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1. Introduction

Riblets are elongated micro-grooves at the wall, aligned with the direction of the main flow. They represent a
mature passive control technology aimed at reducing skin friction drag in turbulent flow, which has been successfully
tested both in the laboratory and in aeronautical/marine applications. The mechanism by which riblets operate is
by-now well understood and consists in the creation of an offset between the virtual origin of the longitudinal mean
flow and that of the transverse turbulent eddies. Provided that the riblets are embedded in the viscous sublayer, their
effect can be modeled by the Stokes equation to yield two protrusion heights, or Navier’s slip lengths, longitudinal, λ1,
and transverse, λ2, which are the distances from the rim of the riblets to the position where, respectively, streamwise
and cross-stream flows originate. These concepts have been introduced by Bechert and Bartenwerfer [1] and Luchini
et al. [2], and tested experimentally by Bechert et al. [3], among others. The results show that riblets remain in the
linear (Stokes) regime as long as their dimensionless spanwise periodicity, s+, measured in viscous wall units, remains
below a value close to 12. The optimal riblet spacing is close to 15 for a variety of riblet shapes, and skin friction drag
can be reduced by at the most 10% in the case of thin, blade-like riblets [3]. Above s+ ≈ 15 drag starts increasing
again and for s+ & 20 the skin friction coefficient exceeds the value of the corresponding smooth wall because of the
appearance of a Kelvin-Helmholtz-like instability of the mean flow which increases the spanwise coherence of the
turbulent structures, in so doing destructuring the longitudinal streaks, via the creation of spanwise rollers [4].

For drag to decrease, for any kind of wall indentation fully immersed in the viscous sublayer, the origin of the
secondary flow must be further away from the base of the indentation than the origin of the mean streamwise motion
or, in other words, ∆λ = λ1 − λ2 must be positive. The amount by which this is achieved is given by

∆C f

C f0
= −

∆λ+

(2 C f0 )−1/2 + (2κ)−1 (1)

as first shown by Luchini [5]. In equation (1), C f is the skin friction coefficient, C f0 its value for the case of a smooth
surface under the same outer flow conditions, and κ = 4.48 is von Kármán’s constant [6]. Despite the fact that the
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equation above holds only in the initial part of the drag curve (i.e. until the spanwise spacing of the micro-grooves is
below 12 wall units), the agreement of this theoretical estimate with experiments is very good and strongly endorses
the idea of maximizing ∆λ when drag reduction is sought for.

Clearly the optimal geometrical characteristics of the riblets depend on the outer flow conditions, and what is
optimal for one condition (say, level flight of an aircraft at cruise speed) may not be optimal any more under different
conditions. Recently, a patent has been submitted describing the manufacturing of elastomeric riblets [7], with the
claim that their optimized structural design provides the capability for riblets to be “thinner, lower weight and more
aerodynamically efficient”. It thus becomes interesting to examine the interaction between elastic micro-structures
anchored at the wall and the overlying fluid. We call these wall indentation compliant riblets.

This contribution is dedicated to the study of the microscopic problems, for the fluid and for the solid domains,
characterizing triangular riblets made of a linearly elastic material. The main outcome of the work will be the macro-
scopic equations ruling the interaction, and the effective coefficients (or convolution kernels, by virtue of the time
dependent nature of the fluid-solid coupling) required to close the macroscopic problem.

2. Model development

The flow of an incompressible Newtonian fluid of density ρ f and viscosity µ is assumed to flow over a microstruc-
tured surface made of a linearly elastic material of density ρs, Poisson’s ratio νP and Young’s modulus E. A sketch of
the surface being considered is represented in figure 1. The objective of this model is to simulate the fluid flow and
solid structure deformation without the need of large computational efforts to describe the details of the solid surface
and solve the small-scale fluid-solid interactions. The procedure shown in the present section gives rise to equivalent
boundary conditions for the macroscopic fields associated with the solid displacement and fluid flow. These boundary
conditions must be imposed on an equivalent smooth surface (denoted with E in figure 1) which is located at a certain
(small) distance from the tip of the protrusions forming the microstructured surface. To proceed with the development
of these conditions we introduce the fluid domain, denoted by F in figure 1, in which the incompressible Navier-Stokes
equations are valid and write in dimensional form

ρ f

(
∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j

)
=
∂Σ̂i j

∂x̂ j
, (2)

∂ûi

∂x̂i
= 0 , (3)

where Σ̂i j is the canonical fluid stress tensor of a Newtonian fluid

Σ̂i j = −p̂δi j + 2µε̂i j(û) , (4)

and ε̂i j(û) is the strain-rate tensor, formally defined as

ε̂i j(û) =
1
2

(
∂ûi

∂x̂ j
+
∂û j

∂x̂i

)
. (5)

In the domain S occupied by the linearly elastic solid, the governing equations read

ρs
∂2v̂i

∂t̂2 =
∂σ̂i j

∂x̂ j
, (6)

where the components of the displacement vector, v̂, are v̂i, and σ̂i j is the generic component of the stress tensor.
Under the assumption that the structure is elastic, the stress and strain tensors are linearly related through the relation

σ̂i j = Ĉi jklε̂kl(v̂) =
1
2

Ĉi jkl

(
∂v̂k

∂x̂l
+
∂v̂l

∂x̂k

)
, (7)

where Ĉi jkl = λ̂δi jδkl + Ĝ(δikδ jl + δilδ jk) is the stiffness tensor, and λ̂ and Ĝ are the two Lamé coefficients. These

coefficients are related to the Young modulus, E, and Poisson’s ratio, νp, as λ̂ =
νpE

(1 + νp)(1 − 2νp)
and Ĝ =

E
2(1 + νp)

.
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Figure 1. Sketch of a deformable microstructured surface. Right frame: a periodic unit cell is identified to apply the homogenization technique. In
the present case, a cuboid of dimensions ε × ε × 2ε is selected.

The fluid and solid equations are coupled through the matching of velocities and tractions across the microscopic
fluid-solid interface denoted with ∂|FS, viz.

ûi =
∂v̂i

∂t̂
, (8)

and
Σ̂i jn j = σ̂i jn j . (9)

We also need to specify the boundary conditions at the bottom B, and top T of the unit cell sketched in figure 1.
Continuity of fluid tractions and velocity is imposed on T, i.e.

Σ̂i jn j = Σ̂out
i j n j and ûi = ûout

i , (10)

where the superscript out denotes the variables on the external side of the cell, cf. [8]. It is also assumed that the unit
normal vector points out of the solid and into the fluid. On B we impose that

v̂i = 0 , (11)

which is equivalent to assuming that the elastic layer is anchored to a rigid, undeformable substrate.

2.1. Scaling relations
We start by assuming that the continuum layer made up by fluid and solid is characterized by a frequency, f,

sufficiently large for dynamic effects to be felt at leading order. Then, it can be argued that in the fluid domain

ρ f U f ∼
P
l
∼ µ

U
l2
, (12)

with U the velocity scale, P the pressure scale, and l the microscopic length scale. From the above, we can choose the
velocity scale to normalize the equations, i.e.

U =
P l
µ
. (13)

We further have a relation between the microscale l and the frequency f, which states that, for viscous effects to balance
inertia, l must be of the order of the Stokes layer thickness, i.e.

l =

√
µ

ρ f f
. (14)
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The small displacement of the elastic riblets is assumed to occur coherently over a macroscopic length L. This is the
case, for instance, of honami waves of canopy flows. By equilibrating inertia and diffusion in Cauchy’s equation for
the solid, we have

ρsV f2 ∼ E
V

L2 , (15)

so that the macroscale L can be taken to coincide with the elastic wavelength, i.e.

L =
1
f

√
E
ρs
. (16)

The interface conditions (8) is useful since it permits to relate the displacement and the velocity scales, i.e.

U = fV. (17)

We are ready to introduce the relations between the dimensional and dimensionless variables (the latter without hat),
setting

t̂ =
t
f
, x̂ = l x, p̂ = Pp, û =

P l
µ

u, v̂ =
P l
µ f

v . (18)

Substituting these definitions in the continuity and momentum equations for the fluid phase, we obtain

∂ui

∂xi
= 0 ;

∂ui

∂t f
+ Re u j

∂ui

∂x j
= −

∂p
∂xi

+ 2
∂εi j(u)
∂x j

in F , (19)

where εi j(u) =
1
2

[
∂ui

∂x j
+
∂u j

∂xi

]
and Re =

ρ f Ul
µ

= ε R, with R =
ρ f UL
µ

, assuming the microscale Reynolds number Re

to be of order ε (or possibly smaller). Applying the same procedure to the Cauchy’s equation in the solid we obtain

ε2 ∂
2vi

∂t2 =
∂σi j

∂x j
in S , (20)

with σi j = Ci jklεkl(v) and Ci jkl = Ĉi jkl/E. The continuity of tractions on ∂|FS becomes

−p ni + 2εi j(u) n j = ε−2 ρs

ρ f
Ci jkl εkl(v) n j , (21)

and the kinematic condition reads
ui =

∂vi

∂t
. (22)

The periodicity condition along x1 and x2 in the unit cell (fig. 1, right frame) must also be enforced, together with
vi = 0 at B and Σi j n j = Σout

i j n j at T.

2.2. Multiple scale expansion

Within the microstructured elastic layer, we can use the multiscale homogenization approach described by Mei &
Vernescu [9]. We introduce the fast (microscopic) and slow (macroscopic) variables, x = (x1, x2, x3) and x′ = ε(x1, x2),
and the expansions

F =

∞∑
i=0

ε i F (i) , (23)

where F (i) = (u(i), v(i), p(i)) is a function of (x, x′, t). The spatial derivatives become

∂

∂xi
→

∂

∂xi
+ ε

∂

∂x′i
for i = 1, 2 , (24)
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so that
εi j(u)→ εi j(u) + εε′i j(u) , (25)

with ε′i j(u) =
1
2

 ∂ui

∂x′j
+
∂u j

∂x′i

. The fact that the slow variable has a missing third entry results from the fact that the

microstructured layer does not extend macroscopically along the normal-to-the-surface direction, x3 (cf. figure 1). For
simplicity we maintain the notation x′i , with the understanding that i can only be equal to 1 or 2. The fluid equations
at order ε0 and ε1 in F then read

∂u(0)
i

∂xi
= 0 , (26)

∂u(1)
i

∂xi
+
∂u(0)

i

∂x′i
= 0 , (27)

∂u(0)
i

∂t
=
∂Σ

(0)
i j

∂x j
= −

∂p(0)

∂xi
+
∂2u(0)

i

∂x2
k

, (28)

∂u(1)
i

∂t
+ R u(0)

j

∂u(0)
i

∂x j
=
∂Σ

(0)
i j

∂x′j
+
∂Σ

(1)
i j

∂x j
. (29)

In (28) and (29) we have used the definition

Σ
(n)
i j = −p(n)δi j + 2

[
εi j(u(n)) + ε′i j(u

(n−1))
]
, (30)

for each n ≥ 0, with u(−1) = 0 for consistency. Similarly, the equations describing the motion of the solid structure at
order ε−2, ε−1 and ε0 in the S domain are

∂σ(0)
i j

∂x j
= 0 , (31)

0 =
∂σ(1)

i j

∂x j
+
∂σ(0)

i j

∂x′j
, (32)

∂2v(0)
i

∂t2 =
∂σ(2)

i j

∂x j
+
∂σ(1)

i j

∂x′j
. (33)

In (32) and (33) the stress tensor at each order, σ(n)
i j , is defined as

σ(n)
i j = Ci jkl

[
εkl(v(n)) + ε′kl(v

(n−1))
]
, (34)

for each n ≥ 0, with v(−1) = 0 for consistency. On ∂|FS the interface conditions read

u(0)
i =

∂v(0)
i

∂t
, (35)

u(1)
i =

∂v(1)
i

∂t
, (36)

σ(0)
i j n j = 0 , (37)

σ(1)
i j n j = 0, (38)

ρs

ρ f
σ(2)

i j n j = Σ
(0)
i j n j = −p(0)ni + 2εi j(u(0))n j . (39)

5
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To manage the boundary condition (10) on the top side of the cell, T, we follow the same procedure as in [8], by
truncating the continuity of tractions at order ε, which in the present case yields

Σ
(0)
i j n j + εΣ(1)

i j n j = Σout
i j n j on T . (40)

The outer stress tensor depends on the outer quantities defined in [8] (i.e. xout = (x′1, x
′
2, x

out
3 ) with xout

3 = εx3) and
is supposed not to be influenced by the small scales (this assumption is valid if T is sufficiently far from the elastic,
microstructured wall). Collecting terms at each order in (40), we obtain

Σ
(0)
i j n j = Σout

i j n j on T , (41)

and
Σ

(1)
i j n j = 0 on T . (42)

By the same arguments used in [8], it is also εu(0)
i = uout

i at the upper boundary. Finally, the boundary condition (11)
on B is merely a homogeneous Dirichlet condition for the displacement at each order. Other boundary conditions can
be used on B, such as a prescribed shear or normal stress to impose a specific time-varying deformation of the elastic
layer.

2.3. The macroscopic model

Equation (31) and the homogeneous boundary condition (37) imply that v(0) does not depend on the microscopic
variable, i.e. v(0) = v(0)(x′, t), so that σ(0)

i j = 0. Equations (26) and (28) can then be written as

∂

∂xi
(u(0)

i − v̇(0)
i ) = 0 , (43)

∂

∂t
(u(0)

i − v̇(0)
i ) = −v̈(0)

i −
∂p(0)

∂xi
+
∂2

∂x2
k

(u(0)
i − v̇(0)

i ) , (44)

and, out of linearity, the solution of (43) and (44) with boundary conditions (35) and (41) can be defined with four
convolution kernels, Li jk(x, t), Hi j(x, t), B jk(x, t) and A j(x, t), as:

u(0)
i − v̇(0)

i =

∫ t

0
Li jk(x, t − t′) ε′jk(uout; t′) dt′ +

∫ t

0
Hi j(x, t − t′) v̈(0)

j (x′, t′) dt′ , (45)

p(0) = p̄(0)(x′, t) +

∫ t

0
B jk(x, t − t′) ε′jk(uout; t′) dt′ +

∫ t

0
A j(x, t − t′) v̈(0)

j (x′, t′) dt′ , (46)

where p̄(0) is the macroscopic reference pressure which can be set thanks to the third component of (41). By substi-
tuting (45) and (46) into (43), (44), (35) and (41), the tensors Li jk, Hi j, B jk and A j are found to satisfy the following
microscopic problems: 

∂Li jk

∂t
= −

∂B jk

∂xi
+ ∇2 Li jk in F ,

∂Li jk

∂xi
= 0 in F ,

Li jk = 0 on ∂|FS ,

U(t′)U(t − t′) εi j (L·pq(t − t′)) n j = δ(t′ − t) δip δ jq n j on T ,
Li jk, B jk periodic along the tangential directions 1 and 2 ,

(47)

6



/ Journal Fluids Structures 00 (2018) 1–13 7

∂Hi j

∂t
= −

∂A j

∂xi
+ ∇2 Hi j in F ,

∂Hi j

∂xi
= 0 in F ,

Hi j = 0 on ∂|FS ,

εi j (H·p) n j = 0 on T ,
Hi j, A j periodic along the tangential directions 1 and 2 ,

(48)

subject to the initial condition Li jk(x, 0) = 0 and Hi j(x, 0) = −δi j. In the boundary condition at the top of the domain,
T, for system (47),U(t − t′) is the unit step function centered in t′ and δ(t) is Dirac’s delta function. The solutions of
interest are transients. In particular, since L solves problem (47) for each t′ greater than 0, it is univocally defined up
to a temporal translation of t′. To carry out the numerical solution we set t′ = 0.

At this point we introduce the spatial average over a unit cell to deduce macroscopic equations valid over the homog-
enized domain. The average is defined as

〈 f 〉 :=
1

|F ∪ S|

∫
F|S

f dV , (49)

where | · | denotes the volume of the corresponding domain. After (49) is applied, the microscopic three-dimensional
cell reduces to a single macroscopic point lying on a 2-manifold located at a constant distance, d, from a reference
(x1, x2) plane through the microstructured surface. Macroscopically speaking, since d is of order ε and spatial varia-
tions smaller than ε cannot be measured by the slow variable x′, we are allowed to take d = 0. As shown in [8], the
present theory is not able to better estimate the value of d, since we are approximating the physical phenomenon at
leading order in ε. Directly linked to this fact is also the choice of h, the normal-to-the-surface height of the unit cell
over which the variables must be averaged. Since h must be of order ε in the present theory, we do not introduce any
error by taking h = 2ε to include a balanced fraction of solid and fluid in the cell. Other definitions of averages can be
used in order to deduce the effective quantities, starting from the microscopic tensors.

The macroscopic equations for the fluid quantities are found by applying the spatial average over the fluid domain
F to (45) and (46), leading to

〈u(0)
i 〉 − θ

∂v(0)
i

∂t
=

∫ t

0
Li jk ε

′
jk(uout; t′) +Hi j v̈(0)

j (x′, t′) dt′ , (50)

〈p(0)〉 = 〈 p̄(0)(x′, t)〉 +

∫ t

0
B jk ε

′
jk(uout; t′) +A j v̈(0)

j (x′, t′) dt′ . (51)

with θ =
|F|
|F ∪ S|

. The quantities Li jk, Hi j, B jk and A j are defined as

Li jk = 〈Li jk〉, Hi j = 〈Hi j〉, B jk = 〈B jk〉 and A j = 〈A j〉 , (52)

with Li jk the dynamic slip tensor. To ensure uniqueness of the solution of the problems (47) and(48), we also take
〈B jk〉 = 0 and 〈A j〉 = 0, so that equation (51) simplifies to 〈p(0)〉 = 〈 p̄(0)(x′, t)〉 .

We now consider the linearly elastic solid. Equation (32) reduces to

∂

∂x j
Ci jklεkl(v(1)) = 0 , (53)

and the interface condition (38) valid on ∂|FS becomes

Ci jklεkl(v(1))n j = −Ci jklε
′
kl(v

(0))n j . (54)

7
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The solution to (53) and (54) can formally be written as

vi
(1)(x, x′, t) = χ

pq
i (x) ε′pq(v(0))(x′, t) . (55)

Replacing (55) into (53) and (54), χpq is found to satisfy the microscopic problem:

∂

∂x j

{
Ci jkl

[
εkl(χpq)

]}
= 0 in S ,{

Ci jkl

[
εkl(χpq) + δkpδlq

]}
n j = 0 on ∂|FS ,

χ
pq
i periodic along tangential directions 1 and 2 ,
χ

pq
i = 0 on B .

(56)

Summing the dimensionless momentum equations of fluid and solid at different orders, and retaining terms up to order
ε0 we have:

ε−1

 ρs

ρ f

∂σ(1)
i j

∂x j

 + ε0

−∂u(0)
i

∂t
+
∂Σ

(0)
i j

∂x j
−
ρs

ρ f

∂2v(0)
i

∂t2 +
ρs

ρ f

∂σ(2)
i j

∂x j
+
∂σ(1)

i j

∂x′j


 = 0 ; (57)

we then average over the total volume and, making use of Gauss’ theorem and of the boundary conditions, obtain the
macroscopic momentum equation for the fluid-solid composite in the form:{[

ρs

ρ f
+ θ

(
1 −

ρs

ρ f

)]
δi j +Hi j

}
v̈(0)

j +Li jk ε
′
jk(uout) =

ρs

ρ f

∂

∂x′j
Ci jkl ε

′
kl(v

(0)) −
1

|F ∪ S|

∫
T

Σout
i j n j dA , (58)

with Ci jpq = Ci jkl〈εkl(χ
pq
i )〉 + 〈Ci jklδkpδlq〉.

Finally, we need a third equation to formally close the macroscopic problem. This is linked to the mass balance in the
composite medium and is found by taking the average of (27), yielding

∂〈u(0)
i 〉

∂x′i
= ε′pq(v̇(0))

1
|F ∪ S|

∫
∂|FS

χ
pq
i (x) ni dA. (59)

Equation (50) represents a modified boundary condition for the velocity field in the outer fluid and requires the
knowledge of the solid displacement field at leading order. Thus, at each time step, the solution of (50) and (59) must
be pursued to yield the unknowns u(0) and v(0). If the pressure 〈p(0)〉 is also needed, it can be obtained through the
solution of (58).

3. Solution of the microscopic problem and effective coefficients

In order to apply the equivalent boundary condition (50), the microscopic problems (47), (48) and (56) have to be
solved. Once their solution is computed, the averaged values over a unit cell (the so-called effective coefficients of the
microstructured elastic surface) are deduced and used in (50), (58) and (59). The computational microscopic domain
used to find the solution of (47), (48) and (56) is represented in figure 2 together with a typical grid. Lengths in this
figure are normalized with respect to l. To apply the average defined in (49), we formally set the size of the unit cell
to 1 × 1 × 2 in units of l. The results discussed below correspond to a triangular riblet-like surface with an opening
angle of 90◦ (see figure 2). The surface over which the riblets are positioned is a plane with tangent vectors ê1 and ê2
and normal vector ê3. The elastic solid composing the rough layer is made of an isotropic material the Poisson’s ratio
of which, νP, is taken equal to 0.33. Hence the first and the second Lamé coefficients, λ̂ and Ĝ, are 0.73E and 0.38E,
respectively. The resulting dimensionless stiffness tensor Ci jkl is, in Voigt’s notation [10]

Ci jkl =



1.49 0.73 0.73 0 0 0
0.73 1.49 0.73 0 0 0
0.73 0.73 1.49 0 0 0

0 0 0 0.38 0 0
0 0 0 0 0.38 0
0 0 0 0 0 0.38


. (60)
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Figure 2. Typical computational grid within the F (left) and S (right) domains. With the present set up it is θ = 0.625.

Figure 3. Time evolution of L113. Three different time instants are shown, t = 10, 40, 100, from left to right, showing a decreasing behavior.

We have used the academic version of the software Comsol Multiphysics 5.3 [11] to obtain the numerical solution of
the various closure problems; numerically converged results are shown below. Convergence has been checked with
respect to the computational grid and also with respect to the basis functions used in the finite elements discretiza-
tion implemented in Comsol (employing up to cubic polynomials for the Stokes problems in F and up to quintic
polynomials for the solid problem in S).

3.1. The convolution kernels in the fluid domain

In this section we analyze the solution of problems (47) and (48). These are time-dependent linear Stokes problems
valid over the F domain, with a inhomogeneous initial condition (problem 48) or inhomogeneous boundary conditions
imposed on T (problem 47). The boundary condition on T for problem (47) involves a Dirac distribution which has

been rendered numerically as a gaussian impulse Gδ =
1
√

2πδ
e
−t2
2δ . The convergence of the results by pushing δ to

zero has been verified. The fact that the microstructured elastic layer is placed over a planar surface with tangent and
normal vectors that do not vary in space implies that only Li13 and Li23 differ from zero (this was shown by Zampogna
et al. [8] in the case of rigid microstructures). In figure 3 and 4 the relevant components of L are shown for three
consecutive time-instants. The average of L plays a central role in the macroscopic model developed in the previous
section, as its components represent the instantaneous slip lengths associated with the relative fluid-solid tangential
velocity. In contrast, B is identically zero within the microscopic domain. After volume averaging L over the unit cell
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Figure 4. Time evolution of L223. Three time instants are shown t = 10, 40, 100.
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Figure 5. Time evolution of the non-zero components of L for a gaussian impulse centered in t′ = 0.
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Figure 6. Non-zero components of −H for three time instants t = 0.05, 4, 10, from left to right.

from x3 = −1 to x3 = 1, the only nonzero components are 〈L113〉 and 〈L223〉; their behaviour in time is shown in figure
5. These components are respectively the analogous of the longitudinal and transverse slip lengths, the definition of
which can be found in [2]. Similar to the conclusions of [2], they do not vary with the height of the computational
cell (provided the average is always taken over the same volume, i.e. over a cell of dimensions 1 × 1 × 2, in units of
l). Indeed, the instantaneous averaged values obtained with the cell chosen for the present analysis remain unaltered
upon increasing the height of the cell above x3 = 4.

The other two tensors H and A also reach a x3− independent value for x3 & 4. While A is equal to zero within the
computational domain, H (whose components are shown for three different time-instants in figure 6) has an analogous
behaviour as L with two differences: it asymptotically approaches zero from the negative side and its components, in
absolute values, decay to zero faster than the components of L, as can be evinced from figure 7.

3.2. The tensor χ in the solid domain

The tensor χ is the solution of a second order partial differential equation defined over the S domain. It represents
the microscopic displacement of the structure due to internal deformations. The spatial distribution of the nonzero
components of this tensor may be observed in figure 8. Most of them vanish after volume averaging, owing to their
antisymmetry with respect to a vertical mid-line. All nonzero volume-averaged components are listed in table 1.

Table 1. Nonzero volume-averaged entries of the microscopic solid tensor.

〈χ11
3 〉 〈χ22

3 〉 〈χ13
1 〉 〈χ23

2 〉 〈χ33
3 〉

0.070 0.072 0.146 0.146 0.146
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Figure 7. Time evolution of the non-zero components of −H .

Figure 8. Non-zero components of χ on the domain S.
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4. Conclusions

A general framework to analyze microstructured elastic coatings anchored to a rigid, solid substrate has been
presented. The lack of geometrical limitations for both the macroscopic surface and the microscopic structure makes
this model suitable to explore, at a reasonable computational cost, a large number of situations involving interactions
between a viscous fluid and a linearly elastic, micro-patterned surface.

Equation (50) represents a generalization of the Navier slip boundary condition for the case of deformable surfaces,
rendered here by the time-convolution between the slip and the strain tensors. In this equation, the components of the
tensor L are the slip lengths allowing the relative fluid-solid velocity at the equivalent surface E to be expressed in
terms of the shear exerted by the outer flow.
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