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In this work, we investigate cosmologies where the gravitational constant varies in time, with the aim of
explaining the accelerated expansion without a cosmological constant. We achieve this by considering a
phenomenological extension to general relativity, modifying Einstein’s field equations such that G is a
function of time, GðtÞ, and we preserve the geometrical consistency (Bianchi identity) together with the
usual conservation of energy by introducing a new tensor field to the equations. In order to have concrete
expressions to compare with cosmological data, we posit additional properties to this tensor field, in a way
that it can be interpreted as a response of spacetime to a variation of G. Namely, we require that the energy
this tensor represents is nonzero only when there is a time variation of G, and its energy depends on the
scale factor only because of its coupling toG and the matter and radiation energy densities. Focusing on the
accelerated expansion period, we use type Ia supernovae and baryon acoustic oscillation data to determine
the best fit of the cosmological parameters as well as the required variation in the gravitational constant. As
a result, we find that it is possible to explain the accelerated expansion of the Universe with a variation ofG
and no cosmological constant. The obtained variation of G stays under 10% of its current value in the

investigated redshift range, and it is consistent with the local observations of _G=G.

DOI: 10.1103/PhysRevD.101.063513

I. INTRODUCTION

The concordance model in cosmology, ΛCDM, is
extremely successful in being able to explain most of
the current cosmological observations with great precision
[1–6]. On the other hand, this model also has important
problems, one of which is its inability to explain the nature
of the titular Λ, or the cosmological constant, which
remains to be an ad hoc addition to general relativity,
employed in order to explain the late stage accelerated
expansion of the Universe. While this constant behaves in
the same way as a vacuum energy, its value is many orders
of magnitude smaller than the estimations of quantum
field theory [7]. Finding a cosmological solution with
Λ ¼ 0 solves one aspect of this problem, since this
solutionwould be compatiblewith a renormalization to zero,
a more natural value compared to the current estimations
of Λ [8].

In this paper, we present an alternative picture, in which
the accelerated expansion attributed to the cosmological
constant appears naturally as a result of a variation ofG in a
relativistic model of gravitation. We achieve this by
positing a phenomenological time variation of the gravi-
tational constant G in Einstein’s field equations. As is well
known [9,10], and as we will later demonstrate more
clearly, this scenario creates a coupling between the matter
and radiation energy density and G, which breaks the
energy conservation of matter and radiation. We solve this
issue in a general way by adding a new dynamical term in
Einstein’s equations. Our approach here is similar to
Jordan-Brans-Dicke (JBD) theories [11,12], in that we
decouple the density evolution of the matter and radiation
from the variation in the gravitational constant. However,
we determine the gravitational constant phenomenologi-
cally from the observations, instead of obtaining it accord-
ing to first principles (unlike the JBD Lagrangian, which is
obtained from Mach’s principle). We focus on the accel-
erated expansion period and show that even a small
variation of the gravitational constant can produce a similar
effect to a cosmological constant in the present epoch.*ekimtaylan@gmail.com
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In order to obtain specific cosmological models to test
against the data, we make additional physical assumptions
about the new dynamical term. We consider this tensor to
represent only the reaction of the spacetime geometry to
any variation of the gravitational constant, such that it can
be interpreted as a property of the spacetime itself.
Therefore, we require (a) that, apart from its dependence
on other terms, the energy represented by this tensor should
not be directly affected by the expansion of the space and
(b) that only the terms coupled to the evolution of the
gravitational constant should be present. After this, we
propose a Taylor expansion for the gravitational function G
around today (scale factor a0 ¼ 1), taking only the first
few terms.
We then confront this picture with the observations of

type Ia supernovae (SNIa) and baryon acoustic oscillations
(BAO). While treating SNIa data, we also take into account
the effect that a variation of G might have on SNIa intrinsic
luminosity, employing the approach widely used in the
cosmology literature [13–17], which assumes the super-
novae intrinsic luminosity to be proportional to the
Chandrasekhar mass. Additionally, we use the results of
a more recent analysis by Ref. [18], which provides an
opposite luminosity-G relation, in order to see to what
extent our results are affected by the physics of SNIa. On
the other hand, we do not modify BAO data under the
assumption that they will not be considerably affected by a
small variation of the gravitational constant. As a result, we
show that the variation of G required to fit these observa-
tions is small enough to be compatible with the local
constraints of _G=G [19].
The paper is organized as follows: In Sec. II, we specify

the problem that arises when G evolves as a function of
time and detail our general solution. In Sec. III, we obtain
the cosmological model, together with a specificG function
to test against the data. After detailing the data and the
methodology used in Sec. IV, we present the results in
Sec. V and conclude in Sec. VI.

II. FIELD EQUATIONS WITH VARYING G

In this work, we take a phenomenological approach to
modeling the variation of the gravitational constant. More
explicitly, instead of determining how G should behave
from some starting assumptions (such as Mach’s principle)
and deriving our equations from an appropriate Lagrangian,
we treat it as a free parameter in Einstein’s field equations,
whose value is to be determined by observations. This
approach of letting the data choose the preferred variation
of G allows us to be more general in terms of assumptions
beyond general relativity. In other words, rather than
offering a new theory of gravity, we stick to general
relativity and extend it phenomenologically by allowing
G to vary in time.

Let us, then, consider general relativity with a time-
dependent gravitational constant. We start with modified
field equations such that

Gμνðx; tÞ ¼ 8πGðx; tÞTμνðx; tÞ: ð1Þ

This equation is local; namely, it relates the Einstein
tensor at a given spacetime event to the energy-momentum
tensor and the gravitational constant at the same event.
In general, this need not be the case, and we find in the
literature various nonlocal theories generalizing Einstein’s
equations by incorporating retardation effects through
a susceptibility function [20]. However, any nonlocal
approach behaves as being quasilocal when the suscep-
tibility is very stitched around zero. In this situation, the
response time of spacetime itself is supposed to be very
small compared to other characteristic times (here, a
cosmological timescale).
In accordance with the cosmological principle, we

consider only a time dependence of G in Eq. (1). In this
case, the Bianchi identity implies a nonzero covariant
derivative for the stress energy tensor:

DμGμν ¼ 0 ⇒ DμTμν ¼ −
Tμν∂μGðtÞ

GðtÞ ≠ 0: ð2Þ

Therefore, without any other prescription, the energy-
momentum will no longer be conserved. More precisely, if
one assumes the standard form for a cosmological perfect
fluid, Tμν ¼ ðρþ pÞuμuν þ pgμν, where uμ ¼ ð1; 0; 0; 0Þ is
the Hubble flow and p and ρ are the pressure and energy
densities, respectively, for the usual matter and radiation,
one obtains

_ρþ 3Hðρþ pÞ ¼ −ρ
_G
G
; ð3Þ

where H ¼ _a=a is the Hubble parameter. The source term
in the right-hand side creates a coupling between the energy
density and G. For instance, one obtains for nonrelativistic
matter (p ¼ 0)

ρmatter ∝ G−1a−3; ð4Þ

which implies a dependence of the matter mass to G such
thatm ∝ G−1. This means either that the number of baryons
is no longer conserved or that the rest energy of one
individual particle depends on G. Either of these options
leads to questionable conclusions from a particle physics
perspective. Therefore, we aim to preserve the usual
conservation relation for DμTμν ¼ 0. From a Lagrangian
perspective, this means that we want to keep the usual

ffiffiffiffiffiffi−gp
coupling of matter and gravity

ffiffiffiffiffiffi−gp
Lmatter, as in Ref. [21]:
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DμTμν ¼ 0 ⇒ _ρþ 3Hðρþ pÞ ¼ 0: ð5Þ

A simple way of decoupling matter conservation from G
and satisfying Eq. (5) is to add a new dynamical component
Sμν to Einstein’s equations. Any symmetric rank 2 tensor
can be uniquely decomposed as Auμuν þ 2qðμuνÞ þ Bγμνþ
πμν, where A and B are two scalar functions, uμ is a vector
field such that uμuμ ¼ −1, qμ is a vector field transverse to
uμ (qμuμ ¼ 0), γμν ¼ uμuν þ gμν is the transverse projector,
and πμν is a symmetric transverse tensor such that πμνuμ¼0

and πμνγ
μν ¼ 0. Taking uμ as the Hubble flow and assum-

ing isotropy and homogeneity, one has finally qμ ¼ 0 (no
energy flux with respect to a Hubble observer) and πμν ¼ 0

(no anisotropic pressure). Therefore, we are left with only
two scalar functions, which can be rewritten as

Sμν ¼ ðΦþ ΨÞuμuν þ Ψgμν; ð6Þ

with ΦðtÞ and ΨðtÞ being arbitrary functions of time. Then,
our modified equations read

Gμν ¼ 8πGðtÞTμν þ 8πSμν; ð7Þ

where 8π is put for convenience. The application of the
Bianchi identity to Eq. (7), together with (5), then leads to

DμSμν ¼ −Tμν∂μG: ð8Þ

The new component Sμν is clearly not conserved if G
depends on time. Here, the only equation containing
information is the temporal one (ν ¼ 0) due to spatial
symmetry. We can use this equation to obtain a relation
between Φ and Ψ. Defining an effective equation of state
parameter w ¼ Φ=Ψ, one gets

_Φþ 3Hð1þ wÞΦ ¼ − _Gρ: ð9Þ

This is essentially a generalization of the energy con-
servation Eq. (5) for a component coupled to the variation
of G. Equation (9) shows that this component is also
coupled to matter and radiation when _G ≠ 0. Conversely,
the energy densities for matter and radiation, ρ, do not
depend on Φ or G directly but relate to them through the
background relation of H, as intended. In addition, since
Eq. (9) is a general expression, it is also valid for a constant
G, in which case the right-hand side becomes zero and the
equation represents the conservation of energy for models
of dark energy fluids uncoupled to matter and radiation.
Using the Friedmann-Lemaître-Robertson-Walker met-

ric with these modified Einstein equations, we directly
obtain the cosmological equations in the usual manner:

H2 ¼ 8πGρ
3

þ 8πΦ
3

−
κ

a2
; ð10Þ

ä
a
¼ −

4πG
3

ðρþ 3pÞ − 4π

3
ðΦþ 3ΨÞ; ð11Þ

where κ is a constant accounting for the spatial curvature of
the Universe.

III. SELECTING SPECIFIC
MODELS FOR Φ AND Ψ

In order to use these equations for cosmological analy-
ses, we need to specify a function for Φ. This requires
making additional assumptions about the nature of this new
component. To do this, let us first solve Eq. (9) for Φ. This
can be done by defining an auxiliary function ξðtÞ satisfy-
ing the equation _ξ=ξ ¼ 3Hð1þ wÞ. With this, Eq. (9)
becomes

d
dt

ðΦξÞ ¼ − _Gρξ: ð12Þ

We integrate this function with limits from t ¼ 0 to any
time t. However, since we have the singularity at að0Þ ¼ 0,
ρ approaches infinity at the initial point, there is a
possibility that the integration will have a similar behavior
at the lower boundary, which would make Φ diverge. With
this in mind, we treat the lower boundary with some care:

ΦðtÞξðtÞ ¼ lim
ε→0

�
ΦðεÞξðεÞ −

Z
t

ε

_Gρξdt

�
: ð13Þ

Let F be a primitive of _Gρξ such that
R
t
ε
_Gρξdt ¼

FðtÞ − FðεÞ:

ΦðtÞξðtÞ ¼ −FðtÞ þ lim
ε→0

ðΦðεÞξðεÞ þ FðεÞÞ: ð14Þ

Then, the condition for ΦðtÞξðtÞ to be finite anywhere is

lim
ε→0

ðΦðεÞξðεÞ þ FðεÞÞ ¼ Cst≡ C1: ð15Þ

which defines a constant we call C1. A similar argument
exists for the auxiliary function ξ. First, solving
_ξ=ξ ¼ 3Hð1þ wÞ, we have

ξðtÞ ¼ lim
ε→0

�
ξðεÞ exp

�Z
t

ε
3HðtÞð1þ wÞdt

��
: ð16Þ

Integrating by parts gives

ξðtÞ ¼ lim
ε→0

�
ξðεÞ aðtÞ

3ð1þwðtÞÞ

aðεÞ3ð1þwðεÞÞ exp
�
−3

Z
t

ε
_w lnðaÞdt

��
:

ð17Þ

Assuming that the function w is chosen with care, the
expression with the exponential will converge. This leads to
the condition for ξðtÞ to be finite:
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lim
ε→0

½ξðεÞaðεÞ−3ð1þwðεÞÞ�≡ C2: ð18Þ

This defines a second constant C2. However, the actual
value of C2 has no importance, since this factor cancels out
in Eq. (13) and does not effect the value of Φ.
One particularly simple and interesting case is when w is

a constant. This leads to the simple expression

ξðtÞ ¼ C2aðtÞ3ð1þwÞ; ð19Þ

where we can see that the scale factor dependence of 1=ξ
resembles that of a matter or radiation density for the
appropriate values of w. With these, we can expressΦ from
Eq. (14) as

ϕðtÞ ¼ −
FðtÞ
ξðtÞ þ

C1

ξðtÞ : ð20Þ

We now define a critical energy density ρc, such that
H2

0 ¼ 8πG0ρc=3, and Ω ¼ ρ=ρc ¼ Ωma−3 þ Ωra−4, where
the subscript 0 refers to the present time. Dividing by H2

0,
Eq. (10) becomes

�
H
H0

�
2

¼ GðtÞ
G0

Ωþ Φ
G0ρc

−
κ

a2H2
0

: ð21Þ

For clarity, we also define the parts of Φ in Eq. (14)
coupled to radiation and matter separately, such that
FðtÞ=ξðtÞ ¼ G0ρmfmðtÞ þG0ρrfrðtÞ, leading to the
expression

�
H
H0

�
2

¼ GðaÞ
G0

ðΩra−4 þΩma−3Þ −
κ

a2
þ C
ξðaÞ

−ΩrfrðaÞ − ΩmfmðaÞ; ð22Þ

with C ¼ C1=G0ρc, and κ is redefined to include the
H2

0 term.
There are some important differences between this

equation and the usual Friedmann-Lemaître equation in
ΛCDM. First, there is the factor GðaÞ=G0 in front of the
usual terms for the matter and radiation contributions. This,
of course, comes from the direct effect of changingG on the
gravitational energies of these components. Skipping κ for
the moment, we can see three additional terms that come
from the energy component of Sμν, which we introduced in
order to ensure the conservation of energy. The latter of
these terms couple to the energy densities and the G
variation, while C is a constant which will be discussed
in more detail shortly. As we can see from these, the actual
variation of G does not need to be very large, since the
integral terms fr and fm can generate the more significant
portion of the energy contribution as long as there is a
nonzero evolution of G.

Finally, κ is the usual curvature term and can be related to
other parameters by evaluating Eq. (22) today (a ¼ 1, or
z ¼ 0):

κ ¼ Ωrð1 − fr;0Þ þ Ωmð1 − fm;0Þ − 1: ð23Þ

At this point, we need additional assumptions in order to
determine the full expression for Φ. This can be achieved
most straightforwardly by choosing a relation for ξðaÞ. In
order to see what this function represents more explicitly,
let us focus on Eq. (22). Since the functions fr and fm are
nonzero only ifG evolves, they can be attributed to an extra
energy contribution in the Friedmann-Lemaître equation
arising from a variation of G. On the other hand, the
constant C produces in the Friedmann-Lemaître equation
an energy contribution C=ξðaÞ that exists irrespective of
whetherG evolves or not. As the scale factor dependence of
this term is only through ξðaÞ, the latter function essentially
determines how the energy contribution of C changes with
the expansion of the Universe.
Now, if Sμν represents the reaction of spacetime to the

varying gravitational constant, it makes sense to expect that
the new component Φ should not change because space
expands but rather because G varies. This means that, if G
is constant, Φ should also be unchanging, which leads to
the choice ξðaÞ ¼ Cst. Going back to Eq. (19), this implies
w ¼ −1 or, equivalently, Φ ¼ −Ψ.
With ξ being constant, the C=ξ term in Eq. (22) is the

same as the cosmological constant Λ in the standard
picture. However, in the present case, we have other terms
in Eq. (22) that appear when G varies with time, and we
may not need this contribution at all. In order to have Φ
represent only the response of spacetime to the evolving G,
we keep only the terms that depend on G, which means we
choose C ¼ 0. By this choice, we get rid of the first
cosmological constant problem, namely, the identification
of Λ with vacuum energy and the resulting large discrep-
ancy with quantum field theory estimations, and we can test
whether complying with cosmological observations is still
possible without a cosmological constant. Therefore, we
want to see if it is possible to explain the accelerated
expansion with the secondary effect of the variation of G
instead of the vacuum energy.
For the cosmological tests we approximate G with a

power series expansion around a ¼ 1 to represent the series
expansion of an unknown function:

GðaÞ ¼ G0

�
1þ

X∞
n¼1

bnð1 − aÞn
�
: ð24Þ

This expansion around a ¼ 1 is chosen to capture the
behavior of G accurately around the low-redshift regime
we investigate. When the high-redshift regime is consid-
ered, such a parametrization could be attached to any
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extrapolation capturing the behavior of the high-redshift
regime without altering the current results at a low redshift.
Then, with ξ ¼ Cst and replacingGwith Eq. (24), fr and

fm become, respectively,

frðaÞ ¼ a−4
�
b1

a
3
þ 2b2

�
a
3
−
a2

2

�

þ 3b3

�
a
3
− a2 þ a3

�
…

�
; ð25Þ

fmðaÞ ¼ a−3
�
b1

a
2
þ 2b2

�
a
2
− a2

�

þ 3b3

�
a
2
− 2a2 − a3 ln a

�
…

�
: ð26Þ

The terms are written in a way to facilitate the com-
parison with the usual Ωr and Ωm terms in Eq. (22). This
illustrates that Ωra−4 and Ωma−3 will dominate over fr and
fm as a gets smaller in the past. Of course, these functions
fr and fm become zero when G is constant, i.e.,
b1 ¼ b2 ¼ b3 ¼ 0. With also C ¼ 0, Eq. (22) reduces to
the usual Friedman-Lemaître equations for CDM.
In the rest of the paper, we will assume a flat universe,

i.e., κ ¼ 0. This allows us to determine one of the bi
parameters of the expansion of G in terms of the others,
using Eq. (23), namely,

b1

�
Ωm

2
þΩr

3

�
¼ Ωm

�
1þ b2 þ

9b3
2

�

þΩr

�
1þ b2

3
− b3

�
− 1: ð27Þ

What has been done so far is to formulate a phenom-
enological variation of the gravitational constant within
general relativity in a geometrically consistent way, also
preserving the usual energy conservation. In this process,
we obtained, in the Friedmann-Lemaître equations, a
cosmological constant term together with additional terms
that couple to the matter and radiation components. Taking
this cosmological constant term to be zero, we are left
solely with an energy contribution stemming from the
coupling of matter and radiation with a variation of G. In
the next sections, we will show that this picture is
compatible with low-redshift cosmological probes to a
great degree and is also able to conform to local constraints
on the evolution of the gravitational constant ( _G=G).

IV. DATA AND METHODOLOGY

In this section, we describe the cosmological probes and
the methodology used in this work. We use the usual low-
redshift cosmological probes, type Ia supernovae, and
baryon acoustic oscillations, together with the χ2 minimi-
zation method to constrain our model parameters. On the

other hand, an investigation of the cosmic microwave
background (CMB) measurements is left for a future work,
since the calculation of the effects this variable G would
have on the CMB is an involved task that deserves a more
through treatment. Consequently, we consider only the
low-redshift regime when presenting and discussing our
results.

A. Type Ia supernovae

We use the SNIa measurements from the SDSS-II/
SNLS3 Joint Light-Curve Analysis (JLA) dataset and its
covariance matrix provided by Ref. [22]. We obtain the
observed distance modulus following the standardization
method given by the authors:

μobs ¼ m −M þ αX − βC: ð28Þ

In this equation,m, X, and C are the observed magnitude
in the B-band rest frame and the shape and color stand-
ardization parameters for the different SNIa, respectively,
provided in the public dataset. The remaining parameters α,
β, and M are nuisance parameters, determined together
with the cosmological parameters from the fit to the
data. The former two are the same for all SNIa, while
the latter is the absolute magnitude in the B-band rest
frame. Depending on the stellar mass of the host galaxy
(Mstellar), it is given by an additional nuisance parameter
ΔM:

M ¼
�
M0; if Mstellar < 1010 M⊙;

M0 þ ΔM; otherwise:
ð29Þ

When the gravitational strength changes due to the
variation of the gravitational constant, SNIa intrinsic
luminosity should also change due to the G dependence
of Chandrasekhar’s mass, such that L ∝ MCh ∝ G−3=2

[13–17]. This modifies the observed distance modulus:
If gravity was stronger in the past, for instance, supernovae
would be dimmer, so their distances would actually be
smaller than they appear. The required relation between
the distance modulus and G is directly obtained from the
definition of the distance modulus. Considering that the
absolute magnitude is related to luminosity via the flux,
F ∝ L and M ¼ −2.5 logFð10 pcÞ, the distance modulus
is given by

μobs ¼ μobs;0 −
15

4
log

�
G
G0

�
: ð30Þ

However, there are also other approaches in the liter-
ature. The authors of Ref. [18] present an opposite relation,
by using a semianalytical model to predict the SNIa light
curves when the gravitational constant changes with the
redshift. Their numerical relation is converted to an
approximate expression in Ref. [23] as L ∝ G1.46. Since
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there is no consensus on the precise nature of supernovae
physics, as a second case we also use the distance modulus
derived from this luminosity-G dependence:

μobs ¼ μobs;0 þ 3.65 log

�
G
G0

�
; ð31Þ

in order to check the sensitivity of our calculations to the
effect of changing G on SNIa luminosities.
We compare the SNIa distance modulus to the predic-

tions of our cosmological models using the standard
definition

μ ¼ 5 log10ðH0ð1þ zÞdMÞ; ð32Þ

with

dM ¼
Z

z

0

dz0

Hðz0Þ ð33Þ

being the comoving distance for a flat space given in
natural units, where c ¼ 1.

B. Baryon acoustic oscillations

In this work, we use a variety of isotropic and anisotropic
measurements of baryon acoustic oscillations given in the
literature. Isotropic observations measure the quantity
DV=rd, where rd is the length of the standard ruler and
DV relates to cosmology as

DVðzÞ ¼
�
d2MðzÞ

z
HðzÞ

�
1=3

: ð34Þ

Anisotropic observations measure two quantities in the
transverse and radial directions:

θ ¼ rd
dM

; ð35Þ

δzs ¼ rdHðzÞ: ð36Þ

In both cases, there is a degeneracy between H0 and rd,
so we calculate them together as a single parameter. In
this work, we assume that the variation of G is small
enough to not influence the BAO and use the data without
modifications.

In this analysis, we consider the measurements from
6dFGS [24] at z ¼ 0.106, SDSS-MGS [25] at z ¼ 0.15,
BOSS DR12 [26] at z ¼ 0.38, 0.51, 0.61, and eBOSS
DR14 [27] at z ¼ 1.19, 1.50, 1.83, as well as the Ly-α
autocorrelation function [28] and Ly-α-quasar cross-corre-
lation [29] at z ¼ 2.4. We take into account the covariances
for the BOSS and eBOSS measurements, we consider a
correlation coefficient of −0.38 for the Ly-α forest mea-
surements, and we assume measurements of different
surveys to be uncorrelated.
Further from the peak value, the likelihoods of BAO

observables diverge from a Gaussian distribution. In order
to take this into account and be more conservative with our
estimations, we follow the recipe in Ref. [30] and replace
the standard Δχ2G ¼ −2 lnLG likelihood expression for a
Gaussian distribution with

Δχ2 ¼ Δχ2Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δχ4GðSNÞ−4

q ; ð37Þ

where S=N stands for the detection significance, in units of
σ. We consider a detection significance of 2.4σ for 6dFGS,
2σ for SDSS-MGS, 9σ for BOSS DR12, 4σ for eBOSS
DR14, and 5σ for the Ly-α forest.

C. Determination of the parameter constraints

Using a frequentist approach, we obtain the best-fit
values for the parameters by minimizing the expression

χ2 ¼ ðrpred − robsÞTC−1ðrpred − robsÞ; ð38Þ

where rpred and robs are the vectors that include the model
prediction and the observations at each redshift, respec-
tively, and C is the covariance matrix of the observations.
We add the χ2 values corresponding to each probe with
the assumption that they are statistically independent. To
minimize this function, we use PYTHON’s iminuit module
[31], an implementation of SEAL Minuit, developed at
CERN [32].

V. RESULTS AND DISCUSSION

Table I shows the χ2 values of our varying-G model and
of the standard flat ΛCDM model. The best-fit values
of the parameters are also shown. We remind that b1 is
obtained through Eq. (27). In order to obtain the uncertainty
of b1, we generate 106 random sets of parameters from an

TABLE I. Best-fit values obtained for the parameters of the different models considered, together with the χ2 value found for each
model.

Model χ2=d:o:f: b1 b2 b3 Ωm Ωr H0rd ½Km s−1�
ΛCDM 698.05=ð756-7Þ � � � � � � � � � 0.291� 0.017 ð0.0� 5.8Þ × 10−3 ð101.3� 1.3Þ × 102

Varying G 697.73=ð756-9Þ 0.07� 0.15 −0.51� 0.33 0.679� 0.094 0.284� 0.017 (0.0� 7.0Þ × 10−3 ð101.7� 1.3Þ × 102
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N-dimensional Gaussian centered at the best fit and with
the corresponding covariance matrix. For each one of these
sets, we derive the value of b1 and compute the uncertainty
from the standard deviation.
The reconstruction of the GðzÞ function is shown in

Fig. 1, where the red line is drawn using the best-fit values
and the gray lines show sample lines with Δχ2 < 1. Again,
these lines are obtained by generating random sets of
parameter values from an N-dimensional Gaussian cen-
tered at the best fit and with the corresponding covariance
matrix. The top panel in Fig. 1 shows the GðaÞ function
itself, while the second panel shows the first derivative with
respect to the scale factor. In both plots, the functions have
been normalized with respect to G0, the present-day value
of G. Constructed in a similar way, Fig. 2 shows the

ratio between the different terms in Eq. (22) that drive
the expansion at the considered epoch, −Ωmfm and
Ωma−3G=G0. This graph shows that the former term starts
to dominate at the late stages, causing the accelerated
expansion.
It is clear from Table I that the varying G model has

almost the same χ2 value as the flat ΛCDM model we use
for comparison. Therefore, this model is indeed capable of
explaining SNIa and BAO observations without the addi-
tion of a cosmological constant. While it might seem
surprising that such a small variation of the gravitational
constant can result in a contribution large enough to supply
most of the energy in the Universe, it is apparent from
Eq. (22) and Fig. 2 that the major effect of G on the energy
balance does not come from the G=G0 term. This energy
instead comes from the last term on the right-hand side of
this equation,Ωmfm, which appears as a secondary effect of
a time evolution ofG. This also explains why the first-order
term in the G function can be so small: The contribution of
b1 in Eq. (26) is not any larger compared to the other terms,
b2 and b3, inside the brackets.
One of the major challenges when predicting a variation

of the gravitational constant comes from the highly tight
constraints measured from local observations. The review
in Ref. [19] compiles the different observations and gives

_G
G

����
0

¼ ð4� 9Þ × 10−13 yr−1; ð39Þ

which is obtained from the lunar laser ranging experiment
[33], as the tightest constraint on the variation of G. With

the series expansion given by Eq. (24), the quantity _G
G j0 can

be simply evaluated using the b1 parameter:

_G
G

¼ G0ðaÞ
G

Ha ⇒
_G
G

����
0

¼ −b1H0; ð40Þ

where the prime denotes the derivative with respect to the
scale factor and H0 is around 67− 76 × 10−12 yr−1,
according to various recent measurements [34]. Looking
at Table I, we can see that our results are compatible with
this constraint at the one-sigma level. Moreover, since our
model is compatible with b1 ¼ 0 at one sigma, even lower

values of _G
G at z ≈ 0 are consistent with our results.

Bounds on the variation of G for earlier times also exist,
such as stellar observations for low redshifts and big bang
nucleosynthesis (BBN) and CMB measurements for much
higher redshifts. In the former case, the constraints are
much less limiting than the Solar System observations [19],
and they usually assume a monotonic G evolution (as in
Ref. [35], for instance), which is not the case in our
calculations. In the case of BBN and CMB, the limits on G
evolution concern much higher redshifts than the ones our

FIG. 1. Variation of G and its first derivative versus the scale
factor. The red line is the reconstruction using the best-fit values
for the parameters. The gray lines are some sample lines with
Δχ2 < 1 (see the text for details).

FIG. 2. Ratio of −Ωmfm and Ωma−3G=G0 versus the scale
factor in order to compare the contribution of the different factors
driving the expansion of the Universe in the considered period.
The red line is the reconstruction using the best-fit values for the
parameters. The gray lines are some sample lines with Δχ2 < 1
(see the text for details).
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analysis considers, and, therefore, they are outside the
scope of this work.
One new way of falsifying alternative gravity theories is

provided by the recent observation of the GW170817
neutron star merger, as it has shown with great accuracy
the gravitational wave propagation speed to be equal to the
speed of light [36]. Here, we will not provide a full
mathematical demonstration but only point out that, since
we do not change the geometry of spacetime, the gravi-
tational wave propagation speed remains the same as in
standard general relativity. What our approach rather does
is analogous to adding background source terms, which
does not affect the propagation speed. On the other hand, as
shown in Ref. [37], modifications of the gravitational
constant may cause the standard siren luminosity distance
to differ from its electromagnetic counterpart. As the
capabilities of gravitational wave observatories increase,
in the future this may potentially be used to probe the
history of a possible G evolution, but, since the only
available observation, GW170817, is from a very low
redshift, it does not put an additional constraint to our
model at the present.
Turning to the other values in Table I, we see that, for the

varying-G model, the best-fit value of Ωr is consistent with
zero, implying a very small ρr at the present epoch, as
expected. On the other hand, we obtain Ωm ¼ 0.284�
0.017, which is similar to the usual value for ΛCDM.
Therefore, we see that our model does not change the
matter content drastically. The best-fit value of the H0rd
parameter is also in agreement with the standard results.
When we repeat our analysis with the SNIa intrinsic

luminosity-G relation from Ref. [18], as discussed in
Sec. IVA, we find a χ2 value slightly larger than the
results discussed so far, χ2 ¼ 698.48, but still perfectly
compatible with the value found for ΛCDM, χ2 ¼ 698.05.
The values of the series expansion parameters for G also
change somewhat, with

b1 ¼ 0.22� 0.14; ð41Þ

b2 ¼ −0.95� 0.33; ð42Þ

b3 ¼ 0.707� 0.083: ð43Þ

Most notably, b1 becomes compatible with zero at two
sigma instead of one. On the whole, the differences are not
too drastic considering that the two supernovae luminosity
models are completely opposite to each other, which leads
to the conclusion that our approach does not depend
heavily on the exact nature of supernovae physics. This
is not surprising, since the absolute variation we predict of

the gravitational constant is small in both cases, and its
effect on supernovae should likewise be slight.

VI. CONCLUSION

In this work, we show that, when a phenomenological
variation of the gravitational constant is allowed, general
relativity can explain the low-redshift accelerated expan-
sion of the Universe without a cosmological constant.
When G is taken as a time-dependent function in
Einstein’s field equations, the enforcement of the
Bianchi identity and the usual energy conservation causes
a new term to appear. This term represents the coupling
between the variation of G and the energy density of matter
and radiation, and we determine further properties of it by
requiring that it can be interpreted as a reaction of
spacetime to the variation of G. We then test the resulting
model with SNIa and BAO data.
The comparison with observational data shows that this

extra term can cause the late-time accelerated expansion
with a deviation less than 10% from the current value of G
in the considered redshift range. We show that the required
corrections to the gravitational constant are essentially on
the second and third order, while the first order turns out to
be small, consistent with zero within one standard
deviation. This implies that the most strict bounds on a
possible variation of the gravitational constant from local
observations are also satisfied.
From these results, we observe that in our varying-G

model the main driving force behind the accelerated
expansion is not the direct effect of the gravitational
constant itself but the influence of the additional term that
appears because of the time dependence of G. While this
term is dominated by the contributions of matter and
radiation for higher redshifts, it starts to supply most of
the energy in the Universe during the late stages and
thereby facilitates the acceleration. As a result, we see that
this model can explain the late-stage accelerated expansion
of the Universe without a cosmological constant and
without requiring a large impact on the small-scale gravi-
tational processes.
Finally, let us mention that varying-Gmodels also have a

broader potential in explaining other cosmological ten-
sions. As an example, it has been shown recently that a
cosmological Brans-Dicke model with a cosmological
constant can alleviate the tension on the Hubble constant
H0 [38]. While this discussion is outside the scope of this
paper, it shows the potential of considering varying-G
models as interesting alternatives to the standard general
relativity.
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