
HAL Id: hal-02383288
https://hal.science/hal-02383288v1

Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Particles, Drops, and Bubbles Moving Across Sharp
Interfaces and Stratified Layers

Jacques Magnaudet, Matthieu Mercier

To cite this version:
Jacques Magnaudet, Matthieu Mercier. Particles, Drops, and Bubbles Moving Across Sharp Interfaces
and Stratified Layers. Annual Review of Fluid Mechanics, 2020, 52 (1), pp.61-91. �10.1146/annurev-
fluid-010719-�. �hal-02383288�

https://hal.science/hal-02383288v1
https://hal.archives-ouvertes.fr


Particles, drops and
bubbles moving across
sharp interfaces and
stratified layers

Jacques Magnaudet and Matthieu J. Mercier
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Abstract

Rigid or deformable bodies moving across continuously stratified layers

or sharp interfaces are involved in a wide variety of geophysical and

engineering applications, both with miscible and immiscible fluids. In

most cases, the body moves while pulling a column of fluid, in which

density and possibly viscosity differ from those of the neighboring fluid.

The presence of this column usually increases the fluid resistance to the

relative body motion, frequently slowing down its settling or rise in a

dramatic manner. This column also exhibits specific dynamics which

depend on the nature of the fluids and on the various physical pa-

rameters of the system, especially the strength of the density/viscosity

stratification and the relative magnitude of inertia and viscous effects.

In the miscible case, as stratification increases, the wake becomes domi-

nated by the presence of a downstream jet which may undergo a specific

instability. In immiscible fluids, the viscosity contrast may lead to strik-

ingly different evolutions of the column, including pinch-off followed by

the formation of a drop that remains attached to the body, or a massive

fragmentation phenomenon. This review discusses the flow organiza-

tion and its consequences on the body motion under a wide range of

conditions, as well as potentialities and limitations of available models

aimed at predicting the body and column dynamics.
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1. INTRODUCTION

The situation is which rigid or deformable bodies settle or rise through steeply or con-

tinuously stratified fluid layers is encountered in an extremely wide range of fields, from

astrophysics and geophysics to engineering and microfluidics applications.

In astrophysics, buoyant ‘bubbles’ of relativistic plasma rising in the stratified atmosphere of

galaxy cluster cores are suspected to be an efficient vehicle for transferring energy from mas-

sive black holes to the intracluster medium (Zhang et al. 2018). In oceanography, plankton

and marine snow drifting in oceans and estuaries face a surrounding fluid medium locally

comprising large density gradients, due to the presence of thermoclines and haloclines. It

is now established that the corresponding discontinuities or inhomogeneous layers modify,

often dramatically, the settling rate and horizontal dispersion characteristics of inert parti-

cles and living microorganisms (Lande & Wood 1987, Riebesell 1992, Denman & Gargett

1995, MacIntyre et al. 1995, Allredge et al. 2002). This conclusion extends to configura-

tions encountered in the context of ocean engineering, such as the drift of Lagrangian buoys

(D’Asaro 2003) or the rising time of oil droplets resulting from deepwater oil spills (Diet-

rich et al. 2014). Similarly, inversion layers in the troposphere affect the fate of pollutants,

pollens, dust or volcanic ashes (King et al. 1987, Chemel & Burns 2015). In both contexts,

stable stratification may deeply influence the dispersion, survival or growth of colonizing

populations of small living organisms (Condie & Bormans 1997, Widder et al. 1999, Bearon

& Grünbaum 2006, Doostmohammadi et al. 2012). These various consequences of density

stratification at the particle scale make the underlying fluid mechanical processes of pri-

mary importance to better understand air and marine pollution, possible biogenic mixing

in oceans, and on larger time scales, climate variability and biogeochemical cycles.

Fluids involved in internal geophysical processes comprise compositional discontinuities re-

sulting in sharp density and viscosity gradients. The mixing of acid and basic magmas is

often considered to trigger explosive volcanic eruptions; e.g. the 1875 Plinian eruption of

Askja in Iceland (Sparks et al. 1977). The settling of solid crystals across the interface

separating the two compositionally different magmas was recently suggested as one of the

important mechanisms capable of achieving this mixing (Renggli et al. 2016). Plumes as-

cending through the Earth’s mantle behave as buoyant low-viscosity fluid regions compared

to the carrying medium (Steinberger & O’Connell 1998, Kumagai et al. 2007). The latter

is discontinuous at several locations, especially at the boundary between the lower and the

upper mantle, and between the upper mantle and the crust. These discontinuities modify

the shape of the plumes through variations of stresses at their surface, which in turn changes

the amount of material exchanged between adjacent layers (Manga et al. 1993).

Most engineering applications in which rigid or fluid particles cross an interface involve im-

miscible liquids. In this context, effects of interfacial tension and/or viscosity contrast gen-

erally play a leading role. Encapsulation and coating processes often use gravity (Kawano

et al. 1996, Pitois et al. 1999) or, for micrometer-size objects, magnetic forces (Tsai et al.

2011, Sinha et al. 2013), to drive particles across an interface so as to coat them with one of

the fluids while they penetrate into the other. In the final stages of liquid-liquid extraction,

one of the most widely used chemical engineering processes (Rydberg et al. 2004), a layer

of liquid A stands on top of a bath of a heavier liquid B, and droplets of A rising into B

eventually cross the A/B horizontal interface and coalesce with the top layer, while droplets

of B settling into A follow a similar route in the opposite direction. In the ladle stirring

technique routinely employed in steel elaboration, nonmetallic impurities are transferred

from liquid metal to slag with the help of gas bubbles (Poggi et al. 1969, Reiter & Schw-

2 Magnaudet & Mercier



erdtfeger 1992, Kobayashi 1993, Han & Holappa 2008). Some scenarios of nuclear accidents

involve the ablation of the concrete slab below the reactor by the fuel-containing material

(corium), which in turn generates gas bubbles that later cross the interface separating the

metallic an oxide layers of the corium (Sehgal 2012, Jacquemain 2015).

One crucial link between all the aforementioned situations is that, provided they succeed

in crossing isopycnals or sharp interfaces, particles, micro-organisms, drops or bubbles drag

Isopycnal: a surface

of constant density

a certain amount of fluid which takes the form of a column (or tail), within which the

local physical properties differ from those of the fluid located beside and ahead of the

body. This tail affects the overall fluid resistance to the body motion and may, under cer-

tain circumstances, dramatically affect its settling or rise. Moreover, its dynamics changes

quantitatively and qualitatively with the control parameters, and specific instabilities can

develop within it or at its surface. These features may also affect the body motion in various

ways.

These are the main phenomena to be discussed in this review. The focus is deliberately

put on mechanisms at the particle scale, although collective effects are also of primary im-

portance to understand the behavior of particle clusters (Noh 2000, Bush et al. 2003), the

evolution of inert or active suspensions in continuously stratified environments (Blanchette

& Bush (2005), Bearon et al. (2006), Blanchette (2013), Wagner et al. (2014), Ardekani et al.

(2017) and references therein), or the dynamics of interacting particles, drops and bubbles

standing at sharp interfaces (Cooray et al. 2017) or moving in their vicinity (Manga &

Stone 1995). Much progress has been achieved over the last two decades in the description

of stratification-induced phenomena at the local scale, especially thanks to advanced imag-

ing and computational techniques, and this review is largely built on the corresponding

material. Section 2 discusses two fundamental aspects that serve as a reference and help

figure out some of the key features encountered in most flow situations under consideration.

Section 3 provides an overview of the specificities of the flow fields past bodies settling or

rising in a continuously stably stratified fluid, with an emphasis on the wake structure and

consequences on the body drag. Section 4 focuses on the case of immiscible fluids in which

effects of viscosity and density contrasts and interfacial tension play a major role, be it on

the conditions allowing bodies to cross the interface, the short- and long-term evolutions of

the tail, and the body dynamics during the entire breakthrough.

2. GENERAL CONCEPTS

2.1. Vorticity generation in inhomogeneous fluids

In all situations considered here, vorticity is generated in the bulk or at interfaces by

gradients or jumps of physical or geometrical properties: density ρ, viscosity µ, possibly

interfacial tension γ and interface curvature κ “ ∇¨n, where n is the local unit normal to the

considered interface. We restrict the discussion to Newtonian fluids, incompressible flows

and conservative body forces. Under such conditions, considering the velocity u, pressure p

and physical properties as generalized functions of time and position throughout the fluid

domain, the governing equation for the vorticity ω “ ∇ˆ u may be written

Dω

Dt
“ ω ¨∇u´∇ˆ

ˆ

µ

ρ
∇ˆ ω

˙

`
∇ρ
ρ2
ˆ∇p

loooomoooon

p1q

` 2∇ˆ
ˆ

∇µ
ρ
¨ S

˙

looooooooomooooooooon

p2q

´∇
ˆ

γ

ρ
κ

˙

ˆ nδs
loooooooomoooooooon

p3q

, (1)
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where D{Dt is the material derivative, S “ 1
2
p∇u ` ∇uT

q denotes the strain-rate tensor,

and δs is the surface delta function which is nonzero only at interfaces.

Here we are interested in situations where vorticity is generated within the fluid domain

through at least one of the last three terms in the right-hand side of (1). Once advected

and diffused within the flow, this ‘free’ vorticity interacts nonlinearly with its ‘bound’

counterpart generated at the body surface by the corresponding boundary condition, which

ranges from no-slip for rigid bodies to shear-free for clean (i.e. surfactant-free) bubbles with

negligible inner viscosity. Term (1), the so-called baroclinic torque due to a misalignment

between the pressure and density gradients, is the most familiar one, being the only one

involved in density-stratified fluids with uniform viscosity with are ubiquitous in geophysical

flows. Term (2), is known to be important in compressible flows (Hokenson 1986), as well

as in continuously viscosity-stratified flows in which stratification arises from compositional

variations, such as oil reservoirs. It is also responsible for vorticity generation at interfaces

between immiscible fluids with different viscosities, through the action of interfacial shear

and normal strain. Density and viscosity jumps being normal to interfaces, term (2) may

comprise a baroclinic contribution ´2ρ´2∇ρ ˆ p∇µ ¨ Sq when the density jump and the

interfacial shear are both nonzero. Term (3) is specific to immiscible fluids and generates

tangential vorticity at interfaces through variations of their curvature and possible surface

tension gradients or jumps responsible for the Marangoni effect (Levich & Krylov 1969).

2.2. Fluid entrainment and drift volume

Whatever the flow regime, a translating body displaces a certain amount of fluid. This

volume, frequently referred to as the ‘drift’ volume, may be rigorously defined by considering

fluid particles initially standing at position x0 “ px0, y0, z0q within the plane x “ x0 located

far upstream of the body (which stands initially at x “ 0) and perpendicular to its motion.

After the body has moved an infinite distance forward, these fluid particles eventually reach

the longitudinal position Xpy0, z0q “ limtÑ8 xpx0q ¨ ex “ x0 `
ş8

0
upxptqq ¨ exdt, with ex

the unit vector in the x-direction. The drift volume enclosed within the plane x “ x0 and

the envelope of all final positions X is then

VD “

ż `8

´8

ż `8

´8

pXpy0, z0q ´ x0qdydz (2)

Darwin (1953) determined the path lines of fluid particles past a circular cylinder and a

sphere with radius a translating in a homogeneous fluid, under potential flow conditions. He

established that in both cases the ratio of the drift volume to the body volume, V, equals the

translational added-mass coefficient, CM (with CM “ 1 and 1{2 for a cylinder and a sphere,

respectively). The result generalizes to arbitrary body shapes. Nevertheless, due to the

conditionally convergent integrals involved, it is influenced by the order in which integrations

are performed (Darwin 1953), and by the ratio of the initial body-to-plane distance, x0, to

the maximum initial radial position of the considered fluid particles, hM “ Maxph0q with

h0 “ py
2
0`z

2
0q

1{2 (Benjamin 1986). Actually the equality VD “ CMV only holds in the limit

x0 Ñ8, hM{aÑ8, hM{x0 Ñ 0 (Eames et al. 1994).

Under these conditions, the direct connection between the drift volume and the virtual (or

added) mass associated with a translating body, be it a rigid object or a well-defined body

of fluid such as a vortex (Dabiri 2006), makes the determination of VD useful to evaluate

indirectly the hydrodynamic force acting on accelerating bodies, including contributions
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Figure 1

The partial drift volume induced by the uniform translation of a sphere under various flow

conditions (x0{a “ 18, hM{a “ 14). Black, red and blue lines refer to potential, Stokes and Oseen

flows, respectively, with Re “ 1 in the latter case. Close to the vertical centerline, the blue line is
not shown after the sphere has crossed the marked plane because the Oseen solution is not valid

in the sphere vicinity. Courtesy J.L. Pierson.

from the fluid displaced by wake vortices. The concept is for instance useful in the case of

arrays of particles, drops and bubbles (Eames 2003), as well as swimming animals (Dabiri

2005). It may also be used to estimate the amount of light fluid entrained by bodies settling

in a stratified two-layer miscible fluid set-up (Camassa et al. 2008).

The definition (2) is valid whether or not viscous effects take place. The drift volume

past a spherical drop translating in a homogeneous fluid under Stokes flow conditions was

considered by Eames et al. (2003). In this case, due to the r´1 decay of u (with r the distance

to the body center), VD is unbounded and only the ‘partial drift’ volume corresponding

to a finite body displacement and finite x0 and hM may be properly defined. This is

because the streamlines associated with the Stokeslet solution are open, making all fluid

particles move forward irrespective of their initial radial position (i.e. there is no reflux),

in contrast with the closed-streamline structure associated with the potential dipole in the

inviscid case (Figure 1). A partial drift volume may also be computed in wall-bounded

domains, since the screening effect induced by the vanishing of the normal component of

the velocity disturbance at the wall makes it decay as r´2 (r´3) when the body moves

parallel (perpendicular) to the wall. In particular, if the material particles stand initially in

a plane parallel to a wall and lying a large distance h " a from it, VDph{aq is of Opph{aq2Vq,
hence much larger than the body volume. Influence of finite inertia may be appreciated by

considering the Oseen approximation valid for small-but-finite body Reynolds number, Re “

ρV a{µ ! 1, where V is the body velocity. Under such conditions, inertia dominates outside

the OpaRe´1
q-large Stokes region and the viscous wake whose radius at position x varies

as apV t ´ xqRe´1{2 (Batchelor 1967). Since these two regions, where u decays as Opr´1
q,

decrease in size as Re is increased, so does the entrained volume. This conclusion extends

to flows with higher Re, in which most entrainment takes place in the wake. Nevertheless,

all particles with radial positions h0 ď hM in the plane x “ x0 eventually stand within the

wake when pV t´x0q{a Á RephM{aq
2, making the partial drift volume VDphM, x0, tq diverge

as tÑ8 however large Re may be (Chisholm & Khair 2017).

3. BODIES MOVING ALONG A CONTINUOUS DENSITY PROFILE

3.1. Flow structure

Provided density variations are small enough for the Boussinesq approximation to hold,

effects of stratification in a fluid with a continuous vertical density distribution are charac-

terized by the Brunt-Väisälä frequency, N “ p´
g
ρ0
ρzq

1{2, where ρ0 is the reference density,

ρz ă 0 is the stabilizing background density gradient and g denotes gravity. The dynamics

of a body with characteristic length scale a settling or rising with speed V in such a fluid

are then governed by three characteristic parameters. In addition to the Reynolds number
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Figure 2

Flow regimes past a sphere settling in a linearly stratified fluid. paq Vertical velocity iso-levels and

streamlines in the zero-Re flow induced by the Stratlet solution (top) and the Stokeslet solution
(bottom); from Ardekani & Stocker (2010). pbq Low-but-finite-Re flow structure at Re “ 0.05

(Pr “ 700), for Fr “ 0.5 (top) and Fr “ 5 (bottom), with vertical velocity iso-levels in the

laboratory frame, isopycnals (left half) and streamlines (right half); from Zhang et al. (2019). pcq
Wake structure map as a function of Re and Fr´1; from Hanazaki et al. (2009a). pdq Shadowgraph

image of the internal lee waves in regime A of pcq; from Mowbray & Rarity (1967). peq ´ pfq

Isopycnals (left) and streamlines (right) for Re “ 100, with Fr “ 20 and Fr “ 200, respectively;
from Torres et al. (2000). In paq and pbq, coordinates are normalized by `s “ pνκ{N2q1{4 and a,

respectively. With permission from American Physical Society and Cambridge University Press.

Re “ aV {ν, with ν “ µ{ρ0 the kinematic viscosity, these dynamics depend on the Froude

number, Fr “ V {Na, which compares buoyancy and inertial forces, and on the Prandtl

number comparing momentum and density diffusion, Pr “ ν{κ, with κ the molecular dif-

fusivity of the stratifying agent (viscosity stratification is not considered in this section).

Combination of experiments in the range 102
À Re À 1.5ˆ 103 and numerical simulations

with Re À 200 gradually revealed the specific structure of the flow past a sphere towed

across a linearly stratified fluid layer, especially the radiated internal waves pattern (Mow-

bray & Rarity 1967), the gradual shrinking of the toroidal attached eddy as Fr is decreased

(Torres et al. 2000), and the existence of a thin upward jet which dominates the wake struc-

ture for Fr À 1 (Torres et al. 2000, Hanazaki et al. 2009a). Compared to the homogeneous

case (Fr “ 8), finite-Fr effects lead to many different flow regimes because stratification

introduces a specific length scale, `s, which in general depends on Fr, Re and Pr, and

competes with scales involved in the unstratified case (Zhang et al. 2019). In particular,

stratification tends to inhibit vertical motions in the flow past the body at scales of the

order of `s, whatever Re. This is especially clear for Re “ 0, where the flow structure

corresponding to the Stokes problem in a linearly stratified fluid is intrinsically different

from the classical structure corresponding to the Stokeslet solution (Figure 2paq). In this

case, `s “ pνκ{N2
q
1{4, and the resulting ‘Stratlet’ fundamental solution induces toroidal

eddies centered on the sphere, with a typical vertical extent `s (Ardekani & Stocker 2010).

With low-but-finite Reynolds numbers (Figure 2pbq), the structure of the Stokeslet solu-

tion is still dominant for large enough Fr, although isopycnals are distorted and entrained

downward by the passing sphere. Toroidal eddies similar to those predicted by the Stratlet

solution are present whatever Fr, with an extent that becomes of the order of the sphere

size for Op1q-Froude numbers. Compared to the zero-Re solution, the approximate fore-aft
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symmetry of the velocity field disappears for such Fr , and a flow region with significant

upward velocities occurs at the rear of the sphere. This specific structure is driven by the

baroclinic torque in (1), which converts the positive radial density gradient resulting from

the deflection of the isopycnals into positive azimuthal vorticity, i.e. upward velocities near

the flow axis. This inertial mechanism is generic: A ‘downstream jet’ is also predicted in

the case of a body translating parallel to the density gradient in an inviscid variable-density

fluid in which density changes modify the inertia term in the momentum (Euler) equation

but do not induce a buoyancy force (Eames & Hunt 1997).

Several distinct wake structures, labeled A-G in Figure 2pcq, have been identified in the

range 10 ď Re À 1.5 ˆ 103, 0.2 ď Fr ď 50, with Pr « 700 (Hanazaki et al. 2009a), some

of which have been specifically investigated numerically (regimes A, B and D, Torres et al.

(2000), Hanazaki et al. (2009b), Yick et al. (2009)) or experimentally (regimes A and B,

Okino et al. (2017)). In the latter, the far-field dynamics are dominated by internal lee

waves adequately described by the linear theory of Mowbray & Rarity (1967) (Figures

2pdq and 3pcq ´ peq), while the near wake is dominated by an intense upward jet, which

is the sequel of the upward velocity region observed at low-but-finite Re. A conspicuous

bell-shape structure (Hanazaki et al. 2009a, Hanazaki 2015, Okino et al. 2017) takes place

at some distance from the sphere (scaling as Fr) in this jet (Figure 3paq), in the region

where downward velocities around the jet are maximum (Figure 3pcq ´ pdq). As Fr de-

Figure 3

Wake structure past a settling sphere for Re “ Op102q and Fr À 1. paq Shadowgraph image

(Re “ 100) and pbq fluorescent dye visualization (Re “ 115) of the rear jet in regime A at Fr “ 0.3

(Hanazaki et al. 2009a). pcq ´ peq Velocity field from numerical simulations in regime B
(Re “ 112), with Fr “ 0.4, 1.0 and 2.0, respectively (Okino et al. 2017); solid and dashed lines

represent zero-vertical-velocity contours from the numerics and the linear internal wave theory,

respectively; coordinates are normalized with the sphere diameter, 2a. With permission from
Cambridge University Press.

creases and Re is of Op102
q, a wake instability manifests itself, either through a flapping

of the bell-shape structure (Figure 3paq ´ pbq), or by creating knots in the density field,

without any vortex shedding (regimes A and D). With Re ą 20, the jet radius and the

maximum density/velocity disturbance along the jet axis respectively scale as pFr{Req1{2

and Fr´1{2 near the sphere, while the jet extends over a vertical distance scaling as Fr

(Figure 3pcq ´ peq, Hanazaki (2015), Okino et al. (2017)). In contrast, with Re ă 10,

the jet radius and vertical extent scale as pFr2{Req1{3 and Fr1{2, respectively (Yick et al.

2009). Whatever Re, the higher Pr, the thinner the jet is and the larger the maximum
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upward velocity on the jet axis is, other things equal (Hanazaki et al. 2009b, Yick et al.

2009, Zhang et al. 2019). The jet weakens as the Froude number increases, and the usual

axisymmetric wake structure with a toroidal standing eddy, observed in a homogeneous

fluid for 10 À Re À 105, is gradually recovered beyond Fr « 20 (Figure 2peq ´ pfq, Torres

et al. (2000), Zhang et al. (2019)). The larger Pr is, the stronger the shrinking of the

toroidal eddy at a given pRe, Frq is (Hanazaki et al. 2009b).

3.2. Buoyancy-induced drag increase and body dynamics

Isopycnals distortion due to the body translation modifies the surrounding flow field, yield-

ing an additional vertical net force which in turn affects the body dynamics. In the inviscid

limit, assuming a|ρz|{ρ0 ! 1 and evaluating the alteration of the inertial term in the Euler

equation by the density disturbance in the absence of any buoyancy effect, Eames & Hunt

(1997) found this force to be Fs “ ´
1
2
CMVρzV 2, for both a sphere and a circular cylinder

with a horizontal axis. This force is directly proportional to the body volume, V, and added-

mass coefficient, CM , hence to the drift volume VD, provided conditions mentioned in §2.2

are satisfied. With a stabilizing stratification (ρz ă 0), it is directed upwards whatever the

sign of V . Hence it behaves as a drag when the body settles but as a thrust when it rises.

In the opposite limit, Re ! 1, matched asymptotic expansions have been used to obtain the

buoyancy-induced drag correction under various conditions. Neglecting diffusive effects (i.e.

considering that the Péclet number, Pe “ PrRe, is very large), Zvirin & Chadwick (1975)

found the drag of a sphere settling in a linearly stratified fluid to increase by a factor of

1`1.06pRe{Fr2q1{3 compared to the homogeneous case. Conversely, Candelier et al. (2014)

examined the limit where Pe is small and found that the steady-state drag increases by a

factor of 1 ` 0.66pRe{Frq1{2Pr1{4. Considering the Oseen regime, 0 ă Re ! 1, Mehaddi

et al. (2018) established that the latter correction applies if the ratio of the stratification

characteristic length, `s, to the Oseen length, `O “ aRe´1, is much smaller than Pr´1,

whereas the former applies if Pr´1
! `s{`O ! Pr´1{4, the classical inertial drag correction

factor, 1` 3
8
Re, being recovered for `s{`O " Pr´1{4. A different approach, suitable for com-

puting the drag and the density distribution, was followed by Camassa et al. (2009, 2010).

They used a Green’s function formulation to express the effect of the density disturbance

field at a given location via the Oseen tensor, eventually obtaining the force modification in

the form of a volume integral over the whole domain. They applied this approach to spheres

settling across a two-layer set-up with a sharp pycnocline with height hp ! a. As Figures

4paq ´ pbq show, predictions (thin white line in paq, dotted line in pbq) closely follow the

measured evolution of the displaced volume of light fluid and sphere speed. The entrained

fluid column yields a reduction of the settling speed over a significant period of time, hence

a prolonged residence time of the sphere near the interface.

Similar but quantitatively more pronounced trends were reported with slightly negatively

buoyant spheres crossing a thick pycnocline (hp " a) in the parameter range 0.7 ď Re ď 8,

6 ď Fr ď 20 (Srdić-Mitrović et al. 1999). In this case, the drag coefficient, CD, exceeds

the reference value in the homogeneous top layer, CD8, by more than one order of magni-

tude during some time (Figure 4pdq). The settling speed starts decreasing as CD departs

from CD8, and reaches a local minimum, Vm, still within the pycnocline but well after CD
has recovered its reference value (Figure 4pcq). Nearly-spherical drops with 1 À Re À 10

settling through a sharp pycnocline (0.1 ď hp{a ď 5) were considered by Blanchette &

Shapiro (2012), assuming the same viscosity in the drop and the carrying fluid. With a
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Figure 4

A sphere settling in a two-layer stratified fluid. paq and pbq: entrained volume marked with dye,
and sphere velocity vs. time under Stokes flow conditions; adapted from Camassa et al. (2010); pcq

and pdq: normalized settling velocity and drag coefficient vs. the distance (in sphere diameters) to

the top of the interface (marked with a dashed line); normalization is based on reference values V8
and CD8 in a homogeneous fluid with a density equal to the local density at z in the two-layer

set-up; from Srdić-Mitrović et al. (1999). With permission from Cambridge University Press.

uniform drop-outer fluid interfacial tension, this configuration is close to that explored by

Srdić-Mitrović et al. (1999) with solid spheres, yielding qualitatively similar evolutions of

the settling velocity. However, the outer fluid can slip at the drop surface. Compared to

a solid sphere, this tangential motion reduces the amount of fluid dragged down by the

body, making the velocity minimum less pronounced, other things equal. Extra effects oc-

cur when the drop-outer fluid interfacial tension varies across the pycnocline, from γ0 in the

upper fluid, to γ0 `∆γ in the lower one. With ∆γ ă 0, the Marangoni effect induces an

additional traction directed upwards, increasing the tangential velocity at the drop surface,

thus reducing fluid entrainment. Thereby, instead of passing through a minimum, V can

pass through a local maximum near the bottom of the pycnocline. Conversely, fluid en-

trainment is enhanced when ∆γ ą 0. The drop is then slowed down, and may even remain

trapped within the pycnocline for large enough ∆γ. The same mechanism takes place when

surfactants accumulate at the drop/fluid interface. As they are advected to the back of

the drop, where they lower the interfacial tension, the resulting Marangoni effect yields a

downward traction, equivalent to a positive ∆γ (Martin & Blanchette 2017). Situations in

which Vm becomes negative have been reported with spheres settling at larger Reynolds

numbers (Re “ Op102
q), both in a two-layer set-up with hp{a ! 1 (Abaid et al. 2004) and

in a linear stratification (Doostmohammadi et al. 2014). The body then rises momentar-

ily before settling again, which defines a so-called ‘levitation’ regime. At first glance, the

characteristics of this regime look reminiscent of the damped oscillations of bodies initially

displaced from their neutrally-buoyant position and subsequently allowed to oscillate freely.

Predictions for these oscillations have been obtained by considering the drag to arise pre-

dominantly from either the radiation of internal waves (drag 9V , Larsen (1969)), or from

usual frictional effects (drag 9V 2, Winant (1974)). However, no neutrally-buoyant position

exists in the experiments reviewed above. Hence no reversal of the settling speed, nor even

a local minimum in its variation along the body path, can be explained without considering

how the effective drag is altered by the distortion of isopycnals about the body.

Effects of this distortion on the near-field flow have been examined in simulations at low-

to-moderate Re with Pr “ 700. At the body surface, the fore-aft pressure difference and

the frictional stress are enhanced compared to the unstratified case (Torres et al. 2000, Yick

et al. 2009). In the near wake, the mechanism responsible for the ‘downstream jet’ (§3.1)

yields a secondary elongated vortex structure with opposite sign to the primary vortex ring

9



resulting from the no-slip condition (Doostmohammadi et al. 2014). Empirical models for

the corresponding drag modification, expressed through the normalized extra drag coeffi-

cient, CD{CD8 ´ 1, have been developed, based on the intuitive idea that the extra drag

is just the buoyancy force corresponding to the volume of ‘light’ fluid dragged by the body.

At low Re, Yick et al. (2009) argued that this volume is essentially a spherical shell with

dimensionless thickness δs{a „ pFr{Req1{2 filled with light fluid dragged over a vertical

distance Ls{a „ Fr1{2. This results in CD{CD8 ´ 1 „ Re1{2Fr´1, a scaling supported by

their direct determination of CD but not by the relevant aforementioned low-Re asymptotic

predictions. In the range 1 À Re À 10, inspired by the classical definition of the drift vol-

ume (§2.2), Srdić-Mitrović et al. (1999) determined the contour of the dragged fluid column

by marking the top plane z “ 0 of the pycnocline with dye prior to the body release, and

subsequently tracking the dyed/undyed interface. By doing so, considering that the density

of the inner and outer fluids at depth z differ by zρz, they could directly estimate the extra

buoyancy force due to the entrained column. For Re Á 10, experiments and simulations

indicate that the extra drag on spheres and circular cylinders towed at constant speed scales

as Fr´1 (Torres et al. 2000, Higginson et al. 2003, Hanazaki 2015), a trend supported by

energetic considerations (Higginson et al. 2003). The above results have been used in empir-

ical attempts aimed at estimating the stratification-induced drag from time records of the

speed, V ptq, of freely-settling spheres (Srdić-Mitrović et al. 1999, Doostmohammadi et al.

2014). The basic idea consists in assuming that the force balance customarily employed

to predict the sphere motion in a homogeneous fluid, i.e. the ad hoc finite-Re extension

of the Basset-Boussinesq-Oseen equation (Landau & Lifshitz 1987), may be applied to the

stratified case by simply adding the depth-varying buoyancy force due to the undisturbed

density gradient and the extra drag resulting from stratification effects (assumed to adjust

instantaneously to the time variations of V ptq). Srdić-Mitrović et al. (1999) found the extra

drag predicted by this approach (open circles in Figure 4pdq) to agree well with their direct

estimate of the extra buoyancy force associated with the entrained column (filled circles).

Although these modeling attempts are appealing, they suffer from limitations that severely

restrain their practical use. First, they are all based on high-Pr data. However, changes

in the drag force have been shown to be significantly Pr-dependent, becoming weaker as

Pr is decreased, in line with the broadening of the downstream jet (Hanazaki et al. 2009b,

Zhang et al. 2019). Second and even more serious, the definitions of the dragged volume

used by the various authors differ from each other, so that no general predictive model

can be considered to exist. The reason for this was recently elucidated by performing a

mathematical decomposition of the extra drag into density-induced and vorticity-induced

contributions (Zhang et al. 2019). It was found that, for large Pr, most of the extra force in

the range 0.1 À Re À 100, 0.1 À Fr À 10 is actually due to changes in the flow structure,

such as those highlighted in Figure 2paq ´ pbq, rather than to the extra buoyancy force

associated with the dragged volume. It may also be noticed that effects of radiated internal

waves are not accounted for in these models, although wave patterns have been identified

downstream of the body as soon as Re Á 1. However their contribution to the extra drag

is expected to be small, becoming important only at very large Re when Fr » 1 (Warren

1960, Scase & Dalziel 2004).
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paq Changes in orientation of a disk settling in a linearly stratified fluid; top: experiments

(Re “ 60, F r “ 3.4), bottom: simulations (Re “ 90, F r “ 5); from Mercier et al. (2019). pbq
Effects of stratification on the shape of a rising drop and induced vertical velocity disturbance

with, from left to right, Fr “ 8, 10.5 and 5.25 (Re “ 93, We “ ρ0V 2
g a{γ0 “ 0.16, drop-to-fluid

viscosity ratio=1). The drop deformation reduces by 15% (30%) in between the first (last) two
panels, with 3% (25%) difference in the rise speed; adapted from Bayareh et al. (2013), with

permission from American Institute of Physics. All scalings are based on the gravitational velocity,

Vg , and body radius, a. pcq Schematic of the settling of a porous sphere in the entrainment regime
(left) and the diffusion-limited regime (right); adapted from Kindler et al. (2010).

3.3. Anisotropic, deformable and porous bodies

The previous sections focused on spherical impervious bodies, by far the most documented

case. However, effects of geometrical anisotropy, deformability and porosity introduce im-

portant and often non-intuitive changes to the picture, which only start to be explored.

The settling of anisotropic bodies, especially ellipsoids and disks, has been considered at

moderate Reynolds number (Re À 100), under conditions where their motion in a homoge-

neous fluid reduces to a steady broadside-on fall. Although the background stratification is

stabilizing for bodies released broadside-on, density disturbances acting on a slightly tilted

oblate or prolate body settling in a stratified fluid may destabilize its initial orientation and

make it eventually settle edge-on (Doostmohammadi & Ardekani 2014, Mrokowska 2018).

The instability finds is root in the offset between the body axis and the location at which

the upward jet emerges at the back of the body (Figure 5paq). This offset results in a

destabilizing torque which cannot be balanced by the restoring inertial torque when the

ratio of inertia to stratification effects goes below a threshold. The transition takes place

when stratification has reduced the settling velocity in such a way that V ptq À 4pνNq1{2, i.e.

V ptq{Vg À 4pReFrq´1{2, with Vg “ p|ρs{ρ0 ´ 1|gaq1{2, ρs and a being the body density and

radius, respectively (Mercier et al. 2019). At larger Reynolds numbers (102
À Re À 103

q,

disks settling in a stratified fluid in the fluttering regime exhibit an increased horizontal

dispersion and decreased fluttering amplitudes and inclination angles compared to the un-

stratified case (Lam et al. 2018).

Linear stratification has been observed to reduce the deformation of rising drops (Bayareh

et al. 2013). It does so through two different mechanisms illustrated by the two succes-

sive transitions in between the three panels of Figure 5pbq. First, in inertial regimes, the

intrinsic stratification-induced changes in the flow structure (§3.1) reduce the maximum

tangential velocity at the drop surface for a given rise speed (Martin & Blanchette 2017).
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Second, as the local drop-to-fluid density contrast decreases during the drop ascent, the rise

speed is reduced, making inertia effects decrease. Both effects lower the pressure difference

between the front stagnation point and the drop’s equator, reducing deformation.

The modeling of marine snow accumulation at pycnoclines (MacIntyre et al. 1995) motivated

studies on the settling of porous spheres in a two-layer set-up at low-to-moderate Re. Porous

bodies that remain heavier than the denser fluid at any depth behave similarly as impervi-

ous bodies, defining an ‘entrainment’ regime (Figure 5pcq, left). In contrast, the dynamics

of highly porous bodies (with porosity φp Á 95%) having a solid matrix, with density ρs,

only slightly heavier than the denser fluid, with density ρ0 `∆ρ, are strongly impacted by

stratification, since their actual local density is mostly controlled by the fluid they contain

(Kindler et al. 2010). Once filled with the lighter fluid, such bodies have an effective density

ρp0 “ p1´φpqρs`φpρ0 and can be halted within the pycnocline if pρs´ ρ0q
´1∆ρ ą 1´φp.

Diffusion of the denser fluid within the body is required to let it reach its final effective

density, ρpf “ ρp0`φp∆ρ, and continue its settling. In this ‘diffusion-limited’ regime (Fig-

ure 5pcq, right), porous bodies experience enhanced retention times within the pycnocline,

scaling as a2 for spheres (Kindler et al. 2010). The diffusion mechanism generally combines

with the entrainment effect due to the dragged fluid column (§3.2), and the latter becomes

dominant for small enough bodies (Camassa et al. 2013). Experiments with real marine

snow emphasize the crucial role of the density ratio pρs ´ ρ0q
´1∆ρ in the body dynamics

(Prairie et al. 2015). Numerical simulations with porous spheres confirm this role and re-

veal also that the extra retention time increases logarithmically with the Péclet number,

owing to the increased time required for the stratifying agent to diffuse through both the

entrained fluid layer and the body (Panah et al. 2017).

4. BODIES CROSSING AN INTERFACE SEPARATING IMMISCIBLE FLUIDS

4.1. Critical conditions for breakthrough

Bodies translating due to a prescribed force (here gravity) perpendicular to an interface

separating two immiscible fluids may or may not cross it, depending on the characteristics

of their motion and on the fluid and body properties. If this motion is sufficiently slow,

an approximate breakthrough condition is obtained by considering a static force balance

and requiring that the body weight exceeds the sum of the capillary and buoyancy forces

(Vella (2015) and references therein). For a sphere with density ρs, radius a and volume V,

standing in the configuration depicted in Figure 6, static breakthrough takes place if

2πγasinψsinpψ ´ Φq ` gtρ1pV ´ Vspcq ` ρ2Vspc ` pρ2 ´ ρ1qVcylu ă ρsVg , (3)

where ρ1 (ρ2) is the density of the upper (lower) fluid (hence ρ2 ě ρ1), γ is the inter-

facial tension, Φ is the static pseudo-contact angle and ψ is the angular position of the

pseudo-contact line at which the meniscus and the thin film standing in between the sphere

and the interface match. The first two contributions in the buoyancy force are those that

would exist if there were no meniscus, Vspc “ 1
3
πa3p2 ´ 3cosψ ` cos3ψq being the volume

of the spherical cap located below the pseudo-contact line (orange region in Figure 6).

The meniscus induces a shift between the position of the undisturbed interface, z “ 0,

and that of the peudo-contact line, z “ ´zs. As shown by Mansfield et al. (1997) and

Keller (1998), this shift results in an additional buoyancy force proportional to the density

difference ρ2 ´ ρ1 and the volume Vcyl “ ´πzspasinψq2 of the cylinder with height ´zs
standing on the pseudo-contact line (blue region in Figure 6). The force balance (3) also
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Figure 6

A sphere standing at the interface. The film covering the bottom part of the sphere is not shown.

Adapted from Pierson & Magnaudet (2018a) with permission from Cambridge University Press.

applies to rising spheres, provided g is taken negative (this convention is used throughout

§4 for rising bodies). In that case, the stability of the fluid set-up requires ρ2 ď ρ1, so that

the additional buoyancy force pρ2 ´ ρ1qgVcyl cooperates with the sphere weight and the

capillary force to maintain the sphere in the denser fluid, while the usual buoyancy force,

gtρ1pV ´ Vspcq ` ρ2Vspcu, tends to drive it toward the lighter fluid.

To close (3), variations of the ‘submergence’ z˚s “ zs{a with ψ must be known,

which requires the determination of the meniscus shape governed by the Young-Laplace

equation, pρ2 ´ ρ1qgz “ γ∇ ¨ npzq, where n is the unit normal to the menis-

cus surface. This equation, supplemented with boundary conditions at the pseudo-

contact line and undisturbed interface, must in general be solved numerically (Huh &

Scriven 1969, Rapacchietta & Neumann 1977). However, in the capillary-dominated

regime, matched asymptotic expansions provide the closed-form expression, z˚s pψq “
!

Γ´ log4` log
?
Bo sinψ p1` cospψ ´ Φqq

)

sinψ sinpψ ´ Φq ` O pBo logBoq, where Bo “

pρ2 ´ ρ1qga
2
{γ is the Bond number and Γ » 0.577 is the Euler constant (O’Brien

1996). The configuration maximizing the left-hand side of (3) is then obtained with

ψ “ ψmax « π{2 ` Φ{2, so that breakthrough in the small-Bo limit is possible for spheres

with a relative body-to-fluid density contrast, β “ ρs´ρ1
ρ2´ρ1

, such that

β ě
3

4
p1` cos Φq

ˆ

Bo´1
´

1

4
logBo

˙

`Op1q , (4)

where the neglected Op1q-terms correspond to buoyancy effects that contribute to increase

the critical density contrast. If ρ2 « ρ1, these effects are negligible whatever Bo and (4)

may be approximated by the leading-order condition

Bos Á
3

4
p1` cos Φq , (5)

with Bos “ pρs´ρ2qga
2
{γ. The above solution for z˚s pψq only exists for ψ À 3π{4 (O’Brien

1996). Beyond this critical angle, the Young-Laplace equation does not have a solution,

so that no static equilibrium is possible. Consequently, the meniscus snaps if the pseudo-

contact line reaches such large angular positions. With finite buoyancy effects, a semi-

empirical model assuming that the meniscus takes the form of an arc-of-a-circle may be used

to obtain a rough estimate of the minimum size allowing rigid spheres or spherical drops

and bubbles to fall or rise across the interface (Maru et al. 1971, Bonhomme et al. 2012).

Requesting the Young-Laplace condition to be satisfied at the pseudo-contact line only, and

the meniscus to be tangent to both the sphere (assuming total wetting) and the undisturbed

interface, then leads to z˚s pψq “ ´p2Boq´1
!

´1` r1` 4Bop1´ cosψqs1{2
)

. With large
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Bond numbers, buoyancy terms dominate in (3), implying ψmax « π ´ 2p2Boq´1{4 and

z˚s « ´p2{Boq
1{2. Then (3) yields the approximate breakthrough condition

Bos ě
3

2
`OpBo´3{2

q , (6)

a crude criterion often used to estimate the minimum size of bubbles capable of crossing a

liquid-liquid interface (Greene et al. 1988).

Influence of any initial motion is expected to modify the critical breakthrough condition.

Incorporating dynamical effects in (3) requires the time-dependent drag and inertia forces

acting on the body to be known at any time. An attempt to model these forces in the

inviscid limit was achieved by Lee & Kim (2008) to reproduce the behavior of small su-

perhydrophobic spheres pΦ « 0) impacting on water. Depending on their characteristics

pρs, aq and initial velocity, Vi, such spheres may either float after having achieved damped

oscillations, or bounce off from the liquid, or sink after the meniscus has snapped. Scaling

arguments revealed that bounds between the observed regimes correspond to constant val-

ues of the product pρs{ρ2q
2Bo3{2We, where We “ ρ2V

2
i a{γ is the Weber number based on

the impact velocity. Assuming the flow past the body to be potential and identical to that

in an unbounded domain, the pressure distribution on the wetted part of the sphere may

be computed, providing ψ-dependent expressions for the downward added-mass force and

upward form drag. Adding these contributions to (3), Lee & Kim (2008) could predict the

early stages of the various observed evolutions. Besides capillary and buoyancy effects, the

viscosity jump may also play a leading role in the body deceleration at the interface. When

λ “ µ2{µ1 is large, an additional effect arises when the body moves with a large Reynolds

number, Re1 “ ρ1V1a{µ1, before the interface deforms. In that case, a wake has developed

downstream and collapses when the body is virtually brought to rest as it starts deforming

the interface (Pierson & Magnaudet 2018b). This situation is qualitatively similar to the

sudden stop of a body in an unbounded fluid, in which case the wake collapse produces a

thrust that lasts for some time after the stop. This thrust results in a ‘history’ force on

the body, like the Boussinesq-Basset force in the low-Re regime (Landau & Lifshitz 1987),

but inertial by nature. A theoretical prediction for this force was first obtained in the

Oseen regime by Lovalenti & Brady (1993) for a sphere stopping in an unbounded fluid,

then extended to larger Reynolds numbers by Lawrence & Mei (1995). At time t after the

sphere has stopped, this force is ´ 3
4
apV1tq

´1 times the drag prior to the stop. In the present

context of a semi-bounded domain, this prediction implies a reduction of the critical β for

which the breakthrough occurs by a factor of t1` kapV1tq
´1
u
´1 with k “ Op1q, compared

to the purely static estimates (4)–(6) (Pierson & Magnaudet 2018a).

4.2. Quasi-static detachment and film drainage

Spherical bodies that marginally satisfy (3) cross the interface in a quasi-static manner. As

the body gets close to the interface, a film forms ahead of it. This film is gradually drained,

and the time it takes to rupture controls the breakthrough process, as is customary in

liquid-liquid coalescence (Mohamed-Kassim & Longmire 2004). The characteristics of the

film, as well as its drainage dynamics, depend dramatically on the nature of the body.

Within the film that develops round a rigid sphere, the flow exhibits a Poiseuille profile or

half-profile, depending on whether λ is large or small. In contrast, a plug-type profile takes

place in the film that forms ahead of a gas bubble, provided λ À 1 (Debrégeas et al. 1998).

In the former case, the film thickness decreases over time following a t´1{2 law if Bo Á 1
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(Hartland 1968, 1969, Jones & Wilson 1978) or a t´1{4 law if Bo ! 1 (Jones & Wilson 1978).

On the other hand, it decreases exponentially in front of a bubble close to a free surface

if Bo “ Op1q (Debrégeas et al. 1998, Pigeonneau & Sellier 2011). However, close to an

interface with λ “ Op1q, this exponential behavior is quickly slowed down by the shearing

motion that develops at the interface (Bonhomme et al. 2012). Round a rigid sphere or a

nearly-spherical drop with internal viscosity µs such that λs “ µs{µ1 " 1, a constriction of

the film surface (so-called ‘dimple’) gradually develops within the subregion (corresponding

to the location of the pseudo-contact line in Figure 6) where the film matches with the

meniscus (Hartland 1968, Jones & Wilson 1978, Chi & Leal 1989, Yiantsios & Davis 1990).

The dimple makes the flow rate in the film uniform throughout the matching region, despite

the acceleration resulting from the negative pressure gradient induced by the local variation

of the capillary pressure. In the low-Bo limit, the drainage is first completed in the dimple

region, so that the film is expected to rupture there. However the breakthrough may also be

achieved via the snapping mechanism mentioned in §4.1 if the submergence becomes large

enough that the dimple position reaches the critical angle ψ « 3π{4. In that case, the body

detaches from the interface before the drainage is completed, with the remaining film still

stuck on its surface (Pierson & Magnaudet 2018b). Finite-Bo effects affect the drainage

dynamics by modifying the angular variation of the film thickness. Smith & Van de Den

(1984) showed that these effects make the film round a rigid sphere flatten in the region

close to the axis (bottom pole of the sphere in Figure 6). As time progresses, the thickness

becomes minimum there, making the film ultimately rupture at the pole well before it is

totally drained. For bubbles and low-viscosity drops (λs À 1), no dimple forms at the

edge of the film (Chi & Leal 1989). Film break-up then arises on the symmetry axis in a

much shorter time than for a rigid sphere, other things equal. For such deformable bodies,

another interfacial tension, γ1, characterizing the drop-outer fluid interface, is involved,

which yields a second Bond number, Bo1 “ pρs ´ ρ1qga
2
{γ1. Increasing Bo and Bo1 eases

the deformability of the film boundaries, making the film thickness more uniform round the

body front, thereby increasing the area of the small-gap region that needs to be drained for

the breakthrough to happen. Hence, finite-Bond-number effects slow down the drainage in

this case (Pigeonneau & Sellier 2011, Bonhomme et al. 2012).

4.3. Tailing regime

If the forces that drive the the body toward the second fluid, including possible inertial

effects, exceed significantly those that tend to hold it at the interface, the breakthrough

takes place before film drainage is completed. Then the body moves within the second

fluid while its front part is still coated with a film of the first fluid and its rear part remains

connected to the interface via a column of the same first fluid. In most cases, this column or

tail lengthens as the body moves away from the interface until it pinches off at some point.

Depending on the fluids properties, especially the viscosity and density contrasts, and flow

conditions prior to breakthrough, the tail may exhibit various geometries and dynamics

(Maru et al. 1971, Dietrich et al. 2008, 2011, Bonhomme et al. 2012, Emery et al. 2018,

Pierson & Magnaudet 2018a,b). The tailing configuration may take place under creeping

flow conditions (Geller et al. 1986, De Folter et al. 2010, Jarvis et al. 2019). With a rigid

sphere, the flow field is then completely characterized by three independent parameters,

for instance Bo, λ and, for gravity/buoyancy-driven situations, the solid-to-fluid density

contrast, β (§4.1). Under such conditions, the critical λ at which the film drainage/tailing
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λ “ 0.17 λ “ 1.7 λ “ 18.3 λ “ 0.002 λ “ 0.02 λ “ 0.21
Bo “ 3.7 Bo “ 3.7 Bo “ 4.5 Bo “ 0.45 Bo “ 0.55 Bo “ 1.3

Ar1 “ 4.3 Ar1 “ 43.1 Ar1 “ 463 Ar1 “ 4.3 Ar1 “ 43.1 Ar1 “ 463

Ar1 “ 9.1 Ar1 “ 91.2 Ar1 “ 968 Ar1 “ 9.2 Ar1 “ 91.2 Ar1 “ 968

Figure 7

Tail geometries observed with a 7 mm-radius sphere settling through various two-layer fluid

set-ups. Top row: glass sphere; bottom row: steel sphere. Lower fluid: water-glycerin mixture
with viscosity 90 times larger than water (left three columns); water (right three columns). Upper

fluid: silicone oil with, from left to right in each three-column block, viscosity 500, 50 and 5 times
larger than water, respectively. Adapted from Pierson & Magnaudet (2018a) with permission from
Cambridge University Press.

transition takes place increases from λ « 15 for Bo « 1 to λ « 50 for Bo « 5 (Jarvis et al.

2019). Three additional characteristic parameters are required when drops and bubbles are

involved, namely λs and Bo1 (§4.2), and a third Bond number, Bo2 “ pρs ´ ρ2qga
2
{γ2,

based on the drop-outer fluid interfacial tension γ2 in the second carrying fluid. More-

over, two extra parameters come into play if flow inertia cannot be neglected, such as the

fluid density ratio ζ “ ρ2{ρ1, comparing inertia effects in the two carrying fluids, and the

Reynolds number characterizing the relative strength of inertia and viscous effects prior to

breakthrough. For gravity/buoyancy-driven situations, this Reynolds number may be based

on the gravitational velocity scale, Vg1 “ tpρs{ρ1 ´ 1qgau1{2, in which case it is frequently

referred to as the Archimedes number, Ar1 “ ρ1Vg1a{µ1. Therefore, inertial configurations
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are characterized by five and eight dimensionless parameters in the case of rigid and de-

formable bodies, respectively (for bubbles, λs ăă 1 and β « p1 ´ ζq´1, which leaves six

independent parameters). The situation considered in §3 is recovered by setting λ “ ζ “ 1,

BoÑ8, and β “ ´pρs´ρ1q{paρzq (with Bo1 “ Bo2 for deformable drops and bubbles). In

this case, β1{2
“ Vg1{pNaq is just the Froude number based on the Brunt-Väisälä frequency,

N1 “ p´gρz{ρ1q
1{2 (with ρz ą 0 for rising bodies, in line with Figure 6).

In a given fluid set-up, the tail volume, hence the fluid entrainment, increases with Ar1 (left

two columns in Figure 7). For a given Ar1, the smaller Bo is, the larger the tail volume

is. This is because, under quasi-static conditions, the initially flat interface deforms over a

distance of the order of the capillary length, lc “ tγ{pρ2 ´ ρ1qgu
1{2, i.e. lc{a “ Bo´1{2, so

that the deformation may extend over a larger region when Bo is small, yielding larger tail

bases. As far as the body follows a rectilinear path prior to breakthrough, the tail preserves

an axisymmetric geometry until pinch-off occurs, irrespective of the viscosity of the second

fluid. For gravity/buoyancy-driven bodies in a homogeneous fluid, the onset of path insta-

bility takes place at a critical value, Ar1 “ Arc, which depends on the body shape (Ern et al.

2012), with Arc “ 55 for a rigid sphere (Fabre et al. 2012). Consequently, three-dimensional

tails are observed with spheres only when Ar1 ą 55 (Pierson & Magnaudet (2018a). The

corresponding threshold is significantly higher for gas bubbles, due to the different boundary

condition at their surface, and greatly varies with their shape, i.e. with Bo1. In particular,

spherical-cap bubbles (encountered with Bo1 Á 10 when Ar1 Á 1) are not prone to path

instability (Wegener & Parlange 1973), and no indication of a three-dimensional tail has

been reported up to Ar1 « 500 with such bubbles (Bonhomme et al. 2012). The relative

magnitude of inertial and viscous effects in the second fluid may be quantified via a second

Archimedes number, Ar2, with Ar2 « Ar1{λ for ρ2 « ρ1. With Ar1 significantly higher

than Arc but Ar2 À 1, 500, the tail geometry is reminiscent of the structure of transitional

wakes past axisymmetric bodies, with well-defined hairpin-like regions (third column in

Figure 7). In contrast, for Ar2 Á 1, 500, a specific instability develops along the tail sur-

face, starting from the film that still coats the body and propagating downwards (last three

columns in the top row of Figure 7). This instability results from the shear within the

boundary layer that grows over time around the tail in the second fluid when λ ! 1. In its

early stage, its characteristics are consistent with those of inviscid Kelvin-Helmholtz modes

(Pierson & Magnaudet 2018b), including the potentially stabilizing influence of capillary

effects (Marmottant & Villermaux 2004). If Ar2 Á 2, 500, this instability eventually results

in massive tail fragmentation, provided the viscosity of the fluid within the tail is not too

large, i.e. λ is not too small (last three columns in the bottom row of Figure 7). Indeed,

viscous stresses within the tail dissipate a part of the energy supplied by the outer flow to

the tail surface and, for a given Ar2, are able to maintain the cohesion of the inner fluid if

they are large enough. In the present context, fragmentation is driven by the shear provided

by the boundary layer that surrounds the tail. This shear only depends on global flow scales

(body velocity and local boundary layer thickness). This situation deeply differs from the

classical turbulent picture (Villermaux 2007) in which the shear driving the fragmentation

of a fluid element with a given size is a local quantity that depends on that size and on

the dissipation rate. For this reason, the classical laws of turbulent break-up (Kolmogorov

1949, Hinze 1955) do not apply here. In particular, the characteristic mean radius of the

droplets resulting from the fragmentation exhibits a weaker dependence with respect to γ

and µ1 than predicted by these laws (Pierson & Magnaudet 2018a).

17



4.4. Tail pinch-off and beyond: retraction dynamics and entrained drops

With the exception of highly-inertial situations where fragmentation occurs, the tail eventu-

ally pinches off after it has been continuously stretched over a distance usually much larger

than the body size. Pinch-off may take place either very close to the base of the tail, or

much closer to the body than to the base. This process leaves a more or less long liquid

thread attached to the body. When this thread is long enough, it may in turn undergo a

capillary instability and discharge droplets at its tip in the surrounding fluid (Maru et al.

1971, Pierson & Magnaudet 2018b). Conversely, when it is short enough, it directly recedes

toward the body and turns into a drop that remains stuck to its rear part (Pitois et al.

1999, Dietrich et al. 2008, Pierson & Magnaudet 2018a). The two well distinct positions

at which pinch-off may occur are reminiscent of the ‘shallow seal’ and ‘deep seal’ pinch-off

types identified by Aristoff & Bush (2009) in the case of the air cavity that forms after a

hydrophobic sphere impacts a free surface (see also Truscott et al. (2014)). However the

dynamics of such air cavities and those of liquid tails exhibit two major differences. First,

due to the negligible density of air compared to water, pressure is almost constant within a

cavity. In contrast, both fluids have comparable densities in liquid-liquid systems, making

the pressure vary along the tail axis, owing to hydrostatic and dynamic effects. Second,

the outer flow almost obeys a shear-free condition at the cavity surface in the air-water

system. Conversely, vorticity levels are large within at least one of the fluids in liquid-liquid

systems, especially in the boundary layer round the tail when λ ! 1. For these reasons, the

tail pinch-off cannot be modeled via the free-surface potential flow approach suitable for

cavity dynamics (Duclaux et al. 2007).

With ζ « 1 and Bo Á 1, the body does not accelerate or decelerate much during the

breakthrough if λ “ Op1q. Under such conditions, shallow-seal (deep-seal) pinch-off is

primarily governed by a balance between the capillary (buoyancy) pressure gradient along

the tail and the radial acceleration of its surface. This yields characteristic pinch-off times

τγ 9pβBoq
1{2 and τg 9β

1{3, respectively, and the transition between the two pinch-off styles

happens for τγ « τg, i.e. Bo « β´1{3 (Pierson & Magnaudet 2018a). Only shallow (deep)

pinch-off is possible at smaller (larger) Bo. In contrast, if λ is small (large), the body accel-

erates (decelerates) as it enters the second fluid. Strong decelerations are also encountered

with low-density hydrophobic spheres impacting a free surface (ζ " 1), and they reduce

the pinch-off depth and the volume of the air bubble eventually entrained by the sphere

(Aristoff et al. 2010). In liquid-liquid systems, time variations of the body velocity, V ptq,

influence the pinch-off dynamics through inertia effects within the tail. Indeed, as far as the

latter is pulled by the body, the cross-sectional averaged streamwise velocity of the inner

fluid, xW ypz, tq, is close to V ptq near the body, implying that xW yBzxW y is close to the

body acceleration, 9V ptq, in that region. Hence, the longitudinal pressure gradient at the

tail surface includes a dynamic contribution increasing from small values at the base of the

tail to ´ρ1 9V ptq at the rear of the body, and cooperating with the buoyancy contribution,

pρ2 ´ ρ1qg. The transition between the two types of pinch-off then depends on the param-

eter χ “ ´tgpζ ´ 1qu´1 9V , which changes the pinch-off time τg into τ˚g “ τgp1 `Kχq´1{3,

with K “ Op1q (according to Figure 6, 9V ă 0 for an accelerating body). As a result, the

transitional Bond number is reduced (increased) when the body accelerates (decelerates),

which favors deep-seal (shallow-seal) pinch-off. Indeed, observations suggest that pinch-off

essentially takes place close to the body when λ À 0.1.

The primary pinch-off splits the tail into two unequal ligaments which are no longer
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Figure 8

Examples of entrained drops past spheres with various sizes and densities in two different fluid

set-ups. Left three columns: silicone oil/water-glycerin (λ “ 18.3, ζ “ 1.32); right three columns:

silicone oil/water (λ « 0.002, ζ « 1.03). From left to right: β “ 10, 5.5, 1.5, 110, 45, 15. Adapted
from Pierson & Magnaudet (2018a) with permission from Cambridge University Press.

stretched. The longest of them recedes toward the body or the horizontal interface, de-

pending on whether the pinch-off is of shallow- or deep-seal type. This ligament is then

similar in essence to a pre-elongated viscous thread with initial length L0 and radius R0

receding in another viscous fluid, a configuration known to exhibit a rich phenomenology

(Stone 1994). In general the thread’s fate is governed by the viscosity and density ratios,

the thread aspect ratio, Γ0 “ L0{R0, and the Ohnesorge number, OhR0 “ µ1pρ1γR0q
´1{2.

Provided Γ0 is less than a critical value, Γcpλ, ζ,Ohq, the thread recedes as a whole, while

it breaks into a series of droplets for larger aspect ratios, due to the so-called end-pinching

instability. In the latter, initiated by curvature variations in the transition region between

the tip and the thread cylindrical body, a neck forms and shrinks there, eventually leading

to break-up and the formation of a droplet at the tip (Stone et al. 1986, Stone & Leal

1989). This mechanism is self-repeating, yielding the formation of a succession of droplets

with satellites and sub-satellites in between daughter drops (Tjahjadi et al. 1992). Under

creeping flow conditions, Γc reaches a broad minimum in the range 1 À λ À 10 (Stone et al.

1986), making tails in that range most prone to break-up. Computations (Notz & Basaran

2004) and experiments (Castrejón-Pita et al. 2012) with shear-free cylindrical threads in-

dicate that Γc sharply increases with Oh when λ “ ζ “ 0. In contrast, no prediction

for Γcpλ, ζ,Ohq seems currently available for arbitrary λ and ζ. Experimental and com-

putational observations in the tailing regime for 0.2 À λ ď 50 are in line with the above

phenomenology (Maru et al. 1971, Manga & Stone 1995, Pierson & Magnaudet 2018b),

although some extra complexity frequently arises because the tail is often far from cylindri-

cal and a second pinch-off may occur at its opposite end (driven by the slowest of the two

pinch-off mechanisms). Quantitative agreement with the viscous linear instability theory

(Tomotika 1935) is achieved with nearly cylindrical tails regarding the size of the primary

daughter drops for λ “ Op1q, and the tip retraction speed is well predicted by the marginal

stability criterion (Powers et al. 1998). With small λ, sufficiently short tails recede with

a modified Taylor-Culick velocity, Vtip « tpζ ´ 1qgL0 ` γpρ1R0q
´1
u
1{2, in which buoyancy

and capillary effects cooperate (Pierson & Magnaudet 2018b). In contrast, long enough

tails still undergo an end-pinching instability.

The volume of the drop that remains attached to the body after the pinch-off and the possi-

ble subsequent end-pinching sequence is a quantity of primary importance in the engineering

applications, especially coating processes and steel elaboration (§1). It greatly varies with

the flow conditions and may under certain circumstances exceed the volume of the body

itself (Figure 8). This drop also directly affects the body final velocity, as it increases its

volume and modifies its shape and the boundary condition on a fraction of its surface. Un-

der static conditions, the shape of pendant drops with prescribed volume is governed by the

Young-Laplace problem. Solving this problem has revealed that the volume of the largest
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drop that can remain attached to a sphere under total wetting conditions scales as Bo´ns ,

with ns « 1.1 (Shoukry et al. 1975). Partial wetting reduces this maximum volume, as it

lowers the vertical component of the capillary force at the contact line (Smith & Van de Den

1985). When the body moves, effects of the viscosity ratio come into play: the drop-outer

fluid interface virtually obeys a no-slip condition if λ ! 1, while it behaves approximately

as a shear-free surface is λ is large. If the drop is thin compared to the body characteristic

length, the shear acting on its outer surface induces an internal lubrication flow which makes

the drag of the body+drop aggregate increase compared to that of the body alone, provided

λ is not too large. For a sphere, this drag increase arises up to λ “ 4 under creeping flow

conditions (Johnson 1981). For larger λ, the coated part of the sphere nearly behaves like a

bubble surface, therefore reducing the overall drag. With gravity/buoyancy-driven bodies,

the volume of the drop that is ultimately entrained, Vd, results from the complex interplay

between the above static and dynamic effects, with the additional constraint that the drag

force acting on the aggregate must balance its net weight, tpρs ´ ρ2qV ` pρ1 ´ ρ2qVdug.

For this reason, the relative drop volume, V˚d “ Vd{V, also depends on the body density

through the ratio pρs ´ ρ2q{pρ2 ´ ρ1q “ β ´ 1. Hence it generally depends at least on

Bo, λ and β. Experiments indicate that V˚d is primarily a decreasing function of Bo under

conditions such that β À 20, but the influence of λ and β is still present in most cases and

makes the corresponding dependence weaker than in the static case. Conversely, when β is

large, V˚d becomes an increasing function of Bos “ pβ´ 1qBo (also involved in (5) and (6))

(Pitois et al. 1999). Qualitative models based on overall force balances correctly predict

these general trends (Pierson & Magnaudet 2018a), especially the linear increase of V˚d vs.

Bos in the limit of large β and small λ (Chen et al. 2018). However, no complete model

predicting quantitatively V˚d as a function of Bo, λ and β is available to date.

4.5. Evolution of body velocity and entrained volume during breakthrough

The primary goal of every low-order model of hydrodynamic forces is to predict the body

settling/rise velocity. However deriving such a model capable of dealing with a variety

of breakthrough conditions is a challenging task, as the evolutions reported in Figure 9

illustrate. In paq, a light sphere is stopped during a long time at the interface by capillary

effects. Determining how long its release in the lower fluid takes requires an iterative

process (Shah et al. 1972, Hashimoto & Kawano 1990) involving (i) a film drainage model

to estimate the variation of the film thickness as a function of time for a given body velocity

and position, from which an updated pseudo-contact angle ψptq (Figure 6) is found; (ii)

an integration of the Young-Laplace equation to update the shape of the meniscus, hence

the ‘submergence’ z˚s ptq; (iii) an integration of the force balance corresponding to the sum

of the static forces in (3) plus viscous drag and inertia forces, which provides the updated

sphere velocity and position. Once the sphere settles in the lower fluid, a drop with relative

volume V˚d “ V˚e ´ 1 « 0.2 remains attached to its top (Figure 9paq, bottom row). As

the sphere is light (β “ 1.65), the effective weight of the sphere+drop aggregate is only two

thirds of that of the sphere alone. Hence, no realistic prediction of the final settling speed

can be obtained without an accurate model for V˚d .

No sudden slowing down of the sphere near z0 “ 0 is noticed in pbq-pdq, suggesting that

capillary effects play a minor role in the breakthrough. In pbq, where the primary pinch-

off is of deep-seal type, V ptq goes through a broad minimum just as V˚e goes through its

maximum. This indicates that the buoyancy force due to the tail (proportional to Vcyl in
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Figure 9

Two characteristics of interface breakthrough with a solid sphere, for increasing β: normalized
settling velocity (top) and entrained volume V˚e (bottom) vs. the distance z0 (in sphere radii) from

the sphere center to the horizontal interface. Symbols: experiments, solid line: direct simulation.

paq: λ “ 0.17, ζ “ 1.24, β “ 1.65, Bo “ 3.65, Ar1 “ 2.2; pbq: λ “ 1.7, ζ “ 1.26, β “ 4.8, Bo “ 1.9,
Ar1 “ 23; pcq: λ “ 18.3, ζ “ 1.32, β “ 5.45, Bo “ 1.1, Ar1 “ 164; pdq: λ “ 0.002, ζ “ 1.03,

β “ 45, Bo “ 0.25, Ar1 “ 2.3. V˚e is the fluid+sphere volume enclosed in between the deformed

interface and its initial position, z “ 0. Limitations of the optical system gave erroneous estimates
of V˚e during some stages, especially in the presence of slight deflections of the horizontal interface.

Adapted from Pierson & Magnaudet (2018b) with permission from Cambridge University Press.

(3)) is responsible for the gradual slowing down of the sphere. Consequently, predicting

this deceleration requires the angular position ψptq of the corresponding pseudo-contact

line to be known, which amounts to determining the shape of the tail. As the flow is

inertial (Ar1 “ 23), this prediction can only be achieved through an extended version

of the Young-Laplace equation taking into account inertial effects in both fluids through

simplified models; e.g. the long-wave approximation for the flow within the tail (Eggers &

Dupont 1994). In pcq, buoyancy effects are still important (ζ “ 1.32) but most of the strong

deceleration of the sphere results from the large viscosity ratio (λ “ 18.3). Predicting V ptq

throughout the breakthrough then requires appropriate closure laws for the added-mass and

viscous drag forces in a two-fluid medium, the properties of which change abruptly at the

angular position ψptq, from pρ2, µ2q on the front part of the sphere to pρ1, µ1q on its rear

part. Lee & Kim (2011) attempted to develop such a model in the case of a small sphere

released from rest at a free surface, assuming the stress distribution on the wetted part

of the body to be identical at any time to that in a Stokes flow past a sphere translating

steadily in an unbounded fluid. Including the corresponding ψ-dependent viscous drag in

(3), they could reproduce the sphere descent, and quantify the magnitude of the viscous

resistance compared to static effects. Without the need to model dynamic effects during

the breakthrough, a realistic estimate of the final settling speed, V2, may be obtained at

low cost, provided (i) the attached drop is small enough to leave the drag coefficient and

the sphere equatorial cross section unchanged, and (ii) the initial and final flow regimes are

similar in the sense that, in both of them, the drag coefficient exhibits the same Reynolds-

number dependence in the form of a power law with an exponent ´p. Under such conditions,

equating the drag force on the sphere+drop aggregate with its net weight in the initial and
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final configurations yields

V2

V1
« ζ

p´1
2´p λ

´p
2´p

ˆ

β ´ 1´ V˚d
β

˙ 1
2´p

(7)

With p “ 1 (creeping flow conditions), V2{V1 is proportional to λ´1 and does not depend

on the fluid density ratio. Conversely, pÑ 0 if the Reynolds number is very large, in which

case V2{V1 is independent of λ and varies as tpβ ´ 1´ V˚d q{pβζqu
1{2. In between these two

limits, p « 1{3 over a broad range of inertial conditions (Batchelor 1967), so that V2{V1

varies approximately as pζ2λq´1{5 with the fluid properties. In Figure 9pcq, assuming

p “ 1{3, (7) predicts V2{V1 « 0.45, which confirms the dominant role of ζ and λ in the

sphere deceleration. In pdq, buoyancy effects are weak (ζ “ 1.03) and the sphere relative

inertia is large (β “ 45), so that the thick tail that develops as it settles and the large drop

that remains stuck to its top (fifth panel from left in Figure 8) have little effect on its

dynamics. Hence, the sphere acceleration is essentially driven by the huge viscosity jump

(λ “ 0.002). Predicting this acceleration throughout the breakthrough requires the same

composite closure laws as in pcq, but (7), still with p “ 1{3, correctly predicts V2{V1 « 3.4.

Besides the body dynamics, the magnitude reached by the entrained volumes in Figure 9,

together with the tail shapes in Figure 7 suggest that the entrainment process across an

interface separating two immiscible fluids has little to do with the kinematic drift discussed

in §2.2. Notably, in case pdq in Figure 9, which corresponds to Ar2 Á 103, V˚e reaches a

maximum value close to 30, incommensurate with the drift volume VD{V “ 1{2 predicted by

potential theory. Comparison with drift volumes predicted under Stokes or Oseen flow con-

ditions (Figure 1) is not more conclusive: most of the drift volume arises from deflections

of the marked plane at large radial distances from the sphere path in these situations, while

deflections of the horizontal interface with immiscible fluids are always negligible beyond a

few sphere radii. Without doubt, vorticity generation at the body surface and through the

three source terms specific to fluid inhomogeneities in (1) is responsible for the actual char-

acteristics of fluid entrainment in liquid tails past moving bodies. Due to the large bending

of the interface at the base of the tail, each of these three terms is potentially large in that

region, making vorticity generation locally intense under various conditions, as numerical

simulations confirm (Pierson & Magnaudet 2018b). Experiments in which a disk was towed

across an oil-water interface, and the shape of the corresponding tail was compared with

potential flow predictions (Peters et al. 2016), also support this conclusion. Another exper-

iment in which a bubble rose across a sharp density interface separating two liquids with

negligible interfacial tension (Ar1 Á 1 and ζ « 1) revealed that V˚e decreases with Ar1 and

with the density contrast 1´ ζ, which in particular points to the direct dependency of V˚e
vs. the Froude number, i.e. vs. β (Dı́az-Damacillo et al. 2016).

4.6. Specificities of deformable drops and bubbles

Compared to rigid bodies, drops and bubbles crossing an interface offer an additional variety

of phenomena, owing to their deformability and to the internal shearing motion driven by

the tangential stress condition at their surface. Their deformability in the first and second

fluids is proportional to Bo1 and Bo2, respectively, whereas the ability of the inner fluid to

move with respect to their surface is inversely proportional to λs. Hence the most significant

differences with rigid bodies are found for large Bo1 and Bo2 and small λs, i.e. with large

bubbles. The various regimes discussed in §§4.1–4.3 are successively encountered as the

22 Magnaudet & Mercier



drop or bubble size (i.e. Bo) is increased, others things equal (Bonhomme et al. 2012,

Emery et al. 2018): drops which do not satisfy (4) (with Φ “ 0) or (6) remain trapped

at the interface, possibly after a bouncing sequence (Feng et al. 2016, Singh et al. 2017),

while slightly larger drops cross the interface in a quasi-static manner. Once released in the

second fluid, they remain encapsulated in a thin shell corresponding to the remains of the

film or meniscus left by the drainage process or the snapping mechanism. Larger drops or

bubbles are only marginally affected by the resisting interfacial effects in (3) and move away

from the interface in the tailing mode. Pinch-off usually takes place as described in §4.4,

and the resulting ligaments exhibit the same rich dynamics. However, with large enough

bubbles (λs « 0, Ar1 " 1), tail pinch-off may be overtaken by film break-up at the bubble

apex which arises sooner (Uemura et al. 2010, Emery et al. 2018). In this case, the film

first recedes along the bubble surface. The corresponding amount of liquid is collected at

the tip of the entrained column, which subsequently undergoes an upward acceleration and

penetrates into the bubble. If the Ohnesorge number Oh1 “ µ1pρ1γ1aq
´1{2

“ Bo
1{2
1 {Ar1

is small enough, concentric capillary ripples form at the bubble apex just after the film

ruptures, and micro-droplets are ejected from the receding film (Uemura et al. 2010).

Simulations have helped disentangle the influence of the various flow parameters in the

inertialess regime (Manga et al. 1993, Manga & Stone 1995) and the 1 À Ar1 À 102 regime

(Shopov & Minev 1992, Bonhomme et al. 2012, Singh & Bart 2015). When λ is large, the

second fluid strongly resists interface deformation, which decelerates the drop. This in turn

makes it flatten and become more oblate, which favors the formation of spherical-cap drops

and bubbles. Conversely, drops passing from a higher- to a lower-viscosity fluid (λ ă 1)

accelerate and are stretched vertically throughout the breakthrough. The lower λs is, the

larger the drop elongation is and the faster the drop rises or settles during the breakthrough,

other things equal. Depending on Bo and Bo1 and on the shape and velocity of the drop

by the time it gets close to the interface, two distinct deformation modes may develop. An

elongating tail grows at the back of initially prolate drops with moderate-to-large Bo and

Bo1. It eventually breaks up, giving birth to secondary droplets which move back to the

interface due to the relaxation of the entrained liquid column, and eventually coalesce with

their homophase (Figure 10, top row). Following this break-up, the drop relaxes toward

a new equilibrium shape (possibly through an intermediate sequence of shape oscillations)

controlled by the Bond and Archimedes numbers relevant in the second fluid, Bo2 and Ar2
(Ar2 “

ζ
λ
Ar1 for bubbles). For initially oblate drops or bubbles with small-to-moderate

Bo and Bo1, an indentation forms at the back. Then it turns into an annular tail which

eventually recedes when the entrained liquid column relaxes toward the interface, following

pinch-off or film rupture at the apex (Figure 10, bottom row).

Compared to rigid bodies, the settling or rise velocity of deformable drops and bubbles is

more subtly influenced by density and viscosity jumps across the interface. This is due

to the concomitant shape variations and distinct drag laws obeyed by drops or bubbles

belonging to different shape families, as Figure 10 illustrates. Owing to the much lower

viscosity of the upper fluid, the initially nearly-spherical bubble in the top row experiences

a sharp acceleration during the breakthrough, tripling its rise speed within a distance of

the order of twice its diameter. However, the drag coefficient of a spherical bubble rising

with Reynolds number Re is 8{Re (24{Re) in the low- (high-) Reynolds-number regime

(Batchelor 1967), so that (7) with p “ 1 predicts that the bubble terminal velocity in

the top fluid should be approximately 15 times larger than in the bottom fluid, had the

bubble kept a spherical shape. This erroneous estimate shows that the flattening of the
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bubble drastically mitigates the magnitude of the velocity jump. The rise velocity of the

spherical-cap bubble in the bottom row of Figure 10 does not exhibit any jump during the

breakthrough. Instead, it gradually increases and only experiences a 40% total variation.

The rise velocity of spherical-cap bubbles is governed by the radius of curvature at the apex,

Ra, and varies as pgRaq
1{2 (Davies & Taylor 1950, Wegener & Parlange 1973). Hence it is

sensitive to the fluid viscosity and density only through their slight influence on Ra.

SUMMARY POINTS

1. The flow round bodies settling (rising) in a fluid with a continuous vertical density

profile exhibits three major characteristics: a distortion of isopycnals resulting in

a column of light (heavy) fluid dragged by the body, a gradual squeeze of vertical

scales as Fr is decreased, and a baroclinically-generated downstream jet which

dominates the body dynamics at moderate-to-large Reynolds number.

2. In immiscible configurations, the salient characteristics of the inertial tailing regime

are the position at which the tail pinches off, which is governed by the Bond number

(possibly modified from effects of acceleration), the presence of boundary layers

along the tail surface and their possible instabilities, and the fate of the liquid

threads resulting from the primary pinch-off, especially the size of the drop that

eventually sticks to the body. The viscosity contrast plays a key role in making

rigid bodies accelerate or decelerate during the breakthrough, and in modifying the

shape and velocity of drops and bubbles crossing an interface.

3. In all cases, the body dynamics are not solely controlled by the volume of the

dragged fluid column, and this volume cannot in general be estimated using classical

predictions for the ‘drift’ volume in a homogeneous fluid. The specific mechanisms

by which vorticity is generated within the fluid and at interfaces modify the flow

structure and cannot be ignored.

4. Internal (interfacial) waves are present in most cases in miscible (immiscible) fluid

set-ups, but do not play a discernible role in the body dynamics in the range of

regimes considered here.

5. Thanks to advanced experimental and numerical tools, tracking the highly-distorted

interfaces and isopycnals involved in these flows and obtaining accurate estimates

of entrained volumes and near-body velocity/vorticity distributions is now possible.

FUTURE ISSUES

1. The modeling of hydrodynamic loads related to density or viscosity inhomogeneities

or jumps is still in its infancy. Attempts to account for the influence of the entrained

column have been proposed in miscible stratified fluids but ignore the role of the

modifications of the vorticity field, which has a direct and often dominant impact

on the drag. In immiscible set-ups, models coupling a simplified representation of

the flow inside and outside the tail are required to determine its evolution up to the

primary pinch-off, and estimate the tail fraction that eventually recedes toward the

body surface and forms a drop. Models are also needed to properly estimate the

viscous and inertial forces acting on the body during the time period it is connected
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to the tail, since its rear and front parts are then immersed in two different fluids.

2. In miscible and immiscible set-ups, the nature and domain of existence of the insta-

bilities that may affect the dragged column are far from clear and deserve specific

investigations, not least because they have a direct impact on the body dynamics.

3. Available experiments and simulations have focused on bodies moving in a quies-

cent fluid and very little is known on the combined effects of stratification and shear

or strain. Fundamental investigations aimed at exploring these couplings are nec-

essary and represent a compulsory step toward the understanding and prediction

of stratification effects in the presence of a turbulent background.

4. This review has focused on the dynamics of isolated bodies. However, most situa-

tions of practical interest involve interacting particles, drops or bubbles. Determin-

ing how these interactions are affected by the flow specificities at the particle scale

and vice versa is still a largely unexplored area, although some pioneering work has

been achieved in this direction, especially to estimate mixing properties.
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Debrégeas G, De Gennes PG, Brochard-Wyart F. 1998. The life and death of ‘bare’ viscous bubbles.

Science 279:1704–07

Denman KL, Gargett AE. 1995. Biological-physical interactions in the upper ocean: The role of

vertical and small scale transport processes. Annu. Rev. Fluid Mech. 27:225–55

26 Magnaudet & Mercier



Dı́az-Damacillo L, Ruiz-Angulo A, Zenit R. 2016. Drift by air bubbles crossing an interface of a

stratified medium at moderate Reynolds number. Int. J. Multiphase Flow 85:258–66

Dietrich N, Poncin S, Pheulpin S, Li HZ. 2008. Passage of a bubble through a liquid-liquid interface.

AIChE J. 54:594–600

Dietrich N, Poncin S, Li HZ. 2011. Dynamical deformation of a flat liquidliquid interface. Exp.

Fluids 50:1293–1303

Dietrich DE, Bowman MJ, Korotenko KA, Bowman MH 2014. Oil Spill Risk Management: Mod-

eling Gulf of Mexico Circulation and Oil Dispersal. Hoboken: Wiley, Salem: Scrivener

Doostmohammadi A, Ardekani AM. 2014. Reorientation of elongated particles at density interfaces.

Phys. Rev. E 90:033013

Doostmohammadi A, Dabiri S, Ardekani AM. 2014. A numerical study of the dynamics of a particle

settling at moderate Reynolds numbers in a linearly stratified fluid. J. Fluid Mech. 570:5–32

Doostmohammadi A, Stocker R, Ardekani AM. 2012. Low-Reynolds-number swimming at pycno-

clines. Proc. Natl. Acad. Sci. USA 109:3856–61
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Figure 10

Evolution of two bubbles passing from a higher- to a lower-viscosity fluid. The fluid set-up

consists of a silicone oil layer on top of a water-glycerin bath (λ “ 0.018, ζ “ 0.75). Top: an

initially nearly-spherical bubble with Bo “ 1.4, Bo1 “ 3.3, Bo2 “ 5.5, Ar1 “ 1.5. Bottom: a
spherical-cap bubble with Bo “ 5.5, Bo1 “ 13.2, Bo2 “ 22.0, Ar1 “ 4.1. In each row, the right

panel shows the evolution of the rise speed at the bubble apex, VT (normalized by p2gaq1{2) vs.

the distance zT (in equivalent sphere diameters, 2a “ p 6
π
Vq1{3) from the bubble apex to the

horizontal interface; symbols: experiments, solid line: direct numerical simulation. Adapted from

Bonhomme et al. (2012) with permission from Cambridge University Press.
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