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Abstract

In this paper, the modelling, dynamic optimization and nonlinear control
of an industrial emulsion polymerization reactor producing poly-vinyl ac-
etate (PVAc) are proposed. The reaction is modeled as a two-phase system
composed of an aqueous phase and a particle phase according to the model
described in our previous work (Gil et al., 2014). The case study corresponds
to an industrial reactor operated at a chemical company in Bogotá (Colom-
bia). An industrial scale reactor (11 m3 of capacity) is simulated. Three
different dynamic optimization problems are solved from the more simplistic
(only one control variable: reactor temperature) to the more complex (three
control variables: reactor temperature, initiator flow rate and monomer flow
rate) in order to minimize the reaction time. The results show that it is
possible to minimize the reaction time while some polymer desired qualities
(conversion, molecular weight and solids content) satisfy defined constraints.
The optimal temperature profile and optimal feed policies of the monomer
and initiator, obtained in a dynamic optimization step, are used as optimal
set points for reactor control. A nonlinear geometric controller based on
input/output linearization is implemented for temperature control.

Keywords: Dynamic optimization, Nonlinear geometric control, Optimal
temperature profile, Optimal feed policies, Polymerization, Vinyl acetate.
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1. Introduction1

The purpose of dynamic optimization studies is to determine a set of vari-2

ables of a dynamic system, such as flow rates, temperatures, pressures, heat3

duties, . . . , that optimize a given cost function or criterion (costs, productiv-4

ity, time, energy, selectivity) subject to specific constraints (dynamic model,5

operating conditions, safety and environmental restrictions). Some of the6

common problems of chemical engineering addressed by means of dynamic7

simulation and optimization include startup, upset, shutdown and transient8

analysis, safety studies, control and scheduling of batch and semi-batch pro-9

cesses, and the validation of control schemes (Biegler, 2007; Cervantes and10

Biegler, 2008). In all cases, it is important to possess a dynamic model11

sufficiently representative of the real process by means of mass and energy12

balances, and algebraic equations for physical and thermodynamic relations,13

but with a moderate complexity in order to get a mathematical and numerical14

solution without difficulty (Corriou, 2004, 2012).15

Some of the most important objectives in resins and polymer production16

plants are related to the improvement of safety, quality and productivity,17

minimum operating costs and respect of environmental constraints (Gentric18

et al., 1999). These make the optimization and control of polymerization19

reactors of great interest. In most cases, an optimization problem for a20

polymerization system requires the definition of an objective function and21

constraints which are defined by the reaction time and/or polymer molecular22

characteristics, together with operating conditions. In terms of polymeriza-23

tion reactors, the main contributions concern homogeneous reactions and24

some multiphase considerations trying to minimize the batch period, im-25

prove quality control and minimize the molecular weight distribution. In26

these cases, nonlinear models are essential to accurately describe the dynam-27

ics of the process. The solution of this kind of optimal control problems28

can be obtained by means of various optimization methods such as varia-29

tional calculus, Hamilton-Jacobi equations, Pontryagin’s maximum principle30

for continuous time systems and Bellman dynamic programming for discrete31

time systems, among others (Corriou, 2004, 2012; Kameswaran and Biegler,32

2006; Biegler, 2007).33

In the case of emulsion polymerization, several studies deal with dynamic34

optimization. For example, (Jang and Yang, 1989) report the dynamic mini-35

mization of the final time of a batch emulsion polymerization of vinyl acetate36

using initiator flow rate as control variable, and the maximum allowable reac-37
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tion rate together with the total amount of initiator as constraints. (Gentric38

et al., 1999) calculate the optimal temperature profile that minimizes the39

batch time of a copolymerization reactor of styrene and α-methylstyrene40

using orthogonal collocation coupled with a sequential quadratic program-41

ming method. As constraints, they used the final conversion and the final42

number average molecular weight. (Sayer et al., 2001) and (Vicente et al.,43

2002) calculated the optimal monomer and chain-transfer agent feed pro-44

files for the semi-batch methylmethacrylate (MMA)/n-butylacrylate (n-BA)45

emulsion copolymerization, using iterative dynamic programming with an46

objective function that included a term for the copolymer composition and47

also a term for the molecular weight distribution, in a way close to multiob-48

jective optimization. (Araújo and Giudici, 2003) used variable time intervals49

with an iterative dynamic programming procedure to minimize the reaction50

time while composition and molecular weight are controlled at specific values.51

(Paulen et al., 2010) worked on the dynamic optimization of the emulsion52

copolymerization of styrene and α-methylstyrene applying control vector pa-53

rameterization (CVP) method in order to minimize the total reaction time.54

Recently, batch and semibatch operation of copolymerization of styrene and55

MMA (Ibrahim et al., 2011) were studied in order to maximize the monomer56

conversion in one case and the average molecular weight in a second case by57

means of CVP techniques solved by successive quadratic programming. Mul-58

tiobjective optimization refers to simultaneous optimization of more than one59

objective function, which is typical in most real-life optimization problems60

encountered in industry (Benyahia et al., 2011). Multiobjective dynamic61

optimization has been also studied for a semibatch styrene polymerization62

process in order to establish optimal operating temperature and feeding poli-63

cies, which maximize monomer conversion and minimize the residual initiator64

in the final product (Silva and Biscaia Jr., 2004).65

In the present work, the dynamic optimization of the industrial emulsion66

polymerization of vinyl acetate is performed with respect to three different67

optimization scenarios. In the three cases, the objective is to minimize the68

reaction time by varying separately or simultaneously the reactor tempera-69

ture, initiator flow rate and monomer flow rate. After optimization, some70

open loop optimal results obtained are used for comparison with closed loop71

simulations. The nonlinear geometric controller coupled with state estima-72

tion is used for tracking the optimal reaction temperature profile found by73

dynamic optimization. The results show the potential of dynamic optimiza-74

tion in finding optimal feed policies and operating temperature to improve75
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the productivity. Also, it is demonstrated that the optimal temperature76

trajectory is well followed by means of a nonlinear controller.77

2. Dynamic optimization of vinyl acetate emulsion polymerization78

2.1. Experimental validation of the model79

The dynamic state space model of the process has been described in a pre-
vious work (Gil et al., 2014). Nine states are used [I,Mt,MM , Vpol, µ0, µ1, µ2, T, Tj ]
standing respectively for the initiator concentration I, total added monomer
Mt, remaining monomer MM , total volume of polymer Vpol, three first mo-
ments of polymerization µi, reactor temperature T and jacket temperature
Tj. The first seven equations correspond to the reaction kinetics and the two
following equations to the energy balances for the reactor and jacket.
Kinetic model:

dI

dt
= qI − kII (1)

dMt

dt
= qM (2)

dMM

dt
= qM −Rpol (3)

dV
p
pol

dt
= Rpol

MWM

ρpol
(4)

dµ0

dt
=

(

kfm [M ]p + kfpµ0 + ktλ0

)

αλ0−

kfpλ0

(

µ0 − (1− α)2 αλ0

)

+ 0.5ktλ
2
0

(5)

dµ1

dt
=

λ0

1− α
(
(

kfm [M ]p + kfpµ0 + ktλ0

)

α (2− α) + ktλ0)−

kfpλ
2
0

(

1− α (1− α)2
) (6)

dµ2

dt
=

λ0

(1− α)2
(2α

(

kfm [M ]p + kfpµ0 + ktµ0

)

+ ktλ0 (2α+ 1))

−2kfpλ
2
0

(

1− α (1− α)3

1− α

)

+
dµ1

dt

(7)

Reactor dynamics:

dT

dt
=

∑

qiCp,i(Ti − T )−∆HrRpol + UA(Tj − T )−Qcond
∑

miCp,i

(8)
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dTj

dt
=

Fj

(

Tjin − Tj

)

mw

−
UA

mwCp,w

(

Tj − T
)

(9)

The major part of the model has been validated previously (Araújo and80

Giudici, 2003; Arora et al., 2007) based on the experimental data obtained81

by (Penlidis et al., 1985; Penlidis, 1986). The main modifications to the82

model are related to the energy balances for the reactor and the jacket. In83

this section, a simulation of a pilot plant reactor from a Colombian chem-84

ical company is reported, in order to reproduce its industrial operation, to85

compare the results with some measurements of the solids content and to86

have an idea of the reaction conversion. Some tests in a pilot scale reactor87

were carried out and the results were compared with a simulation of the88

same system using Matlab. A semi-batch emulsion polymerization reaction89

of vinyl acetate was performed. The used recipe is given in Table 1. The90

reactor temperature was fixed taking into account the preheating step. The91

monomer and initiator flow rates were adjusted manually by the operator92

during the whole operation. The goal is to maintain a nearly constant value93

of the temperature in the reactor. In the current operation of the industrial94

reactor, a jacket is used but only for the initial preheating step. During the95

reaction, temperature is maintained almost constant by manipulating only96

initiator and monomer flow rates. Consequently, the temperature cannot97

accurately follow a given set point and this limits the feed flow rate of the98

reactants in view of a more efficient process. For that reason, a different99

control is desirable with efficient use of the jacket. To that intent, energy100

balances of the reactor will be used to take into account the behavior of the101

jacket and reactor contents. This will be useful in the next stages of the work102

to propose a control strategy associated also to a dynamic optimization of103

the system.

Table 1: Recipe used in the pilot emulsion polymerization reactor

Component Load (kg)
Water 36

Vinyl acetate 35
Potassium persulfate 0.12
Polyvinyl alcohol 3.5

104

In order to follow the reaction, solids content and viscosity were measured105

by withdrawing samples at specific reaction times. The procedure established106
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for the determination of solids content in adhesives in the Colombian Tech-107

nical Standards NTC-5003 (In Spanish, Norma Técnica Colombiana NTC-108

5003) was used. Viscosity was determined by following the Colombian Tech-109

nical Standards NTC-5063 (In Spanish, Norma Técnica Colombiana NTC-110

5063).111

The solids content φS is calculated theoretically by summing the weight
of polymer formed and the weight of the polyvinyl alcohol and dividing it by
the total weight of the latex

φS =
(Mt −MM)MWM +MPV OH

MtMWM +MPV OH + ρwVw

(10)

The viscosity of the reactor contents η is calculated from the expression (11)
proposed by (Chylla and Haase, 1993) that depends on the solids content
and the reactor temperature. Some of the parameters of (11) were proposed
by other authors (Graichen et al., 2006; Hvala et al., 2011) or fitted using
experimental information from this test

η = c0e
(c1φS)10

c2

(

a0

T
− c3

)

(11)

where a0, c0, c1, c2 and c3 are model parameters, and T is the reactor tem-112

perature.
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Figure 1: Flow rates for the pilot reactor test. (a) Initiator, (b) Monomer

113

Figure 1 shows monomer and initiator flow rates used during all the reac-114

tion. As it was mentioned previously, these flow rates are imposed manually115
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by the operator to guarantee a nearly constant temperature in the reactor.116

In the same way, Figure 2a and Figure 2b show the corresponding quantities117

of initiator and monomer respectively remaining in the reactor.
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Figure 2: Number of moles in the pilot reactor test. a) Initiator, b) Monomer

118

It can be seen that the quantity of remaining monomer in the reactor119

changes accordingly to variations of the monomer flow rate, and also it is in-120

fluenced by additional injections of initiator that increase the polymerization121

rate. The initiator reacts in the first part of the batch rapidly as a result of122

the high increase of the temperature and then, when the initiator feed starts,123

there is an accumulation of initiator (Figure 2a). It is also evident that al-124

most all the monomer is consumed in the polymerization reaction (Figure 2b)125

verifying the large conversions typical of emulsion polymerization processes.126

Reactor temperature during the total batch time is shown in Figure 3.127

The average temperature in the reactor is close to 343 K. Fron Figures 2 and128

3, it can be noted that, when reactor temperature increases, reaction rate also129

increases thus decreasing the number of moles of monomer remaining in the130

reactor. Average molecular weight, dispersity and conversion are presented in131

Figure 4. The average molecular weight and, in consequence, the dispersity132

are varying in function of the initiator and monomer injections during all the133

batch while the conversion increases up to 350 min (approx.), then decreases134

slowly, and finally increases until the end of the run where the conversion is135

higher than 98%. This is due to the effect of temperature on the reaction136

rate and also it can be explained by the constant initiator flow rate at the137

end of the batch.138

Finally, in order to do a validation, simulation results of solids content139
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Figure 3: Temperature profile for the pilot reactor test

and viscosity were plotted with those data of experimental pilot test (Figure140

5). As can be verified, there is a good representation of the solids content141

along the run. This is an indication of the adequacy of the model and its pa-142

rameters, taking into account that the solids content is directly related to the143

reaction and the formation of polymer particles. On the other way, it should144

be noted also that, apart from a single point which is erroneous, viscosity is145

well represented by the model. The comparison made with the experimental146

data obtained shows that a good approximation with respect to typical val-147

ues of viscosity of this kind of emulsions is achieved. In addition, viscosity148

measurement is spoilt by an experimental error that was not quantified here,149

but depends on the measurement technique and the operator. Of course, the150

experimental error has an effect on the fitting of the viscosity model to the151

experimental values determined in the pilot reactor.152

2.2. Industrial case study153

In the following, the dynamic optimization of an industrial emulsion poly-154

merization reactor to produce poly-vinyl acetate will be presented. The case155

study corresponds to the industrial reactor operated in a chemical company156

in Colombia. An industrial scale reactor (11 m3 of capacity) is simulated in157

the case where a semi-batch emulsion polymerization reaction of vinyl ac-158

etate is performed. A schematic of the reactor is shown in Figure 6. The159

used industrial recipe is shown in Table 2.160

Three different dynamic optimization problems are solved with a piece-161

wise constant control using different discretization scenarios. In the three162

problems, three different variables were considered as control variables u(t):163
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Figure 4: Quality results for the pilot reactor test. a) Number average molecular weight,
b) Weight average molecular weight, c) Dispersity, d) Conversion

reactor temperature, initiator flow rate and monomer flow rate. Quality164

constraints are set in all the cases according to the requirements of the165

product and to the information provided by the company. The dynamic166

optimization problem is solved by means of direct optimization using the167

NonLinear Programmming (NLP) solver fmincon function in Matlab which168

solves constrained NLP problems. The mathematical model for the emul-169

sion polymerization was reported in a previous work (Gil et al., 2014) and170

was summarized in section 2.1. In the dynamic optimization problem, the171

energy balances representing the reactor temperature dynamics are not con-172

sidered because the reactor temperature T will be assumed as a control vari-173

able. This corresponds to an open loop control study. The model used174
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Figure 5: Quality results of the experimental pilot reactor test. a) Solids content, b)
Viscosity

for dynamic optimization then corresponds to the following seven states175

[I,Mt,MM , Vpol, µ0, µ1, µ2]. Here, the goal is to calculate an optimal reactor176

temperature profile based on the knowledge of the polymerization kinetics.177

In the second part of this study, devoted to closed loop control, the dynamics178

of the reactor as energy balances will be considered.179

2.3. Process operation180

An emulsion polymerization process displays different behaviors accord-181

ing to the relative rates of initiation, propagation and termination, which at182

the same time depend on the monomer flow rate, initiator flow rate and reac-183

tion conditions. Typically, semi-batch emulsion polymerizations are divided184

in two steps: batch and fed-batch (Figure 7). At initial time t = 0, specific185

quantities of monomer, initiator, water and protective colloid, representing a186

fraction of the recipe, are charged to the reactor. In the process studied here,187

according to the procedure followed by the chemical company, monomer, ini-188

Table 2: Recipe used for the simulation of the industrial reactor

Component Load (kg)
Water 5400

Vinyl acetate 4651
Potassium persulfate 12.8
Polyvinyl alcohol 701
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Figure 6: Schematic of the industrial emulsion polymerization reactor

tiator and protective colloid are respectively vinyl acetate, potassium persul-189

fate and polyvinyl alcohol. A pre-heating step of the reactor is carried out190

by injecting steam or hot water into the reactor jacket in order to reach a191

temperature of 351 K. The reactor must be maintained at this temperature192

to ensure complete dissolution of the polyvinyl alcohol. The reaction starts193

when the activation temperature of the initiator is reached (approximately194

340 K). This stage of the process is operated in batch mode and, during195

that period, primary nucleation takes place, generating most of the particles.196

In this stage, the total number of particles is defined and remains almost197

constant during the rest of the reaction, including the following fed-batch198

operation. The remaining monomer, according to the recipe, is fed con-199

tinuously during the major part of the reactor operation (strictly speaking,200

during the fed-batch mode operation) and its flow rate can be adjusted to201

approximately regulate the reactor temperature and, in this way, partially202

reduce the rate of heat generation by means of its sensible heat. The initiator203

can be fed continuously to the reactor at a variable flow rate or, according204
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to the industrial procedure, by finite impulses at a constant flow rate at two205

or three different times during the batch. The agitation speed is constant.206

Because of the exothermicity of the reaction, high quantities of heat are re-207

leased and the temperature inside the reactor is controlled around a specified208

value by adjusting the inlet jacket temperature. Three main input variables209

to the process can be identified, monomer flow rate, initiator flow rate and210

inlet jacket temperature, this latter being adjusted by means of a three way211

valve. The temperature is considered as a measured output. Figure 6 shows212

the schematic industrial reactor configuration and the main steps of a typical213

emulsion polymerization are summarized in Figure 7.

✲
Timet = 0

✻

Initial loading
Monomer,
Initiator,
Protective colloid,
Water

✻

Preheating
starts

✻

At T = 348 K,
Reaction starts
Partial
polymerization
Seed formation

✻

Fed-batch starts
Monomer and
initiator addition

✻

t = tfinal

Stable latex
particles

Particle growth
Nucleation

Flocculation

✲ ✛ ✲
BATCH OPERATION FED-BATCH OPERATION

✛ ✲
DYNAMIC OPTIMIZATION

Figure 7: Sequential steps of a typical semi-batch emulsion polymerization

214

In this study, the pre-heating step is not taken into account for the dy-215

namic optimization calculations. At the end of the pre-heating stage, when216

the reactor temperature reaches 340 K, the reaction is assumed to start and217

it corresponds to the initial reaction time t = 0 which is thus difficult to218

determine exactly. Later, the reactor temperature will take a value between219

348 and 355 K, as it will be explained in next section.220

2.4. Minimization of batch time with T as control variable221

In the first case, in order to maximize the productivity of the industrial
polymerization reactor, i.e. to minimize the final batch time, the optimal
temperature profile is calculated. Temperature is chosen because of its large
influence on the polymerization reaction and polymer properties. The opti-
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mization problem can be formulated as

minT (t)

∫ tf

t0

dt = tf − t0

s.t. ẋi = fi(x(t), T (t), t) , i = 1, ..., 7 and ∀t ∈ [t0, tf ] , state model
x1(t0) = 5 , initiator moles
x2(t0) = 4000 , total monomer moles
x3(t0) = 4000 , residual monomer moles
xi(t0) = 0, i = 4, ..., 7 , initial conditions
xf ≥ 0.95 , final conversion
M̄nf

≥ 1.8× 105 , final number average molecular weight
φS ≥ 46% , final solids content
348K ≤ T (t) ≤ 355K , temperature interval

(12)

Table 3: Dynamic optimization case using T as control variable: Influence of the number
of time increments on the optimization results

Nu tf (s) xf M̄n,f × 10−5 M̄w,f × 10−5 D

3 26463 0.9625 2.6217 5.7279 2.18
5 26458 0.9655 2.6341 5.7907 2.19
10 26347 0.9678 2.6161 5.7509 2.19
20 26214 0,9706 2.6586 5.8062 2.18

The monomer and initiator flow rates are constant according to the recipe222

of Table 2. The value of monomer flow rate corresponds approximately to the223

ratio of the monomer quantity of the industrial recipe over the duration of224

the fed-batch time, similarly for the initiator flow rate. Indeed, as the final225

time is not known before dynamic optimization, the monomer is fed from226

t = 70 min with a flow rate of 2.1 mol/s, whereas the maximum authorized227

flow rate in the industrial operation is 2.3 mol/s. The initiator flow rate is228

1×10−3 mol/s also from t = 70 min (Figures 9a and 9b). Then, the operation229

is performed in two stages, the first one in batch mode (without addition of230

reactants) and the rest of the operation in fed-batch mode where monomer231

and initiator are fed to the reactor. Consequently, two different models are232

used, one for the batch operation, followed by another one for the fed-batch.233

Dynamic optimization is applied to the entire operation, i.e. including the234

batch mode and fed-batch mode stages (Figure 8).235
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Figure 8: Dynamic optimization case using T as control variable: Scheduling of operations
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Figure 9: Dynamic optimization case using T as control variable: Feed policies, Initiator
flow rate (a), Monomer flow rate (b)

The influence of the number Nu of discrete time segments used during236

the total reaction time has been studied. Thus, four different discretization237

scenarios were calculated considering Nu equal to 3, 5, 10 and 20, the tem-238

perature taken as the control variable being piecewise constant on each time239

interval. Table 3 shows the influence of the number of discrete time incre-240

ments on the most important quality indicators of the final polymer. As it241

can be observed, the total batch time decreases little with the increase of242

the number of piecewise controls. At the same time, the overall quality of243

the polymer such as the conversion and the average molecular weight is very244

little influenced by the increase of the number of time increments.245

Figures 10 and 11 show the influence of the number of time increments246
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Figure 10: Dynamic optimization case using T as control variable: Influence of the number
of time increments on the optimal temperature profile

respectively on the optimal temperature profiles and on the corresponding247

quality results for values of Nu of 5, 10 and 20. In spite of important vari-248

ations of the temperature profile, it has little influence on the final charac-249

teristics of polymerization. In all the optimization runs, at the end of the250

process, the temperature increases to reduce the variation of the molecular251

weight Mn and reach the final value close to the corresponding constraint.252

The chain length decreases when temperature increases due to the transfer253

reactions, which induces the entry of radicals to the particles. This results254

finally in instantaneous termination reaction of these radicals inside the par-255

ticles. It must be noted that the same strategy of temperature increase, at256

the end of the operation, is currently used by the operators of the reactor257

at the company. In the same way, Figures 11a, 11c and 11e show that the258
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rate of change of conversion in time is directly proportional to the temper-259

ature. Figures 10a and 10c show that the temperature often switches from260

the lower bound to the upper bound and viceversa, in particular at the start261

and close to the end of the total reaction time. This behaviour is typical262

from minimum time problems and is known as bang- bang control (Corriou,263

2004, 2012; Chachuat, 2007). Many systems in chemical engineering and in264

other domains are controlled in on-off mode, in a way similar to bang-bang265

control.266

2.5. Minimization of batch time with reactor T and qI as control variables267

In the second optimization problem, one additional optimization variable
is considered. Here, the initiator flow rate is also used as a control variable
due to its large effect on the monomer conversion and molecular properties of
the final product. Again, the objective is to minimize the final reaction time,
and in consequence the optimal temperature and initiator flow rate profiles
are calculated. In this case, the optimization problem is formulated as

minT (t),qI (t)

∫ tf

t0

dt = tf − t0

s.t. ẋi = fi(x(t), T (t), qI(t), t) , i = 1, ..., 7
and ∀t ∈ [t0, tf ] state model
x1(t0) = 5 , initiator moles
x2(t0) = 4000 , total monomer moles
x3(t0) = 4000 , residual monomer moles
xi(t0) = 0 , i = 4, ..., 7 initial conditions
xf ≥ 0.99 , final conversion
M̄nf

≥ 2.1× 105 , final number average molecular weight
φS ≥ 49% , final solids content
348K ≤ T (t) ≤ 355K , temperature interval
qI(t) ≤ 0.8× 10−3mol/s , initiator flow rate interval

(13)
The constant monomer flow rate injected during the fed-batch stage start-268

ing at t =70 min takes the same value as in section 2.4. Initiator flow rate269

and temperature are used as control variables according to the optimization270

problem formulated in equation (13). In the first part of the reaction, the271

process is operated in batch mode, with respect to the monomer input. A272

scheme of the operation is shown in Figure 12. As in the first problem, a273
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Figure 11: Dynamic optimization case using T as control variable: Quality results. Left
column: monomer conversion. Right column: average molecular weight.

piecewise discretization using 3, 5, 10 and 20 control segments was studied.274
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Table 4: Dynamic optimization case using T and qI as control variables: Optimization
results

Nu tf (s) xf M̄n,f × 10−5 M̄w,f × 10−5 D

3 29510 0.9900 2.1654 4.9164 2.27
5 29527 0.9901 2.2398 5.1804 2.31
10 28872 0.9900 2.1155 4.8532 2.29
20 27118 0,9900 2.2825 5.2814 2.31

Table 4 shows the results for the four optimization runs. For this second dy-275

namic optimization problem, the constraint of the minimum conversion was276

increased from 95% to 99%. For this reason, the final times are slightly larger277

than those obtained previously. However, the conversion has been increased278

importantly which is beneficial for the process efficiency. The reaction times279

calculated here are approximately 9% lower than the typical reaction time280

in the plant, thus improving the productivity of the process.

✲

✻ ✻ ✻

t = 0 t = 70 t = tfinal

❄

Reaction
starts

✲✛

Monomer flowrate
qM = 0

✲✛

Fed-batch mode

Constant monomer
flow rate

✲✛ Calculation of optimal T and qI profiles

Figure 12: Dynamic optimization case using T and qI as control variables: Scheduling of
operations

281

Again, it can be noted that the total reaction time decreases with the282

increase of Nu, but the final values of the average molecular weight and the283

dispersity of the polymer do not vary significantly.284

Figures 13 and 14 show the optimal temperature profile and optimal ini-285

tiator flow rate profile, respectively. Again, the bang-bang control tendency286

is observed for the temperature and a similar behaviour is observed for the287

initiator when Nu = 20 (Figure 14d). Also, the multivariable nature of the288

system is observed. The initiator flow rate and the reaction temperature289

appear to be correlated. In the first half of the operation, the tendency is290
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Figure 13: Dynamic optimization case using T and qI as control variables: Optimal
temperature profile

marked by low values of initiator flow rate and intermediate values of the291

temperature. In the second half, additional injections of initiator are cal-292

culated and often compensated by temperature decreases. However, it is293

difficult to observe only one specific response, taking into account that dif-294

ferent discretization scenarios exist and interactions occur at the same time.295

When the initiator flow rate is increased, the chain growth rate decreases be-296

cause more monomer can react with the additional initiator to promote more297

initiation reactions instead of propagation of the polymer chain. Finally, in298

order to control the last part of the reaction, temperature and initiator flow299

rate increase so that the final average molecular weight and conversion sat-300

isfy the final constraints. The increases of temperature and initiator in the301
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(d) Nu = 20

Figure 14: Dynamic optimization case using T and qI as control variables: Optimal
initiator flow rate profile

reactor increase the polymerization rate and the conversion, and reduce the302

final molecular weight (Figure 15).303

2.6. Minimization of batch time with T , qI and qM as control variables304

The third optimization problem involves three control variables: temper-
ature, initiator flow rate and monomer flow rate. These three variables are
easily controlled in the industrial reactor and therefore are susceptible to be
changed at the same time to achieve a desired performance of the reactor.
Taking into account that vinyl acetate has a high rate of radical transfer to
polymer, the monomer feed flow rate has an important effect on the molec-
ular weight. For that reason, it is also considered in this optimization case
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Figure 15: Dynamic optimization case using T and qI as control variables: Quality results.
Left column: monomer conversion. Right column: average molecular weight.

as a control variable. The optimization problem is formulated as

minT (t),qI (t),qM (t)

∫ tf

t0
dt = tf − t0

s.t. ẋi = fi(x(t), T (t), qI(t), qM(t), t) i = 1, ..., 7
and ∀t ∈ [t0, tf ] st. model
x1(t0) = 5 , initiator moles
x2(t0) = 4000 , total monomer moles
x3(t0) = 4000 , residual monomer moles
xi(t0) = 0 , i = 4, ..., 7 initial conditions
xf ≥ 0.992 , final conversion
M̄nf

≥ 2.2× 105 , final number average molecular weight
φS ≥ 50% , final solids content
348K ≤ T (t) ≤ 355K , temperature interval
qI(t) ≤ 0.8× 10−3mol/s , initiator flow rate interval
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The monomer flow rate, initiator flow rate and temperature profiles were305

determined according to the dynamic optimization problem formulated in306

equation (14). In this case, fed-batch operation mode is used as the unique307

operation mode for the dynamic optimization calculations (Figure 16). As308

in the two last cases, a piecewise discretization using 3, 5, 10 and 20 control309

segments was studied. Table 5 shows the results for the four optimization310

runs. The final conversion constraint here is slightly higher than the con-311

version constraint used in the dynamic optimization based on temperature312

and initiator flow rate as control variables. This is mentioned because the313

final time obtained here is lower than the minimum time calculated in the314

two previous cases where the conversion constraint was lower as well as the315

constraints of molecular weight and solids content. The most interesting re-316

sult of this optimization case is the final time obtained when using 10 and317

20 piecewise controls.

✲

✻ ✻

t = 0 t = tfinal

❄

Reaction
starts

Monomer and initiator flowrates are variable

Fed-batch mode

✲✛ Calculation of optimal T , qI and qM profiles

Figure 16: Dynamic optimization case using T , qI and qM as control variables: Scheduling
of operations

318

In this case, the influence of the number of time intervals or piecewise319

controls used is more evident because more degrees of freedom exist that320

promote interactions during the reaction. This multivariable problem with321

three control variables allows the optimization solver to more easily find322

optimal operating values of the process variables which minimize the total323

reaction time. Specifically, in the case of 20 piecewise controls, a total time324

of 23762 seconds is obtained (Figure 17). This optimal final time is at least325

20% lower than the current batch time used in the plant to perform this326

polymerization.327

Optimal profiles are shown in Figures 17, 18 and 19 for temperature,328

initiator flow rate and monomer flow rate, respectively. The influence of329
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Table 5: Dynamic optimization case using T , qI and qM as control variables: Optimization
results

Nu tf (s) xf M̄n,f × 10−5 M̄w,f × 10−5 D

3 29338 0.9920 2.4041 5.6376 2.34
5 28426 0.9920 2.6186 6.0685 2.32
10 26678 0.9920 2.1999 5.1265 2.33
20 23762 0.9920 2.2000 5.1171 2.32
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Figure 17: Dynamic optimization case using T , qI and qM as control variables: Optimal
temperature profile

increasing the initiator flow rate on the polymerization rate can be noticed330

in Figures 18b, 18c and 18d, and Figures 20a, 20c and 20e. In these two331

cases, the initiator flow rate is augmented at a reaction time of 200 min, and332

23



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Time (min)

In
iti

at
or

 fl
ow

ra
te

 (
m

ol
/s

)

(a) Nu = 3

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Time (min)

In
iti

at
or

 fl
ow

ra
te

 (
m

ol
/s

)

(b) Nu = 5

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Time (min)

In
iti

at
or

 fl
ow

ra
te

 (
m

ol
/s

)

(c) Nu = 10
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(d) Nu = 20

Figure 18: Dynamic optimization case using T , qI and qM as control variables: Optimal
initiator flow rate profile

immediatly the conversion increases. The initiator flow rate is maintained333

at low values (close to zero) during the first part of the operation in which334

monomer is being fed, and only in the last part of the operation, the initiator335

flow rate is increased in order to accelerate the polymerization and reduce336

the final content of monomer (Figure 18). At the same time, the monomer337

flow rate is maintained at high values, close or equal to the upper bound,338

during the major part of the reaction, and finally is decreased when the339

polymerization is ending (Figure 19). In the real plant operation, the initiator340

is fed almost continuously and this differs largely from the optimal policy341

obtained by dynamic optimization where some initiator is fed at the end342

of the reaction. Also, in the real plant, reactor temperature is maintained343
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Figure 19: Dynamic optimization case using T , qI and qM as control variables: Optimal
monomer flow rate profile

approximately constant by manual operation during the reaction without344

using the jacket, but only by means of the sensible heat of the monomer345

and initiator fed to the reactor. In the present study, the proposition will346

be to use the jacket for heat exchange, but to feed the reactor in monomer347

and initiator according to the optimal policy and control the temperature348

by means of a nonlinear controller. In the same way as the initiator takes349

a maximum value just before the final time, it can also be noticed that the350

temperature increases to its upper bound during the final control segment351

also trying to reduce the residual monomer of the polymer (Figure 17).352

25



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (min)

M
on

om
er

 c
on

ve
rs

io
n

(a) Nu = 5

0 100 200 300 400 500
0

1

2

3

4

5

6
x 10

5

Time (min)

A
ve

ra
ge

 m
ol

ec
ul

ar
 w

ei
gh

t (
g/

m
ol

)

 

 

Number average molecular weight
Weight average molecular weight

(b) Nu = 5

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (min)

M
on

om
er

 c
on

ve
rs

io
n

(c) Nu = 10

0 100 200 300 400 500
0

1

2

3

4

5

6
x 10

5

Time (min)

A
ve

ra
ge

 m
ol

ec
ul

ar
 w

ei
gh

t (
g/

m
ol

)

 

 

Number average molecular weight
Weight average molecular weight

(d) Nu = 10
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Figure 20: Dynamic optimization case using T , qI and qM as control variables: Quality
results. Left column: monomer conversion. Right column: average molecular weight

3. Nonlinear geometric control and state estimation353

In this section, a nonlinear geometric temperature controller is applied to354

the industrial emulsion polymerization reactor. Temperature is controlled by355
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a nonlinear controller designed in our previous work (Gil et al., 2014). The356

optimal temperature profile calculated in the last section is used here as the357

set point of the temperature control loop. The optimal feed policies of ini-358

tiator and monomer are also used here as set points supposing an automatic359

regulatory control for these two flow rates. Figure 21 shows a schematic rep-360

resentation of the control loops and the use of dynamic optimization results.361

Conversion and polymer quality results obtained are compared with those362

corresponding to the current operation data.

Dynamic
optimization
(open loop) ✲

✲ Automatic
flow rate
controller

✲
✲

q
ref
M

q
ref
I

qM

qI

✲
✍✌
✎☞

✻

T ref

✲
Nonlinear
geometric

controller

✲
Emulsion

Polymerization

Reactor

✲T

u (control valve)

Figure 21: Schematic representation of the control of the emulsion polymerization reactor

363

The controlled output is the temperature of the reactor contents T . The364

position u of a three-way valve is used as a manipulated input that imposes365

the respective flow rates through the cold and hot heat exchangers so that366

the inlet coolant temperature Tjin could also be considered as the manipu-367

lated variable. Thus, the controlled system is reduced to Single Input Single368

Output.369

Two models are used, on one side a complete detailed model considered
as the plant describing the dynamic reactor behavior and the polymerization
reaction, including the moments of the polymer chains described in eqs (5-7).
On the other side, in order to simplify the nonlinear geometric control law
and the state estimation, a reduced model is built with the following reduced
state vector for control and estimation

x = (I,Mt,MM , Vpol, T, Tj) (15)

where the three moments of the polymer chains are not taken into account370

(Gil et al., 2014). Among these states, I, Mt and Vpol are not observable and371

they are only predicted, i.e. they are obtained by simple integration of the372
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differential equations without correction. The continuous-discrete extended373

Kalman filter is implemented to estimate the three states MM , T, Tj which374

are used in the nonlinear control law. The controller and the observer share375

the same input and output. It must be noted that the state estimations or376

predictions which are provided are useful also for monitoring of the reactor.377

The details of the extended Kalman filter as well as the nonlinear control law378

are presented in Gil et al. (2014).379

3.1. Control under optimal conditions380

Now, it is important to show that a nonlinear geometric controller is ca-381

pable of tracking the optimal temperature trajectories with the combined use382

of the optimal feed policies calculated for the initiator and the monomer. It383

must be noted that the dynamic optimization was performed in open loop384

using only the kinetic model without the energy balances of the reactor. The385

nonlinear controller of course makes use of the same kinetic model but with386

the energy balances. Thus, apart from the study of temperature tracking, it387

will be interesting to compare the various characteristics of the polymer ob-388

tained in open loop and in closed loop, such as viscosity, conversion, number389

average molecular weight.390

3.2. Optimal temperature control with optimal feed policies (qI and qM)391

The most interesting result of the dynamic optimization study is the392

minimization of the reaction time (maximization of productivity). Now, it393

will be supposed that the reactor is operated under the operating conditions394

found in section 2.6 and following the recipe defined for the industrial op-395

erating conditions in Table 2. The case of the dynamic optimization using396

also the three control variables and Nu equal to 20 is discussed here. The397

nonlinear geometric controller presents a good performance for tracking the398

temperature trajectory calculated by means of dynamic optimization (Figure399

22a). At the end of the operation, the temperature increases up to the upper400

limit (355 K) and also the initiator flow rate is increased in order to end the401

reaction and satisfy the final constraints (Figure 22a).402

The controller works well to remove the reaction heat (Figure 22e) and403

maintain the temperature close to the optimal set point previously estab-404

lished (Figure 22a). After preheating stage (the first 80 min) where the seed405

is formed, the monomer conversion increases up to 99.2% as in the dynamic406

optimization problem. It is interesting to note that, according to the dy-407

namic optimization results, the temperature is maintained at the minimum408

28



100 200 300 400 500
344

346

348

350

352

354

356

358

360

Time (min)

T
em

pe
ra

tu
re

 (
K

)

 

 

Reactor
Optimal setpoint

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time (min)

V
al

ve
 p

os
iti

on

(b)

0 100 200 300 400 500
2

4

6

8

10

12

14

Time (min)

D
is

pe
rs

ity

(c)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time (min)

M
on

om
er

 c
on

ve
rs

io
n

(d)

0 100 200 300 400 500
0

100

200

300

400

500

600

700

Time (min)

R
ea

ct
io

n 
he

at
in

g 
po

w
er

 (
kW

)

(e)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

Time (min)

A
ve

ra
ge

 n
um

be
r 

of
 r

ad
ic

al
s 

pe
r 

pa
rt

ic
le

(f)

Figure 22: Nonlinear geometric control of the emulsion polymerization reactor with time
minimization using qI , qM and T as optimization variables and Nu = 20. a) Optimal
temperature profile b) Valve position; c) Dispersity d) Monomer conversion; e) Reaction
power f) Average number of radicals per particle

constraint during a large part of the operation. Only in the last part, the409

temperature is increased rapidly in order to end the reaction. The initia-410
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tor flow rate also increases at the end of the reaction to satisfy the final411

constraints related with the final molecular weight. This demands an addi-412

tional effort from the controller which is compensated, in principle, by the413

control valve (Figure 22b) but also it compensates the release of an impor-414

tant additional quantity of heat (Figure 22e). However, it is clear that the415

controller is capable of following the temperature setpoint. Consequently,416

the desired conversion and quality results are obtained. Another interesting417

observation from Figure 22f is that the average number of radicals per par-418

ticle n̄ increases importantly at the end of the operation, due to the final419

large injection of initiator calculated by the optimization. The low radical420

desorption rate with respect to radical entry rate produces a large increase421

of the heat released by the reaction and, simultaneously, the viscosity at the422

end of the operation increases up to 1200 P, limiting the mobility of radicals423

and favoring the increase of the temperature. All these observations could424

indicate a gel effect phenomenon which also accompanies final conversions425

as high as 99.2%. However, again, this is satisfactorily managed by the con-426

troller as it can be observed in the last 20 minutes in Figure 22a. Table 6427

summarizes the constraints established in two of the dynamic optimization428

cases studied and the results obtained with the application of the nonlinear429

control to these optimal scenarios. It can be noted that, in all the cases, the430

constraints previously defined in dynamic optimization calculations are also431

satisfied when applying the nonlinear control to the simulated plant.

Table 6: Results for the constraints established in the dynamic optimization. CDO: Con-
straint in Dynamic Optimization, CS: Control simulation

Number average molecular weight Final conversion Solids content (%)
Nu CDO CS CDO CS CDO CS
5 2.2 × 105 2.259 × 105 0.992 0.9921 50 53.1
20 2.2 × 105 2.269 × 105 0.992 0.992 50 50

432

3.3. Robustness tests433

The robustness of the nonlinear controller coupled with state estimation434

is studied with respect to typical modeling errors or real situations found435

in the normal plant operation. For that purpose, the rigorous model of the436

plant, representing the process, remains the same as it was defined in section437

2.1 while the simplified model used in control calculations is modified by438

introducing modeling errors. Four different scenarios were supposed: errors439
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about the propagation reaction constant, heat of reaction and heat transfer440

coefficient values, and a change in the temperature of the coolant used in441

the reactor cooling. In the first robustness test, it was assumed that the442

propagation constant is reduced by 50% with respect to its real value. Thus,443

the reaction rate calculated in the reduced model of the state estimator is444

lower than the real rate of the process, and therefore also the estimation of the445

reaction heat produced. The second test consisted in increasing by 50% the446

value of the heat of the reaction reducing the exothermicity of the reaction.447

In the third robustness test, it was assumed that the heat transfer coefficient448

U is decreased by 40% with respect to its real value. This is representative449

of changes due to equipment fouling and variations in the viscosity and the450

solids content of the reacting mixture that also affect the value of U . Finally,451

in the last test, the coolant temperature was increased from 293 to 300 K452

simulating a failure in the cooling tower of the plant. Thus, the value of the453

inlet jacket temperature considered in the reduced model is erroneous and454

this influences the energy balances.455

The main effect of these robustness tests is observed about the estimated456

monomer conversion (Figure 23). In the first 300 minutes, the difference457

between the estimated monomer conversion and the real value is slight for458

the cases where errors about heat transfer coefficient (Figure 23a) and heat459

of reaction (Figure 23b) were introduced. In spite of important differences460

with respect to the real values, the controller works well and the monomer461

conversion is well estimated. On the other way, the errors due to the change462

in the coolant temperature and propagation rate constant are more important463

with differences around 10% at maximum compared with the actual monomer464

conversion. Globally, the same tendency is maintained up to 300 minutes,465

but, in the last part of the operation (between 300 and 500 minutes), the466

deviation between the estimated and calculated values is large in three of467

the four cases. This deviation is caused by the addition of an important468

quantity of initiator at time t = 300 min. The initiator accelerates the469

reaction, an additional quantity of heat is released and the average number470

of particles also increases promoving a gel effect in the system. Also, it should471

be mentioned that, in the last part of the operation, the solids content and472

viscosity increase importantly modifying heat and mass transfer coefficients.473

However, a good temperature control is achieved in all cases (Figure 24)474

demonstrating the efficiency of nonlinear control and its robustness.475
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Figure 23: Influence of the robustness tests on the monomer conversion. a) Heat transfer
coefficient error; b) Reaction heat error; c) Coolant temperature error; d) Propagation
constant error

4. Conclusion476

The dynamic optimization of the emulsion polymerization of vinyl acetate477

was studied. Three different optimization scenarios were established from478

the more simplistic (only one control variable) to the more complex (three479

control variables) in order to minimize the reaction time. Constraints are480

imposed with respect to some polymer desired qualities (conversion, molec-481

ular weight and solids content) as well as allowed flow rates and reactor482

temperature. Piecewise constant profiles were assumed and the influence of483

time discretization was studied. The influences of initiator, temperature and484

monomer were identified. In all the cases, the control variables often change485

during the batch according to the well-known bang-bang effect, typical of486
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Figure 24: Influence of the robustness tests on the reactor temperature control. a) Heat
transfer coefficient error; b) Reaction heat error; c) Coolant temperature error; d) Propa-
gation constant error

minimum time dynamic optimization problems. It can be noticed that the487

most efficient results are obtained when three variables, i.e. T , qI and qM are488

simultaneously used as control variables. A reduction of 20% of the batch489

time was achieved with respect to the normal operating conditions applied490

at the chemical company.491

A nonlinear controller was used to track the temperature in the polymer-492

ization reactor in spite of typical disturbances such as initiator and monomer493

injections. The optimal temperature profile, obtained by a dynamic opti-494

mization study, was used as the set point for the nonlinear control. In the495

same time, the optimal feed policies of monomer and initiator were followed496

by means of a regulatory control of their flow rates. The results show that497
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the nonlinear controller is appropriate to track the optimal temperature tra-498

jectories calculated previously. Also, the final temperature increase due to499

the initiator injection is rapidly corrected by the controller action making500

the operation of the reactor safer while, at the same time, the productivity501

is improved satisfactorily.502
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Nomenclature

Cpj Specific heat of component j [J.K−1.kg−1]
I Moles of initiator in the reactor [mol]
kfm Rate constant for chain transfer to monomer [m3.mol−1.s−1]
kfp Rate constant for chain transfer to polymer [m3.mol−1.s−1]
kt Termination rate constant [m3.mol−1.s−1]
kI Overall initiation rate constant [s−1]
MM Moles of monomer in the reactor [mol]
M̄n Number average molecular weight [g.mol−1]
M̄w Weight average molecular weight [g.mol−1]
Mt Total moles of monomer fed to the reactor [mol]
MWM Monomer molecular weight [kg.mol−1]
mw Mass of water in the reactor jacket [kg]
n̄ Average number of radicals per particle [-]
qI Flow rate of initiator fed to the reactor [mol.s−1]
qM Flow rate of monomer fed to the reactor [mol.s−1]
Rpol Overall reaction rate [mol.s−1]
T Reactor temperature [K]
Tj Jacket temperature [K]
U Overall heat transfer coefficient [W.m−2.K−1]
Vpol Total volume of polymer generated in the reaction [m3]
Vw Total volume of aqueous phase [m3]
α Probability of propagation [-]
∆Hr Heat of reaction [J.kg−1]
λ0 Total concentration of zeroth moment for growing chains [-]
µ0 Concentration of zeroth moment for dead chains [-]
µ1 Concentration of first moment for dead chains [-]
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µ2 Concentration of second moment for dead chains [-]
φS Solids content [-]
ρpol Polymer density [kg.m−3]
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