
HAL Id: hal-02383273
https://hal.science/hal-02383273v1

Submitted on 27 Nov 2019 (v1), last revised 2 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Impact Test to Determine the Wave Speed in SHPB:
Measurement and Uncertainty

Denis Brizard

To cite this version:
Denis Brizard. An Impact Test to Determine the Wave Speed in SHPB: Measurement and Un-
certainty. Journal of Dynamic Behavior of Materials, 2019, p. 1-8. �10.1007/s40870-019-00226-7�.
�hal-02383273v1�

https://hal.science/hal-02383273v1
https://hal.archives-ouvertes.fr


Journal of Dynamic Behavior of Materials manuscript No.
(will be inserted by the editor)

An impact test to determine the wave speed in SHPB:
measurement and uncertainty

D. Brizard 1

1 Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC
UMR_T9406, F69622, Lyon, France
e-mail: denis.brizard@ifsttar.fr

Abstract Post-processing the strain waves in Split Hop-
kinson Pressure Bars to get the stress-strain in the sam-
ple requires the knowledge of the characteristic wave
speed c0 in the measuring bars. In the context of metrol-
ogy, the measurement uncertainty in the value of c0
must be assessed. The aim is to minimize this uncer-
tainty, which depends on the way c0 is determined, as it
has an impact on the uncertainty in the final stress and
strain in the sample. The frequency domain method we
introduce is based on an impact test on a single bar.
The frequency spectrum of the impact response of the
bar clearly exhibits the longitudinal resonant frequen-
cies of the bar. The experimental dispersion curve is
deduced from the spectrum and an optimization proce-
dure was applied to determine the wave speed c0 along
with the Poisson’s ratio and the uncertainty in the wave
speed. This method gives a relative uncertainty in c0
lower than 0.05%: it is mainly related to the uncer-
tainty in the length of the bar (which is hard to reduce
when using standard meter tape), which prevails over
the uncertainty in the resonance frequencies of the bar.
A precise value of the wave speed c0 and of the associ-
ated measurement uncertainty is an important step in
the context of Split Hopkinson pressure bars if we want
to precisely assess the final uncertainty in Split Hop-
kinson pressure bars test results, which is at present
scarcely done.

1 Introduction

Split Hopkinson pressure bars are commonly used to
measure the stress-strain relationship of materials in
the intermediate range of strain rate (100 s−1 to 10 000 s−1)
[1]. The main components of a SHPB device are a striker

Address(es) of author(s) should be given

and two measuring bars [2]. The sample is placed be-
tween the two measuring bars and the striker hits the
first measuring bar at a prescribed velocity. A strain
wave propagates down the first measuring bar: part of
the wave is reflected at the interface with the sample
and part of the wave crosses the sample and propa-
gates through the second measuring bar. Strain gauges
are commonly used to measure the strain time series in
each bar, they are often placed in the middle of the
bars to avoid any overlay between the incident and re-
flected pulses. The stress and strain in the sample are
computed from the incident, reflected and transmitted
waves in the bars.

The value of the wave speed c0 =
√
E/ρ is impor-

tant in the post-processing of the SHPB tests because
it appears in the equations of the strain rate and strain
in the sample as [3]

ε̇s(t) = −2c0

ls
εr(t) (1)

εs(t) = −2c0

ls

∫ t

0
εr(τ)dτ (2)

where ls is the initial length of the sample and εr(t) is
the reflected wave measured in the input bar. E is the
modulus of elasticity and ρ the density of the measuring
bars.

In the context of quality in measurement, it is also
necessary to determine the uncertainty in c0 as it is in-
volved in the final uncertainty in the stress and strain
in the sample. The general approach to derive the mea-
surement uncertainty in the stress and strain in the
sample is presented in [4], however this paper does not
detail how to assess the uncertainty in the wave speed.
The present paper aims to fill this gap.

Naturally it is possible to compute c0 from the mea-
sured values of E –on a tensile testing machine– and
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of ρ. However, the determination of the wave speed c0
directly from a test made on SHPB is appealing, espe-
cially if other facilities are not available. The method
described later in the present paper also allows the de-
termination of Poisson’s ratio ν.

In the literature of SHPB, the accurate measure-
ment of velocity c0 is said to be critical [2] [5], how-
ever few details are given on how accurate it should be.
In the case of low attenuation bars, the measurement
methods may be classified into three categories.

The intuitive method of measuring the transit time
between a pulse and its reflection seems rather simple
but it faces some overlooked issues. The propagation
of longitudinal waves in bars of finite diameter is dis-
persive [6], meaning that waves of different frequency ω
have different phase velocity c(ω). This is described by
the dispersion curve which gives the evolution of phase
velocity with respect to either wave frequency or wave
length (see Fig. 1 from [6] for instance); by definition
c0 = c(0). The shape of the pulse travelling down the
bar is therefore affected: it is hard to determine the be-
ginning of the pulse and to find the precise time shift
between two pulses with slightly different shapes. Pos-
sibly noisy measurement can make this even harder.
Furthermore, Davies [7] pointed out that "the mean ve-
locity of propagation of the disturbance is decreased by
dispersion", which means that measuring the velocity
c0 from a transit time procedure may be erroneous.

To overcome the change in shape of the pulse trav-
elling down the bar, Lifshitz and Leber [8] introduced
an iterative procedure to determine the velocity c0 from
an incident and a reflected pulse. One of the pulses was
shifted –taking into account of dispersive effects– and
compared to the other one, the value of c0 was then
adjusted "until the best fit is obtained". They however
made the assumption that the low frequency part of
the dispersion curve is insensitive to the value of ν, and
therefore did not discuss the determination of ν.

The third method for the measurement of c0 is based
on vibration natural frequency, it was employed by Davies
[7], Kolsky [9] and Zemanek and Rudnick [10]. This
method requires a specific device for the excitation of
longitudinal resonances. Othman and Gary [11] pro-
posed a method based on the analysis of the rod res-
onances from an impact test, however they only plot
the experimental dispersion curve and do not deduce
the values of c0 and ν, nor do they treat measurement
uncertainties.

The scope of this paper is limited to bars in which
the attenuation is low, typically metallic bars. On the
contrary, attenuation cannot be neglected in polymeric
bars. Bacon [12] proposed a non-parametric approach
to obtain the experimental dispersion and attenuation

curves of viscoelastic bars based on the transfer func-
tion between two observation points (or between an in-
cident and a reflected pulse). Other bars identification
procedures rather rely on parametric approaches: the
aim is to determine a viscoelastic rheological model de-
scribing the behaviour of the material of the bars (see
[13] for example).

In this article we introduce a parametric method for
precisely determining the velocity c0, along with Pois-
son’s ratio ν, from a simple impact test that can be
done on the SHPB setup. The method uses the impact
spectrum rather than the impact time series. Some spe-
cific points of the dispersion curve are deduced from the
resonance frequencies in the impact spectrum and they
feed an optimization procedure for finding the values
of c0 and ν. Throughout all the process, measurement
uncertainties are taken care of, in order to assess the
final uncertainty in the wave speed.

This paper is organised as follows. The first part
(Section 2) recalls the computation of the longitudinal
resonant frequencies of a finite length rod. In Section 3,
we derive the expression of the wave speed as function
of resonance frequencies –used to plot the experimental
dispersion curve–, compute the associated uncertainty
and detail the optimization procedure to get the wave
speed, the Poisson’s ratio and the uncertainty in wave
speed. Finally, in Section 4 the proposed method is ap-
plied on a practical example to illustrate its efficiency,
it is compared to other methods and the influence of
the uncertainty in c0 on the SHPB stress-strain curve
is illustrated.

2 Longitudinal modes of a finite length rod

Let L be the bar lenght. Let E, ρ and ν be respectively
the Young modulus, the density and the Poisson’s ratio
of the bar.

2.1 Resonance frequencies of 1D rod

The wave equation of longitudinal waves in thin rods is
[14] (pp77, (2.1.7)))

∂2u

∂t2
+ E

ρ

∂2u

∂x2 = 0 (3)

where u(x, t) is the displacement at coordinate x and
time t. We can define the wave speed of the bar as c0 =√
E/ρ. Stationary solutions are of the form u(x, t) =

U(t)Φ(x) and Eq. 3 becomes

ÜΦ+ c2
0UΦ” = 0 (4)
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where the dot denotes the derivative with respect to
the time variable t and the prime denotes the deriva-
tive with respect to the space variable x. The previous
equation can be reformulated as

Ü

U
= −c2

0
Φ”
Φ

= −ω2, ∀x, ∀t (5)

where ω is the circular frequency. The longitudinal modes
are therefore the solutions of

Φ”− ω2

c2
0
Φ = 0 (6)

Let λ2 = ω2/c2
0. The solutions of Eq. 6 are of the form

Φ(x) = P sin(λx) +Q cos(λx) (7)
Φ′(x) = λP cos(λx)− λQ sin(λx) (8)

where the constants P and Q are obtained from the
boundary conditions, which are a null strain at x = 0
and x = L

Φ′(0) = λP (9)
Φ′(L) = −λQ sin(λL) (10)

A null strain at the ends of the rod implies P = 0 and
as we are interested in non trivial solution (ie. Q 6= 0)
Eq. 10 becomes sin(λL) = 0. The longitudinal modes
of the rod must therefore satisfy

λn = nπ

L
, n ∈ N (11)

The eigenfrequencies of the rod are

fn = nc0

2L , n ∈ N (12)

2.2 Antiresonances and observable resonances

Whatever the position of the strain gauge on the bar,
some vibration modes are not observable. These are the
modes which have a vibration node located at the same
position as the gauge. The resonant frequency is then
as antiresonant frequency. In our case the strain gauge
is located at the middle of the bar in order to minimize
wave overlay, the additional condition for antiresonant
frequency is therefore

Φ′(L/2) = 0 (13)

From Eq. 8 a non trivial solution still implies sin(λL/2) =
0. The antiresonances therefore verify

λ2n = 2nπ
L

, n ∈ N (14)

The corresponding antiresonant frequencies are

f2n = (2n)c0

2L , n ∈ N (15)

The observable resonant frequencies are deduced from
Eq. 12 and Eq. 15 and if the strain gauge is in the mid-
dle of the bar we have

f2n+1 = (2n+ 1)c0

2L , n ∈ N (16)

3 Measurement of wave speed, Poisson’s ratio
and uncertainty in wave speed from the impact
test

3.1 Wave speed from impact test spectrum

Since in reality the propagation of longitudinal waves
in the measurement bars is dispersive [6] [7], we substi-
tute c0 by cexp(f) in Eq. 16. The observable resonant
frequencies of the impact spectrum therefore give the
wave speed at some specific frequencies

cexp(f2n+1) = 2Lf2n+1

2n+ 1 , n ∈ N (17)

In the following, this is called the experimental disper-
sion curve (see Fig. 3b).

3.2 Uncertainty in the value of the wave speed

We use here the notations defined in the GUM (guide to
the expression of measurement uncertainty [15]) and in
the VIM (international vocabulary of metrology [16]).
Let u(x1) denote the standard –in the sense of standard
deviation– measurement uncertainty in x1, it will be ab-
breviated as "uncertainty in x1". The standard relative
measurement uncertainty in x1 is therefore u(x1)/x1, it
will be abbreviated as "relative uncertainty in x1".

The relative uncertainty in the computed velocity is
deduced from Eq. 17 and the set of rules for functional
relationships defined in [17][
u (cexp)
cexp

]2
=
[
u (L)
L

]2
+
[
u (f2n+1)
f2n+1

]2
(18)

3.3 Optimization procedure on the experimental
dispersion curve

The experimental dispersion curve (Eq. 17) –including
measurement uncertainties (Eq. 18)– obtained from the
impact test feeds an optimization procedure. The aim of
the optimization is to find the values of the wave speed
c0, width of corridor ∆c0 and Poisson’s ratio ν that
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best fit the experimental data including the uncertainty
corridor, i.e. such that

argmin
c0,∆c0,ν

dsup + dmean + dinf (19)

dmean = dist (c(c0, ν), cexp) (20)
dsup = dist (c(c0 +∆c0, ν), cexp + u(cexp)) (21)
dinf = dist (c(c0 −∆c0, ν), cexp − u(cexp)) (22)

where c(c0, ν) is the computed dispersion curve whose
parameters are wave speed c0 and Poisson’s ratio ν. The
computed dispersion curves are calculated by solving
Pochhammer equation with a Newton algorithm (de-
tails are given in [18] and [19]). The distance dist(c1, c2)
is the average absolute difference between the two curves
c1 and c2. The distance is evaluated at the experimental
points and the average absolute difference is weighted
with the inverse of the measurement uncertainty to
avoid giving too much importance to the low frequency
part of the experimental dispersion curve (see Fig. 3b).

The optimization algorithm is CMA-ES [20], we used
the Python version available online.

The computed corridor for the dispersion curve de-
pends on three parameters: c0, ∆c0 and ν (see Fig. 3a).
The lower limit of the corridor is c(c0−∆c0, ν) and the
upper limit is c(c0 +∆c0, ν). The value of c0 only affects
the vertical position of the dispersion curve without af-
fecting its shape. The value of ν affects the shape of the
velocity drop (see [6]).

No uncertainty in Poisson’s ratio∆ν was used in the
optimization procedure. Indeed, varying ν for a given
value of c0 only moves the high frequency part of the
dispersion curve, the very low frequency part of the
dispersion curve –before the drop in velocity– being in-
sensitive to the value of ν. So adding ∆ν to the op-
timization procedure would not increase the fit of the
experimental corridor –as it tends to widen the corri-
dor as the frequency increases– nor would it give a value
of ∆ν other than zero. Indeed this was tested and the
optimum ∆ν was around 10−14.

4 Application to 17-4PH steel bars

4.1 Impact test conditions

The present method is applied on the specific SHPB
device designed and built at our laboratory, LBMC
UMR_T9406 (Iffstar/UCLB). Armco 17-4PH precipitation-
hardening steel is used for the measuring bars.

The diameter of the bars is 31.75mm, the bars were
centerless ground to obtain a precise diameter, a good
cylindricity and a low surface roughness. The end sur-
faces of the bars were machined on a lathe. The length

of the bars is L = 3058mm, it is measured with a class
II measuring tape. Directive 2014/32/EU [21] (Annex
X, Chapter 1) gives the maximum permissible error
(MPE) between two non-consecutive scale marks as
A + BLr + C, where A = 0.3mm, B = 0.2mmm−1,
C = 0.2mm and Lr is the value of the length rounded
to the next whole metre (Lr = 4m here). The uncer-
tainty in the length is u(L) = 1.3mm, the relative un-
certainty is 0.043%.

The test for determining the wave speed c0 is a sin-
gle bar test: the strain wave is therefore reflected back
and forth at the free ends of the bar. The high fre-
quency content in the strain wave is ensured by the use
of a short striker. The steel striker bar is 94.2mm long
and has a diameter of 30.0mm. The speed of the striker
bar just before impact is 23ms−1; yet this speed is not
important for the determination of c0 as changing the
striker velocity has no influence on the wave duration.

Strain gauges are used to measure the wave trav-
elling in the bar ([4] gives the full details). However,
the method presented in this article does not depend
on any specific method of measurement of the waves
propagating in the bars. For example Photon Doppler
velocimetry, recently introduced for SHPB [22], could
also be used.

The useful part of the signal is the one contain-
ing the multiple reflections of the wave in the bar (see
Fig. 1). The duration of the time window is T=191ms
and during this period the strain wave travels approxi-
mately 160 times the length 2L. The uncertainty in the
measured frequency u(f) is taken as the resolution in
the frequency domain because the peaks are very sharp
(see Fig 2), it is therefore directly linked to the period
T : u(f) = 1/T .

4.2 Detection of the peaks in the frequency spectrum

The resonant frequencies are clearly visible in the fre-
quency spectrum of the impact test (see Fig. 2). The
peaks are automatically detected as the points with
maximum amplitude between two antiresonances. The
antiresonances are roughly determined using a first rough
estimate of the wave speed c0 and Eq. 15. Because the
noise on the spectrum increases in high frequency, es-
pecially around antiresonances, the peak search zone is
reduced to 60% of the frequency interval between two
successive antiresonances (the light red bands in Fig. 2
are discarded).
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Fig. 1: Strain-time record for the impacted bar. Vertical
lines | indicate a travel of the wave over a distance of:
(a) 10× 2L, (b) 2L.
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Fig. 2: Frequency spectrum of the impact test (+:
identified f2n+1 peaks with the corresponding value of
2n + 1; |: rough antiresonant frequencies f2n; : dis-
carded peak search zone). Adapted from [23].

4.3 Wave speed and Poisson’s ratio

Fig. 3b (blue curves) illustrates the experimental dis-
persion curve obtained from the post-processing of the
impact spectrum with Eq.17. In fact, the impact test
was repeated 5 times and all the corresponding experi-
mental dispersion curves are displayed. These five tests
give similar dispersion curves, except for the low fre-
quency part where the discrepancy is noticeable.

The uncertainty in the velocity decreases as the fre-
quency increases. This is due to the frequency term in
Eq. 18: u(f2n+1) is constant and taken equal to the
frequency resolution. The term [u(f)/f ]2 therefore de-
creases as the frequency increases. On the contrary,
[u(L)/L]2 is constant whatever the considered peak.
From Eq. 18 it is clear that the uncertainty in c tends
asymptotically to the value of the uncertainty in L as
the frequency increases. The reduced uncertainty in the
high frequency part of the curve is one of the interests
of the present method.

The optimum dispersion curve and corridor is also
plotted in Fig. 3b, the five tests were used in the op-
timization process. Practically, the five data sets were
gathered as if it was only one dispersion curve. The
agreement between the experimental curves and the
optimum curve is very good. The optimization gives
a wave speed of 5089.2ms−1, a Poisson’s ratio of 0.287
and corridor width of ∆c0 = 2.46ms−1. Not weighing
the average for the distance criteria in the optimization
gives the same values for c0 and ν, only ∆c0 is slightly
higher and is equal to 2.7ms−1.

By examining Fig. 3b, we can see a close fit, in the
high frequency part, between the experimental disper-
sion curve with measurement uncertainty and the op-
timum computed corridor: the uncertainty in the wave
speed can be taken as the width of the corridor u(c0) =
∆c0. Taking u(c0) = 2.5ms−1 gives a relative uncer-
tainty in the wave speed equal to u(c0)/c0 = 0.05%

In case a longer striker is used, the spectra are nois-
ier and it is more difficult to automatically detect the
resonant frequencies: dispersion curves are not as clean
as with the shorter strikers. Indeed there are bumps on
the experimental dispersion curve due to wrong peak
picking in the impact spectrum. The optimization pro-
cedure using three impact tests1 performed with a 610mm
long striker gave the following values: c0 = 5089.8ms−1,
ν = 0.290 and∆c0 = 2.44ms−1. The value for c0 agrees
with the one found with a short striker, concerning ν
only the first two significant digit agree.

The proposed method does not allow to determine
the uncertainty in the Poisson’s ration u(ν). In SHPB
tests, the Poisson’s ratio is only required for the disper-

1 The number of resonance peaks is also 18.
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Fig. 3: Computed and experimental dispersion curves

sion correction procedure of the raw pulses measured
in the bars. For the uncertainty quantification of the
whole SHPB post-processing (see [4]), the uncertainty
in the dispersion curve may then be taken as the uncer-
tainty in c0 only. The uncertainty in c0 is also required
to quantify the uncertainty in the strain rate and in the
strain from Eq. 1 and Eq. 2. So the undetermined value
of the uncertainty in ν does not impede the assessment
of the uncertainty in the stress and strain from SHPB
tests.

Using only the first resonant frequency to determine
the wave speed would lead to a much greater uncer-
tainty in c0 (0.6% in this case as opposed to 0.05%
with the optimization procedure) and would not enable
the determination of ν.

4.4 Comparison with other methods

The material properties of 17-4PH steel in H1075 con-
dition are given by the manufacturer (AKSteel) in two

successive brochures. The 1994 brochure gives ρ = 7.81 g cm−3,
E = 201 000MPa and ν = 0.291, from which c0 =
5073ms−1. The 2018 brochure gives ρ = 7.81 g cm−3,
E = 197× 103 MPa and ν = 0.27, from which c0 =
5022ms−1. No measurement uncertainties are given in
the brochures, so it is hard to assess u(c0). The differ-
ent values provided for E and ν highlight the necessity
to characterize the bar material and not to rely on the
tabulated data.

Because of the effect of dispersion, the transit time-
method is not suitable to determine the value of c0,
be it by using the starting points of the wave or the
peak of the wave. Both are affected by dispersion (see
[14], §2.5.4 and §8.4.1). Fox and Curtis [24] however
introduced a change in variable ((t−x/c0)/x1/3, where
x is the propagation distance) which "should reduce the
beginning portions of all strain-time records to a single
curve". This was also used by Kaul and McCoy [25]. It
is interesting to note that "the time of initial rise should
vary inversely as the cube root of the distance of travel"
[24]: that is why the starting points of the wave are not
suitable for the transit time-method.

Instead of the transit time-method, we propose a
modified time-method to determine c0 from the strain-
time records. It consists in finding the optimal value of
time shift∆topt (within sampling accuracy of 0.2 µs) for
which the waves best overlay in the modified time-plot,
c0 is then computed as 2L/∆topt. The best overlay is il-
lustrated by Fig. 4, in which the full strain-time record
of Fig. 1a was used (the record duration of nearly 0.2 s
corresponds to a propagation distance of nearly 1 km).
The optimal value of c0 is 5089.9ms−1, it is in accor-
dance with the value from the experimental dispersion
curve of Section 4.3. We observed that a small variation
of ∆topt of only a few samples clearly reduced the qual-
ity of the overlay of the pulses: that is why the value
of c0 can reasonably be given with 5 significant figures.
However, with this transit time-method it is difficult to
assess the uncertainty in c0 and the value of ν cannot
be determined.

4.5 Uncertainty corridor on the stress-strain curve
with SHPB

In order to illustrate the influence of the uncertainty in
the wave speed, the uncertainty corridor on the stress-
strain curve of a typical SHPB test is computed for two
values of u(c0)/c0, namely 0.6% and 0.05%.

We assume that the modulus of elasticity is com-
puted from the wave speed and the density as E = ρc2

0.
The following relationship holds for the uncertainty in
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Fig. 4: Normalized strain with respect to modified time
(according to [24]). For sake of clarity, only one wave
(pulse propagating on a distance of 2L) out of 5 is plot-
ted, and the abscissa is restrained to the compression
part of the strain wave.

E (see [17])[
u (E)
E

]2
=
[
u (ρ)
ρ

]2
+ 4

[
u (c0)
c0

]2
(23)

The value of the density given by the manufacturer is
ρ = 7.81 g cm−3. Following [26] (Rule 1, page 23), we
can assume that the uncertainty in ρ is on its last sig-
nificant digit: u(ρ) = 0.005. This gives u(ρ)/ρ = 0.06%.

In case u(c0)/c0 = 0.6%, then u(E)/E = 1.2%.
In case u(c0)/c0 = 0.05%, then u(E)/E = 0.12%.
Both cases are used to compute the uncertainty cor-
ridor around the stress-strain curve of a copper sample
tested with SHPB. All the details of the method to get
the uncertainty corridor are given in [4]. The influence
of u(c0) on the width of the uncertainty corridor is no-
ticeable (see Fig. 5).

The importance of the uncertainty corridor is quan-
tified by the ratio of the area of the uncertainty corridor
upon the area of the stress-strain curve. The stress-
strain curve contour is closed by a point located on the
x-axis at the vertical of the last point of the stress strain
curve. This ratio is equal to 10.4% when u(c0)/c0 =
0.6% and 3.5% when u(c0)/c0 = 0.05%: the area of
the uncertainty corridor is divided by 3 when the un-
certainty in c0 is divided by 10.

5 Conclusion

This article introduces a method for the determination
of the wave speed c0, uncertainty in wave speed u(c0)
and Poisson’s ratio ν of SHPB measurement bars. This
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Fig. 5: Influence of the relative uncertainty in c0 on the
stress-strain curve in the sample with SHPB (copper
sample, signals are low-pass filtered at 200 kHz)

method is based on a straightforward impact test on
a single bar with a short striker, which is an easy ex-
periment to perform on a SHPB device. From the im-
pact test spectrum, the sharp peaks that correspond
to the resonant frequencies of the bar are easily identi-
fied. These resonances are used to obtain some specific
points of the experimental dispersion curve. Finally, the
points of the experimental dispersion curve feed a sim-
ple optimization procedure which outputs the values of
c0, u(c0) and ν.

With this method, the relative uncertainty in c0 is of
the order of magnitude of the relative uncertainty in the
bar length, ie. around 0.05%, because the uncertainty
in the frequency is very small.

In the context of quality in measurement with SHPB,
this is an important preliminary step required to assess
the uncertainty in the strain and strain rate in the sam-
ple [4].
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