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7 MQ3 embranes show a tremendous variety of lipids and proteins

8 operating biochemistry, transport and signalling. The dynamics

9 and the organization of membrane constituents are regulated in

10 space and time to execute precise functions. Our

11 understanding of the molecular mechanisQ4 ms that shape and

12 govern membrane subcompartmentalization and inter-

13 organelle contact sites still remains limited. Here, we review

14 some reported mechanisms implicated in regulating plant

15 membrane domains including those of plasma membrane,

16 plastids, mitochondria and endoplasmic reticulum. Finally, we

17 discuss several state-of-the-art methods that allow nowadays

18 researchers to decipher the architecture of these structures at

19 the molecular and atomic level.
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32 Introduction
33 Spatiotemporal organization of the cellular biomolecules

34 is critical to coordinate the numerous activities simulta-

35 neously carried out by cells. Biological membranes

36 delimit cells and organelles and constitute specialized

37 subunits that are constantly reshaped to adapt to ever-

38 changing environmental conditions and to operate cell

39 functions effectively (Special issue on cell biology edited

40 by Ref. [1]). Cell membranes are composed of a specific

41set of biomolecules defining their identity. For example,

42phosphoinositide lipids and small GTPases proteins are

43major contributors to endosome identity [2,3]. A tremen-

44dous body of evidence shows that the motion and the

45organization of membrane constituents are dynamically

46regulated on the level of the membrane to form functional

47domains and this conversely throughout the tree of life

48[4��,5,6]. Thus, it appears that membrane subcompart-

49mentalization into domains is universal and may repre-

50sent an essential characteristic. Taking into account the

51knowledge acquired in various model organisms and

52model systems over the past decades, membrane domains

53can be defined as membrane regions in which the local

54composition, lateral organization, and/or dynamics differ

55in some way from the average membrane properties [7–9].

56Such local specificity is dictated by preferential intermo-

57lecular interactions, including intra-membrane interac-

58tions (i.e lipid–protein, lipid–lipid and protein–protein)

59and associations with structures peripheral to the mem-

60brane for example cortical cytoskeleton and the cell wall

61in the case of plasma membrane. This also leads to the

62formation of inter-membrane interaction through Mem-

63brane Contact Sites (MCS), important functional plat-

64forms for the exchange of lipids and signalling proteins

65[10,11], see Figure 1. Yet, membranes being constituted

66of several thousands of molecules surrounded by variable

67and complex environments, a tremendous mechanistic

68complexity remains to be uncovered. Here, we review

69some described mechanisms regulating membrane

70architecture in plants and discuss recent technological

71advancements allowing researchers to study membrane

72organization with molecular and atomic resolution.

73Examples of subcompartmentalization of
74plant membranes
75Plasma membrane domains

76The plasma membrane (PM) is the outermost boundary

77of the cell, acting as a communication headquarter inte-

78grating signal from the environment to the cell interior

79and vice-versa. The PM is asymmetric, as exemplified by

80the enrichment of sphingolipids in the outer leaflet and

81phospholipids in the inner leaflet [12,13]. The PM associ-

82ates with the cortical cytoskeleton network and the cell

83wall creating a continuum at the cell surface [14]. PM

84establishes MCS with organelles, notably with ER at the

85level of PD, see Figures 1a and 2. The lipid and protein

86composition of the domains formed at these MCS is very
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Examples of subcompartmentalization of membranes and membrane contact sites (MCS) in different organelles of plant cells.

(a) Scheme of a plant cell showing the membrane contact sites (MCS) between organelles shown by a red dot. Few examples of

subcompartmentalization of biological membranes are emphasized in the plasma membrane (b), thylakoids (c), chloroplast envelope (d),

mitochondria cristae (e).
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Figure 2
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Biophysical techniques to study membrane domains.

(a) Examples of major biophysical tools to analyse membrane domains and membrane-associated proteins, subsequently deciphering the

molecular mechanisms at play in nanodomain organization. X-ray: shaker family voltage-dependent potassium channel Kv represented in the

cartoon, lipids in stick (PDB: 2R9R, [111]). Modelling: C-terminal anchor of StREM1.3 interacting with membranes enriched in phosphoinositol-4-

phosphate and sitosterol. ssNMR: model of StREM1.3 nanodomains. FTIR: insertion of C-terminal anchor of StREM1.3 in nanodomain-like

membranes [16��]. EM/tomography: observation of ER–PM membrane contact sites at plasmodesmata [89��]. Solution NMR: membrane-

embedded domain of the Influenza B BM2 integral protein (PDB: 2KIX, [112]). (b) ssNMR workflow to study membrane domain-associated

proteins. Bacterial expression cells (e.g. E. coli BL21-DE3) are transformed with a high expression level plasmid coding for the protein of interest.

Protein production is achieved in minimal culture media supplemented with isotope labelled metabolites depending on the desired isotopic

labelling scheme of the protein (e.g. 13C-glucose, 1,3-13C-glycerol, 2-13C-glycerol . . . ). Proteins are purified and reconstituted into liposomes of a

chosen lipid composition. ssNMR allows obtaining two types of structural data: magic angle spinning (MAS) ssNMR is used to analyze the

structure and dynamics of the membrane protein [16��], and 2H (unpublished typical data) and 31P (not shown) ssNMR to decipher the dynamics

and phase behavior of the membranes of interest comprising deuterated lipids.
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87 specific [11]. Organization of the PM can be rationalized

88 into two types: microdomains and nanodomains.

89 Microdomains are site-specific enrichment of membrane

90 compounds at the cellular level usually referred to as polar

91 domains that control localized cell activities. Nanodo-

92 mains represent submicrometric heterogeneity of the

93 PM whose visualization often requires the use of high

94 or superresolution microscopy techniques [15,9]. Nano-

95 domains have been proposed to act as dedicated platforms

96 regulating cell signalling notably [4��,16��,9,17�,15].
97 Mechanisms regulating the organization of PM domains

98 being recently reviewed [9,15,13,18–22], we present here

99 only three case studies to illustrate the molecular mecha-

100 nisms at play in the organization and dynamics of PM

101 domains.

102 REMORINs are plant-specific proteins regulating notably

103 immunity [23–26], symbiosis [27,28,29�] and development

104 [30] possibly by modulating nanodomain-associated com-

105 plexes [16��,31,32,17�,29�]. REMORINs predominantly

106 associate with the PM [33,23,31,34,35]. In addition, isoforms

107 from group 1 and group 6 REMORINs have been shown to

108 be associated with plasmodesmata (PD) in Rice and in

109 Solanaceae [23,36,30,31]. Electron microscopy immuno-

110 localization, stimulated emission depletion microscopy

111 (STED) and photoactivated localization microscopy

112 (PALM) studies showed group 1 REMORINs are organized

113 into nanodomains of about 70–90 nm in diameter that are

114 sensitive to sterol composition [23,37,16��] and cytoskeleton

115 integrity [38]. Molecular mechanisms at the basis of

116 REMORIN domain organization are being discovered:

117 REMORINs are targeted from the cytosol to the cytosolic

118 leaflet of the PM via a short unconventional sequence at the

119 extremity of the C-terminus of the protein, called REM-CA

120 (REMORIN C-terminal Anchor) [39,34,40], see Figures 1b

121 and 2; REM-CA undergoes conformational changes upon

122 binding of conserved positively charged residues to phos-

123 phoinositides and provides to REMORINs biochemical

124 properties indistinguishable from integral proteins

125 [23,39,16��]; REM-CA-sterol-phosphoinositide interactions

126 are required for Group 1 REMORINs supra-molecular

127 organization into functional domains involved in plant

128 response to the Potato Virus X (PVX). Numerous REMOR-

129 INs present cysteine residues that can be S-acylated

130 [41,34,42,43]. While S-acylation of Arabidopsis REMORINs

131 seems to regulate PM affinity but not primarily nanodomain

132 organization [34], the substitution of an S-acylated cysteine

133 of Nicotiana benthamiana REM alters nanodomain organiza-

134 tion [43], suggesting functional divergence of REMORIN

135 S-acylation. Oligomerization of group 1 REMORINs into

136 homotrimers is required for PM localization [39,44], suggest-

137 ing that REMORINs’ self-assembly constitute an early step

138 of PM targeting. Furthermore, REMORIN organization

139 seems regulated by intermolecular protein association.

140 Indeed, in Medicago, FLOT4 scaffolds SYMBIOTIC

141 REM1 to recruit the Nod factor co-receptor LYSINE

142 MOTIF KINASE 3 (LYK3) to specific nanodomains

143controlling root hair infection by Sinorhizobium meliloti and

144the establishment of symbiosis [29�]. Interaction of

145AtREM1.3 with AtHIR1 in Arabidopsis suggests that

146association of SPFH (Stomatin, Prohibitin, Flotillin,

147HflK/C) proteins with REMORINs may represent a con-

148served core module shaping PM organization [45]. Finally,

149phosphorylation of group 1 REMORINs upon infection of

N. benthamiana by the PVX modulates REM1.3 organization

150and function [31], probably through the modulation of

151protein–protein interactions.  Thus the genesis and regula-

152tion of REMORIN nanodomains appear to rely on several

153molecular mechanisms such as post-translational modifica-

154tions, and protein–lipid and protein–protein interactions.

155Rho of Plants (ROPs) are the plant-specific subfamily of

156Rho/Rac small GTP binding proteins, regulating numerous

157cellular processes such as signalling, trafficking and cytoskel-

158eton dynamics [46,47]. Reversible switch from a GDP-

159bound state to a GTP-bound state mediated by ROP-GEFs

160and ROP-GAPs regulates ROPs activity [48]. Polarization of

161the growth machinery to a predefined root hair initiation

162domain (RHID) pledges root hair formation in trichoblast

163cells. ROP2, 4 and 6, are recruited to the RHID before any

164detectable cell bulging and serve as a landmark for the

165recruitment of downstream effectors [49,50�]. Strikingly,

166guanine nucleotide exchange factor 3 (GEF3) defines the

167RHID by guiding ROPs polarization via direct protein–

168protein binding [50�]. At the bulging stage, phosphatidyli-

169nositol-4-phosphate  5-kinase 3 (PIP5K3), the AGCVIII

170kinase D6 PROTEIN KINASE (D6PK) and sterol

171composition modulate ROPs association to the RHID

172[51,52]. Here, co-regulation of ROP, phosphoinositides

173and phosphoinositide  kinases has been proposed to form a

174self-organizing system amplifying ROP recruitment and

175activation [3]. In addition, ROPs associate with the PM

via post-translational lipid modifications and direct interac-

176tion with membrane lipids mediated by the carboxy-

177terminal tail [53,47,4��]. For example, ROP6 interacts with

178phosphatidylserine (PS) via its polybasic tail, a process likely

179at the basis ofnanodomain organization. Recently, using live

180superresolution microscopy, Platre et al. elegantly showed

181that variation in PS level during root development stabilized

182ROP6 into nanodomains to regulate auxin signaling [4��]. In

183metaxylem vessel cells, ROP-GEF4 locally activate ROP11

184to recruit MICROTUBULE DEPLETION DOMAIN

1851 scaffold protein which in turn recruits microtubule-

186depolymerizing kinesin-13A enabling the formation of pits

187in secondary cell walls [54,55]. IQD13 associates with corti-

188cal microtubules (cMTs) and the PM to laterally restrict the

189localization of ROP GTPase domains, establishing a lateral

190fence for ROP GTPase [56]. In contrary, CORTICAL

191MICROTUBULE DISORDERING1-induced  disorgani-

192zation of cortical microtubules impairs the boundaries of PM

193domains of active ROP11 GTPase [57].

194Cellulose microfibers are synthesized by the PM-

195embedded cellulose synthase (CESA) complexes (CSCs)
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196 which are composed of 18–36 cellulose synthase subunits

197 [58]. Cortical microtubules recruit CESA-containing vesi-

198 cles and guide the trajectory of CSCs at the PM [59–61]. In

199 addition, S-acylation of CESAs influences its immediate

200 membrane environment and conditions their location to

201 the PM [62]. CSCs are tethered to cortical microtubules via

202 two integral components, CELLULOSE SYNTHASE

203 INTERACTING 1 [63–65] which determines the trajec-

204 tory of CSCs along the cMTs [59] and COMPANION OF

205 CELLULOSE SYNTHASE 1 (CC1), which sustains cel-

206 lulose synthesis by promoting the formation of a stress-

207 tolerant microtubule array during salt stress [66].

208 These examples emphasized that regulation of plasma

209 membrane subcompartmentalization is regulated as part

210 of developmental program, is modulated to respond to

211 environmental clues, relies on the cooperation of multiple

212 factors and is fundamental for function.

213 Chloroplastic membrane domains

214 Chloroplasts are organelles composed of a double mem-

215 brane envelope and thylakoids found in plant cells and

216 algae that conduct photosynthesis. Little is known about

217 how the photosynthetic membrane machinery is arranged

218 in time and space. Microscopy and biophysical shreds of

219 evidence showed the coexistence of domains where lipids

220 are organized in lamellar or hexagonal phases. For exam-

221 ple, hexagonal phases have been described in etioplasts of

222 prolamellar bodies or during the transfer of lipids between

223 the envelope and thylakoids, such hexagonal phase

224 domains may be of importance for localizing metabolic

225 activities, for example the violaxanthine-epoxidase in

226 thylakoid domains [67].

227 Biochemical, 3D reconstruction, in vivo spectroscopy and

228 immunolocalization data, reveal that thylakoids display a

229 heterogeneous subcompartmentalization of photosyn-

230 thetic complexes in domains which redistribute during

231 state transitions in Chlamydomonas [68] and diatoms [69],

232 see Figure 1c. These domains are interconnected, ensur-

233 ing fast equilibration of electron carriers for efficient and

234 optimal photosynthesis. Underlying molecular events at

235 the basis of thylakoid subcompartmentalization remain

236 unclear. Thylakoids possess a special fatty acid namely

237 trans-D3-hexadecenoic acid (trans-16:1) esterified in

238 phosphatidylglycerol (PG) which may play a role in

239 cementing thylakoids during granum formation and con-

240 trol of light reactions of photosynthesis [70]. Recent 3D

241 cryo-electron tomography showed the thylakoid network

242 of cyanobacteria is organized in domains and forms a

243 synapse-like MCS decorated by ribosomes (but not by

244 phycobilisomes) in tight association with the PM of

245 cyanobacteria. This MCS was named the ‘thylapse’, for

246 ‘thyl(akoid syn)apse’, and likely serves for compartmen-

247 talization of the different functions of the thylakoids that

248 is photosynthesis or protein synthesis [71��], see

249 Figure 1d. Because PM of cyanobacteria represents the

250inner membrane of eukaryotic plastids, thylapses most

251likely also exist in higher plants.

252Chloroplast envelope establishes numerous MCS with other

253organelles [10]. For example, plastid and mitochondrion

254envelopes establish membrane connection during phos-

255phate deprivation. The molecular content of this MCS

256has been recently identified by biochemical and proteomic

257approaches and showed a big complex of hundred proteins

258enriched in specific lipids. AtMic60, a conserved protein of

259the mitochondria inner membrane, plays a crucial role in the

260lipid transport process by regulating the proximity between

261mitochondrial membranes via its interaction with the outer

262membrane protein Tom40 and by destabilizing membranes,

263likely to promote lipid desorption [72��]. Plastids can also

264undergo drastic changes in shape under stress, through

265specialized protrusive membrane domains called stromules

266(stroma-filled tubules, see Figure 1a) which link plastid

267envelope with other organelles such as ER, Golgi and

268nucleus [73,74]. The molecular mechanisms governing stro-

269mule formation are not established, but the involvement of

270cytoskeleton motors has been proposed [75]. Similarly,

271peroxules, peroxisomal protrusions tethering chloroplasts

272or mitochondria through specialized membrane microdo-

273mains have been evidenced [76,77]. Peroxules also for

274example link with lipid droplets, see section ‘Endoplasmic

275reticulum domains’. These studies reveal the importance of

276physical connections through plant membrane domains for

277establishing complex metabolic pathways.

278Mitochondrial membrane domains

279Mitochondria are double-membrane-bound organelles.

280The outer mitochondrial membrane encloses the entire

281organelle and can be in contact with other organelles for

282example during phosphate starvation, see above [10]. The

283inner membrane separates the mitochondrial matrix from

284the intermembrane space. The structure of the inner

285mitochondrial membrane is extensively folded. These

286invaginations are separated from the inner membrane

287by dynamin proteins to form three domains namely,

288the inner boundary membrane, the cristae junctions

289and the cristae membranes [78], see Figure 1e. The latter

290contains enzymes of the mitochondrial respiratory chain

291that, instead of being dispersed in the membrane, are

292organized into a functional supramolecular respiratory

293domain called respirasome, see Figure 1. ATP synthase

294dimers sit at the edge of the cristae. Mitochondria inner

295membrane is rich in cardiolipin (CL), a key phospholipid

296playing important roles in maintaining the functional

297integrity and dynamics of mitochondria. Arabidopsis

298CL localizes to mitochondria and is enriched at specific

299domains and CARDIOLIPIN SYNTHASE targets to the

300inner membrane of mitochondria with its C-terminus in

301the intermembrane space [79]. Mitochondria of cls
302mutants exhibit altered structural integrity and morpho-

303genesis. In contrast to animal and yeast, plant CL plays a

304dominant role in mitochondrial fission and exerts this
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305 function through stabilizing the protein complex of

306 DYNAMIN-RELATED PROTEIN3 [79]. In addition,

307 CL induces membrane invaginations which are stabilized

308 by dimers of ATP synthase. In reconstituted systems,

309 bovine ATP synthase is sufficient to deform a lipid

310 bilayer, which is likely the driving force triggering cristae

311 curvature [80]. Recently, dimers of mitochondrial ATP

312 synthase from the green algae Polytomella were shown to

313 be required for cristae formation and constitute the main

314 factor in mitochondrial morphogenesis to induce mem-

315 brane curvature and self-assembly into rows [81�]. Finally,

316 mitochondria-associated ER membrane (MAM) is

317 another structural element that is increasingly recognized

318 for its critical role in cellular physiology and homeostasis

319 of mitochondria [10].

320 Endoplasmic reticulum domains

321 The endoplasmic reticulum forms a membrane network

322 virtually in contact with all cell organelles, see Figure 1a.

323 Thus, the ER is actively engaged in organizing mem-

324 brane domains to perform various functions. For example,

325 ER is known to be organized into smooth and rough

326 domains, the latter being enriched in ribosomes involved

327 in protein production, protein folding, quality control and

328 dispatch. Formation of these domains is regulated by

329 syntaxin proteins [82]. Lipid droplets (LD) are lipid-rich

330 cellular organelles regulating storage and hydrolysis of

331 neutral lipids. LD biogenesis takes place at ER subdo-

332 mains which are regulated by lipodystrophy proteins

333 called SEIPINs in human, yeast, and plants. SEIPINs

334 reorganize the normal, reticulated ER structure into

335 discrete ER domains that colocalize with LD. In plants,

336 SEIPINs modulate the number and sizes of LD [83�,84].
337 Recent work in plants showed that peroxisome exten-

338 sions deliver the major TAG lipase Sugar-Dependent 1

339 (SDP1) to the LD. At early stages of seedling develop-

340 ment, SDP1 localizes to a peroxisome membrane domain

341 and then possibly moves to the LD surface through

342 peroxisome tubulations [85]. This constitutes an interest-

343 ing case of inter-organelle communication and protein

344 transport that is reminiscent of stromule.

345 In the next chapter, we will briefly describe state-of-the-art

346 biophysical methods that have provided access to the

347 structural basis membrane domain organization.

348 How to study the molecular mechanisms
349 shaping biological membrane domains in
350 plants?
351 Membrane subcompartmentalization is intimately linked

352 to the preferential association of membrane constituents.

353 Therefore, establishing the structure-function relationship

354 between the membrane subcompartment components is an

355 essential piece of the puzzle towards understanding the

356 complex interplay of the cells with the extracellular envi-

357 ronment. Yet, the intrinsic soft matter state of membrane-

358 related systems in their native environment, such as

359peripheral or membrane-embedded proteins, hampers

360the application of numerous techniques in structural biol-

361ogy tovisualize molecularassociationat the atomic level.To

362provide an overview on a promising route towards under-

363standing the molecular basis underlying membrane sub-

364compartmentalization, we can list tools such as X-ray,

365crystallography and solution NMR [86–88]. The recent

366developments of superresolution microscopy (eg. STED,

367PALM), cryo-electron microscopy (EM) and tomography

368methods allowed the study of the organization of proteins

369and lipids and the characterization of membrane subcom-

370partmentalization and MCS [89��,16��,90�] with unpre-

371ceded resolution. The complementary biophysical tools

372to investigate lipid/protein interactions such as Langmuir

373monolayer, Fourier-Transform InfraRed spectroscopy

374(FTIR), NMR or modelling are reviewed in [91,11,13].

375Figure 2a shows several examples of diverse contributions,

376includingsolid-statenuclearmagnetic resonance(ssNMR),

377X-ray crystallography, modelling, FTIR, tomography by

378EM and solution NMR. The development of lipid and

379protein imagery by isotope-labeled high-resolution second-

380ary ion mass spectrometry (nano-SIMS) would allow the

381study of molecular events at play in domain formation and

382dynamics [92,93]. In plants, nano-SIMS was used to localize

383elements such as manganese, arsenic, iron, zinc, and cad-

384mium at the nanoscale level [94], but this approach could

385also be used for lipids and proteins in internal organelles.

386Here, we further describe the powerful technique ssNMR

387that emerges as a tool to understand domain assembly.

388SsNMR is a versatile technology reporting on membrane

389and protein structure, sensitive to dynamics and protein–

390lipid interactions. A major advantage relies in its application

391on systems in the native bilayer environment, that is recon-

392stituted liposomes that can represent membranes of a chosen

393lipid composition. The flowchart in Figure 2b illustrates the

394overall procedure applied to inquire on the previously men-

395tioned aspects of membrane-associated  proteins. Reporting

396membrane biophysical and structural parameters are

397achieved by well-established membrane-focused ssNMR,

398mainly recorded on 2H and 31P nuclei [95,96]. The quad-

399rupolar 2H signal in static ssNMR encodes for the overall

400lipid mobility and, importantly, the local dynamics along the

401acyl chain. Upon varying the membrane components (lipid

402composition, presence or absence of protein) and environ-

403ment (temperature, pH), 2H ssNMR reveals detailed

404insights on phase, phase transitions, acyl chain dynamics

405and membrane thickness and curvature depending on the

406precise lipid composition and on the presence of a potential

407interaction partner. The chemical shift of 31P nuclei comple-

408ments and corroborates the data reporting on phase behavior

409and the impact of potential partner molecules on the lipid

410head groups. Tackling membrane proteins is based on

411Magic-Angle spinning (MAS) ssNMR, a method which

412has seen tremendous advances in elucidating insoluble pro-

413tein structures, dynamics and interactions in soft matter

414states such as assemblies, aggregates [97�,98,99] or
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415 membrane-association[100��,101,102].Since2002,whenthe
416 first structure of a microcrystalline protein has been solved by

417 MASssNMR[103], thetechnologyhasproven verypowerful

418 to elucidate protein assemblies such as the first amyloid

419 protein structure [104], bacterial filaments [105,106] and

420 protein–membranecomplexes[107�].Aconsiderableknowl-

421 edgehasalreadybeenderivedfromssNMRon protein–lipid,

422 lipid–lipid interactions and membrane dynamics and func-

423 tioning [108–110,96,102]. Most recent technological devel-

424 opments achieving ultra-fast MAS frequencies (�100 kHz)

425 MAS ssNMR allow for observing proton nuclei in protonated

426 protein samples (�500 mg) and should facilitate ssNMR to

427 serve as a common tool for structural biology on membrane/

428 protein related questions. Because of its striking technologi-

429 cal evolution, MAS ssNMR has recently been applied in few

430 cases to shed light on protein structures, dynamics and

431 protein–lipid interactions promoted by lipid-dependent

432 membrane features [100��]. Membrane domain formation

433 in plants, relying on the plant protein and lipid interplay (see

434 belowthe exampleofREMORINin PM[16��,44]) remainsa

435 field to explore by MAS ssNMR.

436 Conclusions
437 Virtually all membranes are organized in functional

438 domains that coordinate cell functions. Recent break-

439 through in biochemistry, biophysic and microscopy

440 approaches allow nowadays the study of the mechanisms

441 regulating the formation of membrane domains, particu-

442 larly the interplay between lipids and proteins. The next

443 decade will likely open a vast area of research to under-

444 stand the roles of membrane organization during plant

445 development and aQ5 daptation.
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