by Vadasz [26], after some elementary mathe-
matical manipulations, to the following well-known Kirchhoff’s transforma-
tion

1

T(z,t)
Bz, 1) = 7 (T ) = 15 / K(C) de (32)
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which is actually a particular case of Cole-Hopf transformation.

In summary, using the transformation (23), with ¢(0(z, t)) satisfying
(27) and considering the expression (22) of diffusivity «, the nonlinear state
equation (1) will be converted to the following linear one

00(z, 1) 020(z,1)

ot - 072 (33)

and by taking into account both equations (28) and (31), the following new
boundary and initial conditions can be easily deduced

—k0) 25| =) 3
o). 1) = ¢ (T7) = 0, 3
00z, 0) = ¢ (1) = () (30

and the equation of the interface motion (5) takes the following form

di(t)
dt

00(z, t)

AH
g ! 0z 2=1(t)

= —k(0)

(37)

Equations (33)—(37) represent a linear Stefan problem obtained by lin-
earizing the nonlinear Stefan model (1)—(5) by means of Cole-Hopf transfor-
mation. Therefore, the control law of the nonlinear Stefan problem (1)—(5)
can be deduced based on its equivalent linear model (33)—(37). This is ex-
plained in the following subsection.

5.2 Control law and closed-loop stability analysis

Based on the assumption made with respect to the diffusivity «, given by
(22), being nearly constant compared to the variation of heat conductivity
k, the equivalent linear model (33)—(37) provided by the Cole-Hopf transfor-
mation can be used to design the control law of the nonlinear Stefan problem
(1)—(5). Hence, according to the development given in Section 4, the con-
trol law that enforces the output tracking for the linear equivalent model

12



(33)-(37) is

q(t) =% [emt) —0,0(1)

B _pbp) 00(z 1)
pe <1 AHf) 0z

] (38)
z=I(t)

where the measured output is
O (1) :/ 0(z, t)dz (39)
Q

and 64 (t) is its corresponding set point.
Thereafter, considering relations (30), (35) and (39), the control law (38)
can be expressed according to the temperature T'(z, t) as follows

. 1)
i(t) =22 | T0) - / oM (T (= 1)) dz

T 8[<p_1 (T(z, t))}
— e (1 - AHJ;) 0z

] (40)
z=I(t)

which leads to the following closed-loop system

T, (1)
dt

which is externally or BIBO-stable. Nevertheless, without the stability of
the unobservable part, termed internal dynamics, the closed-loop stability
of (41) is not guaranteed. In geometric control, the behavior of the internal
dynamics, i.e. of the state of the system, plays a central role in proving the
stability.

In the case of linear Stefan problem [4], based on the fact that the la-
tent heat overcomes the sensible heat by a large extent for most physical
systems, the authors demonstrated the stability of the internal dynamics of
the closed-loop system using Lyapunov stability test. They concluded that
the closed-loop system is exponential stable and 6(z, t) — 6 when t — oo.
Consequently, the exponential stability of the closed-loop system (41), that
is the stability of its internal dynamics, can be deduced from the stability

+ T(t) = TA(Y) (41)
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1(t) External 0 State i(t) Nonlinear T(zt) c Talt) i) t)
Controller feedback (41) Stefan process )

Figure 2: Boundary control strategy of the liquid-solid interface.

of its equivalent linear model (33)—(37) using the fact that Cole-Hopf trans-
formation (23) is bijective. Lyapunov stability test for the equivalent linear
model (33)-(37) yields that 6(z, t) — 6y when ¢t — oo, therefore using the
Cole-Hopf transformation (23), it can be concluded that T'(z, T') — ¢(fy)
when ¢ — oo, i.e. according to (35), it follows that limy .., T'(z, t) = T}.
This means that the closed loop system (41) is internally stable.

5.3 Global control strategy

Recall that our objective consists in solving the initial boundary control
problem, i.e., controlling the position of the liquid-solid interface [(¢) by
manipulating the heat flux ¢(¢) at the boundary z = 0. Thus, it is proposed
to keep the control law (40) derived for the auxiliary output (21) and to
define its set point 7% (¢) by mean of an external controller taking as input
the error e(t) = 1%(t) — I(t), where [4(t) is the corresponding set point of
the position [(¢) of the liquid-solid interface. The proposed global control
strategy is shown in Fig 2.

The external controller in Fig. 2 is designed for the following nonlinear
system

Tonlt) = = Tul®) 2 T (1) (42)
1(t) = f(Tn(t)) (43)
Note that the bijective function f(.) can be identified by assuming several

values of the desired set point T (¢) and their corresponding set points 14(t)
(see the application example given is Section 6).
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6 Melting of the stainless steel

The tracking performance of the proposed control strategy is evaluated in
the case of melting of a strip of stainless steel of length ., = 0.5m the
physical properties of which are given in Table 1. The thermal conductivity
k is a nonlinear function of the temperature given as [33]

k(T(z,t) = 14.6 + 1.271072T(z, t) (44)
where T is expressed in °C and k in W.m~*.K~!. Thereafter, eq. (32) gives
0o N T(z, 1) = T(z, t) +4.349310"* T?%(z, t) (45)

Note that, for some complex thermal conductivity k, the analytical ex-
pression of ¢ '(.) cannot be calculated so that, in that case, numerical
integration methods should be used.

For the closed-loop system simulation, the boundary immobilization method
(34, 4] is used to derive an equivalent nonlinear model with an immobi-
lized right-hand boundary condition for the original nonlinear system (1)—(5).
Then, the equivalent nonlinear model obtained is simulated using the method
of lines,based on finite differences, by taking 200 discretization points. The
integral term of the control law (40) is evaluated using the trapezoidal method.

The relation, at steady-state, between the position of the liquid-solid in-
terface position and the spatial average temperature 7,,(t) is given by Fig. 3.
From this figure, it follows that the relation between [(t) and T,,(t) is ap-
proximately linear, that is,

Tin(t) = al(t) (46)
Designation Symbol Value
Density p 6820 kg -m™3
Melting temperature 7% 1648 K
Heat of fusion AHy 260000 J - kg=*
Heat capacity Cp 490 J- kgt K1

Table 1: Stainless steel properties.
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Figure 3: Steady-state relation between T,,(t) and [(t).

Hence, combining (41) and (46), the following transfer function between
Td () and [(t) results
L(s)  a
Tgfb(s) ns+1
In this application, as the relation (46) is linear, hence the set point T (¢)
is defined by means of a PI controller (external controller in Fig 2) as follows

(47)

0 - [0 -10) + 2 [ (Mo-10)a]

Ti

where K., 7; and [%(t) are respectively the proportional gain, integral time
constant and desired output of the liquid-solid interface position I(t).

The controller tuning parameter p is taken equal to 5min. The PI pa-
rameters are tuned so that the closed-loop system [¢(t) — () is characterized
by a damping factor 7 = 1 and a natural pulsation w, = 0.18rad - min~".
The obtained parameters are K. = 1318.8 and 7; = 4.9383 min. In order to
have a smooth control signal, the desired set point (?(¢) has been filtered by
a second-order filter with time constants 1 min and 2 min.

In the following, the tracking capabilities of the proposed control strategy
and its robustness against the parametric variation are investigated through
numerical simulations.
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Figure 4: Tracking: Evolution of the position of the liquid-solid interface

1(#).

6.1 Tracking problem

The objective is to melt a portion of strip of length 0.3 m, initially solid.
To show the effectiveness of the developed controller, the melting process
is achieved in two stages. First, a portion of 0.15m is melted, once this is
achieved, a new melting is started to melt the rest of the strip. Thus, two
step set points [4(t) = 0.15m and I4(t) = 0.30 m are imposed at t = 0 and t =
80 min, respectively. Fig. 4 shows that the imposed set points are perfectly
tracked, i.e. the liquid-solid interface is moved to the specified positions.
From Fig. 5, it follows that the heat flux evolution is physically acceptable
and it is observed that the heat flux, initially zero, increases rapidly just after
the variation of set point, then returns to its steady value as the liquid-solid
interface reaches the specified positions.

6.2 Robustness

To evaluate the robustness of the controller, a perturbed model is simu-
lated for a variation of the liquid specific heat ¢, assumed as parametric
uncertainty. The robustness test performed consists in assuming that the
control law (40) is calculated by assuming a constant liquid specific heat
¢, = 454 J - kg™ - K~ whereas for the process is assumed to be temperature-
dependent, that is, time-varying parameter. In this case, the thermal con-
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Figure 6: Robustness: Evolution of the position of the liquid-solid interface
I(t).
ductivity ¢, is a nonlinear function of the temperature 7'(z, t) given as [33]

c(T(z, t)) =454 + 0.388 T'(z, t) + 3.22107* T?(z, t)
+1.1107"T3%(2,t) (T in °Q) (49)
For this test, the objective is to melt a portion of strip, 0.25 m in length.

Figures 6-7 show that in spite of the variation of ¢,, the control objective is
correctly achieved with admissible moves of the manipulated heat flux.
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Figure 7: Robustness : Evolution of the manipulated heat flux ¢(t).

7 Conclusion

In this paper, a control strategy is proposed to control the position of the
liquid-solid interface in a nonlinear Stefan problem. This is modeled by
coupled partial and ordinary differential equations. The PDE describes the
temperature evolution of the phase liquid, which is a nonlinear diffusion
equation as the thermal conductivity and the specific heat are temperature-
dependent. The motion of the liquid-solid interface is modeled by an ODE.
The objective is to control the interface position by manipulating the heat
flow at the opposite boundary.

Based on the tangent Cole-Hopf transformation, the control law of the
nonlinear Stefan problem is deduced directly from the control law developed
by the authors, in their previous work, for the control of Stefan linear prob-
lem. Thereafter, based on the fact that the Cole-Hopf transformation is a
bijective mapping, it is shown that the developed control law yields a stable
closed-loop system.

Finally, to achieve the initial objective control, i.e., to move the liquid-
solid interface to a desired position, a control strategy is proposed where an
external controller is introduced to define the set point of the spatial average
temperature of the liquid phase. The error between the liquid-solid interface
position and its desired set point is defined as the input of the external
controller.

This control strategy is successfully tested by numerical simulation of the
melting of a stainless steel strip. The obtained results show the ability of
the controller to track the desired position of the interface with physically
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acceptable moves of the applied heat flux.
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