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Introduction

Physical systems involving phase change phenomenon are characterized by a moving interface that separates the solid and liquid phases [START_REF] Crank | Free and moving boundary problems[END_REF]. To cite a few, melting, solidification, casting, chemical reaction, heat and mass transfer belong to this class of systems, which is commonly termed Stefan problems in the literature [START_REF] Crank | Free and moving boundary problems[END_REF][START_REF] Gupta | The Classical Stefan Problem[END_REF]. The characteristic variables of this kind of systems depend both on space and time variables. These systems are classified as distributed parameter systems (DPSs), which are of infinite dimension and characterized by a time-dependent spatial domain [START_REF] Dunbar | Motion planning for a nonlinear Stefan problem[END_REF][START_REF] Maidi | Boundary control of linear Stefan problem[END_REF].

The dynamic behavior modeling of Stefan problems leads to a hybrid model [START_REF] Crank | Free and moving boundary problems[END_REF][START_REF] Mattheij | Partial Differential Equations[END_REF] involving coupled partial and ordinary differential equations together with initial and boundary conditions. The partial differential equations (PDEs) describe the system dynamic behavior while the movement of the solid-liquid interface, that forms actually a moving boundary of the system, is modeled by an ordinary differential equation (ODE).

The control of DPSs represents a very challenging field and occupies an important place in control theory [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF]. Note that most contributions are based on the early lumping approach [START_REF] Ray | Advanced Process Control[END_REF][START_REF] Christofides | Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes[END_REF], i.e. the controller design is achieved using an equivalent ODEs model, denoted as a reduced model, that approximates the original PDEs one. This reduced model is derived using some powerful reduction techniques that achieve an accurate approximation characterizing the dominant dynamic behavior of the distributed parameter system (DPS) described by the PDEs model [START_REF] Li | Modeling of distributed parameter systems for applications-A synthesized review from time-space separation[END_REF]. This reduced model is obtained by approximating either the PDEs (for instance by discretization using either finite differences or finite elements methods) or their solutions (using for example Galerkin's method). This design procedure, denoted as early lumping approach, leads to a high dimension controller with a limited performance due to the approximation process that masks the spatially distributed nature of the DPS [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Christofides | Control of nonlinear distributed process systems: Recent developments and challenges[END_REF]. Nevertheless, during these last years, significant efforts have been made to develop sophisticated control strategies that enhance significantly the closed-loop performance following the early lumping approach [START_REF] Pourkargar | Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients[END_REF][START_REF] Pourkargar | Geometric output tracking of nonlinear distributed parameter systems via adaptive model reduction[END_REF].

An interesting alternative to the early lumping approach is the late lumping approach that consists in designing the controller using directly the PDEs model without any approximation [START_REF] Ray | Advanced Process Control[END_REF] The late lumping approach preserves the spatially distributed nature and the fundamental control theoretical properties of the DPS, which allows to increase the controller performance [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Christofides | Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes[END_REF]. Several successful applications of the late lumping are reported in the literature [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Maidi | Distributed control of nonlinear diffusion systems by input-output linearization[END_REF][START_REF] Shang | Feedback control of hyperbolic distributed parameter systems[END_REF][START_REF] Wu | Output regulation of nonisothermal plug-flow reactors with inlet perturbations[END_REF][START_REF] Maidi | Boundary control of linear Stefan problem[END_REF]. Nevertheless, most developed control strategies and applications assume a fixed spatial domain, hence control of DPSs with a time-dependent domain constitutes a very challenging field. In this area, few contributions are reported in the literature [START_REF] Armaou | Nonlinear feedback control of parabolic partial differential equation systems with time-dependent spatial domains[END_REF][START_REF] Armaou | Robsut control of parabolic PDE systems with time-dependent spatial domains[END_REF][START_REF] Dunbar | Motion planning for a nonlinear Stefan problem[END_REF][START_REF] Ng | Optimal boundary control of a diffusion-convectionreaction PDE model with time-dependent spatial domain: Czochralski crystal growth process[END_REF][START_REF] Wang | Stabilization and control of distributed parameter system with time-dependent spatial domains[END_REF][START_REF] Wang | Feedback control of a heat diffusion system with timedependent spatial domains[END_REF] and most of them are based on the early lumping approach [START_REF] Armaou | Nonlinear feedback control of parabolic partial differential equation systems with time-dependent spatial domains[END_REF][START_REF] Armaou | Robsut control of parabolic PDE systems with time-dependent spatial domains[END_REF][START_REF] Ng | Optimal boundary control of a diffusion-convectionreaction PDE model with time-dependent spatial domain: Czochralski crystal growth process[END_REF].

The Stefan problem has been investigated in literature and, in most contributions, it is formulated as an inverse geometry problem [START_REF] Dunbar | Motion planning for a nonlinear Stefan problem[END_REF][START_REF] Khosravifard | Simultaneous control of solidus and liquidus lines in alloy solidification[END_REF][START_REF] Nowak | Application of bezier surfaces to the 3-d inverse geometry problem in continuous casting[END_REF] that is solved in open loop. The approach developed here is based on closed-loop control and thus differs by a large extent. To the best of our knowledge, the first application of the late lumping approach to the DPSs with timedependent spatial domain has been done by the authors of the present paper in the case of a linear Stefan problem [START_REF] Maidi | Boundary control of linear Stefan problem[END_REF]. In their contribution, the authors tackle the closed-loop control of a linear Stefan problem, that is, a linear diffusion process with a time-dependent spatial domain. Thus, a boundary geometric control law that enforces the solid-liquid interface position tracking was developed using the concepts of characteristic index [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Christofides | Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes[END_REF] and the closed-loop stability was demonstrated using the Lyapunov stability test. The performance of the developed control law was evaluated by simulation in the case of a zinc melting process.

In recent years, geometric control emerged as an interesting and suitable approach for designing controllers for DPSs using the late lumping approach [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Maidi | Boundary geometric control of a countercurrent heat exchanger[END_REF][START_REF] Maidi | Distributed feedback design for systems governed by the wave equation[END_REF][START_REF] Maidi | Distributed control of nonlinear diffusion systems by input-output linearization[END_REF][START_REF] Maidi | Boundary control of linear Stefan problem[END_REF]. Geometric control presents the following advantages:

• the controller can be easily designed using the PDE model by performing only successive time derivatives of the controlled variable [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Maidi | Distributed control of nonlinear diffusion systems by input-output linearization[END_REF][START_REF] Maidi | Boundary control of linear Stefan problem[END_REF],

• it allows the use of the full potential of an existing control theory for lumped linear systems that offers powerful controller design techniques to enhance the performance of the obtained linearized system [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Maidi | Boundary geometric control of a countercurrent heat exchanger[END_REF][START_REF] Maidi | Distributed feedback design for systems governed by the wave equation[END_REF],

• in the case of linear DPSs, it is easy to show, using some concepts from semigroup and Lyapunov theories, the stability of closed-loop system [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Maidi | Distributed control of nonlinear diffusion systems by input-output linearization[END_REF][START_REF] Maidi | Boundary control of linear Stefan problem[END_REF].

The advantages cited above and the results developed by the authors of the present paper in the case of linear Stefan problem [START_REF] Maidi | Boundary control of linear Stefan problem[END_REF] motivate the extension of the geometric control to a nonlinear diffusion process with timedependent domain. Thus, based on their original results, the authors address the control of the solid-liquid interface position in the case of a nonlinear Stefan problem. It is shown that by using the Cole-Hopf tangent transformation [START_REF] Meleshko | Methods for Constructing Exact Solutions of Partial Differential Equations[END_REF][START_REF] Vadasz | Analytical solution to nonlinear thermal diffusion: Kirchhoff versus Cole-Hopf transformations[END_REF], an equivalent PDE linear model of the nonlinear Stefan problem can be easily derived. The resulting control law, that enforces position tracking of the liquid-solid interface, of the assumed nonlinear Stefan problem can be derived directly from the control law of the linear Stefan problem. Then, based on the fact that the Cole-Hopf tangent transformation is bijective, it is demonstrated that the obtained controller yields a stable closed-loop system. The performance of the developed controller is shown by numerical simulation in the case of melting of stainless steel characterized by a temperature-dependent thermal conductivity, which makes it a nonlinear diffusion process. The objective is to control the position of the liquid-solid interface by manipulating a heat flux applied at the boundary.

The paper is structured as follows: Section 2 is devoted both to the general Stefan problem and to the control problem formulation. The mathematical model of the Stefan problem is presented in Section 3. Section 4 gives the geometric control law in the case of a linear Stefan problem. The boundary geometric of the nonlinear Stefan problem is investigated in Section 5. The performance of the controller is evaluated, by numerical simulation, in Section 6 in the case of stainless steel melting. Section 7 concludes the paper.

Note that the present study addresses the control of a nonlinear diffusion with a time-dependent space domain, thus without loss of generality, the terminology from heat conduction transfer will be used in this paper to simplify the presentation.

Stefan problem and control problem formulation

A schematic representation of a melting process of a finite strip of a solid material of length L is given in Figure 1. The heat flux q(t) applied at the left boundary z = 0 causes the melting process that moves in the positive z direction. The system is thus composed of two phases, liquid and solid, separated by a moving liquid-solid interface. At the position z = l(t) corresponding to the liquid-solid interface, the temperature of the liquid is equal to the melting temperature T f of the considered material.

In the Stefan problem, the aim is to move the liquid-solid interface l(t) to a desired position l d (t) by manipulating the heat flux q(t) at the boundary z = 0. Thus, the control problem consists in designing a control profile q(t) that ensures this objective in a finite time. The design of this control law needs to set the formulated control problem under a mathematical model form which is given in the following Section. 

Liquid phase

T (z, t) Solid phase Liquid-Solid interface q(t) z 0 z = l(t) L

Mathematical model of Stefan problem

Assuming that the heat conductivity of the liquid phase is temperaturedependent, the evolution of the liquid phase temperature is modeled by the following nonlinear diffusion equation [START_REF] Mattheij | Partial Differential Equations[END_REF] 

ρ c p ∂T (z, t) ∂t = ∂ ∂z k T (z, t) ∂T (z, t) ∂z (1) 
with the following fixed boundary conditions

-k T (0, t) ∂T (z, t) ∂z z=0 = q(t) (2) 
T l(t), t = T f (3) 
and the initial condition

T (z, 0) = T 0 (z) (4) 
with 0 ≤ z ≤ l(t) ≤ L. The PDE ( 1) is quasilinear, that is a kind of nonlinear PDEs [START_REF] Salsa | A Primer on PDEs. Models, Methods, Simulations[END_REF].

The motion of the liquid-solid interface is described by the following ODE [START_REF] Crank | Free and moving boundary problems[END_REF][START_REF] Mattheij | Partial Differential Equations[END_REF] 

ρ ∆H f dl(t) dt = -k T l(t), t ∂T (z, t) ∂z z=l(t) (5) 
In this model, T (z, t) is the temperature of liquid phase, z the space variable, t ∈ [0, ∞[ the time variable, l(t) the position of the moving boundary (liquid-solid interface). The spatial domain at time t is denoted by Ω t = [0, l(t)] ⊂ Ω with Ω = [0, L] the largest spatial domain, i.e., 0 ≤ l(t) ≤ L. q(t) denotes the manipulated heat flux at boundary z = 0. The parameters ρ, c p , k, ∆H f and T f are the liquid density, liquid specific heat, liquid heat conductivity, latent heat of fusion and melting temperature of the material, respectively.

Note that, in the case where both c p and k are constant, i.e. independent of the temperature T (z, t), the nonlinear PDE (1) is reduced to a linear one. In this case, the control problem formulated in Section 2 has been solved by Maidi [4] in the framework of geometric control. The main results of their work used in the present study are summarized in the following section.

Geometric control of linear Stefan problem

Assuming that k is temperature-independent, i.e. constant, the nonlinear model ( 1)-( 5) is reduced to the following linear model

∂T (z, t) ∂t = α ∂ 2 T (z, t) ∂z 2 , α = k ρ c p (6) -k ∂T (z, t) ∂z z=0 = q(t) (7) 
T (l(t), t) = T f (8) T (z, 0) = T 0 (z) (9) ρ ∆H f dl(t) dt = -k ∂T (z, t) ∂z z=l(t) (10) 
which corresponds to the linear Stefan problem. In this case, the control of the position of liquid-interface by manipulating the heat flux q(t) has been solved by the authors of the present paper [START_REF] Maidi | Boundary control of linear Stefan problem[END_REF]. To give more generality to their results, a dimensionless model of ( 6)-( 10) has been used in both control design and closed-loop stability analysis. The dimensionless variables used are

w(ξ, τ ) = T (z, t) -T min T max -T min , τ = α t L 2 , ξ = z L (11) 
which yields the following dimensionless model

∂w(ξ, τ ) ∂τ = ∂ 2 w(ξ, τ ) ∂ξ 2 , 0 ≤ ξ ≤ l a (τ ) ≤ 1 (12) - ∂w(ξ, τ ) ∂ξ ξ=0 = qa (τ ), qa (τ ) = L q(t) k (T max -T min ) (13) w(l a (τ ), τ ) = w f (14) w(ξ, 0) = w 0 (ξ) (15) ∆H f c p dl a (τ ) dτ = -(T max -T min ) ∂w(ξ, τ ) dξ ξ=la(τ ) (16) 
where the dimensionless variables w f , w 0 , qa and l a are the solid melting temperature, initial solid strip temperature, heat flux and liquid-solid interface position, respectively. T min and T max are arbitrary temperatures adequately chosen for dimensionless reasons.

The control law developed by Maidi [START_REF] Maidi | Boundary control of linear Stefan problem[END_REF], in the framework of geometric control, using the concept of the characteristic index introduced by Christofides [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF], is given as follows

qa (τ ) = 1 γ w d m (τ ) -w m (τ ) -1 - c p w f (T max -T min ) ∆H f ∂w(ξ, τ ) ∂ξ ξ=la(τ ) (17) 
where w m (τ ) is an auxiliary output defined as the dimensionless spatial average temperature of the liquid phase, along the spatial domain Ω τ , defined as follows

w m (τ ) = Ωτ w(ξ, τ ) dξ (18) 
which is introduced to ensure the controllability condition, i.e. to have a finite characteristic index σ of the input-output system with input q(τ ) and the output w m (τ ) since, in the case of the output l a (τ ), the characteristic index σ does not exist (σ → ∞). γ and w d m (τ ) are the dimensionless closedloop time constant and desired set point of the controlled output w m (τ ), respectively.

The developed control (17) yields the following closed-loop system

γ dw m (τ ) dτ + w m (τ ) = w d m (τ ) ( 19 
)
and it is shown that, using the Lyapunov stability test, the internal dynamics is stable. Note that the developed control law [START_REF] Armaou | Robsut control of parabolic PDE systems with time-dependent spatial domains[END_REF] ensures the output tracking of the auxiliary variable w m (τ ) but our objective is to control the position of the liquid-solid interface l a (τ ). Hence, to solve the original control problem, a simple control strategy has been proposed based on the steady state relation between the spatial average temperature of the liquid phase w m (τ ) and the position of the liquid-solid interface l a (τ ).

In this section, the authors summarize only the necessary results that will be used later in the present study. Geometric control of a linear Stefan problem has been studied extensively by Maidi [START_REF] Maidi | Boundary control of linear Stefan problem[END_REF], thus more details about the derivation of the control law [START_REF] Armaou | Robsut control of parabolic PDE systems with time-dependent spatial domains[END_REF], the stability analysis of the resulting closed-loop system and the general control strategy proposed can be found in this original work.

By assuming the dimensionless variables [START_REF] Pourkargar | Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients[END_REF], the dimensional control law q(t) derived from the dimensionless control law [START_REF] Armaou | Robsut control of parabolic PDE systems with time-dependent spatial domains[END_REF] is

q(t) = ρ c p µ T d m (t) -T m (t) - µ α 1 - c p T f ∆H f ∂T (z, t) ∂z z=l(t) ( 20 
)
where µ is the dimensional closed-loop time constant and T m (t) is the dimensional spatial average temperature of the liquid phase T (z, t) defined as

T m (t) = CT (z, t) = Ωt T (z, t) dz (21) 
and T d m (t) is its desired set point. C is a bounded linear operator. The results presented in this section are exploited to derive the geometric control law of the nonlinear Stefan problem (1)-( 5), which is discussed in the following section.

Geometric control of nonlinear Stefan problem

If the control theory of the linear DPSs has reached a certain level of maturity thanks to the well-established and powerful semi-group theory [START_REF] Pazy | Semigroup of Linear Operators and Applications to Partial Differential Equations[END_REF], the control theory of nonlinear DPSs is a challenging field with many interesting open questions [START_REF] Christofides | Control of nonlinear distributed process systems: Recent developments and challenges[END_REF]. Concerning the control problem of nonlinear DPSs, most contributions come from the early lumping approach [START_REF] Baker | Finite-dimensional approximation and control of non-linear parabolic PDE systems[END_REF][START_REF] Dubljevic | Distributed nonlinear control of diffusion-reaction processes[END_REF]. Recently, the late lumping approach has been applied, in the framework of geometric control, to control nonlinear DPSs and particularly nonlinear diffusion systems [START_REF] Maidi | Distributed control of nonlinear diffusion systems by input-output linearization[END_REF].

Tangent transformations play a key role in studying and solving nonlinear PDEs. They allow to convert nonlinear PDEs to linear ones [START_REF] Meleshko | Methods for Constructing Exact Solutions of Partial Differential Equations[END_REF]. For instance, under a certain assumption, the nonlinear diffusion equation ( 1) can be easily converted to a linear diffusion equation using the Cole-Hopf transformation [START_REF] Vadasz | Analytical solution to nonlinear thermal diffusion: Kirchhoff versus Cole-Hopf transformations[END_REF]. This transformation has been exploited in the case of a nonlinear diffusion process, with a distributed control, to design a controller following the late lumping approach [START_REF] Maidi | Distributed control of nonlinear diffusion systems by input-output linearization[END_REF] and to study the controllability propriety of a nonlinear diffusion system [START_REF] Maidi | Controllability of a nonlinear diffusion system[END_REF]. In the following, the Cole-Hopf transformation is used to deduce the control of the nonlinear Stefan problem (1)-( 5) from the control law [START_REF] Wang | Feedback control of a heat diffusion system with timedependent spatial domains[END_REF] obtained in the case of the linear Stefan problem.

Cole-Hopf Transformation

The Cole-Hopf transformation consists in converting the nonlinear diffusion equation ( 1) into a linear one if the thermal diffusivity defined by the following ratio

α = k (T (z, t)) ρ c p (22) 
is approximately constant. This hypothesis is accepted in many cases since the variation of α with T (z, t) is much less important than that of k (T (z, t)), so that this approximation is reasonable [START_REF] Carslaw | Conduction of Heat in Solids[END_REF].

To linearize the nonlinear diffusion equation ( 1), using the Cole-Hopf technique, one seeks a transformation of the form [START_REF] Vadasz | Analytical solution to nonlinear thermal diffusion: Kirchhoff versus Cole-Hopf transformations[END_REF] T (z, t) = ϕ(θ(z, t)) [START_REF] Maidi | Boundary geometric control of a countercurrent heat exchanger[END_REF] where ϕ( . ) is a nonlinear function.

From a physical point of view, the liquid phase temperature T (z, t) cannot undergo discontinuities in a single-phase medium and, to each temperature T (z, t), corresponds one temperature θ(z, t). Consequently, the nonlinear function ϕ( . ) is a bijective mapping and both temperatures T (z, t) and θ(z, t) are continuous functions with respect to z, that is, they are spatially differentiable.

By using the transformation [START_REF] Maidi | Boundary geometric control of a countercurrent heat exchanger[END_REF], the evaluation of the derivatives of the left-hand side of (1) gives

∂T (z, t) ∂t = dϕ(θ(z, t)) dθ(z, t) ∂θ(z, t) ∂t (24) 
and for the right-hand side of (1), one obtains

∂ ∂z k (T (z, t)) ∂T (z, t) ∂z = M ∂θ(z, t) ∂z 2 + k(ϕ(θ(z, t))) dϕ(θ(z, t)) dθ(z, t) ∂ 2 θ(z, t) ∂z 2 (25) 
with

M =k(ϕ(θ(z, t))) d 2 ϕ(θ(z, t)) dθ 2 (z, t) + dk(ϕ(θ(z, t))) dϕ(θ(z, t)) dϕ(θ(z, t)) dθ(z, t) 2 (26) 
To make the right-hand side of (25) linear, the term M is set equal to zero. This term is a differential equation, which can be expressed in the following integrable form

d dθ(z, t) k(ϕ(θ(z, t))) dϕ(θ(z, t)) dθ(z, t) = 0 (27) 
Integrating [START_REF] Salsa | A Primer on PDEs. Models, Methods, Simulations[END_REF] gives

k(ϕ(θ(z, t))) dϕ(θ(z, t)) dθ(z, t) = c 1 (28) hence k(ϕ(θ(z, t))) dϕ(θ(z, t)) = c 1 dθ(z, t) = c 1 θ(z, t) + c 2 (29) 
or equivalently θ(z, t) =ϕ -1 (T (z, t))

= 1 c 1 k(T (z, t)) dT (z, t) - c 2 c 1 (30) 
where ϕ -1 ( . ) is the inverse function of ϕ( . ) and c 1 = 0. According to the discussion in Subsection 5.1, as the mapping ϕ( . ) is a continuous bijective function, it follows that its inverse ϕ -1 ( . ) exists and is also a continuous function. The two arbitrary constants c 1 and c 2 can be chosen as follows [START_REF] Vadasz | Analytical solution to nonlinear thermal diffusion: Kirchhoff versus Cole-Hopf transformations[END_REF] 

c 1 = k(0) ; c 2 = - k(T ) dT T =0 (31) 
Thus c 2 is the primitive integral of the heat conductivity k(T ) taken at T = 0. This leads, as demonstrated by Vadasz [START_REF] Vadasz | Analytical solution to nonlinear thermal diffusion: Kirchhoff versus Cole-Hopf transformations[END_REF], after some elementary mathematical manipulations, to the following well-known Kirchhoff's transformation

θ(z, t) = ϕ -1 (T (z, t)) = 1 k(0) T (z, t) 0 k(ζ) dζ (32) 
which is actually a particular case of Cole-Hopf transformation. In summary, using the transformation [START_REF] Maidi | Boundary geometric control of a countercurrent heat exchanger[END_REF], with ϕ(θ(z, t)) satisfying ( 27) and considering the expression [START_REF] Nowak | Application of bezier surfaces to the 3-d inverse geometry problem in continuous casting[END_REF] of diffusivity α, the nonlinear state equation ( 1) will be converted to the following linear one

∂θ(z, t) ∂t = α ∂ 2 θ(z, t) ∂z 2 (33) 
and by taking into account both equations ( 28) and ( 31), the following new boundary and initial conditions can be easily deduced

-k(0) ∂θ(z, t) ∂z z=0 = q(t) (34) θ(l(t), t) = ϕ -1 (T f ) = θ f (35) θ(z, 0) = ϕ -1 (T 0 (z)) = θ 0 (z) (36)
and the equation of the interface motion ( 5) takes the following form

ρ ∆H f dl(t) dt = -k(0) ∂θ(z, t) ∂z z=l(t) (37) 
Equations ( 33)-(37) represent a linear Stefan problem obtained by linearizing the nonlinear Stefan model ( 1)-( 5) by means of Cole-Hopf transformation. Therefore, the control law of the nonlinear Stefan problem (1)-( 5) can be deduced based on its equivalent linear model ( 33)-(37). This is explained in the following subsection.

Control law and closed-loop stability analysis

Based on the assumption made with respect to the diffusivity α, given by [START_REF] Nowak | Application of bezier surfaces to the 3-d inverse geometry problem in continuous casting[END_REF], being nearly constant compared to the variation of heat conductivity k, the equivalent linear model ( 33)-(37) provided by the Cole-Hopf transformation can be used to design the control law of the nonlinear Stefan problem (1)- [START_REF] Mattheij | Partial Differential Equations[END_REF]. Hence, according to the development given in Section 4, the control law that enforces the output tracking for the linear equivalent model ( 33)-( 37) is

q(t) = ρ c p µ θ d m (t) -θ m (t) -µ α 1 - c p θ f ∆H f ∂θ(z, t) ∂z z=l(t) (38) 
where the measured output is

θ m (t) = Ωt θ(z, t) dz ( 39 
)
and θ d m (t) is its corresponding set point. Thereafter, considering relations ( 30), ( 35) and (39), the control law (38) can be expressed according to the temperature T (z, t) as follows

q(t) = ρ c p µ T d m (t) - l(t) 0 ϕ -1 T (z, t) dz -µ α 1 - c p T f ∆H f ∂ ϕ -1 T (z, t) ∂z z=l(t) (40) 
which leads to the following closed-loop system

µ dT m (t) dt + T m (t) = T d m (t) (41) 
which is externally or BIBO-stable. Nevertheless, without the stability of the unobservable part, termed internal dynamics, the closed-loop stability of (41) is not guaranteed. In geometric control, the behavior of the internal dynamics, i.e. of the state of the system, plays a central role in proving the stability.

In the case of linear Stefan problem [START_REF] Maidi | Boundary control of linear Stefan problem[END_REF], based on the fact that the latent heat overcomes the sensible heat by a large extent for most physical systems, the authors demonstrated the stability of the internal dynamics of the closed-loop system using Lyapunov stability test. They concluded that the closed-loop system is exponential stable and θ(z, t) → θ f when t → ∞. Consequently, the exponential stability of the closed-loop system (41), that is the stability of its internal dynamics, can be deduced from the stability of its equivalent linear model ( 33)-(37) using the fact that Cole-Hopf transformation ( 23) is bijective. Lyapunov stability test for the equivalent linear model ( 33)-(37) yields that θ(z, t) → θ f when t → ∞, therefore using the Cole-Hopf transformation [START_REF] Maidi | Boundary geometric control of a countercurrent heat exchanger[END_REF], it can be concluded that T (z, T ) → ϕ(θ f ) when t → ∞, i.e. according to (35), it follows that lim t→∞ T (z, t) = T f . This means that the closed loop system (41) is internally stable.

l d (t) External Controller T d m (t) State feedback (41) q(t) Nonlinear Stefan process T (z, t) C T m (t) f( . ) l(t) + - + -

Global control strategy

Recall that our objective consists in solving the initial boundary control problem, i.e., controlling the position of the liquid-solid interface l(t) by manipulating the heat flux q(t) at the boundary z = 0. Thus, it is proposed to keep the control law (40) derived for the auxiliary output [START_REF] Khosravifard | Simultaneous control of solidus and liquidus lines in alloy solidification[END_REF] and to define its set point T d m (t) by mean of an external controller taking as input the error e(t) = l d (t)l(t), where l d (t) is the corresponding set point of the position l(t) of the liquid-solid interface. The proposed global control strategy is shown in Fig 2.

The external controller in Fig. 2 is designed for the following nonlinear system

Ṫm (t) = - 1 µ T m (t) + 1 µ T d m (t) (42) 
l(t) = f (T m (t)) (43) 
Note that the bijective function f ( . ) can be identified by assuming several values of the desired set point T d m (t) and their corresponding set points l d (t) (see the application example given is Section 6).

Melting of the stainless steel

The tracking performance of the proposed control strategy is evaluated in the case of melting of a strip of stainless steel of length l max = 0.5 m the physical properties of which are given in Table 1. The thermal conductivity k is a nonlinear function of the temperature given as [START_REF] Taler | Solving Direct and Inverse Heat Conduction Problems[END_REF] k(T (z, t)) = 14.6 + 1.27 10 -2 T (z, t)

where T is expressed in • C and k in W.m -1 .K -1 . Thereafter, eq. ( 32) gives

ϕ -1 (T (z, t)) = T (z, t) + 4.3493 10 -4 T 2 (z, t) (45) 
Note that, for some complex thermal conductivity k, the analytical expression of ϕ -1 ( . ) cannot be calculated so that, in that case, numerical integration methods should be used.

For the closed-loop system simulation, the boundary immobilization method [START_REF] Caldwell | Mathematical Modelling. Case Studies and Projects[END_REF][START_REF] Maidi | Boundary control of linear Stefan problem[END_REF] is used to derive an equivalent nonlinear model with an immobilized right-hand boundary condition for the original nonlinear system (1)- [START_REF] Mattheij | Partial Differential Equations[END_REF]. Then, the equivalent nonlinear model obtained is simulated using the method of lines,based on finite differences, by taking 200 discretization points. The integral term of the control law (40) is evaluated using the trapezoidal method.

The relation, at steady-state, between the position of the liquid-solid interface position and the spatial average temperature T m (t) is given by Fig. 3. From this figure, it follows that the relation between l(t) and T m (t) is approximately linear, that is, 

T m (t) = a l(t) (46) Designation Symbol Value Density ρ 6820 kg • m -3 Melting temperature T f 1648 K Heat of fusion ∆H f 260000 J • kg -1 Heat capacity c p 490 J • kg -1 • K -1
T d m (t) = K c l d (ζ) -l(ζ) + 1 τ i t 0 l d (ζ) -l(ζ) dt (48) 
where K c , τ i and l d (t) are respectively the proportional gain, integral time constant and desired output of the liquid-solid interface position l(t).

The controller tuning parameter µ is taken equal to 5 min. The PI parameters are tuned so that the closed-loop system l d (t)l(t) is characterized by a damping factor η = 1 and a natural pulsation ω n = 0.18 rad • min -1 . The obtained parameters are K c = 1318.8 and τ i = 4.9383 min. In order to have a smooth control signal, the desired set point l d (t) has been filtered by a second-order filter with time constants 1 min and 2 min.

In the following, the tracking capabilities of the proposed control strategy and its robustness against the parametric variation are investigated through numerical simulations. 

Tracking problem

The objective is to melt a portion of strip of length 0.3 m, initially solid. To show the effectiveness of the developed controller, the melting process is achieved in two stages. First, a portion of 0.15 m is melted, once this is achieved, a new melting is started to melt the rest of the strip. Thus, two step set points l d (t) = 0.15 m and l d (t) = 0.30 m are imposed at t = 0 and t = 80 min, respectively. Fig. 4 shows that the imposed set points are perfectly tracked, i.e. the liquid-solid interface is moved to the specified positions. From Fig. 5, it follows that the heat flux evolution is physically acceptable and it is observed that the heat flux, initially zero, increases rapidly just after the variation of set point, then returns to its steady value as the liquid-solid interface reaches the specified positions.

Robustness

To evaluate the robustness of the controller, a perturbed model is simulated for a variation of the liquid specific heat c p assumed as parametric uncertainty. The robustness test performed consists in assuming that the control law (40) is calculated by assuming a constant liquid specific heat c p = 454 J • kg -1 • K -1 whereas for the process is assumed to be temperaturedependent, that is, time-varying parameter. In this case, the thermal con- ductivity c p is a nonlinear function of the temperature T (z, t) given as [START_REF] Taler | Solving Direct and Inverse Heat Conduction Problems[END_REF] c(T (z, t)) =454 + 0.388 T (z, t) + 3.22 10 -4 T 2 (z, t) + 1.1 10 -7 T 3 (z, t)

(T in • C) (49) 
For this test, the objective is to melt a portion of strip, 0.25 m in length. Figures 67show that in spite of the variation of c p , the control objective is correctly achieved with admissible moves of the manipulated heat flux. 

Conclusion

In this paper, a control strategy is proposed to control the position of the liquid-solid interface in a nonlinear Stefan problem. This is modeled by coupled partial and ordinary differential equations. The PDE describes the temperature evolution of the phase liquid, which is a nonlinear diffusion equation as the thermal conductivity and the specific heat are temperaturedependent. The motion of the liquid-solid interface is modeled by an ODE. The objective is to control the interface position by manipulating the heat flow at the opposite boundary.

Based on the tangent Cole-Hopf transformation, the control law of the nonlinear Stefan problem is deduced directly from the control law developed by the authors, in their previous work, for the control of Stefan linear problem. Thereafter, based on the fact that the Cole-Hopf transformation is a bijective mapping, it is shown that the developed control law yields a stable closed-loop system.

Finally, to achieve the initial objective control, i.e., to move the liquidsolid interface to a desired position, a control strategy is proposed where an external controller is introduced to define the set point of the spatial average temperature of the liquid phase. The error between the liquid-solid interface position and its desired set point is defined as the input of the external controller.

This control strategy is successfully tested by numerical simulation of the melting of a stainless steel strip. The obtained results show the ability of the controller to track the desired position of the interface with physically acceptable moves of the applied heat flux.
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 1 Figure 1: Schematics of material melting.
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 2 Figure 2: Boundary control strategy of the liquid-solid interface.
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 4 Figure 4: Tracking: Evolution of the position of the liquid-solid interface l(t).
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 25 Figure 5: Tracking: Evolution of the manipulated heat flux q(t).
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 6 Figure 6: Robustness: Evolution of the position of the liquid-solid interface l(t).
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 27 Figure 7: Robustness : Evolution of the manipulated heat flux q(t).
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	Hence, combining (41) and (46), the following transfer function between
	T d m (t) and l(t) results	L(s) T d m (s)	=	a µ s + 1	(47)
	In this application, as the relation (46) is linear, hence the set point T d m (t)
	is defined by means of a PI controller (external controller in Fig 2) as follows