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In this paper, a control law that enforces the tracking of a boundary controlled output for a bilinear distributed parameter system is developed in the framework of geometric control. The dynamic behavior of the system is described by two weakly coupled linear hyperbolic partial differential equations. The stability of the resulting closed-loop system is investigated based on eigenvalues of the spatial operator of a weakly coupled system of balance equations. It is shown that, under some reasonable assumptions, the stability condition is related to the choice of the tuning parameter of the control law. The performance of the developed control law is demonstrated, through numerical simulation, in the case of a co-current heat exchanger. The control objective is to control the outlet cold fluid temperature by manipulating its velocity. Both tracking and disturbance rejection problems are considered.

Introduction

The early lumping approach consists in approximating the PDE model by a set of ordinary differential equations (ODEs), i.e., the DPS is reduced to a lumped parameter system (LPS). This approach can be seen as model reduction. The equivalent LPS model is obtained by approximating either the PDEs or their solutions [START_REF] Wang | Model-based predictive control for spatially-distributed systems using dimensional reduction models[END_REF][START_REF] Ray | Advanced Process Control[END_REF]Li and Qi, 2010). The resulting reduced model is then used to design the controller in the framework of the control theory of LPSs. However, the early lumping approach presents significant drawbacks. First, reducing the DPS to LPS does not preserve the fundamental control properties (controllability, observability and stability) of the original DPS [START_REF] Ray | Advanced Process Control[END_REF][START_REF] Singh | Effect of finite-dimensional approximation on observability analysis of distributed parameter models[END_REF]. Secondly, ensuring a good approximation of the distributed behavior of DPS requires a high order reduced model, which makes the control design step more difficult. Thirdly, the dimension of the resulting controller is important, which makes it difficult to implement. In addition, neglecting the distributed nature of the DPS often leads to a controller with a poor performance (Christofides, 2001a).

The late lumping approach represents the effective alternative to the early lumping approach [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF]Christofides, 2001a). This approach directly uses the PDEs model, without any reduction, for the design of the controller. Therefore, the distributed nature of the DPS and its fundamental control properties are preserved [START_REF] Ray | Advanced Process Control[END_REF]Christofides, 2001a). This approach yields a controller of distributed nature that enhances the performance in closed loop [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF].

In this work, following the late lumping approach, a control law that enforces both output tracking and disturbance rejection is developed for a bilinear DPS in the framework of geometric control. By assuming a boundary output, it is shown that the obtained control law, which is of finite dimensional nature, yields a time-varying bilinear system in closed loop. Then, based on the mathematical properties of the spatial operator of the resulting closed-loop system, the stability condition is established. The performance of the developed control law is evaluated in the case of a cocurrent heat exchanger. The problem is to control the outlet temperature of the cold fluid by manipulating its inlet velocity.

The paper is structured as follows: The control problem of a bilinear DPS is presented in Section 2. Section 3 gives the main results concerning the stability of coupled linear hyperbolic PDEs. Section 4 is devoted to the control law design and to the stability analysis of the resulting closed-loop system. Numerical simulation results that show the performance of the control law, in the case of a co-current heat exchanger, are reported in Section 5. Section 6 concludes the paper.

Although several interesting control strategies have been developed for nonlinear distributed parameter systems (DPSs) [START_REF] Chen | Control of Nonlinear Distributed Parameter System[END_REF][START_REF] Dai | Iterative learning control for discrete parabolic distributed parameter systems[END_REF][START_REF] Wang | Model-based predictive control for spatially-distributed systems using dimensional reduction models[END_REF]Christofides, 2001a,b;[START_REF] Dubljevic | Distributed nonlinear control of diffusion-reaction processes[END_REF][START_REF] Padhi | An account of chronological developments in control of distributed parameter systems[END_REF][START_REF] Maidi | Boundary control of a parallel-flow heat exchanger by input-output linearization[END_REF]Corriou, 2011, 2014;[START_REF] Ding | Boundary predictive control of second-order linear modulus-vary distributed parameter systems based on wavelets transformation[END_REF], control design for this class remains a challenging problem (Christofides, 2001b). If, for linear DPSs, a general control theory is developed by means of semigroup theory [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF], for nonlinear DPSs, this is difficult and the investigation is made by assuming certain particular classes. Among these classes, can be cited the first-order hyperbolic PDEs (Hanczyc and Palazoglu, 1995;[START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF]Garc´ıa-Sandoval et al., 2008;Gundepudi and Friedly, 1998), the quasilinear parabolic partial differential equations (PDEs) [START_REF] Dubljevic | Distributed nonlinear control of diffusion-reaction processes[END_REF] and the nonlinear parabolic PDE (Maidi and Corriou, 2014).

An important class of DPSs encountered in a wide variety of practical applications is described by coupled linear hyperbolic PDEs issued from first principles [START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF]. In this case, two kinds of DPSs can be distinguished: strongly and weakly coupled [START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF]. When both temporal and spatial derivatives of different state variables are involved in each equation of the model, the system is said to be strongly coupled. In the other case, when each equation of the model contains only the temporal and spatial derivatives of the same state variable, the system is weakly coupled. Note that, under certain assumptions, a strongly coupled system can be transformed into a weakly one by means of a decoupling procedure [START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF].

Heat exchangers, electrical transmission lines, irrigation channels and transportation pipelines are some examples of DPSs whose dynamic behavior is described by coupled hyperbolic PDEs [START_REF] Xu | The state feedback servoregulator for countercurrent heat exchanger system modelled by sytem of hyperbolic PDEs[END_REF][START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF]. For these DPSs, for certain practical considerations, some parameters of the model are taken as control variables. As an example, in the case of heat exchanger, manipulating a fluid velocity is more practical than manipulating its inlet temperature. Thus, the system is turned into a bilinear one, which represents another interesting particular class of nonlinear DPSs.

When a parameter is taken as a manipulated variable to control a boundary output, a weakly coupled DPS is characterized by a finite characteristic index [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF], which is a generalization of the notion of the relative degree of lumped parameter systems (LPSs) (Isidori, 1995). In addition, the stability analysis of a weakly coupled DPS can be done easily by examining the eigenvalues of the spatial operator. These interesting properties motivate the use of geometric control for bilinear DPSs to design a control law following the late lumping approach.

Designing a controller for a DPS can be done using two possible approaches [START_REF] Ray | Advanced Process Control[END_REF]Christofides, 2001a): early lumping and late lumping.

Problem formulation

Let us consider a linear 2 × 2 system issued from first principles balances described by the following hyperbolic coupled PDEs [START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF] 

∂x 1 (z, t) ∂t = -u 1 ∂x 1 (z, t) ∂z + α 1 (x 2 (z, t) -x 1 (z, t))
(1)

∂x 2 (z, t) ∂t = -u 2 ∂x 2 (z, t) ∂z + α 2 (x 1 (z, t) -x 2 (z, t)) (2) 
with the following boundary conditions

x 1 (0, t) = x 10 (3) x 2 (0, t) = x 20 (4)
and initial conditions

x 1 (z, 0) = x 0 1 (z) (5) x 2 (z, 0) = x 0 2 (z) (6) 
In this model, t ∈ [0, ∞) and z ∈ [0, l] represent the time and spatial variables, respectively. α 1 , α 2 , x 10 and x 20 are constant positive parameters. The variables u 1 and u 2 can be assumed as manipulated variable and disturbance, respectively and vice versa, depending on the considered control configuration. x 1 and x 2 are the state variables assumed to be in Hilbert space L 2 ([0, l]) while x 0 1 and x 0 2 are the initial spatial profiles. To simplify the presentation, it is assumed in the following that our aim is to control the following boundary output

y(t) = x 1 (l, t) (7) 
by manipulating the variable u 1 whereas u 2 is a disturbance. Assuming this control configuration, the model ( 1)-( 6) represents a bilinear DPS [START_REF] Ouzahra | Approximate and exact controllability of a reaction-diffusion equation governed by bilinear control[END_REF][START_REF] Bühler | Topics in Identification and Distributed Parameter Systems[END_REF]. This particular class of DPSs is termed weakly coupled or decoupled systems since the terms that contain derivatives are not coupled [START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF].

To solve this formulated control problem, the following assumptions are made.

Assumption 1: The spatial profile x 1 (z, t) is a monotonic function with respect to z at given t, furthermore assumed increasing [START_REF] Ayres | Theory And Problems Of Differential Equations. Schaum's Outline[END_REF].

Assumption 2: At z = 0, the boundaries conditions are such that x 2 (0, t) -x 1 (0, t) > 0, that is, x 20 -x 10 > 0.

Remark 1: For the distributed parameter system (1-2), since u 1 , u 2 , α 1 and α 2 are positive parameters, assumption 2 implies that x 2 (z, t) -x 1 (z, t) > 0 for z ∈ [0, l].

Before addressing the control law design, the stability issue of the system (1)-( 6) is discussed in the following section.

Stability of linear hyperbolic systems of balance laws

The stability of the semigroup or of its generator (operator), i.e. the stability of DPS, can be investigated using some tools from spectral theory [START_REF] Engel | A Short Course on Operator Semigroups[END_REF]. Thus, if all the eigenvalues of the operator are negative real or complex with negative real part, the semigroup is stable, i.e. the DPS is stable.

Let us write the PDEs model (1-6) under the following operator form

∂x(z, t) ∂t = H x(z, t) (8) 
where x(z, t) = [x 1 (z, t), x 2 (z, t)] T is the vector of state variables and the spatial operator H is defined as follows

H = A ∂ ∂z + B (9) 
with

A = -u 1 0 0 -u 2 (10) 
and

B = -α 1 α 1 α 2 -α 2 (11)
The stability of the linear hyperbolic systems issued from balance laws has been investigated in the literature [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions[END_REF][START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF]. The aim of this section is to give the condition that ensures the exponential stability developed based on the spectral theory [START_REF] Engel | A Short Course on Operator Semigroups[END_REF]. This theory provides the qualitative behavior of the semigroup generated by the spatial operator H [START_REF] Engel | A Short Course on Operator Semigroups[END_REF].

Given the boundary conditions ( 3)-( 4), since the eigenvalues of the matrix A are negative, the eigenvalues of the spatial operator H are complex and equal to [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions[END_REF] 

λ k = -∞ + k π i, k = -∞, . . . , +∞ (12) 
with i is the imaginary unit, which implies that the system (8) is exponentially stable, i.e., the spatial operator H generates a stable semigroup. Consequently, the PDEs model ( 1)-( 6) is exponentially stable if the parameters u 1 and u 2 are positive.

Control law design and closed loop stability analysis

In this section, the control problem formulated above is solved in the framework of geometric control using the characteristic index concept introduced by [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF], which is a generalization of the relative degree of a finite dimensional system (Isidori, 1995).

Control law design

The calculation of the first time derivative of the controlled output (7) yields

dy(t) dt = ∂x 1 (z, t) ∂t z=l (13) = -u 1 ∂x 1 (z, t) ∂z z=l + α 1 (x 2 (l, t) -x 1 (l, t)) (14) 
hence, from ( 14) it follows that the manipulated variable u 1 appears linearly in the first time derivative of the controlled variable y(t). This suggests requesting a firstorder dynamical behavior between an external variable y d (t) and the controlled output y(t), i.e.,

τ dy(t) dt + y(t) = y d (t) ( 15 
)
where τ is the desired time constant. Now, Assumption 1 ensures that

∂x 1 (z, t) ∂z z=l = 0 (16)
thereafter, the of the first time derivative of the controlled output y(t) by its expression ( 14) into (15), and by solving the resulting equation with respect to the manipulated variable u 1 , the following control law results

u 1 = y(t) -y d (t) + τ α 1 (x 2 (l, t) -x 1 (l, t)) τ ∂x 1 (z, t) ∂z z=l (17) 
with y(t) = x 1 (l, t).

Remark 2: The developed control law (17) involves the first spatial derivative of the state x 1 at z = l, which can be approximated by the following finite difference at right

∂x 1 (z, t) ∂z z=l = x 1 (l, t) -4 x 1 (l -∆z, t) + 3 x 1 (l -2 ∆z, t) 2 ∆z ( 18 
)
where ∆z is the discretization spatial step. Hence, for practical implementation, one needs the measurements at both positions z = l -∆z and z = l -2 ∆z. These measurements can be provided from the measurement of the controlled output y(t) = x 1 (l, t) using an observer.

Closed-loop stability

The control law (17) yields, in closed-loop, the finite dimensional system (15), which is externally stable. In this subsection, the internal stability of the resulting closed-loop system (15) is analyzed.

The internal representation of the resulting closedloop is obtained by substituting the manipulated variable u 1 by its expression (17) into the system to be controlled (1)-( 6). In this case, the closed-loop can be written under the form operator (8) with

A =       -     y(t) -y d (t) + τ α 1 (x 2 (l, t) -x 1 (l, t)) τ ∂x 1 (z, t) ∂z z=l     0 0 -u 2       (19) 
and B remains unchanged. Note that, since the obtained control law ( 17) is of finite dimensional nature, hence the obtained closed-loop can be assumed as a bilinear parameter-varying system [START_REF] Briat | Linear Parameter-Varying and Time-Delay Systems: Analysis, Observation, Filtering and Control[END_REF]. Thus, according to the development given in Section 3, if the eigenvalues of the matrix (19) are negative, consequently the closed-loop ( 15) is internally stable. The condition that ensures the stability of the matrix ( 19) is provided by Proposition 1.

Proposition 1: If τ ≥ 1/α 1 , the eigenvalues of the operator (19) are negative.

Proof. Since u 2 > 0, it remains to show that

y(t) -y d (t) + τ α 1 (x 2 (l, t) -x 1 (l, t)) τ ∂x 1 (z, t) ∂z z=l (20) is positive. Assumption 1 implies that ∂x 1 (z, t) ∂z z=l > 0 (21)
and since the time constant τ > 0, consequently the denominator of ( 20) is positive.

To have the condition (20) satisfied, it remains to show that the numerator of ( 20) is also positive, that is,

τ α 1 x 2 (l, t) -x 1 (l, t) > y d (t) -y(t) (22) 
Now, if y d (t) -y(t) > 0, according to Remark 1, it follows that the condition (22) holds since both τ and α 1 are positive, consequently the numerator of (20) is positive.

If y d (t) -y(t) < 0, that is, y d (t) -x 1 (l, t) < 0, the numerator of ( 20) is positive if the following condition holds

τ α 1 x 2 (l, t) -x 1 (l, t) > y d (t) -y(t) (23) 
According to Remark 1, we have

x 2 (l, t) > x 1 (l, t) (24) 
and since

x 1 (l, t) ≥ y d (t) (25) therefore x 2 (l, t) -x 1 (l, t) > y d (t) -y(t) (26) 
If we take τ such as τ α 1 ≥ 1, that is, τ ≥ 1/α 1 , then

τ α 1 x 2 (l, t) -x 1 (l, t) ≥ x 2 (l, t) -x 1 (l, t) (27) 
and according to ( 26), one concludes that

τ α 1 x 2 (l, t) -x 1 (l, t) > y d (t) -y(t) (28) 
which implies that the numerator of ( 20) is positive.

Remark 3: From Proposition 1, it follows that the internal stability condition is related to the choice of the tuning parameter τ of the control law (17).

Application example

In this section, the performance of the designed control law is evaluated in the case of the co-current heat exchanger depicted in Figure 1. A cold fluid enters at temperature T c,0 and flows through the internal tube, of length l, with a velocity v c . This cold fluid exchanges heat with the hot fluid that flows in the external tube, in the same direction as the cold fluid, with a velocity v h . The hot fluid enters at temperature T h,0 . The cold and hot fluids leave at temperatures T c,l and T h,l , respectively. The dynamic behavior of the co-current heat exchanger is described by the following system of one dimensional linear hyperbolic PDE energy balances [START_REF] Maidi | Boundary control of a parallel-flow heat exchanger by input-output linearization[END_REF] Cold fluid Hot fluid

0 l z T c,0 (t) T c (z, t) T c,l (t) T h,0 (t) T h (z, t) T h (z, t) T h,l (t) Figure 1: Co-current heat exchanger. ∂T h (z, t) ∂t = -v h ∂T h (z, t) ∂z + α h (T c (z, t) -T h (z, t)) (29) ∂T c (z, t) ∂t = -v c ∂T c (z, t) ∂z + α c (T h (z, t) -T c (z, t)) (30) T h (0, t) = T h,0 (t) (31) T c (0, t) = T c,0 (t) (32) T h (z, 0) = T 0 h (z) (33) T c (z, 0) = T 0 c (z) ( 34 
)
where T h (z, t) and T c (z, t) are the temperatures of the hot and cold fluids, respectively. α h and α c are the heat transfer coefficients. T 0 h and T 0 c are the initial spatial temperature profiles of the hot and cold fluids, respectively.

Let us assume that the objective is to control the outlet cold fluid temperature, that is,

y(t) = T c (z, t)| z=l (35) = T c,l (t) (36) 
by manipulating the velocity v c . T h,0 , T c,0 and v h represent external disturbances that affect the heat exchanger.

In this case, both assumptions 1 and 2 hold for the co-current heat exchanger since T c (z, t) is a monotonic increasing function with respect to z and, ∀ t ∈ [0, ∞), T h (z, t) -T c (z, t) > 0. Consequently, the proposed design methodology can be applied.

According to the development given in the Subsection 4.1, the following state feedback results

v c = T c,l (t) -T d c,l (t) + τ α c (T h (l, t) -T c (l, t)) τ ∂T c (z, t) ∂z z=l (37) 
The performances are evaluated by simulation and the closed-loop system is simulated using the method of lines [START_REF] Vande Wouwer | Adaptive Method of Lines[END_REF] by assuming a number of discretization points equal to 100. The spatial derivatives are approximated using finite differences.

The parameters of the heat exchanger are summarized in Table 1. The initial temperature profiles T 0 h (z) and T 0 c (z) are the spatial profiles at steady-state obtained by considering the boundary conditions and the velocities reported in Table 2. The controller tuning parameter τ that satisfies the condition of Proposition 1 is taken equal to 6 s.

In the performed simulation runs, to avoid sudden variations of the controlled output T c,l (t), the desired set-point T d c,l (t) is smoothed using a first-order filter that yields the filtered set-point or reference trajectory T f d c,l (t), i.e. where τ f is the time constant of the filter taken equal to 5 s. Thus, considering the filtered set point T f d c,l (t) instead of the set point T d c,l (t), the control law (37) takes the following form

τ f dT f d c,l (t) dt + T f d c,l (t) = T d c,l (t) (38) 
v c = T c,l (t) -T f d c,l (t) + τ α c (T h (l, t) -T c (l, t)) τ ∂T c (z, t) ∂z z=l (39) 
Remark 4: According to proposition 1, the condition of the choice of τ ensures that both v h and v c have the same sign (both positive). This means physically that both cold and hot fluids flow in the same direction, which is characteristic of a co-current heat exchanger.

Set point tracking

The first simulation run deals with the tracking problem. Thus, in order to evaluate the tracking capability of the control law (39), two step set points T d c (t) = 50 • C and T d c (t) = 35 • C have been specified at t = 5 s and t = 60 s, respectively. Figure 2 shows clearly that the outlet cold fluid temperature T c,l (t) tracks perfectly the imposed set point. The output-tracking is achieved with a smooth evolution of the velocity v c (Figure 3). The performance of controller is confirmed by the 3D temperature profiles given by Figure 4.

Disturbance rejection

The second performed test deals with disturbance rejection. For this test, a sudden change of -60% of the hot fluid velocity v h is applied at t = 10 s. Figure 5 shows variations of the cold fluid temperature at some positions along the heat exchanger. From the obtained results, one clearly notices that the disturbance effect observed at z = 0 is attenuated and becomes invisible at the outlet z = 1 of the heat exchanger (Figure 5), that is, on the controlled variable. This attenuation is achieved by a slight variation of the cold fluid velocity v c as shown by Figure 6.

Parameter Value

α h 0.3 [s -1 ] α c 0.2 [s -1 ] l 1.0 [m]

Variable Value

T h,0 80 [ • C] T c,0 25 [ • C] v h 10 [m • s -1 ] v c 5 [m • s -1 ] 0 
Remark 5: From a practical point of view, the velocity or flow rate variation is achieved by a valve that is characterized by a limited range. This means that some desired temperatures cannot be achieved if they need variations that exceed the specified range of the valve or an important inlet hot fluid temperature. Thereby, the analysis of the controllability and reachability properties of the heat exchanger is an important step to specify the set of the reachable set points. These questions, that have been investigated in the literature [START_REF] Alotaibi | Controllability of cross-flow heat exchangers[END_REF][START_REF] Sano | Observability and reachability for parallelflow heat exchanger equations[END_REF], are out of the scope of the present work.

Conclusion

The control of a linear 2 × 2 system of hyperbolic PDEs issued from first principles balances, based on the input-output linearization approach, is investigated in this paper. The manipulated variable is taken as a parameter of the system to control a boundary output. This control configuration transforms the system equations as a bilinear DPS. Then, based on the notion of characteristic index that is a generalization to the infinite dimensional systems of the well-known concept of relative degree, a control law, of finite dimensional nature, that ensures both tracking output and disturbance rejection is developed. This control law yields a linear time-varying 2 × 2 system of hyperbolic balance laws in closed loop. The stability condition of the closed-loop is derived based on the stability of the eigenvalues of the spatial operator in closed loop.

The tracking and disturbance rejection capabilities of the control law developed are evaluated through numerical simulation runs in the case of a co-current heat exchanger. The obtained results show that the stated feedback achieves good performance in both output tracking and disturbance rejections. 
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 2 Figure 2: Set point tracking: evolution of the outlet cold fluid temperature T c l (t).
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 3 Figure 3: Set point tracking: evolution of the cold fluid velocity v c (t).
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 4 Figure 4: Set point tracking: 3D temperature profiles. Top: hot fluid temperature profile. Bottom: cold fluid temperature profile.
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 56 Figure 5: Disturbance rejection: effect of the disturbance v h (t) on the cold temperature T c (z, t) at some positions in the internal tube.

Table 1

 1 Heat exchanger parameters.

Table 2

 2 Boundary conditions and steady-state velocities.
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