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Introduction

Describing random dynamical systems is still a challenge that arises in many engineering problems, despite the progresses made in the late thirty years. The main recent developments for modelling uncertain systems essentially concern the Polynomial Chaos (PC) Expansion (PCE) method. The latter has gained a strong popularity since the works by Ghanem and Spanos [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF]. Despite many successful applications of the PCE for evaluating the response of linear random dynamical systems in transient regime [START_REF] Kundu | Transient response of structural dynamic system with parametric uncertainty[END_REF] or in frequency domain [START_REF] Jacquelin | Polynomial chaos-based extended Padé expansion in structural dynamics[END_REF], it was shown by several authors that the method [START_REF] Pettit | Spectral and multiresolution Wiener expansions of oscillatory stochastic processes[END_REF][START_REF] Le Maître | Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics[END_REF][START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF] is not adapted when long-time integration is required. Making use of the periodicity of the solutions, some transformations (either in the phase space or in the time domain), together with a PCE, were used to obtain in-phase solutions, and then to evaluate random limit cycle oscillations and long-time integration response [START_REF] Le Maître | Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics[END_REF][START_REF] Witteveen | An unsteady adaptive stochastic finite elements formulation for rigid-body fluid-structure interaction[END_REF][START_REF] Witteveen | An alternative unsteady adaptive stochastic finite elements formulation based on interpolation at constant phase[END_REF]. This method was developed further in a non-intrusive context [START_REF] Mai | Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping[END_REF]. While these methods are dedicated to specific problems, a more general procedure is presented in [START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF]: considering the drawbacks are a consequence of the statistical response evolution with time, it is proposed to update the PC basis when it becomes not optimal to describe the response distribution. This method is attractive, but may not be effective when the basis must be often updated. Other approaches based on wavelet or Wiener-Haar expansion were also used [START_REF] Pettit | Spectral and multiresolution Wiener expansions of oscillatory stochastic processes[END_REF][START_REF] Bayarri | Computer model validation with functional output[END_REF].

A black-box method has been proposed in [START_REF] Spiridonakos | Metamodeling of dynamic nonlinear structural[END_REF][START_REF] Mai | Surrogate modeling for stochastic dynamical systems by combining nonlinear autoregressive with exogenous input models and polynomial chaos expansions[END_REF] based on a nonlinear autoregressive exogenous (NARX) model: this approach may be efficient as it separates the random and time variables, but identifying the NARX structure is not easy. It turns out that separating variables in function of their nature (space, time, randomness) belongs to a class of efficient methods, the Proper Generalized Decomposition (PGD) methods [START_REF] Chinesta | A short review on model order reduction based on proper generalized decomposition[END_REF].

They have been recently developed in the context of uncertainty propagation with the generalized spectral decomposition in [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF]. The latter has been extended for random time dependent problem in [START_REF] Nouy | A priori model reduction through proper generalized decompositionfor solving time-dependent partial differential equations[END_REF] and similarities with the proper orthogonal decomposition (POD) were observed: unlike the latter, the former builds an a priori basis for representing the solution.

These methods are not directly applicable for non-intrusive methods or for data coming directly from experiments, where the mathematical model is not known. However a posteriori information is known in both cases either with the many simulations of a deterministic code (non-intrusive methods) or with measured data (experiments). Therefore, the POD can be applied to obtain a basis of representation that decouples the variables. Thus, in [START_REF] Higdon | Computer model calibration using high-dimensional output[END_REF][START_REF] Blatman | Sparse polynomial chaos expansions of vector-valued response quantities[END_REF][START_REF] Guo | Data-driven reduced order modeling for time-dependent problems[END_REF] a principal component analysis or a POD was used to separate randomness from the others variables in a non-intrusive way. In [START_REF] Blatman | Sparse polynomial chaos expansions of vector-valued response quantities[END_REF], it was clear to the authors that the method can be used for random dynamic problem, but they did not investigated the method. Therefore, this study aims to address the applicability of the POD-PC method to an uncertain dynamical systems.

The paper is organized as follows. After giving in section 2 the main notations, in section 3 the PCE and the POD are briefly introduced, and the combination of both methods is presented. In section 4 several examples are presented. Finally in section 5 some conclusions are drawn.

Notations

m number of random parameters ξ random m-vector; element ξ i is a random variable that has a one-to-one correspondence with one uncertain parameter M(ξ) mathematical or numerical model, which depends on random vector ξ x = M(ξ) response of model M: both the model and the response can be time dependent Ξ any sample of ξ Ξ N ×m design of experiment (DoE) matrix; row i, Ξ i , is a sample of ξ; column j collects

N samples of ξ j t time; t is discretized in n t values, {t i } i=1,••• ,nt
x(t, Ξ) response at time t when the random parameters are set to Ξ x(Ξ) n t -vector, which corresponds to the time discretized x(t, Ξ)

x(Ξ) n t × N -matrix: column i is the time discretized response when the random parameters are set to sample

Ξ i ∀i = 1, • • • , n t ∀j = 1, • • • , N x(Ξ) i,j = x(t i , Ξ j ) (1)
3. PCE and POD models

Polynomial chaos expansion

A polynomial chaos expansion consists in finding the response of a model as an expansion on a polynomial orthogonal basis that depends on ξ [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF] x

(ξ) = J∈N m Y J Ψ J (ξ) (2) 
where:

J is a multi-index J = (J 1 , • • • , J m ); |J| = m i=1 J i is the order of polynomial Ψ J . Ψ J (ξ) = m j=1 ψ J j (ξ j )
ψ J j (ξ j ) belongs to an orthogonal polynomial family; the orthogonality is with respect to the probability measure related to random variable ξ j ; the choice of the family is related to the probability distribution of ξ j (e.g., Legendre polynomial if ξ j has a uniform distribution).

In practice the series is truncated up to order P and the approximate solution x P is an expansion over I P , a set of multi-index J such that I P = {J ∈ N m /|J| ≤ P }. The cardinality of I P is denoted n P , which depends on P and m: n P = (m + P )!/(m! P !). x P can be cast as [START_REF] Xiu | Numerical Methods for Stochastic Computations -A Spectral Method Approach[END_REF] x(Ξ)

x P (Ξ) =

J∈I P Y J Ψ J (Ξ) = n P j=1 Y j Ψ j (Ξ) (3) 
where j referred to the j-th element of I P . To make the notations clearer x P is denoted by x in the following, but obviously all the PCE results are related to a truncated PCE.

The main difficulties are to find the proper order P and also to select, within the terms of the expansion, which ones are the most relevant. Indeed, it turns out that a large number of terms in the expansion is unnecessary. In addition, considering too many terms with a high polynomial degree may give overfitting. Finally, the selection of the more relevant terms leads to a sparse representation involving n sparse P terms instead of n P terms (n sparse P ≤ n P ), which increases the computation speed. Many methods exist to achieve a sparse representation of a polynomial chaos basis. A least angle regression algorithm [START_REF] Efron | Least angle regression[END_REF] together with a cross-validation criterion is used in [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF][START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF][START_REF] Drugowitsch | Variational bayesian inference for linear and logistic regression[END_REF]. An alternative method is based on a Bayesian approach and the so-called automatic relevance determination [START_REF] Drugowitsch | Variational bayesian inference for linear and logistic regression[END_REF][START_REF] Bishop | Pattern recognition and machine learning[END_REF][START_REF] Jacobs | Sparse bayesian nonlinear system identification using variational inference[END_REF]: it has been used in this study.

The coefficients of the PCE can be determined by several methods, which may be categorized in intrusive methods and non-intrusive methods. The former [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Xiu | Modeling uncertainty in flow simulations via generalized polynomial chaos[END_REF][START_REF] Jacquelin | The polynomial chaos expansion and the steady-state response of a class of random dynamic systems[END_REF] consists mainly in substituting expansion (2) in the equations, which are then projected on the PC: the coefficients are the solution of the obtained system. The non-intrusive methods lay on N evaluations of the model for the N samples of the DoE, Ξ; amongst several non-intrusive methods, a popular one is a regression method [START_REF] Isukapalli | Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems[END_REF][START_REF] Isukapalli | Uncertainty analysis of transport-transformation models[END_REF][START_REF] Berveiller | Stochastic finite elements: a non intrusive approach by regression[END_REF] x

(Ξ) = Ψ(Ξ) Y (4) 
where x(Ξ) is a N -vector of the N model evaluations; Y is the n P -vector of the n P PCE coefficients; Ψ(Ξ) is a N × n P matrix: element (i, j) is the evaluation of the j-th PC for the i-th sample of Ξ. Solving Eq.(4) gives Y.

PCE in time domain

A PC model in time domain can be built as it was done with Eq. ( 3)

x(t, ξ) = n P j=1 Y j (t) Ψ j (ξ) (5) 
Each coefficient of the PCE depends on the time. In practice it means that each coefficient Y j (t) must be determined at each time step [START_REF] Jacquelin | The polynomial chaos expansion and the steady-state response of a class of random dynamic systems[END_REF]: therefore, n t PCE models should be determined. This procedure can have a quite large numerical cost when the number of time steps is large.

As already mentioned, some authors [START_REF] Le Maître | Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics[END_REF][START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF] pointed out that a PCE may fail for longtime integration when an intrusive method is used.

In Eq. 5, polynomials Ψ j are known and the time dependent coefficient must be estimated. An alternative would consist in finding an expansion:

x(t, ξ) = n V i=1 a i (ξ) V i (t) (6) 
where time dependent functions V i (t) are known and coefficients a i (ξ) are the unknowns.

The proper orthogonal decomposition offers a way to estimate V i (t) in a non-intrusive way.

Proper orthogonal decomposition

Proper orthogonal decomposition has been widely used in turbulence [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. part 1: Coherent structures[END_REF] to detect the "coherent structures" in a turbulent flow. The objective is similar in this study. Indeed when a random DoE, Ξ tr , is chosen to train the model, as long as no bifurcation occurs [START_REF] Witteveen | An unsteady adaptive stochastic finite elements formulation for rigid-body fluid-structure interaction[END_REF], the related responses, x tr = x(Ξ tr ) (n t × N -matrix), often look similar. Therefore, it is possible to extract the "coherent" time shapes from n t × n t -matrix S S = x tr x T tr [START_REF] Witteveen | An unsteady adaptive stochastic finite elements formulation for rigid-body fluid-structure interaction[END_REF] where "T " stands for the transpose matrix.

Matrix S is often considered as a kind of correlation matrix. It turns out that the set of the eigenvectors {V i } i=1,...,nt of S, which are gathered in matrix V, is an interesting orthogonal basis [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. part 1: Coherent structures[END_REF][START_REF] Feeny | On the physical interpretation of proper orthogonal modes in vibration[END_REF]. The vectors verify

∀i = 1, • • • , n t S V i = λ 2 i V i (8) 
POD-values λ 2 = {λ 2 i } i=1,...,nt are useful as each one represents a so-called [START_REF] Chatterjee | An introduction to the proper orthogonal decomposition[END_REF] energy involved along the POD-vector V i direction: their relative values indicate the relative importance between two POD-components. In the following each vector V i has a unit norm and they are sorted according to the decreasing values of λ 2 i : accordingly V 1 is often similar to the response mean. Each POD-vector V i has n t element. Therefore, the random response can be represented by Eq. ( 6), with n V = n t :

x(t, ξ) = nt i=1 a i (ξ) V i (t) (9) 
It can also be noticed that V and λ can also be obtained with a singular value decomposition (SVD) of x tr . Therefore, as N is usually lower than n t , ∀i > N , λ i is equal to zero. Consequently, only the first N POD modes are interesting to describe the response, as the other ones do not bring any energy. Furthermore, in practice the responses can be described accurately with the first n a (n a < N and often n a << N ) eigenvectors as most of the energy is concentrated in these vectors

x(t, ξ) na i=1 a i (ξ) V i (t) ( 10 
)
n a is often chosen so that 99 % of the POD-energy remains in the approximation [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. part 1: Coherent structures[END_REF][START_REF] Ma | Computer model calibration using high-dimensional output[END_REF],

i.e. [START_REF] Azeez | Proper orthogonal decomposition (pod) of a class of vibroimpact oscillations[END_REF], it is proposed to keep "99.9 %" of the energy. The "99 %" criterion will be addressed in the examples.

na i=1 λ 2 i ≥ 0.99 N i=1 λ 2 i ; in

POD-PC model

The coefficients of expansion [START_REF] Bayarri | Computer model validation with functional output[END_REF] are random and are estimated with a PCE

a i (ξ) = n P j=1 A ij Ψ j (ξ) (11) 
It can be noticed that a Gaussian process approach was used in [START_REF] Higdon | Computer model calibration using high-dimensional output[END_REF] to estimate the coefficients.

Due to the orthonormality of the basis, projecting Eq. ( 10) on POD-vector V i gives

a i (ξ) = x(ξ) T V i (12) 
Using response vector x(Ξ tr ), Eq. ( 12) provides a collection of N samples for each a i , which are gathered in vector a i . Therefore, coefficients A ij are evaluated by solving

a i = Ψ(Ξ tr ) A i ( 13 
)
where A i is the PCE coefficient vector of a i .

The response of a random dynamical system is then eventually described by the following POD-PC model

x(t, ξ) na i=1 n P j=1 A ij Ψ j (ξ) V i (t) (14) 
All the steps of the POD-PC procedure are gathered in Algorithm 1.

Using a sparse PCE instead of a full PCE gives

x(t, ξ) na i=1 n sparse P j=1 A ij Ψ j (ξ) V i (t) (15) 
In that case, the least square regression in STEP 5 of Algorithm 1 is replaced by the sparse method to identify the non-null coefficients and their evaluation.

Algorithm 1 POD-PC model

INPUT: N ; n P ; Ξ tr ∈ R N ×m
OUTPUT: A ij : Eq. ( 14)

STEP 1: model evaluation; PC evaluation for i ← 1 to N do x tr (:, i) = M(t, Ξ tr (i, :) Ψ tr (i, :) = Ψ(Ξ tr (i, :)) end for x tr ∈ R nt×N Ψ tr ∈ R N ×n P STEP 2: POD eigenvectors and eigenvalues Evaluate (V, λ) = svd(x tr ) STEP 3: truncature of the POD Find n a such that na i=1 λ 2 i ≥ α N i=1 λ 2 i ; usually α = 0.99 ∀i ∈ 1, • • • , n a V i = V(:, i) STEP 4: samples of POD coefficients for i ← 1 to n a do a i = x T tr V i end for STEP 5: PCE coefficients for i ← 1 to n a do A i = Ψ tr \ a i {least square regression} end for

Examples

Three different examples are proposed. The first one is related to a real case and the uncertainties are given in the standard. The responses of the second example are given by a random ordinary differential equation and deform considerably when the random parameter varies; nevertheless, at each instant the variation of the response in function of the random variable is monotonic and smooth. The third example involves a long time integration.

Helmet impact test

This study addresses the homologation tests for motorcycle helmets described in the ECE 22.05 regulation [37]. Such tests consist in impacts of the helmet, fitted with an instrumented headform, at a specified velocity and positions on a rigidly fixed anvil. As such a test can not occur perfectly, uncertainties related to the position and the impact velocity are given in the standard. The uncertain position is described with two angles, which give the possible rotations (front/rear, left/right) of the helmet with respect to the nominal position. The impact parameters and uncertainties are listed in Table 1.

One impact point was selected for this study: the "forehead" of the helmet. The calculations were carried out with a finite element model of the helmet developed at Università degli Studi di Firenze [START_REF] Pratellesi | On the effect of testing uncertainties in the homologation tests of motorcycle helmets according to ece 22.05[END_REF] on the LS-DYNA explicit solver. The impact test is calculated for 29.9 ms and the outputs are written every 0.1 ms. The quantity of interest is the acceleration of the headform along the direction of the initial velocity.

To pass the impact test [37], the peak acceleration of the headform must remain below 275 g (where g is the standard gravity), and the head injury criterion (HIC) must be lower than 2400, where this quantity is defined as Legendre polynomials were used as all the random variables have a uniform distribution. Each PCE coefficient vector A i defined in Eq. ( 14) was identified from 50 samples of a i calculated with Eq. ( 12) and a PCE order lower or equal to 4 (n P = 35). The quality of the POD-PC procedure is tested on the 10 remaining samples of the acceleration time series: the actual responses (i.e., obtained with the LS-DYNA model) were compared to the identified ones obtained with the POD-PC model and plotted in Fig 2 . A relative error, err, was calculated between both responses over the 10 samples

HIC = max t 1 ,t 2 1 t 2 -t 1 t 2 t 1 x(t)dt 2.5 (t 2 -t 1 ) (16) 
err = x actual -x identified 2 x actual 2 (17) 
The maximum number of terms in the sparse PCE involved in evaluating all the coefficients a i (Eq. ( 11)), n sparse P | max , the ratio of the remaining energy to the total energy in the POD, r energy , and n a are listed in Table 2. It can be seen than 99.99 % of the POD energy remains in the approximation with only n a = 8 terms over the 50 possible terms.

To check the robustness of the model, the procedure was repeated many times: it means that several groups of 50 samples were used to identify the model. The error has changed very little and remained between 0.8 to 1.2 %.

In order to test the efficiency of the POD-PC model, The HIC was also calculated from both the actual and identified accelerations from Eq. ( 16). The results are presented in Fig. 3 where the identified values are given as a function of the actual ones: the closest the points to the first bisector of the plot, the more accurate the model. It can be seen that the values of HIC obtained from the POD-PCE model were very close to the actual values: the relative error was about 0.25 %.

The initial budget for this example was for 60 model evaluations (50+10 for validation).

A study on the evolution of the HIC error with samples ranging from 2 up to 50 was performed. Fig. 4 shows that even with N = 15 the error is already lower than 0.6 %.

First order ordinary differential equation (ODE)

Consider the following first order random ode where k is a random variable with a uniform distribution in [0 1]. This equation has been studied several times [START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Chouvion | Development of error criteria for adaptive multi-element polynomial chaos approaches[END_REF], and is interesting because the solution as well as the mean (x) and the variance (σ 2 x ) have an analytical expression

dx(t) dt + k x(t) = 0, x(t = 0) = 1 (18) 
x(t) = exp(-k t) (19) 
x(t) = 1 -exp(-t) t ( 20 
)
σ 2 x (t) = 1 -exp(-2t) 2t - 1 -exp(-t) t 2 (21) 
Contrary to the previous example, the shape of the curves changes a lot between k = 0 and k = 1 (see Fig. 5(a)). The first three proper orthogonal functions are plotted in Fig.

5(b).

Algorithm 1 was applied: The SVD of x tr provides (V, λ); V ∈ R 4001×40 ; λ ∈ R 40×1 STEP 3: n a = 3 POD modes were kept with the 99 % criterion;

INPUT: N =
V i ∈ R 4001×1 STEP 4: ∀i = 1, • • • , n a = 3 compute a i = x T tr V i ; a i ∈ R 40×1
STEP 5: PCE coefficients of a i , A i , are evaluated with a sparse procedure.

As proposed at STEP 1 of the procedure, a PCE of degree 15 was necessary to identify the POD expansion coefficients. It was found that the PCE was not sparse as each coefficient a i (ξ) had an expansion with at least n sparse P =14 terms over the n P =16 terms present in the full PCE. are not excellent, despite 3 i=1 λ 2 i /λ 2 max > 99.6%: it seems that the criterion should be changed. Therefore all the POD modes such that λ i /λ max > 10 -5 were finally kept: for all the cases tested, this criterion is such that na i=1 λ 2 i /λ 2 max > 99.99%. In the present example, 6 POD modes are kept in the analysis. The results are in excellent agreement with the theoretical results, as it may be seen in Fig. 6. In particular, the relative error between the actual response and the identified one for the sample represented in Figs.

6(e)-6(f) was equal to 10.6 % with 3 modes and to 0.4 % with 6 POD modes. In Figure 7, it can be seen that, with 6 POD modes, the error is almost the lowest error possible; above 7 POD modes, almost 100 % of the energy is kept.

The λ i /λ max > 10 -5 criterion is applied in the rest of the paper.

Kraichnan-Orszag three-mode problem

The Kraichnan-Orszag system has been used many times [START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF][START_REF] Chouvion | Development of error criteria for adaptive multi-element polynomial chaos approaches[END_REF][START_REF] Heuveline | A hybrid generalized polynomial chaos method for stochastic dynamicsal systems[END_REF] since the first study with the Wiener-Hermite expansion [START_REF] Orszag | Dynamical properties of truncated wiener-hermite expansions[END_REF]. It consists in nonlinear differential equations with uncertain initial conditions: 

dx 1 dt = x 2 x 3 (22) 
dx 2 dt = x 3 x 1 (23) 
dx 3 dt = -2 x 1 x 2 (24) 
with ∀i ∈ {1, 2, 3}, x i (0) = α i + β i ξ i , where ξ i is a uniformly random variable on the interval [-1,1] and α i , β i are constants, which have the following values in this study α 1 = 0.99 or 0.995

α 2 = α 3 = 1 β 1 = 0.01 β 2 = β 3 = 0
As β 2 and β 3 are zero, the studied problem is a 1 random variable problem. The solution is very sensitive to the value of x 1 (0) and then to α 1 : therefore when α 1 = 0.995 two families of solution can be seen as x 1 (0) can be greater or lower than 1, which is a limit point, whereas only one family is possible when α = 0.99. This is shown in Fig. 8 where the response of the system was obtained for 5 different samples of ξ i for both values of α 1 (red solid lines). It was then expected that the results would be more difficult to reproduce with α 1 = 0.995. The POD-PC model was derived for both values of α 1 . Eqs [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF][START_REF] Drugowitsch | Variational bayesian inference for linear and logistic regression[END_REF][START_REF] Bishop | Pattern recognition and machine learning[END_REF] were solved with a time step dt =0.01 s for 40 s; smaller time steps were also used without changing the results. The POD-PC model calculated with N =200 initial samples; Legendre polynomials were used and a PC order P =20 gave the response mean and variance plotted in Figs.

9-10 as well as the results obtained with a Monte Carlo simulation (MCS), with 10000 samples of α 1 drawn with a LHS method. Fig. 8 shows the response obtained with both the POD-PC method and the direct simulation, for 5 several samples.

The errors listed in Table 3 and Figs. 9-10 show that the mean is always very well estimated with the POD-PC model, even for α 1 =0.995. However, if the variance is well estimated for α 1 =0.99, Fig. 10 shows a discrepancy that increases with time for α 1 =0.995 and the relative error reaches 13.4 % for x 2 (see Table 3). Therefore the accuracy is not as good as the one presented in [START_REF] Gerritsma | Time-dependent generalized polynomial chaos[END_REF], which has even been improved in [START_REF] Heuveline | A hybrid generalized polynomial chaos method for stochastic dynamicsal systems[END_REF]; on the other hand, the proposed method is very simple and efficient: the calculations are very fast as the coefficients does not depend on time, whereas the accuracy is still acceptable.

In that case, considering P = 20 and N = 200 is not really efficient. However, it turns out that running 200 simulations takes only 3 seconds. If the numerical cost of one simulation had been much more, such a number of simulations would not have been affordable: it is the main drawback of non-intrusive methods. Fig. 11 shows that P = 15 and N = 100 still give quite good results.

About 65 % of the N POD modes were kept in the model, which is quite high. It is interesting to notice that with the "99 %" criterion, the number of POD modes is divided by two and the results obtained were very similar to the ones with the λ i /λ max > 10 -5

criterion. However, it is noticeable that beyond the 20-th POD-mode, the PCE of the coefficients given in Eq. ( 11) was very sparse: often, only 2 or 3 terms were required, whereas the PCE was not sparse for some of the very first mode coefficients. Therefore, the total number of PCE coefficients is only reduced by 30 %.

Conclusions

The non intrusive POD-PC model was presented to study random dynamical systems.

Most of the current metamodel used to describe such systems require to compute the coefficient of the metamodel at each time step, which may be time demanding. Conversely, the POD-PC model separates the time and the random variables. Therefore, the number of PCE coefficients to be calculated does not depend on the number of time step but on the number of initial simulations required to identify the model. Furthermore, the POD extracts the main components of the signal and then reduces this number.

The examples show that this model works very well when the response shape does not vary much or vary smoothly with the variation of the random parameters. In fact, the amplitudes and the phases of the responses are affected by the randomness and then the coherent structures tend to disappear after some time. As the POD is based on the coherent structures of signals, it can then be expected that this can induce a lost of accuracy for a long-time integration.Therefore, the POD-PC model seems more adapted for simulating the transient response than the steady-state response of an uncertain dynamical system.

This model is simple and fast to implement as it only requires a singular value decomposition to account for the time and a polynomial interpolation to deal with the uncertainties. The examples showed that a quite high polynomial degree is often required to describe the randomness of the first POD-mode coefficients, which may be a drawback when many uncertain parameters are involved in describing the random dynamical system. 
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 1 Figure 1: (a): 50 samples of acceleration; (b) first three proper orthogonal functions: V 1 (t) in black solid line, V 2 (t) in red dashed line, V 3 (t) in magenta dash-dotted line
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 2 Figure 2: Identified (black dashed line) and actual (red solid line) acceleration in time domain n sparse P | max r energy (%) n a err (%) 9 99.99 8 1.2
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 35 Figure 3: Blue circles: scatterplot of identified and actual HIC; red solid line: first bisector

  40 samples of random variable k are drawn according to a uniform law over [0, 1] with a LHS method; m = 1 and d = 15, then n p = 16; Ξ tr = 2k-1 ∈ R 40×1 STEP 1a: For each sample of Ξ tr , Eq. (18) is solved (n t = 4001 and t ∈ [0, 40] s): the solution are collected in matrix x tr ∈ R 4001×40 STEP 1b: Legendre polynomials are used; Ψ(Ξ tr ) ∈ R 40×16 is evaluated for each sample of Ξ tr STEP 2:

  Figs. 6(a)-6(c)) as well as one sample of the solution (Fig. 6(e)) for both the analytical and the POD-PC solutions. It clearly appears that, except for the mean, the estimations

Figure 6 :Figure 7 :

 67 Figure 6: 1st order ode solution with analytical solution (red solid line) and the POD-OC model (black dashed line); mean solution (a): n a = 3, (b): n a = 6; variance of the solution (c): n a = 3, (d): n a = 6; 3480-th sample of the solution (e): n a = 3, (f): n a = 6

Figure 8 :

 8 Figure 8: Comparison direct simulations (red solid line) vs. POD-PC method (black dashed line) for 5 samples: α=0.990, response of x 1 (a), response of x 2 (b); α=0.995, response of x 1 (c), response of x 2 (d)
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 910 Figure 9: α=0.99; MCS (red solid line) vs. POD-PC method (black dashed line): x 1 : mean (a), variance (b) -x 2 : mean (c), variance (d) -x 3 : mean (e), variance (f)

Figure 11 :

 11 Figure 11: α=0.990; mean response relative error (x 1 : (a), x 2 : (c), x 3 : (e)) and variance response relative error (x 1 : (b), x 2 : (d), x 3 : (f)) in function of the PC order and for several initial numbers of samples: black solid line N = 50, red dashed line N = 100, magenta dash-dotted line N = 200

  with t 2 -t 1 ≤ 36 ms, and acceleration x (resp. time t 1 , t 2 ) is given in g (resp. in seconds).

	impact velocity v i [ 7.5, 7.65 ] m/s
	x-angle	α x	[ -3, 3 ]	°y-angle
		α y	[ -3, 3 ]	°Table
	1: Ranges of the three uncertain parameters

A DoE matrix was build with 60 samples of the three uncertain parameters drawn according to uniform laws, with the bounds given in Table

1

, with a Latin Hypercube Sampling (LHS) method and 60 samples of the acceleration were therefore calculated. The

Table 2 :

 2 

sparse POD-PC approximation parameters

Table 3 :

 3 Relative error (in %) on the mean response (x i ) and the variance response (σ xi ) computed with POD-PC for both values of α 1 .

	α 1 0.990 0.995
	x1 1.83 4.86
	x2 1.46 2.90
	x3 1.36 3.30
	σ x 1 4.23 9.57
	σ x 2 5.89 13.39
	σ x 3 2.74 11.67
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