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We consider the first exit point distribution from a bounded domain Ω of the 
stochastic process (Xt)t≥0 solution to the overdamped Langevin dynamics

dXt = −∇f(Xt)dt +
√
h dBt

starting from the quasi-stationary distribution in Ω. In the small temperature regime 
(h → 0) and under rather general assumptions on f (in particular, f may have 
several critical points in Ω), it is proven that the support of the distribution of the 
first exit point concentrates on some points realizing the minimum of f on ∂Ω. Some 
estimates on the relative likelihood of these points are provided. The proof relies on 
tools from semi-classical analysis.

r é s u m é

Dans ce travail, nous étudions la distribution du point de sortie d’un domaine borné 
Ω pour le processus stochastique (Xt)t≥0 solution de la dynamique de Langevin 
suramortie

dXt = −∇f(Xt)dt +
√
h dBt

initialement distribué suivant la distribution quasi-stationnaire dans Ω. Dans la 
limite basse température h → 0 et sous des hypothèses générales sur la fonction f
(f pouvant notamment avoir plusieurs points critiques dans Ω), nous montrons que 
la distribution du lieu de sortie se concentre sur certains points réalisant le minimum 
de f sur ∂Ω. Nous calculons aussi les probabilités relatives de sortir autour de chacun 
de ces points. Nos preuves reposent sur des outils issus de l’analyse semi-classique.
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1. Introduction and main results

1.1. Setting and motivation

We are interested in the overdamped Langevin dynamics

dXt = −∇f(Xt)dt +
√
h dBt, (1)

where Xt is a vector in Rd, f : Rd → R is a C∞ function, h is a positive parameter and (Bt)t≥0 is a standard 
d-dimensional Brownian motion. Such a dynamics is prototypical of models used for example in computa-
tional statistical physics to simulate the evolution of a molecular system at a fixed temperature, in which 
case f is the potential energy function and h is proportional to the temperature. It admits as an invariant 
measure the Boltzmann-Gibbs measure (canonical ensemble) Z−1e−

2
h f(x) dx where Z =

∫
Rd e

− 2
h f < ∞. In 

the small temperature regime h → 0, the stochastic process (Xt)t≥0 is typically metastable: it stays for 
a very long period of time in a neighborhood of a local minimum of f (called a metastable state) before 
hopping to another metastable state. In the context of statistical physics, this behavior is expected since 
the molecular system typically jumps between various conformations, which are indeed these metastable 
states. For modeling purposes as well as for building efficient numerical methods (see for instance [1–3]), it 
is thus interesting to be able to precisely describe the exit event from a metastable state, namely the law of 
the first exit time and the first exit point.

The main objective of this work is to address the following question: given a metastable domain Ω ⊂ Rd, 
what are the exit points in the small temperature regime h → 0? This is formalized mathematically by the 
notion of concentration, which is now introduced. For a domain Ω ⊂ Rd and a given initial condition X0, 
let us consider the exit event (τΩ, XτΩ) from Ω where

τΩ = inf{t ≥ 0|Xt /∈ Ω} (2)

is the first exit time from Ω. We will consider the family of laws of XτΩ , as h goes to zero, and prove that 
these distributions concentrate on a subset of ∂Ω, as defined below.

Definition 1. Let Y ⊂ ∂Ω and let us consider a family of random variables (Yh)h≥0 which admits a limit in 
distribution when h → 0. The law of Yh concentrates on Y in the limit h → 0 if for every neighborhood VY
of Y in ∂Ω,

lim
h→0

P [Yh ∈ VY ] = 1,

and if for all x ∈ Y and for all neighborhoods Vx of x in ∂Ω,

lim
h→0

P [Yh ∈ Vx] > 0.

In other words, Y is the support of the law of Yh in the limit h → 0.

Previous results on the behavior of the law of XτΩ when h → 0. Let us report on previous results on the 
law of XτΩ in the limit h → 0 (see also [4] for a comprehensive review of the literature).

First, some results have been obtained using formal asymptotic expansions. For example, in [5], the 
concentration of the law of XτΩ on arg min∂Ω f in the small temperature regime (h → 0) has been studied 
when ∂nf > 0 on ∂Ω (here and in the following, ∂nf is the outward normal derivative of f on ∂Ω). See 
also [6,7] for generalizations to the case ∂nf = 0 on ∂Ω.



Using partial differential equation techniques, some of the formal results above have been rigorously 
proven. For example, when

∂nf > 0 on ∂Ω, (3)

and

{x ∈ Ω, |∇f(x)| = 0} = {x0} with f(x0) = min
Ω

f and det Hessf(x0) > 0, (4)

the concentration of the law of XτΩ in the limit h → 0 on arg min∂Ω f has been obtained in [8–10], when 
X0 = x ∈ Ω, see also [11,12] for more recent results with similar techniques.

Finally, another rigorous approach to study the exit point distribution is to rely on the theory of large 
deviations. When (3)–(4) hold and f attains its minimum on ∂Ω at a single point y0, [13, Theorem 2.1 
in Chapter 4.2] implies that the law of XτΩ concentrates on y0 in the limit h → 0, when X0 = x ∈ Ω. 
This result has then been generalized in [14,15] when only (3)–(4) are satisfied. In [13, Theorem 5.1 in 
Chapter 6.5], under more general assumptions on f , for Σ ⊂ ∂Ω, the limit of h lnP [XτΩ ∈ Σ] when h → 0
is related to a minimization problem involving the quasipotential of the process (1). Let us mention two 
limitations when applying [13, Theorem 5.1 in Chapter 6.5] in order to obtain some information on the 
first exit point distribution. First, this theorem requires to be able to compute the quasipotential in order 
to get useful information: this is trivial under the assumptions (3)–(4) but more complicated for a general 
function f (in particular when f has several critical points in Ω). Second, even when the quasipotential is 
analytically known, this result only gives the subset of ∂Ω through which exit occurs with an exponentially 
small probability in the limit h → 0. It does not allow to exclude points through which exit occurs with a 
polynomially small probability in h for example (this indeed happens, see Section 1.4). Besides, it does not 
give the relative probability of the exit points which have a non-zero probability in the limit h → 0.

The quasi-stationary distribution approach which is used in this work to study the exit event has been 
introduced in [16,17,1]. Notice that compared to the work [1], we here only identify the support of the first 
exit point distribution, and the relative likelihood of the points in this support, whereas in [1], we also study 
the exit through points which occur with exponentially small probability in the limit h → 0. The results 
here are thus less precise than in [1], but the assumptions on f are also much more general.

To conclude this short review of the literature, let us mention that [8–10,14,15,13] also cover the case of 
non reversible diffusions, while we here only consider the reversible dynamics (1).

Purpose of this work: a general geometric setting and a precise description of the exit point distribution. 
In this work, we study the concentration of the law of XτΩ on arg min∂Ω f in the limit h → 0. Compared 
to results previously obtained in the literature, the novelty is twofold: first, the geometric setting is much 
more general, and second, we obtain a precise description of the first exit point distribution, by providing 
the relative probabilities of the exit points.

More precisely, we exhibit assumptions on f which ensure that when X0 is distributed according to the 
quasi-stationary distribution νh in Ω (see Definition 2 below), the law of XτΩ concentrates in the limit h → 0
on some global minima of f on ∂Ω: these global minima and the relative probability of these exit points 
are made explicit. The geometric setting is much more general than (3)–(4). For instance, it is not assumed 
that ∂nf > 0 on ∂Ω, there is no restriction on the number of critical points of f in Ω and f is allowed to 
have critical points in Ω with larger energies than min∂Ω f (however we do not consider the case when f

has critical points on ∂Ω, and we work under some Morse assumption on f).
Let us emphasize that this work requires that X0 is distributed according to the quasi-stationary distri-

bution νh in Ω (see Definition 2 below). This is relevant when the exit from the domain Ω is metastable, 
namely when the process (1) reaches a local equilibrium within Ω before exiting Ω (see Section 1.2 below 



and [1–3]). The companion paper [18] builds on and extends the result of the present work to general initial 
conditions in Ω, as explained in Remark 8 below.

Here are representative examples of outputs of this work. First, if {y ∈ Ω, f(y) < min∂Ω f} is connected 
and contains all the critical points of f in Ω, and if ∂nf > 0 on arg min∂Ω f , then the law of XτΩ concentrates 
on arg min∂Ω f when X0 ∼ νh. Besides, when some critical points of f in Ω are larger in energy than 
min∂Ω f , then the law of XτΩ concentrates on a subset of ∂Ω which may be strictly included in arg min∂Ω f . 
In particular, the following phenomena may occur:

(i) There may exist points z ∈ arg min∂Ω f , C > 0 and c > 0, such that for every sufficiently small 
neighborhood Σz of z in ∂Ω, in the limit h → 0, Pνh

[XτΩ ∈ Σz] ≤ C e−
c
h (see (24) in Theorem 1 and 

the discussion after the statement of Theorem 1).
(ii) There may exist points z ∈ arg min∂Ω f and C > 0 such that for every sufficiently small neighborhood 

Σz of z in ∂Ω, Pνh
[XτΩ ∈ Σz] = C

√
h (1 + o(1)). This is explained in Section 1.4.

Let us finally mention that while proving these results, we also obtain a sharp asymptotic estimate on the 
principal eigenvalue (when h → 0) and on the principal eigenfunction of the infinitesimal generator of the 
diffusion (1) with Dirichlet boundary conditions on ∂Ω, see Section 1.3.4. These results have their own
interests.

Organization of the end of Section 1. In Section 1.2, the quasi-stationary distribution of the process (1) in Ω
is introduced. In Section 1.3, the assumptions on f which will be used throughout this paper are presented 
and the main result of this work is stated (see Theorem 1). Finally, the necessity of the assumptions of 
Theorem 1 is discussed in Section 1.4.

1.2. Metastability and the quasi-stationary distribution

The quasi-stationary distribution is the cornerstone of our analysis. Here, we assume that Ω ⊂ Rd is 
smooth, open, bounded and connected (see Section 1.3 for the general geometric setting).

Definition 2. A quasi-stationary distribution for the stochastic process (Xt)t≥0 in the domain Ω ⊂ Rd is a 
probability measure νh supported in Ω such that for all measurable sets A ⊂ Ω and for all t ≥ 0

νh(A) =

∫
Ω

Px [Xt ∈ A, t < τΩ] νh(dx)

∫
Ω

Px [t < τΩ] νh(dx)
. (5)

Here and in the following, the subscript x indicates that the stochastic process starts from x ∈ Rd

(X0 = x). In words, (5) means that if X0 is distributed according to νh, then for all t > 0, Xt is still 
distributed according to νh conditionally on Xs ∈ Ω for all s ∈ [0, t]. The following results have been proven 
in [16] (see also [19] for much more general results on quasi-stationary distributions):

Proposition 3. Let Ω ⊂ Rd be a bounded domain and consider the dynamics (1). Then there exists a prob-
ability measure νh with support in Ω such that, whatever the law of the initial condition X0 with support 
in Ω, it holds:

lim
t→∞

‖Law(Xt|t < τΩ) − νh‖TV = 0. (6)



Here, Law(Xt|t < τΩ) denotes the law of Xt conditional to the event {t < τΩ}. A corollary of this 
proposition is that the quasi-stationary distribution νh exists and is unique. For a given initial distribution 
of the process (1), if the convergence in (6) is much quicker than the exit from Ω, the exit from the domain Ω
is said to be metastable. When the exit from Ω is metastable, it is thus relevant to study the exit event from Ω
assuming that the process (1) is initially distributed according to the quasi-stationary distribution νh. This 
will be the setting of this work.

Let us now relate the notion of quasi-stationary distribution to the infinitesimal generator of the dynam-
ics (1)

L
(0)
f,h = −∇f · ∇ + h

2 Δ. (7)

In the notation L(0)
f,h, the superscript (0) indicates that we consider an operator on functions, namely 0-forms. 

The basic observation to define our functional framework is that the operator L(0)
f,h is self-adjoint on the 

weighted L2 space

L2
w(Ω) =

⎧⎨⎩u : Ω → R,

∫
Ω

u2e−
2
h f < ∞

⎫⎬⎭
(the weighted Sobolev spaces Hk

w(Ω) are defined similarly). Indeed, for any smooth test functions u and v
with compact supports in Ω, one has∫

Ω

(L(0)
f,hu)v e− 2

h f =
∫
Ω

(L(0)
f,hv)u e

− 2
h f = −h

2

∫
Ω

∇u · ∇v e−
2
h f .

This gives a proper framework to introduce the Dirichlet realization LD,(0)
f,h on Ω of the operator L

(0)
f,h as 

follows:

Proposition 4. The Friedrichs extension associated with the quadratic form φ ∈ C∞
c (Ω) �→ h

2
∫
Ω |∇φ|2 e− 2

h f is 
denoted by −L

D,(0)
f,h . It is a non negative unbounded self-adjoint operator on L2

w(Ω) with domain D
(
L
D,(0)
f,h

)
= H1

w,0(Ω) ∩H2
w(Ω), where H1

w,0(Ω) = {u ∈ H1
w(Ω), u = 0 on ∂Ω}.

The compact injection H1
w(Ω) ⊂ L2

w(Ω) implies that the operator LD,(0)
f,h has a compact resolvent and its 

spectrum is consequently purely discrete. Let us introduce λh > 0 the smallest eigenvalue of −L
D,(0)
f,h (a.k.a. 

the principal eigenvalue):

λh = inf σ
(
− L

D,(0)
f,h

)
. (8)

From standard results on elliptic operators (see e.g. [20,21]), λh is non degenerate and its associated eigen-
function uh has a sign on Ω. Moreover, uh ∈ C∞(Ω). Without loss of generality, one can then assume 
that:

uh > 0 on Ω and
∫
Ω

u2
he

− 2
h f = 1. (9)

The eigenvalue-eigenfunction pair (λh, uh) satisfies:{
−L

(0)
f,h uh = λhuh on Ω,

u = 0 on ∂Ω.
(10)
h



The link between the quasi-stationary distribution νh and the function uh is given by the following propo-
sition (see for example [16]):

Proposition 5. The unique quasi-stationary distribution νh associated with the dynamics (1) and the do-
main Ω is given by:

νh(dx) = uh(x)e− 2
h f(x)∫

Ω

uh(y)e− 2
h f(y)dy

dx. (11)

Let us recall that ∂n = n · ∇ stands for the normal derivative and n is the unit outward normal on ∂Ω. 
The next proposition (see again [16]) characterizes the law of the exit event from Ω.

Proposition 6. Let us consider the dynamics (1) and the quasi-stationary distribution νh associated with 
the domain Ω. If X0 is distributed according to νh, the random variables τΩ and XτΩ are independent. 
Furthermore τΩ is exponentially distributed with parameter λh and the law of XτΩ has a density with respect 
to the Lebesgue measure on ∂Ω given by

z ∈ ∂Ω �→ − h

2λh

∂nuh(z)e− 2
h f(z)∫

Ω

uh(y)e− 2
h f(y)dy

. (12)

1.3. Hypotheses and main results

1.3.1. Hypotheses and notation
In the following, we consider a setting that is actually more general than the one of Section 1.2: Ω is a 

C∞ oriented compact and connected Riemannian manifold of dimension d with boundary ∂Ω.
The following notation will be used: for a ∈ R, {f < a} = {x ∈ Ω, f(x) < a}, {f ≤ a} = {x ∈ Ω, f(x) ≤

a} and {f = a} = {x ∈ Ω, f(x) = a}. Let us now introduce the basic assumption on f which is used 
throughout this work:

The function f : Ω → R is C∞, and for all x ∈ ∂Ω, |∇f(x)| �= 0.
The functions f : Ω → R and f : {x ∈ ∂Ω, ∂nf(x) > 0} → R are Morse.
Moreover, f has at least one local minimum in Ω.

⎫⎪⎬⎪⎭ (A0)

Let us recall that a function φ : Ω → R is a Morse function if all its critical points are non degenerate (which 
implies in particular that φ has a finite number of critical points since Ω is compact and a non degenerate 
critical point is isolated from the other critical points). A critical point z ∈ Ω of φ is non degenerate if the 
Hessian matrix of φ at z, denoted by Hessφ(z), is invertible. We refer for example to [22, Definition 4.3.5]
for a definition of the Hessian matrix on a manifold. A non degenerate critical point z ∈ Ω of φ is said to 
have index p ∈ {0, . . . , d} if Hessφ(z) has precisely p negative eigenvalues (counted with multiplicity). In 
the case p = 1, z is called a saddle point.

For any local minimum x of f in Ω, the height of the energy barrier to leave Ω from x is

Hf (x) := inf
γ∈C0([0,1],Ω)

γ(0)=x, γ(1)∈∂Ω

max
t∈[0,1]

f
(
γ(t)
)
, (13)

where C0([0, 1], Ω) is the set of continuous paths from [0, 1] to Ω. Let us now define a set of assumptions 
which will be used below:



• (A0) holds and

∃!Cmax ∈ C such that max
C∈C

{
max

C
f − min

C
f
}

= max
Cmax

f − min
Cmax

f (A1)

where

C :=
{
C(x), x is a local minimum of f in Ω

}
, (14)

with, for any local minimum x of f in Ω,

C(x) is the connected component of {f < Hf (x)} containing x. (15)

• (A1) holds and

∂Cmax ∩ ∂Ω �= ∅. (A2)

• (A1) holds and

∂Cmax ∩ ∂Ω ⊂ arg min
∂Ω

f. (A3)

It will be shown that the assumptions (A0), (A1), (A2), and (A3) ensure that when X0 ∼ νh, the law 
of XτΩ concentrates on the set ∂Cmax ∩ ∂Ω, see items 1 and 2 in Theorem 1. Finally, let us introduce 
assumption (A4):

• (A1) holds and

∂Cmax ∩ Ω contains no separating saddle point of f . (A4)

Roughly speaking, a saddle point z of f is separating if for any sufficiently small connected neighborhood 
Vz of z, Vz ∩ {f < f(z)} has two connected components included in two different connected compo-
nents of {f < f(z)}. We refer to Definition 13 below for more details. The assumption (A4) together 
with (A0), (A1), (A2), and (A3), ensures that the probability that the process (1) leaves Ω through any 
sufficiently small neighborhood of z ∈ ∂Ω \ ∂Cmax in ∂Ω is exponentially small when h → 0, see item 3 in 
Theorem 1.

Fig. 1 gives a one-dimensional example where (A1), (A2), (A3) and (A4) are satisfied. In Section 1.4, 
the necessity of assumptions (A1), (A2), (A3), and (A4) is discussed. We will actually work with equivalent 
formulations of the assumptions (A1), (A2), (A3), and (A4) which will be given in Section 2.4.

1.3.2. Notation for the local minima and saddle points of the function f

The main purpose of this section is to introduce the local minima and the generalized saddle points 
of f . These elements of Ω are used extensively throughout this work and play a crucial role in our analysis. 
Roughly speaking, the generalized saddle points of f are the saddle points z ∈ Ω of the function f extended 
by −∞ outside Ω (which is indeed consistent with the homogeneous Dirichlet boundary conditions in (10)). 
Thus, when the function f satisfies the assumption (A0), a generalized saddle point of f (as introduced 
in [23]) is either a saddle point z ∈ Ω of f or a local minimum z ∈ ∂Ω of f |∂Ω such that ∂nf(z) > 0.

Let us assume that the function f satisfies the assumption (A0). Let us denote by

UΩ
0 = {x1, . . . , xmΩ} ⊂ Ω (16)
0



Fig. 1. A one-dimensional case where (A1), (A2), (A3) and (A4) are satisfied. On the figure, f(x1) = f(x5), Hf (x1) = Hf (x4) =
Hf (x5), C = {Cmax, C2, C3}, ∂C2 ∩ ∂Cmax = ∅ and ∂C3 ∩ ∂Cmax = ∅.

the set of local minima of f in Ω where mΩ
0 ∈ N is the number of local minima of f in Ω. Notice that since 

f satisfies (A0), mΩ
0 ≥ 1. The set of saddle points of f of index 1 in Ω is denoted by UΩ

1 and its cardinality 
by mΩ

1 . Let us define

U∂Ω
1 := {z ∈ ∂Ω, z is a local minimum of f |∂Ω but not a local minimum of f in Ω }.

Notice that an equivalent definition of U∂Ω
1 is

U∂Ω
1 = {z ∈ ∂Ω, z is a local minimum of f |∂Ω and ∂nf(z) > 0}, (17)

which follows from the fact that ∇f(x) �= 0 for all x ∈ ∂Ω. Let us introduce

m∂Ω
1 := Card(U∂Ω

1 ). (18)

In addition, one defines:

UΩ
1 := U∂Ω

1 ∪ UΩ
1 and mΩ

1 := Card(UΩ
1 ) = m∂Ω

1 + mΩ
1 . (19)

As explained above, the set UΩ
1 is the set of the generalized saddle points of f . If U∂Ω

1 is not empty, its 
elements are denoted by:

U∂Ω
1 = {z1, . . . , zm∂Ω

1
} ⊂ ∂Ω, (20)

and if UΩ
1 is not empty, its elements are labeled as follows:

UΩ
1 = {zm∂Ω

1 +1, . . . , zmΩ
1
} ⊂ Ω. (21)

Thus, one has: UΩ
1 = {z1, . . . , zm∂Ω

1
, zm∂Ω

1 +1, . . . , zmΩ
1
}. Moreover, we assume that the elements of U∂Ω

1 are 
ordered such that:

{z1, . . . , zk∂Ω
1
} = U∂Ω

1 ∩ arg min
∂Ω

f. (22)

Notice that k∂Ω
1 ∈ {0, . . . , m∂Ω

1 }.



Fig. 2. Schematic representation of C (see (14)) and f |∂Ω when the assumptions (A0), (A1), (A2) and (A3) are satisfied. In this 
representation, x1 ∈ Ω is the global minimum of f in Ω and the other local minima of f in Ω are x2 and x3 (thus UΩ

0 = {x1, x2, x3}
and mΩ

0 = 3). Moreover, min∂Ω f = f(z1) = f(z2) = f(z3) = Hf (x1) = Hf (x2) < Hf (x3) = f(z4), {f < Hf (x1)} has two 
connected components: Cmax (see (A1)) which contains x1 and C2 which contains x2. Thus, one has C = {Cmax, C2, C3}. In addition, 
U∂Ω

1 = {z1, z2, z3, z4} (m∂Ω
1 = 4), {z1, z2, z3} = arg min∂Ω f (k∂Ω

1 = 3 and k∂Cmax
1 = 2), UΩ

1 = {z5, z6, z7} where {z5} = Cmax ∩ C2

(mΩ
1 = 3 and (A4) is not satisfied) and min(f(z6), f(z7)) > f(z4), ∂Cmax ∩ ∂Ω = {z1, z2} (k∂Cmax

1 = 2). Finally, one has mΩ
1 = 7. The 

point ym ∈ Ω is a local maximum of f with f(ym) > f(zi) for all i ∈ {1, . . . , 7}.

Let us assume that (A1), (A2), and (A3) are satisfied. Let us recall that Cmax is defined by (A1). Moreover, 
in this case, one has k∂Ω

1 ≥ 1 and

∂Cmax ∩ ∂Ω ⊂ {z1, . . . , zk∂Ω
1
}.

Indeed, by assumption ∂Cmax ∩ ∂Ω ⊂ {f = min∂Ω f} (see (A3)) and there is no local minima of f in Ω
on ∂Cmax (since Cmax is a connected component of a sublevel set of f). We assume lastly that the set 
{z1, . . . , zk∂Ω

1
} is ordered such that:

{z1, . . . , zk∂Cmax
1

} = {z1, . . . , zk∂Ω
1
} ∩ ∂Cmax. (23)

Notice that k∂Cmax
1 ∈ {0, . . . , k∂Ω

1 }. We provide an example in Fig. 2 to illustrate the notations introduced in 
this section.

As introduced in [23, Section 5.2], UΩ
0 is the set of generalized critical points of f of index 0, associated 

with eigenforms of the Witten Laplacian ΔD,(0)
f,h and UΩ

1 is the set of generalized critical points of f of index 

1, associated with eigenforms of the Witten Laplacian ΔD,(1)
f,h , see Section 3.1.2 for more details.

1.3.3. Main results on the exit point distribution
The main result of this work is the following.

Theorem 1. Let us assume that (A0), (A1), (A2), and (A3) are satisfied. Recall that νh is the quasi-stationary 
distribution of the process (1) in Ω (see Definition 2). Let F ∈ L∞(∂Ω, R) and (Σi)i∈{1,...,k∂Ω

1 } be a family of 
disjoint open subsets of ∂Ω such that for all i ∈

{
1, . . . , k∂Ω

1
}
, zi ∈ Σi, where we recall that 

{
z1, . . . , zk∂Ω

1

}
=

U∂Ω
1 ∩ arg min∂Ω f (see (22)). Then:



1. There exists c > 0 such that in the limit h → 0:

Eνh
[F (XτΩ)] =

k∂Ω
1∑

i=1
Eνh

[1Σi
F (XτΩ)] + O

(
e−

c
h

)
(24)

and

k∂Ω
1∑

i=k∂Cmax
1 +1

Eνh
[1Σi

F (XτΩ)] = O
(
h

1
4
)
, (25)

where we recall that 
{
z1, . . . , zk∂Cmax

1

}
= ∂Cmax ∩ ∂Ω (see (23)).

2. When for some i ∈
{
1, . . . , k∂Cmax

1
}

the function F is C∞ in a neighborhood of zi, one has when h → 0:

Eνh
[1Σi

F (XτΩ)] = F (zi) ai + O(h 1
4 ), (26)

where

ai = ∂nf(zi)√
det Hessf |∂Ω(zi)

⎛⎝k∂Cmax
1∑
j=1

∂nf(zj)√
det Hessf |∂Ω(zj)

⎞⎠−1

. (27)

3. When (A4) is satisfied, the remainder term O(h 1
4 ) in (25) is of the order O

(
e−

c
h

)
for some c > 0 and 

the remainder term O
(
h

1
4
)

in (26) is of the order O(h) and admits a full asymptotic expansion in h (as 
defined in Remark 7 below).

Remark 7. Let us recall that for α > 0, (r(h))h>0 admits a full asymptotic expansion in hα if there exists a 
sequence (ak)k≥0 ∈ RN such that for any N ∈ N, it holds in the limit h → 0:

r(h) =
N∑

k=0

akh
αk + O

(
hα(N+1)).

Theorem 1 implies that in the limit h → 0, when X0 ∼ νh, the law of XτΩ admits a limit in distribution 
and concentrates on the set {z1, . . . , zkCmax

1
} = ∂Ω ∩∂Cmax with explicit formulas for the probabilities to exit 

through each of the zi’s.
As a simple corollary, notice that when the function F belongs to C∞(∂Ω, R), one has in the limit h → 0:

Eνh
[F (XτΩ)] =

k∂Cmax
1∑
i=1

aiF (zi) + O(h 1
4 ) =

k∂Cmax
1∑
i=1

∫
Σi

F∂nf e−
2
h f

k∂Cmax
1∑
i=1

∫
Σi

∂nf e−
2
h f

+ oh(1),

where the order in h of the remainder term oh(1) depends on the support of F and on whether or not the 
assumption (A4) is satisfied.

Another consequence of Theorem 1 is the following. The probability to exit through a global minimum z of 
f |∂Ω which satisfies ∂nf(z) < 0 is exponentially small in the limit h → 0 (see (24)) and when assuming (A4), 
the probability to exit through the points zkCmax

1 +1, . . . , zk∂Ω
1

is also exponentially small even though all these 
points belong to arg min∂Ω f .



Remark 8. In [18], we show that the results of Theorem 1 still hold when X0 = x ∈ Cmax. Moreover, we also 
prove that when X0 = x ∈ C, for C ∈ C such that ∂C ∩ ∂Ω �= ∅, the law of XτΩ concentrates on ∂C ∩ ∂Ω
when h → 0, with explicit exit probabilities. We also refer to the preprint [24] which concatenates the results 
of this manuscript and of [18], and to [25] which presents a simplified version of the results of these works.

The proof of Theorem 1 relies on a crucial result on the concentration of the quasi-stationary distribution 
on neighborhoods of the global minima of f in Cmax.

Proposition 9. Assume that (A0) and (A1) are satisfied. Furthermore, let us assume that

min
Cmax

f = min
Ω

f,

where we recall that Cmax is introduced in (A1). Let O be an open subset of Ω. Then, if O ∩arg minCmax f �= ∅, 
one has in the limit h → 0:

νh
(
O
)

=

∑
x∈O∩arg minCmax f

(
det Hessf(x)

)− 1
2∑

x∈arg minCmax f

(
det Hessf(x)

)− 1
2

(
1 + O(h)

)
.

When O ∩ arg minCmax f = ∅, there exists c > 0 such that when h → 0:

νh
(
O
)

= O
(
e−

c
h

)
.

Proposition 9 is a direct consequence of (11) and Proposition 58 below. Notice that minCmax
f = minΩ f

is satisfied when (A1), (A2), and (A3) hold, see Lemma 22.

1.3.4. Intermediate results on the spectrum of −L
D,(0)
f,h

Let us recall that from (12), one has:

Eνh
[F (XτΩ)] = − h

2λh

∫
∂Ω

F ∂nuhe
− 2

h f

∫
Ω

uhe
− 2

h f
.

Therefore, to obtain the asymptotic estimates on Eνh
[F (XτΩ)] stated in Theorem 1 when h → 0, it is 

sufficient to study the asymptotic behavior of the quantities λh, 
∫
Ω uhe

− 2
h f and ∂nuh. Let us point to the 

results which will be proven below on these quantities, and which may have their own interest:

1. In Theorem 4, one gives for h → 0 small enough, a lower and an upper bound for all the mΩ
0 small 

eigenvalues of −L
D,(0)
f,h when (A0) is satisfied.

2. In Theorems 2 and 3, one gives a sharp asymptotic equivalent in the limit h → 0 of the smallest 
eigenvalue λh of −L

D,(0)
f,h when (A0) and (A1) are satisfied.

3. In Proposition 58, when (A0), (A1) and minCmax
f = minΩ f hold, one shows that uh e

− 2
h f concentrates 

in the L1(Ω)-norm on the global minima of f in Cmax in the limit h → 0.
4. In Theorem 5, one studies the concentration in the limit h → 0 of the normal derivative of the principal 

eigenfunction uh of −L
D,(0)
f,h on ∂Ω when (A0), (A1), (A2), and (A3) are satisfied. In particular, sharp 

asymptotic equivalents of ∂nuh in neighborhoods of ∂Cmax ∩ ∂Ω in ∂Ω are obtained.



1.4. Discussion of the hypotheses

In this section, we discuss the necessity of the assumptions (A1), (A2), (A3) and (A4) to obtain the 
results stated in Theorem 1.

On the assumption (A1). To study the concentration of the law of XτΩ when h → 0 when X0 ∼ νh, 
one needs in particular to have access to the repartition of νh in neighborhoods of the local minima of f
in Ω when h → 0. When (A1) is not satisfied, the analysis of the repartition of νh is tricky. When (A1) is 
not satisfied, one has from Theorem 4 below (see Section 4.2.2), limh→0 h lnλh = limh→0 h lnλ2,h, where 
λ2,h is the second smallest eigenvalue of −L

D,(0)
f,h . The first two eigenvalues thus have the same exponential 

scaling in h. As a consequence, it is difficult to measure the quality of the approximation of uh by an ansatz 
projected on Span(uh), since the error is related to the ratio of λh over λ2,h (see Lemma 25). For example, 
when (A1) is not satisfied, it is difficult to predict in which well νh concentrates, as explained in [26].

On the assumptions (A2) and (A3). When (A1) is satisfied but not (A2), or when (A1), (A2) are satisfied 
but not (A3), it is possible to exhibit functions f : [z1, z2] → R (with f(z1) < f(z2)) such that Pνh

[Xτ(z1,z2) =
z2] = 1 + O(e− c

h ) for some positive constant c (see [24, Section 1.4.3, Section 1.4.4] for details). In those 
cases, the process (1) thus leaves Ω = (z1, z2) through the point z2 which is not a global minimum of f |∂Ω.

On the assumption (A4). In [24, Section 1.4.5], we give a one-dimensional example to show that when (A4)
is not satisfied, the remainder term O(h 1

4 ) in (25) is not of the order O(e− c
h ) for some c > 0, but actually of 

the order O(
√
h). This can be generalized to higher-dimensional settings, see for example [27, Proposition 

C.40, item 3]. We thus expect that the remainder terms O
(
h

1
4
)

in (25) and (26) are actually of the order 
O(

√
h), but proving this fact would require some substantially finer analysis.

1.5. Organization of the paper and outline of the proof

The aim of this section is to give an overview of the strategy of the proof of Theorem 1. From (12) and 
in order to obtain an asymptotic estimate of Eνh

[F (XτΩ)], we study the asymptotic behavior when h → 0
of the quantities λh, 

∫
Ω uhe

− 2
h f and ∂nuh, where λh is defined by (8) and uh by (10).

To study λh and ∂nuh, the first key point is to notice that ∇uh is a solution to an eigenvalue problem. 
Indeed, by differentiating the eigenvalue problem (10) satisfied by uh, one gets:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−L
(1)
f,h∇uh = λh∇uh on Ω,

∇Tuh = 0 on ∂Ω,(
h

2div −∇f ·
)
∇uh = 0 on ∂Ω,

(28)

where

L
(1)
f,h = h

2Δ −∇f · ∇ − Hess f (29)

is an operator acting on 1-forms (namely on vector fields). Therefore, the vector field ∇uh is an eigen-1-form 
of the operator −L

D,(1)
f,h which is the operator −L

(1)
f,h with tangential Dirichlet boundary conditions (see (28)), 

associated with the eigenvalue λh.
The second key point (see for example [23]) is that, when (A0) holds, −L

D,(0)
f,h admits exactly mΩ

0 eigenval-
ues smaller than

√
h

2 (where mΩ
0 is the number of local minima of f in Ω, see Section 1.3.2) and that −L

D,(1)
f,h

admits exactly mΩ
1 eigenvalues smaller than 

√
h

2 (where mΩ
1 is the number of generalized saddle points of f

in Ω, see Section 1.3.2). Actually, all these small eigenvalues are exponentially small in the regime h → 0
(namely they are bounded from above by e−

c
h for some c > 0), the other eigenvalues being bounded from 



below by a constant in this regime. This implies in particular that λh is an exponentially small eigenvalue 
of −L

D,(1)
f,h . Let us denote by π

(0)
h (resp. π(1)

h ) the orthogonal projector onto the vector space spanned by 

the eigenfunctions (resp. eigen-1-forms) associated with the mΩ
0 (resp. mΩ

1 ) smallest eigenvalue of −L
D,(0)
f,h

(resp. of −L
D,(1)
f,h ).

To obtain an asymptotic estimate on λh when h → 0, the strategy consists in studying the singular 
values of the (finite-dimensional) operator ∇ acting from Ran π

(0)
h to Ran π

(1)
h , both spaces being equipped 

with the scalar product of L2
w(Ω). Indeed, from Proposition 4, the squares of the singular values of this 

matrix are the smallest eigenvalues of − 2
hL

D,(0)
f,h . To this end, one constructs an appropriate basis (with so 

called quasi-modes) of Ran π
(0)
h and Ran π

(1)
h . Besides, from (28), ∇uh ∈ Ran π

(1)
h and thus, to study the 

asymptotic behavior of ∂nuh on ∂Ω when h → 0, one decomposes ∇uh along a basis of Ran π
(1)
h .

In terms of mathematical tools, the proofs heavily rely on constructions made in [28,23]. The main novelty 
is to combine those techniques to get precise estimates of ∂nuh: this requires to go beyond the standard 
semiclassical estimates which focus on the eigenvalues. The crucial steps in the proofs are: (i) Proposition 47
which gives the interaction terms between the quasi-modes for LD,(0)

f,h and for LD,(1)
f,h , (ii) Lemma 50 which 

uses a matrix representation of the operator ∇ : Ran π
(0)
h �→ Ran π

(1)
h , thanks to an appropriate labeling of 

the connected components attached to the local minima of f and (iii) Lemma 63 which explains how to get 
H1

w-estimates of the error between uh and its approximation by quasi-modes.
The paper is organized as follows. In Section 2, one constructs two maps j and j̃ which will be extensively 

used in Section 3. These maps are useful in order to understand the different timescales of the process (1)
in Ω. Section 3 is dedicated to the construction of quasi-modes for −L

D,(0)
f,h and −L

D,(1)
f,h . In Section 4, we 

study the asymptotic behaviors of the smallest eigenvalues of −L
D,(0)
f,h (see Theorem 4) and we give an 

asymptotic estimate of λh when h → 0, see Theorem 2. In Section 5, we give asymptotic estimates for ∫
Ω uhe

− 2
h f and for ∂nuh on ∂Ω when h → 0 (see Proposition 58 and Theorem 5), and we finally conclude 

the proof of Theorem 1. For the ease of the reader, a list of the main notation used in this work is provided 
at the end.

2. Coupling local minima of f with saddle points of f

This section is dedicated to the construction of two maps: the map j which associates each local minimum 
of f with an ensemble of saddle points of f and the map ̃j which associates each local minimum of f with a 
connected component of a sublevel set of f . These maps are useful to define the quasi-modes in Section 3.

This section is organized as follows. In Section 2.1, one introduces a set of connected components which 
play a crucial role in our analysis. The constructions of the maps j and j̃ require two preliminary results 
(Propositions 15 and 18) which are introduced in Section 2.2. Then, the maps j and j̃ are defined in 
Section 2.3. Finally the assumptions (A1)-(A4) are reformulated in terms of the map j in Section 2.4.

2.1. Connected components associated with the elements of UΩ
0

The aim of this section is to give an equivalent definition of the elements in C = {C(x), x ∈ UΩ
0 } (see (14)

and (16)) which will be easier to handle in the following. For that purpose, let us introduce the following 
definitions.

Definition 10. Let us assume that (A0) holds. For all x ∈ UΩ
0 and λ > f(x), one defines

C(λ, x) as the connected component of {f < λ} in Ω containing x (30)

and



C+(λ, x) as the connected component of {f ≤ λ} in Ω containing x. (31)

Moreover, for all x ∈ UΩ
0 , one defines

λ(x) := sup{λ > f(x) s.t. C(λ, x) ∩ ∂Ω = ∅} and C(x) := C(λ(x), x). (32)

A direct consequence of Lemma 11 below is that for all x ∈ UΩ
0 , C(x) defined in (32) coincides with C(x)

introduced in (15). Notice that under (A0), for all x ∈ UΩ
0 ⊂ Ω, λ(x) is well defined. Indeed, for all x ∈ UΩ

0 , 
{λ > f(x) s.t. C(λ, x) ∩ ∂Ω = ∅} is bounded by supΩ f + 1 and nonempty because for β > 0 small enough 
C(f(x) + β, x) is included in Ω (since x ∈ Ω and f is Morse). One has the following result which permits to 
give another definition of Hf (compare with (13)) which will be easier to handle in the sequel.

Lemma 11. Let us assume that (A0) holds. Then, for all x ∈ UΩ
0

Hf (x) = λ(x), (33)

where Hf (x) is defined by (13) and λ(x) is defined by (32).

The proof of Lemma 11 is made in [24, Lemma 15].

Definition 12. Let us assume that (A0) holds. The integer N1 is defined by:

N1 := Card(C) = Card
(
{C(x), x ∈ UΩ

0 }
)
∈ {1, . . . ,mΩ

0 }, (34)

where we recall that mΩ
0 = Card (UΩ

0 ) (see (16)), C(x) is defined by (32) and C =
{
C(x), x ∈ UΩ

0
}

(see (14)). 
The elements of C are denoted by C1, . . . , CN1 . Finally, for all � ∈ {1, . . . , N1}, Ck is also denoted by

E1,� := C�. (35)

For example, on Fig. 1, one has mΩ
0 = 4 and N1 = 3. The notation (35) will be useful when constructing 

the maps j and ̃j in Section 2.3 below.

2.2. Topological results and separating saddle points

The constructions of the maps j and ̃j made in Section 2.3 are based on the notions of separating saddle 
points and of critical components as introduced in [28, Section 4.1] for a case without boundary. Let us 
define and slightly adapt these two notions to our setting. To this end, let us first recall that according 
to [23, Section 5.2], for any non critical point z ∈ Ω, for r > 0 small enough

{f < f(z)} ∩B(z, r) is connected, (36)

and for any critical point z ∈ Ω of index p of the Morse function f , for r > 0 small enough, one has the 
three possible cases:⎧⎪⎪⎨⎪⎪⎩

either p = 0 (z is a local minimum of f) and {f < f(z)} ∩B(z, r) = ∅,
or p = 1 and {f < f(z)} ∩B(z, r) has exactly two connected components,
or p ≥ 2 and {f < f(z)} ∩B(z, r) is connected,

(37)

where B(z, r) := {x ∈ Ω s.t. |x − z| < r}. The separating saddle points of f and the critical components 
of f are defined as follows (see Fig. 3 for an illustration):



Fig. 3. An example in dimension 2 of a saddle point which is not separating. The points x1 and x2 are two local minima of f , and 
the points y1 and y2 are two local maxima of f . The two connected components of {f < f(z)} ∩B(z, r) are contained in the same 
connected components of {f < f(z)} (see the arrowed path on the figure).

Definition 13. Assume (A0). Let C = {C1, . . . , CN1} be the set of connected sets as introduced in Definition 12.

1. A point z ∈ UΩ
1 is a separating saddle point if either z ∈ U∂Ω

1 ∩ ∪N1
i=1∂Ci or z ∈ UΩ

1 ∩ ∪N1
i=1Ci and for 

r > 0 small enough, the two connected components of {f < f(z)} ∩ B(z, r) are contained in different 
connected components of {f < f(z)}. Notice that in the former case z ∈ ∂Ω while in the latter case 
z ∈ Ω. The set of separating saddle points is denoted by Ussp

1 .
2. For any σ ∈ R, a connected component E of the sublevel set {f < σ} in Ω is called a critical connected 

component if ∂E ∩ Ussp
1 �= ∅. The family of critical connected components is denoted by Ccrit.

Remark 14. It is natural to define generally a separating saddle point of a Morse function f as follows: z is 
a separating saddle point if for any sufficiently small connected neighborhood Vz of z, Vz ∩ {f < f(z)} has 
two connected components included in two different connected components of {f < f(z)}. Our definition 
of separating saddle point is equivalent to this general definition when the function f is extended by −∞
outside Ω. In particular, with this extended definition of f , there cannot be a separating saddle point outside 
∪N1
i=1Ci. We refer to [24, Remark 19] for more details.

In the rest of this section, we give a series of results on {C1, . . . , CN1} which will be used throughout this 
paper. These results are rather intuitive and, for the sake of conciseness, we refer to [24] for detailed proofs.

Proposition 15. Let us assume that (A0) holds. Let C = {C1, . . . , CN1} be the set of connected sets introduced 
in Definition 12 and let (k, �) ∈ {1, . . . , N1}2 with k �= �. Then,

Ck is an open subset of Ω and Ck ∩ C� = ∅. (38)

In addition, one has

∂Ck ∩ ∂Ω ⊂ Ussp
1 ∩ ∂Ω and ∂Ck ∩ ∂C� ⊂ Ussp

1 ∩ Ω, (39)

where the set Ussp
1 is introduced in item 1 in Definition 13. Finally, ∂Ck ∩ Ussp

1 �= ∅.

The proof of Proposition 15 is made in [24, Proposition 20] and is based on the following technical lemma 
(see [24, Lemma 17]).



Lemma 16. Let us assume that the function f : Ω → R is a C∞ function. Let x ∈ UΩ
0 . For all μ > f(x), 

it holds C(μ, x) =
⋃

λ<μ C(λ, x) and C+(μ, x) =
⋂

λ>μ C+(λ, x) where C(μ, x) and C+(μ, x) are respectively 
defined in (30) and (31).

The following technical result will be needed in the sequel.

Lemma 17. Let us assume that (A0) is satisfied. Let C = {C1, . . . , CN1} be the set of connected sets introduced 
in Definition 12. Let us consider {j1, . . . , jk} ⊂ {1, . . . , N1} with k ∈ {1, . . . , N1} and j1 < . . . < jk such 
that ∪k

�=1Cj� is connected and such that for all q ∈ {1, . . . , N1} \ {j1, . . . , jk}, Cq ∩∪k
�=1Cj� = ∅. Then, there 

exist z ∈ Ussp
1 and �0 ∈ {1, . . . , k} such that

z ∈ ∂Cj�0
\
(
∪k
�=1,� 	=�0 ∂Cj�

)
.

The proof of Lemma 17 is made in [24, Lemma 21]. Let us end this section with the following proposition.

Proposition 18. Let us assume that (A0) is satisfied. Let us consider Cq for q ∈ {1, . . . , N1} (see Defini-
tion 12). From (30) and (32), there exists xq ∈ UΩ

0 ∩Cq such that Cq = C(xq, λ(xq)). Let λ ∈ (minCq
f, λ(xq)]

and C be a connected component of Cq ∩ {f < λ}. Then,(
C ∩ Ussp

1 �= ∅
)

iff C ∩ UΩ
0 contains more than one point. (40)

Moreover, let us define

σ := max
y∈C∩Ussp

1

f(y)

with the convention σ = minC f when C ∩ Ussp
1 = ∅. Then, the following assertions hold.

1. For all μ ∈ (σ, λ], the set C ∩ {f < μ} is a connected component of {f < μ}.
2. If C ∩Ussp

1 �= ∅, one has C ∩UΩ
0 ⊂ {f < σ} and the connected components of C ∩{f < σ} belong to Ccrit.

The proof of Proposition 18 is made in [24, Proposition 22]. It relies on properties of the sublevel sets of 
a Morse function in Rd.

2.3. Constructions of the maps j and j̃

In this section we construct, under (A0), two maps j and j̃, using an association between the local 
minima UΩ

0 and the (generalized) saddle points UΩ
1 . Such maps have been introduced in [29–31,28] in the 

boundaryless case. This has been generalized in [23] to the boundary case (where the authors introduced 
the notion of generalized saddle points for ΔD,(0)

f,h ).
Let us recall (see Lemma 23 below), that L

D,(0)
f,h has exactly mΩ

0 eigenvalues smaller than 
√
h/2 for 

sufficiently small h. Actually, from [32,23], it can be shown that these mΩ
0 eigenvalues are exponentially 

small. The goal of the map j is to associate each local minimum x of f with a set of generalized saddle 
points j(x) ⊂ UΩ

1 such that f is constant over j(x) and for sufficiently small h,

∃λ ∈ σ
(
− L

D,(0)
f,h

)
, lim
h→0

h lnλ = −2
(
f(j(x)) − f(x)

)
.

The map j̃ associates each local minimum x of f with the connected component of {f < f(j(x))} which 
contains x. To construct the maps j and j̃, the procedure relies on the results of Section 2.2, following the 



general analysis of the sublevel sets of a Morse function on a manifold without boundary of [28, Section 
4.1] which generalizes the procedure described in [31]. The idea is to consider the connected components of 
{f < λ} ∩ Ussp

1 appearing as λ decreases from max∪N1
k=1Ck

f to −∞. Each time a new connected component 
appears in ∪N1

k=1Ck, one picks arbitrarily a global minimum of f in it and then, one associates this local 
minimum with the separating saddle points on the boundary of this new connected component.

Let us assume that the assumption (A0) holds. The constructions of the maps j and j̃ are made recursively 
as follows:

1. Initialization (q = 1). We consider E1,� = C� for � ∈ {1, . . . , N1} (see (35)). For each � ∈ {1, . . . , N1}, 
x1,� denotes one point in arg minE1,�

f = arg minE1,�
f . Then we define, for all k ∈ {1, . . . , N1},

σ1,� := max
E1,�

f, j̃(x1,�) := E1,� and j(x1,�) := ∂E1,� ∩ Ussp
1 . (41)

Notice that according to Proposition 15 and item 2 in Definition 13, it holds

j(x1,�) �= ∅, ∂E1,� ⊂ {f = σ1,�}, j̃(x1,�) ∈ Ccrit and
N1⋃
�=1

j(x1,�) ∩ ∂Ω ⊂ U∂Ω
1 .

Moreover, one has from Proposition 15 (and more precisely the second inclusion in (39)),

∀� �= q ∈ {1, . . . ,N1}, ∂E1,� ∩ ∂E1,q ⊂ Ussp
1 ∩ Ω. (42)

2. First step (q = 2). From Proposition 18, for each � ∈ {1, . . . , N1}, E1,� ∩ UΩ
0 �= {x1,�} if and only if 

Ussp
1 ∩ E1,� �= ∅. As a consequence, one has:

Ussp
1

⋂(
∪N1
�=1 E1,�

)
�= ∅ iff {x1,1, . . . , x1,N1} �= UΩ

0 .

If Ussp
1
⋂(

∪N1
�=1 E1,�

)
= ∅ (or equivalently N1 = mΩ

0 ), the constructions of the maps ̃j and j are finished 

and one goes to item 4 below. If Ussp
1
⋂(

∪N1
�=1 E1,�

)
�= ∅ (or equivalently N1 < mΩ

0 ), one defines

σ2 := max
x∈Ussp

1
⋂ (

∪N1
�=1E1,�

) f(x) ∈
(

min
∪N1

�=1E1,�

f, max
�∈{1,...,N1}

σ1,�

)
.

The set

N1⋃
�=1

(
E1,� ∩ {f < σ2}

)
is then the union of finitely many connected components. We denote by E2,1, . . . , E2,N2 (with N2 ≥
1) the connected components of 

⋃N1
�=1
(
E1,� ∩ {f < σ2}

)
which do not contain any of the min-

ima {x1,1, . . . , x1,N1}. From items 1 and 2 in Proposition 18 (applied to C = E1,� ∩ {f < σ2} for 
each � ∈ {1, . . . , N1}),

∀� ∈ {1, . . . ,N2}, E2,� ∈ Ccrit.

Notice that the other connected components (i.e. those containing the x1,�’s) may be not critical. Let 
us associate with each E2,�, 1 ≤ � ≤ N2, one point x2,� arbitrarily chosen in arg minE2,�

f = arg minE2,�
f

(the last equality follows from the fact that ∂E2,� ⊂ {f = σ2}). For � ∈ {1, . . . , N2}, let us define:



j̃(x2,�) := E2,� and j(x2,�) := ∂E2,� ∩ Ussp
1 ⊂ {f = σ2}.

3. Recurrence (q ≥ 3). If all the local minima of f in Ω have been labeled at the end of the previous step 
above (q = 2), i.e. if ∪2

j=1{xj,1, . . . , xj,Nj
} = UΩ

0 (or equivalently if N1 + N2 = mΩ
0 ), the constructions of 

the maps j̃ and j are finished and one goes to item 4 below. If it is not the case, from Proposition 18, 
there exists m ∈ N∗ such that

∀q ∈ {2, . . . ,m + 1}, Ussp
1

⋂ N1⋃
�=1

(
E1,� ∩ {f < σq}

)
�= ∅ (43)

where one defines recursively the decreasing sequence (σq)q=3,...,m+2 by

σq := max
{
f(x), x ∈ Ussp

1

⋂ N1⋃
�=1

(
E1,� ∩ {f < σq−1}

)}
.

Notice that σq ∈
(

min∪N1
�=1E1,�

f, σq−1

)
. Let us now consider the largest integer m∗ ∈ N∗ such that (43)

holds. Notice that m∗ is well defined since the cardinal of UΩ
0 is finite. By definition of m∗, one has:

Ussp
1

⋂ N1⋃
�=1

(
E1,� ∩ {f < σm∗+2}

)
= ∅. (44)

Then, one repeats recursively m∗ times the procedure described in the first step above. For q ∈
{2, . . . , m∗+1}, one defines (Eq+1,�)�∈{1,...,Nq+1} as the set of connected components of 

⋃N1
�=1

(
E1,�∩{f <

σq+1}
)

which does not contain any of the local minima ∪q
j=1{xj,1, . . . , xj,Nj

} of f in Ω which have been 

previously chosen. From items 1 and 2 in Proposition 18, ∀� ∈ {1, . . . , Nq+1}, Eq+1,� ∈ Ccrit. For � ∈
{1, . . . , Nq+1}, we associate with each Eq+1,�, one point xq+1,� arbitrarily chosen in arg minEq+1,�

f . For 
� ∈ {1, . . . , Nq+1}, let us define:

j̃(xq+1,�) := Eq+1,� and j(xq+1,�) := ∂Eq+1,� ∩ Ussp
1 ⊂ {f = σq+1}.

From (44) and Proposition 18, UΩ
0 = ∪m∗+2

j=1 {xj,1, . . . , xj,Nj
} and thus, all the local minima of f in Ω are 

labeled. This concludes the constructions of the maps ̃j and j.
4. Properties of the maps ̃j and j. The two maps

j̃ : UΩ
0 −→ Ccrit and j : UΩ

0 −→ P(UΩ
1 ) (45)

are clearly injective. Notice that the j(x), x ∈ UΩ
0 , are not disjoint in general. For all x ∈ UΩ

0 , f(j(x))
contains exactly one value, which will be denoted by f(j(x)). Moreover, since ∪N1

�=1E1,� ⊂ Ω (see the first 
statement in (38)), one has for all x ∈ UΩ

0 , ̃j(x) ⊂ Ω. Moreover, it holds

∀x ∈ UΩ
0 \ {x1,1, . . . , x1,N1}, j(x) ⊂ Ω ∩ Ussp

1 . (46)

Finally, for all x ∈ UΩ
0 , f(j(x)) − f(x) > 0 and for all x ∈ UΩ

0 ∩ j̃(x1,�) \ {x1,�}

f(j(x)) − f(x) < min
�=1,...,N1

f(j(x1,�)) − f(x1,�). (47)



Fig. 4. The maps j and ̃j on a one-dimensional example for which the maps are uniquely defined and the construction requires three 
steps.

The constructions of the maps j and ̃j are illustrated in Fig. 4 on a one-dimensional example. Since one can 
pick a minimum or another in a critical connected component at each step of the construction of j and j̃, 
the maps are not uniquely defined if over one of the connected components Ek,� (k ≥ 1, � ∈ {1, . . . , Nk}), 
arg min f contains more than one point (see [24, Fig. 9] for a one-dimensional example). As will become 
clear below, this non-uniqueness has no influence on the results proven hereafter.

Remark 19. In the case when for all local minima x of f , j(x) is a single point, j(x) ∩ j(y) = ∅ for all x �= y

and when all the heights (f(j(x)) − f(x))x∈UΩ
1

are distinct, the map j is exactly the one constructed in [23].

The next definition will be used in Section 3.2 to construct the quasi-modes.

Definition 20. Let us assume that (A0) is satisfied. Let ε be such that

0 ≤ ε < min
k≥1, �∈{1,...,Nk}

(
max
Ek,�

f − max
Ussp

1 ∩Ek,�

f
)
, (48)

where the family (Ek,�)k≥1, �∈{1,...,Nk} is defined in the construction of the map j above. For k ≥ 1 and 
� ∈ {1, . . . , Nk}, one defines

Ek,�(ε) = Ek,� ∩
{
f < max

Ek,�

f − ε
}
, (49)

which is a connected component of 
{
f < maxEk,�

f − ε
}

according to item 1 in Proposition 18.

2.4. Rewriting the assumptions (A1)-(A4) in terms of the map j

Lemma 21. Let us assume that (A0) is satisfied. Then, the assumption (A1) is equivalent to the fact that 
there exists � ∈ {1, . . . , N1} such that for all k ∈ {1, . . . , N1} \ {�},

f(j(x1,k)) − f(x1,k) < f(j(x1,�)) − f(x1,�).

Thus, when (A1) holds, the elements of C = {C1, . . . , CN1} (see Definition 12) are ordered such that � = 1, 
i.e. for all k ∈ {2, . . . , N1}:

f(j(x1,k)) − f(x1,k) < f(j(x1,1)) − f(x1,1). (50)

With this numbering, one has C1 = Cmax, where Cmax is defined in (A1).



Proof. Assume that the hypothesis (A0) is satisfied. Let us recall that C = {C(x), x ∈ UΩ
0 } = {C1, . . . , CN1}. 

Let C ∈ C and let k ∈ {1, . . . , N1}, such that C = Ck. Then, from (33) and the first step of the construc-
tion of j in Section 2.3, one has for all q ∈ {1, . . . , N1}: Hf (x1,q) = λ(x1,q) = f(j(x1,q)) = supCq

f and 
f(x1,q) = minCq

f . Thus, it holds supC f − minC f = f(j(x1,k)) − f(x1,k). This implies the results stated in 
Lemma 21. �

In view of Lemma 21 and by construction of the map j (see the first step in Section 2.3), one can rewrite 
the assumptions (A1), (A2), (A3), and (A4) with the map j as follows:

• The assumption (A1) is equivalent to the fact that, up to reordering the elements of C = {C1, . . . , CN1}
such that (50) is satisfied, it holds:

∀x ∈ {x1,2, . . . , x1,N1}, f(j(x)) − f(x) < f(j(x1,1)) − f(x1,1). (A1j)

Furthermore, in this case, C1 = Cmax, where Cmax is defined by (A1).
• The assumption (A2) rewrites when (A1j) holds,

∂C1 ∩ ∂Ω �= ∅. (A2j)

• The assumption (A3) rewrites when (A1j) holds,

∂C1 ∩ ∂Ω ⊂ arg min
∂Ω

f. (A3j)

• When (A1j) holds, the assumption (A4) is equivalent to

j(x1,1) ⊂ ∂Ω. (A4j)

This equivalence between (A4) and (A4j) follows from (A1j) together with the fact that j(x1,1) = ∂C1∩Ussp
1

(see (41)) and by definition of a separating saddle point. From now on, we work with the formula-
tions (A1j), (A2j), (A3j), and (A4j) of the assumptions (A1), (A2), (A3), and (A4).

For one-dimensional illustrations of the assumptions, we refer to [24, Figures 6 to 9]. Notice that un-
der (A1j), it holds from (47):

∀x ∈ UΩ
0 \ {x1,1}, f(j(x)) − f(x) < f(j(x1,1)) − f(x1,1). (51)

When (A1j) and (A2j) are satisfied, from Definition 13 and Proposition 15 (see the first inclusion in (39)
and (41)), one has

∂Ω ∩ j(x1,1) = ∂Ω ∩ ∂C1 = U∂Ω
1 ∩ ∂C1. (52)

In that case, we assume that the elements {z1, . . . , zm∂Ω
1
} of U∂Ω

1 (see (20)) are ordered such that

∂Ω ∩ ∂C1 = {z1, . . . , zk∂C1
1

} (53)

where k∂C1
1 ∈ N∗ satisfies k∂C1

1 ≤ m∂Ω
1 (see (20)). Notice that from Lemma 21, this labeling implies when 

(A3j) is satisfied:

k∂C1
1 = k∂Cmax

1 , (54)

where k∂Cmax
1 is defined by (23). Let us finally prove the following result which will be used in the sequel.



Lemma 22. Let us assume that (A0), (A1j), (A2j), and (A3j) hold. Then, one has minΩ f = minΩ f <

min∂Ω f and

arg min
C1

f = arg min
Ω

f. (55)

Proof. The fact that minΩ f < min∂Ω f is obvious. Let us prove (55). Let k ∈ {1, . . . , N1} and let us 
recall that from Definition 12, there exists x ∈ UΩ

0 ∩ Ck such that Ck = C(λ(x), x). Let us assume that 
x ∈ arg minΩ f . Then, by definition of the map j and by definition of λ(x) (see (32)) together with the fact 
that (A1j), (A2j), and (A3j) hold, one has f(j(x1,k)) = λ(x) ≥ min∂Ω f = f(j(x1,1)). Thus, if f(x1,k) =
f(x) ≤ f(x1,1), it holds λ(x) −f(x) = f(j(x1,k)) −f(x1,k) ≥ f(j(x1,1)) −f(x1,1). This implies Ck = C1 from 
the assumption (A1j). This concludes the proof of (55). �
3. Constructions of the quasi-modes

This section is dedicated to the constructions of two families of quasi-modes approximating the eigenforms 
of −L

D,(0)
f,h and −L

D,(1)
f,h associated with exponentially small eigenvalues. These constructions use the maps 

j and j̃ introduced in the previous section.
This section is organized as follows. In Section 3.1, we introduce the notations used throughout this paper 

for operators, and the properties of Witten Laplacians and of the operators LD,(p)
f,h needed in our analysis. 

The quasi-modes are then built in Section 3.2.

3.1. Notations and Witten Laplacian

3.1.1. Notation for Sobolev spaces
For p ∈ {0, . . . , d}, one denotes by ΛpC∞(Ω) the space of C∞ p-forms on Ω. Moreover, ΛpC∞

T (Ω) is the 
set of C∞ p-forms v such that tv = 0 on ∂Ω, where t denotes the tangential trace on forms. The weighted 
space ΛpL2

w(Ω) is the completion of ΛpC∞(Ω) for the norm

w ∈ ΛpC∞(Ω) �→
√√√√∫

Ω

|w|2e− 2
h f .

Likewise, for p ∈ {0, . . . , d} and q ∈ N, ΛpHq
w(Ω) is the weighted Sobolev spaces of p-forms on Ω with 

regularity index q: v ∈ ΛpHq
w(Ω) if and only if for every multi-index α with |α| ≤ q, ∂αv is in ΛpL2

w(Ω). 
See for example [33] for an introduction to Sobolev spaces on manifolds with boundaries. For p ∈ {0, . . . , d}
and q > 1

2 , the set ΛpHq
w,T (Ω) is defined by

ΛpHq
w,T (Ω) := {v ∈ ΛpHq

w(Ω) | tv = 0 on ∂Ω} .

Notice that ΛpL2
w(Ω) is the space ΛpH0

w(Ω), and that Λ0H1
w,T (Ω) is the space H1

w,0(Ω) already introduced 
in Proposition 4. We will denote by ‖.‖Hq

w
the norm on the weighted space ΛpHq

w(Ω). Moreover 〈·, ·〉L2
w

denotes the scalar product in ΛpL2
w(Ω). Finally, we will also use the same notation without the index w to 

denote the standard Sobolev spaces defined with respect to the Lebesgue measure on Ω.

3.1.2. The Witten Laplacian and the infinitesimal generator of the diffusion (1)
In this section, we recall some basic properties of Witten Laplacians, as well as the link between those 

and the operators L(p) introduced above (see (7) and (29)).
f,h



For p ∈ {0, . . . , n}, one defines the distorted exterior derivative à la Witten d(p)
f,h : Λp C∞(Ω) →

Λp+1 C∞(Ω) and its formal adjoint: d(p)∗
f,h : Λp+1 C∞(Ω) → Λp C∞(Ω) by

d
(p)
f,h := e−

1
h f h d(p) e

1
h f and d

(p)∗
f,h := e

1
h f h d(p)∗ e−

1
h f .

The Witten Laplacian, firstly introduced in [34], is then defined similarly as the Hodge Laplacian Δ(p)
H :=

(d + d∗)2 by

Δ(p)
f,h := (df,h + d∗f,h)2 = df,hd

∗
f,h + d∗f,hdf,h : Λp C∞(Ω) → Λp C∞(Ω).

The Dirichlet realization of Δ(p)
f,h on ΛpL2(Ω) is denoted by ΔD,(p)

f,h and its domain is

D
(
ΔD,(p)

f,h

)
=
{
w ∈ ΛpH2 (Ω) | tw = 0, td∗f,hw = 0

}
.

The operator ΔD,(p)
f,h is self-adjoint, nonnegative, and its associated quadratic form is given by

φ ∈ ΛpH1
T (Ω) �→ ‖d(p)

f,hφ‖2
L2 + ‖d(p)∗

f,h φ‖2
L2 ,

where

ΛpH1
T (Ω) =

{
w ∈ ΛpH1 (Ω) | tw = 0

}
.

We refer in particular to [23, Section 2.4] for a comprehensive definition of Witten Laplacians with Dirichlet 
tangential boundary conditions and statements on their properties. The link between the Witten Laplacian 
and the infinitesimal generator L(0)

f,h of the diffusion (1) is the following: since

L
(0)
f,h = −∇f · ∇ − h

2 Δ(0)
H and Δ(0)

f,h = h2Δ(0)
H + |∇f |2 + hΔ(0)

H f, (56)

one has:

ΔD,(0)
f,h = −2hU L

D,(0)
f,h U−1

where U is the unitary operator

U :
{

ΛpL2
w (Ω) → ΛpL2 (Ω)

φ �→ e−
1
h fφ.

(57)

In particular, the operator LD,(0)
f,h has a natural extension to p-forms defined by the relation

L
D,(p)
f,h = − 1

2h U−1 ΔD,(p)
f,h U. (58)

For p = 1, one recovers the operator L(1)
f,h with tangential Dirichlet boundary conditions defined by (28)–(29). 

The operator LD,(p)
f,h with domain

D
(
L
D,(p)
)

= U−1 D
(
ΔD,(p)

)
=
{
w ∈ ΛpH2

w (Ω) | tw = 0, td∗2f w = 0
}
,
f,h f,h

h ,1



is then self-adjoint on ΛpL2
w (Ω), non positive and its associated quadratic form is

ΛpH1
T (Ω) � φ �→ −h

2

[∥∥d(p)φ
∥∥2
L2

w
+
∥∥d(p)∗

2f
h ,1φ
∥∥2
L2

w

]
.

Let us also recall that −L
D,(p)
f,h (and equivalently ΔD,(p)

f,h ) has a compact resolvent. From general results on 

elliptic operators when p = 0, −L
D,(0)
f,h (and ΔD,(0)

f,h ) admits a non degenerate smallest eigenvalue with an 

associated eigenfunction which has a sign on Ω. Denoting moreover by πE(LD,(p)
f,h ) the spectral projector 

associated with LD,(p)
f,h and some Borel set E ⊂ R, the following commutation relations hold on ΛpH1

T (Ω):

d(p) πE(LD,(p)
f,h ) = πE(LD,(p+1)

f,h (Ω)) d(p) and d
(p)∗
2f
h ,1 πE(LD,(p)

f,h ) = πE(LD,(p−1)
f,h ) d(p)∗

2f
h ,1. (59)

Let us recall that from the elliptic regularity of LD,(p)
f,h , for any bounded Borel set E ⊂ R, Ran πE(LD,(d)

f,h ) ⊂
Λp C∞

T (Ω), the relation (59) then leads to the following complex structure:

{0} −→ Ran πE(LD,(0)
f,h ) df,h−−−−→ Ran πE(LD,(1)

f,h ) df,h−−−−→ · · · df,h−−−−→ Ran πE(LD,(d)
f,h ) df,h−−−−→ {0}

and

{0}
d∗

2f
h

,1
←−−−− Ran πE(LD,(0)

f,h )
d∗

2f
h

,1
←−−−− Ran πE(LD,(1)

f,h )
d∗

2f
h

,1
←−−−− · · ·

d∗
2f
h

,1
←−−−− Ran πE(LD,(d)

f,h ) ←− {0}.

For ease of notation, one defines:

∀p ∈ {0, . . . , d} , π
(p)
h := π[0,

√
h

2 )(−L
D,(p)
f,h ). (60)

The following result, instrumental in our investigation of the smallest eigenvalue λh of −L
D,(0)
f,h , is an 

immediate consequence of [23, Theorem 3.2.3] together with (58).

Lemma 23. Under assumption (A0), there exists h0 > 0 such that for all h ∈ (0, h0),

dim Ranπ
(0)
h = mΩ

0 and dim Ran π
(1)
h = mΩ

1 ,

where mΩ
0 = Card(UΩ

0 ) and mΩ
1 = Card(UΩ

1 ) are defined in Section 1.3.2.

Remark 24. In [23, Theorem 3.2.3] it is assumed that f : ∂Ω → R is a Morse function while in (A0), we 
only assume that f : {x ∈ ∂Ω, ∂nf(x) > 0} → R is a Morse function. As mentioned in [35, Section 7.1], 
the statement of Lemma 23 still holds under this weaker assumption. This is explained in details in [24, 
Appendix A].

In the sequel, with a slight abuse of notation, one denotes the exterior differential d acting on functions 
by ∇. Note that it follows from the above considerations and Lemma 23 that under (A0), it holds

uh ∈ Ran π
(0)
h and ∇uh ∈ Ran π

(1)
h . (61)

Moreover, from (58), it is equivalent to study the spectrum of LD,(0)
f,h or the spectrum of ΔD,(0)

f,h . We end 
this section with the following standard lemma which will be frequently used throughout this work (see for 
instance [36, Theorem 8.15]).



Lemma 25. Let (A, D (A)) be a non negative self-adjoint operator on a Hilbert space (H, ‖ · ‖) with associated 
quadratic form qA(x) = (x, Ax) whose domain is Q (A). It then holds, for any u ∈ Q (A) and b > 0,

∥∥π[b,+∞)(A)u
∥∥2 ≤ qA(u)

b
,

where, for a Borel set E ⊂ R, πE(A) is the spectral projector associated with A and E.

3.2. Construction of the quasi-modes for −L
D,(0)
f,h and −L

D,(1)
f,h

Let us recall that from Lemma 23, one has for any h small enough dim Ran π
(0)
h = mΩ

0 and dim Ran π
(1)
h =

mΩ
1 , where mΩ

0 is the number of local minima of f in Ω and mΩ
1 is the number of generalized saddle points 

of f in Ω, see Section 1.3.2. To prove Theorem 1, the strategy consists in constructing a family of mΩ
0

quasi-modes in order to approximate Ranπ
(0)
h and a family of mΩ

1 quasi-modes in order to approximate 

Ran π
(1)
h (see (60) for the definitions of the spectral projectors π

(p)
h ).

Since the construction of the quasi-modes rely on the one made for Witten Laplacians in [31,23,28], we 
first construct quasi-modes for the Witten Laplacians ΔD,(0)

f,h in Section 3.2.1, and ΔD,(1)
f,h in Section 3.2.2. 

The quasi-modes for −L
D,(0)
f,h and −L

D,(1)
f,h are then obtained using (58) in Section 3.2.3.

3.2.1. Quasi-modes for the Witten Laplacian ΔD,(0)
f,h

Let us assume that (A0) is satisfied. Let us recall that from Lemma 23 and (58), there exists h0 > 0
such that for any h ∈ (0, h0), dim Ran π

[0,h
3
2 )

(
ΔD,(0)

f,h

)
= mΩ

0 . In this section, the maps j and ̃j introduced in 

Section 2.3 are used to build a family of mΩ
0 functions whose span approximates Ranπ

[0,h
3
2 )

(
ΔD,(0)

f,h

)
. The 

properties of this family which are listed in this section will be useful to prove Proposition 43 below and 
Propositions 46 and 47 in the next section. Following [31,23,28], each critical point x ∈ UΩ

0 is associated 
with a quasi-mode for ΔD,(0)

f,h . The notation follows the one introduced in Section 2.3.
Let us first introduce two parameters ε1 > 0 and ε > 0 which will be used to define the quasi-modes 

for ΔD,(0)
f,h . In the following, d is the geodesic distance on Ω for the initial metric. Let us consider ε1 > 0

small enough such that

∀z, z′ ∈ UΩ
1 , z �= z′ implies d(z, z′) ≥ 6ε1 (62)

and for all z ∈ UΩ
1 (thanks to (37)),

either z ∈ UΩ
1 and {f < f(z)} ∩B(z, 2ε1) has two connected components, (63)

or z ∈ U∂Ω
1 and {f < f(z)} ∩B(z, 2ε1) is connected. (64)

The parameter ε1 > 0 will be successively reduced a finite number of times in this section and in Section 3.2.2, 
and it will be kept fixed from the end of Section 3.2.2.

Let ε > 0 be such that

0 < ε <
1
2 min

k≥1, �∈{1,...,Nk}

(
max
Ek,�

f − max
Ussp

1 ∩Ek,�

f
)
,

which ensures in particular that Ek,�(ε) and Ek,�(2ε) are connected for all k ≥ 1 and � ∈ {1, . . . , N1}, 
see (49). The parameter ε > 0 will be further reduced a finite number of times in the following sections so 
that ∂{χε,ε1

k,� = 1} is as close as necessary to ∂Ek,� near j(xk,�), where the cut-off function χε,ε1
k,� is introduced 

in the next definition of the quasi-mode for ΔD,(0) associated to xk,�.
f,h



Definition 26. Let us assume that (A0) holds. For k ≥ 1 and � ∈ {1, . . . , Nk}, the quasi-mode associated with 
xk,� is defined by:

∀� ∈ {1, . . . ,Nk}, ṽk,� :=
χε,ε1
k,� e−

1
h f∥∥χε,ε1

k,� e−
1
h f
∥∥
L2

, (65)

where the functions χε,ε1
k,� ∈ C∞

c (Ω, R+) satisfy the following properties: there exists ε0
1 > 0 such that for all 

ε1 ∈ (0, ε0
1], there exists ε0 > 0 such that for all ε ∈ (0, ε0],

a) It holds

{
Ek,�(2ε) ⊂ {χε,ε1

k,� = 1} and
suppχε,ε1

k,� ⊂
{
x ∈ Ω, d(x,Ek,�) ≤ 3ε1

}
\ j(xk,�),

(66)

see (35) for the definition of Ek,� and (49) for the definition of Ek,�(2ε).
b) For all y ∈ suppχε,ε1

k,� ,

f(y) ≤ f(j(xk,�)) implies y ∈ Ek,�

and hence, according to (66), ⎧⎨⎩arg minsupp χ
ε,ε1
k,�

f = arg minEk,�
f and

minsupp ∇χ
ε,ε1
k,�

f ≥ f(j(xk,�)) − 2ε.
(67)

c) For all z ∈ j(xk,�) ∩ Ω, it holds

suppχε,ε1
k,� ∩B(z, 2ε1) �= ∅ and suppχε,ε1

k,� ∩B(z, 2ε1) ⊂ Ek,�. (68)

d) For all z ∈ UΩ
1 \ j(xk,�), it holds

{
z ∈ Ek,� and B(z, 2ε1) ⊂ {χε,ε1

k,� = 1} or
z /∈ Ek,� and B(z, 2ε1) ⊂ {χε,ε1

k,� = 0}.
(69)

e) For all q ∈ {1, . . . , Nk} \ {�}, it holds suppχε,ε1
k,q ∩ suppχε,ε1

k,� = ∅.
f) For k ≥ 2 and for any (k′, �′) ∈ {1, . . . , k − 1} × {1, . . . , Nk′} such that Ek,� ⊂ Ek′,�′ , it holds

suppχε,ε1
k,� ⊂ {χε,ε1

k′,�′ = 1}. (70)

Notice that by a connexity argument, it holds Ek,� ⊂ Ek′,�′ or Ek,� ∩ Ek′,�′ = ∅.

In Figs. 5 and 6, for k ≥ 1, one gives a schematic representation of the cut-off function χε,ε1
k,� near z ∈ UΩ

1
in the three situations: (i) k = 1, � ∈ {1, . . . , N1} and z ∈ j(x1,�) ∩∂Ω; (ii) � ∈ {1, . . . , Nk} and z ∈ j(xk,�) ∩Ω; 
(iii) � ∈ {1, . . . , Nk}, z ∈

(
UΩ

1 \ j(xk,�)
)
∩ ∂Ek,�.

For the ease of notation, we do not indicate explicitly the dependence on the parameters ε and ε1 in the 
notation of the functions ṽk,� for k ≥ 1, � ∈ {1, . . . , Nk}. The following lemma will be useful to estimate ∥∥(1 − π

(0)) ̃vk,�
∥∥

2 when h → 0, for k ≥ 1 and � ∈ {1, . . . ,Nk}, see indeed item 2a in Proposition 43 below.
h L



Fig. 5. Schematic representation of the cut-off function χε,ε1
k,� . Left: near z ∈ j(x1,�) ∩ ∂Ω ⊂ U∂Ω

1 ∩ Ussp
1 for � ∈ {1, . . . , N1}. Right: 

near z ∈ j(xk,�) ∩ Ω ⊂ UΩ
1 for k ≥ 1 and � ∈ {1, . . . , Nk} (W+ is the stable manifold of the saddle point z). The point z is a 

separating saddle point as introduced in Definition 13. The dashed line represents ∂Ek,�(2ε) and the thick solid line represents 
supp∇χε,ε1

k,� .

Fig. 6. Schematic representation of the cut-off function χε,ε1
k,� near z ∈ (UΩ

1 \ j(xk,�)) ∩ ∂Ek,�. The point z is a saddle point on ∂Ek,�

but is not a separating saddle point as introduced in Definition 13.

Lemma 27. Let us assume that (A0) holds. Then, for k ≥ 1 and � ∈ {1, . . . , Nk}, there exist c > 0, C > 0
and h0 > 0 such that for all h ∈ (0, h0),

∥∥df,hṽk,�∥∥L2 =
∥∥h e− 1

h f dχε,ε1
k,�

∥∥
L2∥∥e− 1

h f χε,ε1
k,�

∥∥
L2

≤ C e−
1
h (f(j(xk,�))−f(xk,�)−cε), (71)

where the function ṽk,� has been introduced in Definition 26.

Proof. This estimate follows from (65)–(67), and Laplace’s method applied to ‖χε,ε1
k,� e−

1
h f‖L2 . �

The following lemma ensures that the family (ṽk,�)k≥1, �∈{1,...,Nk} is uniformly linearly independent for 
any h small enough (the proof of this result is made in [28, Section 4.2]).

Lemma 28. Let us assume that (A0) holds. The family Bv = (ṽk,�)k≥1, �∈{1,...,Nk} introduced in Definition 26, 
is linearly independent, uniformly with respect to h small enough: for some (and hence for any) orthonormal 



(for the L2-scalar product) family Bo spanning Span(Bv), for any matrix norm ‖ · ‖ on RmΩ
0 ×mΩ

0 , there exist 
C > 0 and h0 > 0 such that for all h ∈ (0, h0),

‖MatBo
Bv‖ ≤ C and ‖MatBv

Bo‖ ≤ C. (72)

3.2.2. Quasi-modes for the Witten Laplacian ΔD,(1)
f,h

Let us assume that (A0) is satisfied. Let us recall that from Lemma 23 and (58), there exists h0 > 0 such 
that for any h ∈ (0, h0), dim Ran π

[0,h
3
2 )

(
ΔD,(1)

f,h

)
= mΩ

1 . In this section, a family of 1-forms (φ̃j)j∈{1,...,mΩ
1 }

approximating Ranπ
[0,h

3
2 )

(
ΔD,(1)

f,h

)
is built. To this end, for each z ∈ UΩ

1 , one constructs a 1-form locally 

supported in a neighborhood of z in Ω, following the procedure in [31,28] if z ∈ UΩ
1 , and the procedure 

in [23] if z ∈ U∂Ω
1 . For the sake of completeness, we recall these constructions, and we provide associated 

estimates which will be used throughout this work.

Quasi-mode associated with z ∈ UΩ
1 . Let us recall that from (21), UΩ

1 = {zm∂Ω
1 +1, . . . , zmΩ

1
} ⊂ Ω is the set of 

saddle points of f in Ω. Let j ∈ {m∂Ω
1 +1, . . . , mΩ

1
}

and zj ∈ UΩ
1 . Let Vj be some small smooth neighborhood 

of zj such that Vj ∩ ∂Ω = ∅ and for x ∈ Vj , |∇f(x)| = 0 if and only if x = zj . Let us now consider the full 
Dirichlet realization ΔFD,(1)

f,h (Vj) of the Witten Laplacian Δ(1)
f,h in Vj whose domain is

D
(

ΔFD,(1)
f,h

(
Vj)
)

=
{
w ∈ Λ1H2 (Vj) , w|∂Vj

= 0
}
.

Let us recall that according to [32, Section 2], there exists, choosing if necessary Vj smaller, a C∞ non 
negative solution Φj : Vj → R+ to the eikonal equation

|∇Φj | = |∇f | in Vj such that Φj(y) = 0 iff y = zj . (73)

Moreover, Φj is the unique non negative solution to (73) in the sense that if Φ̃j : Ṽj → R+ is another non 
negative C∞ solution to (73) on a neighborhood Ṽj of zj , then Φ̃j = Φj on Ṽj ∩ Vj .

Remark 29. The function Φj is actually the Agmon distance to zj, i.e. Φj is the distance to zj in Ω associated 
with the metric |∇f |2dx2, where dx2 is the Riemannian metric on Ω (see [32, Section 1]).

The next proposition, which follows from [32, Theorem 1.4 and Lemma 1.6], gathers all the estimates 
one needs in the following on the operator ΔFD,(1)

f,h (Vj).

Proposition 30. Let us assume that (A0) is satisfied. Then, the operator ΔFD,(1)
f,h (Vj) is self-adjoint, has 

compact resolvent and is positive. Moreover:

• There exist ε0 > 0 and h0 > 0 such that for all h ∈ (0, h0):

dim Ran π[0,ε0h)
(
ΔFD,(1)

f,h (Vj)
)

= 1. (74)

• The smallest eigenvalue λh(Vj) of ΔFD,(1)
f,h (Vj) is exponentially small: there exist C > 0, c > 0 and 

h0 > 0 such that for any h ∈ (0, h0):

λh(Vj) ≤ Ce−
c
h . (75)

• Any L2-normalized eigenform wj associated with the smallest eigenvalue λh(Vj) of ΔFD,(1)
f,h (Vj) satisfies 

the following Agmon estimate: for all ε > 0, there exist Cε > 0 and h0 > 0 such that for any h ∈ (0, h0), 
it holds:



∥∥e 1
hΦjwj

∥∥
H1(Vj)

≤ Cε e
ε
h , (76)

where Φj is the solution to (73).

Choosing ε1 smaller if necessary, one may assume that there exists α > 0 such that B(zj , 2ε1 + α) ⊂ Vj . 
Let us now define the quasi-mode associated with zj ∈ UΩ

1 .

Definition 31. Let us assume that (A0) is satisfied. Let j ∈ {m∂Ω
1 +1, . . . , mΩ

1
}

and zj ∈ UΩ
1 . The quasi-mode 

associated with zj is defined by

φ̃j := θj wj

‖θj wj‖L2
∈ Λ1C∞

c (Ω), (77)

where wj is a L2-normalized eigenform associated with the smallest eigenvalue λh(Vj) of ΔFD,(1)
f,h (Vj) and 

θj is a smooth non negative cut-off function satisfying, supp θj ⊂ B(zj , 2ε1) ⊂ Vj and θj = 1 on B(zj , ε1).

Notice that both wj and −wj can be used to build a quasi-mode: the choice of the sign will be determined 
in Proposition 33 below. Moreover, using (76) together with the fact that for all j ∈ {m∂Ω

1 + 1, . . . , mΩ
1
}
, 

infsupp (1−θj)∩Vj
Φj > 0 (see (73)), one has when h → 0:∥∥(1 − θj)wj

∥∥
L2(Vj)

= O
(
e−

c
h

)
and therefore,

∥∥θj wj

∥∥
L2 = 1 + O

(
e−

c
h

)
, (78)

for some c > 0 independent of h. Using Proposition 30 and (78), one deduces the following estimate on the 
quasi-mode φ̃j introduced in Definition 31.

Corollary 32. Let us assume that (A0) holds. Let φ̃j be the quasi-mode associated with zj ∈ UΩ
1 (j ∈

{m∂Ω
1 + 1, . . . , mΩ

1
}
), see Definition 31. Then, there exist C > 0, c > 0 and h0 > 0 such that for any 

h ∈ (0, h0): ∥∥df,hφ̃j

∥∥
L2 +

∥∥d∗f,hφ̃j

∥∥
L2 ≤ Ce−

c
h . (79)

Let us now recall the construction of a WKB approximation of wj made in [32] and which will be needed 
in the following. Let us denote by W+(zj) and W−(zj) respectively the stable and unstable manifolds 
of zj associated with the flow of −∇f which are defined as follows. Denoting by ϕt(y) the solution of 
d
dtϕt(y) = −∇f(ϕt(y)) with initial condition ϕ0(y) = y,

W±(zj) :=
{
y ∈ Ω, ϕt(y) −→

t→±∞
zj
}
. (80)

It then holds (see indeed [32, Section 2] and [31, Section 4.2]): dimW+(zj) = d − 1, dimW−(zj) = 1, and 
for all y ∈ Vj (assuming Vj small enough),

|f(y) − f(zj)| ≤ Φj(y) and |f(y) − f(zj)| = Φj(y) iff y ∈ W+(zj) ∪W−(zj) (81)

with moreover

Φj = ±(f − f(zj)) on W±(zj) and detHess Φj(zj) =
∣∣ detHess f(zj)

∣∣. (82)

Additionally, there exists from [32, Proposition 1.3 and Section 2] a C∞(Vj) 1-form aj(x, h) = ãj(x) +O(h)
such that aj(zj , h) = ãj(zj) = n(zj), where n(zj) is a unit normal to W+(zj), and such that the 1-form 
u

(1) = aje
− 1

hΦj satisfies
j,wkb



(
Δ(1)

f,h − μ(h)
)
u

(1)
j,wkb = O

(
h∞) e− 1

hΦj in Vj ,

where μ(h) ∼ h2∑∞
k=0 μkh

k. Moreover, one has in the limit h → 0 (see [32, Section 2]):

‖θju(1)
j,wkb‖L2 = (πh) d

4

|det Hess f(zj)|
1
4

(
1 + O(h)

)
, (83)

where the remainder term O(h) admits a full asymptotic expansion in h. Using in addition the fact that 
Φj > 0 on supp∇θj , there exists c > 0 such that for h small enough:∥∥∥(Δ(1)

f,h − μ(h)
)
(θj u(1)

j,wkb)
∥∥∥
L2

= O
(
h∞)+ O

(
e−

c
h

)
= O
(
h∞).

From (83), one then obtains that ΔFD,(1)
f,h (Vj) admits an eigenvalue which equals μ(h) + O(h∞). Since 

μ(h) = O(h2), from (74) and (75), one deduces that μk = 0 for all k ≥ 0 and thus μ(h) = O(h∞). Finally, 
one has:

Δ(1)
f,hu

(1)
j,wkb = O

(
h∞) e− 1

hΦj in Vj . (84)

In the following proposition, wj and u(1)
j,wkb are compared.

Proposition 33. Let us assume that (A0) is satisfied. Let wj be a L2-normalized eigenform associated with 
the smallest eigenvalue λh(Vj) of ΔFD,(1)

f,h (Vj) (j ∈ {m∂Ω
1 +1, . . . , mΩ

1
}
). Then, there exists h0 > 0 such that 

for all h ∈ (0, h0) one has: ∥∥∥θj(wj − cj(h)u(1)
j,wkb

)∥∥∥
H1

= O
(
h∞) (85)

where cj(h)−1 =
〈
wj , θju

(1)
j,wkb

〉
L2 . In addition, up to replacing wj by −wj, one can assume that cj(h) ≥ 0

for h small enough and then, in the limit h → 0, one has:

cj(h) =
∣∣det Hess f(zj)

∣∣ 14
(πh) d

4

(
1 + O(h)

)
, (86)

where the remainder term O(h) admits a full asymptotic expansion in h.

Proof. Let us define kj(h) :=
〈
wj , θju

(1)
j,wkb

〉
L2 = cj(h)−1. If kj(h) < 0, then one changes wj to −wj so 

that one can suppose without loss of generality that kj(h) ≥ 0. For h small enough, one has from (74)
π[0,ε0h)

(
ΔFD,(1)

f,h (Vj)
)(
θju

(1)
j,wkb

)
= kj(h)wj . Let us define the following 1-form αj := θj

(
u

(1)
j,wkb − kj(h) wj

)
. 

Thus, the following identity holds for h small enough

αj = kj(h) (1 − θj)wj + π[ε0h,+∞)
(
ΔFD,(1)

f,h (Vj)
)(
θju

(1)
j,wkb

)
.

Notice that, from (83), there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0)
∣∣kj(h)

∣∣ ≤ Ch
d
4 . Therefore, 

using Lemma 25, (78), and (84), there exist c > 0 and C > 0 such that for h small enough:

∥∥αj

∥∥2
L2 ≤ 2kj(h)2

∥∥ (1 − θj)wj

∥∥2
L2 + 2

∥∥∥π[ε0h,+∞)
(
ΔFD,(1)

f,h (Vj)
)
(θju(1)

j,wkb)
∥∥∥2
L2

≤ Ch
d
2 e−

c
h + Ch−1O

(
h∞) = O

(
h∞).



Moreover, since df,h = hd + df∧ and d∗f,h = hd∗ + i∇f , one obtains using the Gaffney inequality (see [33, 
Corollary 2.1.6]):

‖αj‖2
H1 ≤ C

(
‖dαj‖2

L2 + ‖d∗αj‖2
L2 + ‖αj‖2

L2

)
≤ Ch−2

(∥∥df,hαj

∥∥2
L2 +

∥∥d∗f,hαj

∥∥2
L2 + ‖αj‖2

L2

)
.

Furthermore, from (79), it holds 
∥∥df,h(θjwj)

∥∥
L2 +
∥∥d∗f,h(θjwj)

∥∥
L2 ≤ Ce−

c
h and from (84)

∥∥df,h(θju(1)
j,wkb)

∥∥
L2

+
∥∥d∗f,h(θju(1)

j,wkb)
∥∥
L2 = O(h∞). Thus, there exists C > 0 such that:

‖αj‖2
H1 = O

(
h∞).

This concludes the proof of (85). Finally, since ‖θjwj‖L2 = 1 +O(e− c
h ) (see (78)), by considering ‖θj(u(1)

j,wkb−
kj(h)wj)‖2

L2 = O
(
h∞), one gets using (83):

kj(h)2 =
‖θju(1)

j,wkb‖2
L2 + O

(
h∞)

2 − ‖θjwj‖2
L2

= (πh) d
2

|det Hess f(zj)|
1
2

(
1 + O(h)

)
.

Since kj(h) ≥ 0, one has kj(h) = (πh)
d
4

|det Hess f(zj)|
1
4

(
1 + O(h)

)
. This concludes the proof of (86) since cj(h) =

kj(h)−1. �
Quasi-mode associated with z ∈ U∂Ω

1 . Let us recall that from (20), U∂Ω
1 = {z1, . . . , zm∂Ω

1
} ⊂ ∂Ω is the set 

of generalized saddle points on ∂Ω. Let j ∈ {1, . . . , m∂Ω
1
}

and zj ∈ U∂Ω
1 . To construct a 1-form locally 

supported in a neighborhood of zj in Ω, one proceeds in the same way as in [23, Section 4.3]. Let Vj be a 
small neighborhood of zj in Ω such that Vj satisfies: |∇f | > 0 on Vj , for all x ∈ ∂Vj ∩ ∂Ω, |∇T f(x)| = 0
if and only if x = zj , and ∂nf > 0 on ∂Ω ∩ ∂Vj . Let us now consider the mixed full Dirichlet–tangential 
Dirichlet realization ΔMD,(1)

f,h (Vj) of the Witten Laplacian Δ(1)
f,h in Vj whose domain is

D
(
ΔMD,(1)

f,h (Vj)
)

=
{
w ∈ Λ1H2 (Vj) , w|∂Vj∩Ω = 0, tw|∂Vj∩∂Ω = 0 and td∗f,hw|∂Vj∩∂Ω = 0

}
,

see [23, Remark 4.3.1] for the characterization of its domain. Since ∂nf > 0 on ∂Ω ∩ Vj , from [23, Section 
4.2], one has that, choosing Vj small enough, there exists a C∞(Vj , R+) non negative solution Φj to the 
eikonal equation ⎧⎪⎪⎨⎪⎪⎩

|∇Φj | = |∇f | in Ω ∩ Vj

Φj = f − f(zj) on ∂Ω ∩ Vj

∂nΦj = −∂nf on ∂Ω ∩ Vj

(87)

Moreover, up to choosing Vj small enough

Φj(y) = 0 iff y = zj . (88)

Besides, Φj is the unique non negative solution to (87) in the sense that if Φ̃j : Ṽj → R+ is another non 
negative C∞ solution to (87) on a neighborhood Ṽj of zj , then Φ̃j = Φj on Ṽj ∩ Vj .

Remark 34. The function Φj is actually the Agmon distance to zj, see [1, Section 3] for a precise definition 
of the Agmon distance in a bounded domain.



Choosing ε1 smaller if necessary, one can assume that there exists α > 0 such that B(zj , 2ε1+α) ∩Ω ⊂ Vj . 
The next proposition, which follows from [23, Proposition 4.3.2], gathers all the estimates one needs in the 
following on the operator ΔMD,(1)

f,h (Vj).

Proposition 35. Let us assume that (A0) is satisfied. Then, the operator ΔMD,(1)
f,h (Vj) is self-adjoint, has 

compact resolvent and is positive. Moreover:

• There exists h0 > 0 such that for all h ∈ (0, h0):

dim Ran π
[0,h

3
2 )

(
ΔMD,(1)

f,h (Vj)
)

= 1. (89)

• The smallest eigenvalue λh(Vj) of ΔMD,(1)
f,h (Vj) is exponentially small: there exist C > 0, c > 0 and 

h0 > 0 such that for any h ∈ (0, h0):

λh(Vj) ≤ Ce−
c
h . (90)

• Any L2-normalized eigenform wj associated with the smallest eigenvalue λh(Vj) of ΔMD,(1)
f,h (Vj) satisfies 

the following Agmon estimates: there exist C > 0, n ∈ N and h0 > 0 such that for any h ∈ (0, h0), it 
holds: ∥∥e 1

hΦjwj

∥∥
H1(B(zj ,2ε1)∩Ω) ≤ Ch−n (91)

where Φj is the solution to (87).

Let us now define the quasi-mode associated with zj ∈ U∂Ω
1 .

Definition 36. Let us assume that (A0) holds. Let j ∈ {1, . . . , m∂Ω
1
}

and zj ∈ U∂Ω
1 . The quasi-mode associated 

with zj is defined by

φ̃j := θj wj

‖θj wj‖L2
∈ Λ1H1

T (Ω) ∩ Λ1C∞ (Ω) , (92)

where wj is a L2-normalized eigenform associated with the first eigenvalue λh(Vj) of Δ(1),MD
f,h (Vj) and θj is 

a smooth non negative cut-off function satisfying supp θj ⊂ B(zj , 2ε1) ∩Ω ⊂ Vj, {zj} = arg minsupp θj∩∂Ω f , 
and θj = 1 on B(zj , ε1) ∩ Ω.

Notice again that both wj and −wj can be used to build a quasi-mode: the sign will be chosen in 
Proposition 38. The fact that φ̃j ∈ Λ1C∞ (Ω) follows from standard elliptic regularity results. In addition, 
for all j ∈ {1, . . . , m∂Ω

1
}
, using (91) together with the fact that infsupp (1−θj)∩Vj

Φj > 0 (see (88)), there 
exists c > 0 such that when h → 0:∥∥(1 − θj)wj

∥∥
L2(Vj)

= O
(
e−

c
h

)
and thus,

∥∥θj wj

∥∥
L2 = 1 + O

(
e−

c
h

)
. (93)

Using Proposition 35 and (93), one deduces the following estimate on the quasi-mode φ̃j introduced in 
Definition 31.

Corollary 37. Let us assume that (A0) holds. Let φ̃j be the quasi-mode associated with zj ∈ U∂Ω
1 (j ∈

{1, . . . , m∂Ω
1
}
), see Definition 36. Then, there exist C > 0, c > 0 and h0 > 0 such that for any h ∈ (0, h0):∥∥df,hφ̃j

∥∥
L2 +

∥∥d∗f,hφ̃j

∥∥
L2 ≤ Ce−

c
h . (94)



Let us now give the WKB approximation estimates for the quasi-mode φ̃j introduced in Definition 36. 
From [23, Section 4.2], there exists a C∞(Vj) function aj(x, h) = ãj(x) +O(h) with aj ≡ ãj ≡ 1 on ∂Ω ∩Vj

such that the 1-form

u
(1)
j,wkb = df,h

(
aj(x, h)e− 1

hΦj

)
=
(
ãj d(f − Φj) + O(h)

)
e−

1
hΦj , (95)

satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ(1)

f,hu
(1)
j,wkb = O

(
h∞)e− 1

hΦj in Vj

tu(1)
j,wkb = 0 on ∂Ω ∩ Vj

td∗f,hu
(1)
j,wkb = O

(
h∞) e− 1

hΦj on ∂Ω ∩ Vj .

(96)

Moreover, one has in the limit h → 0 (see [23, Section 4.2]):

∥∥θju(1)
j,wkb

∥∥
L2 =

π
d−1
4
√

2∂nf(zj)(
det Hessf |∂Ω(zj)

) 1
4
h

d+1
4
(
1 + O(h)

)
,

where the remainder term O(h) admits a full asymptotic expansion in h. In the following proposition, wj

and u(1)
j,wkb are compared.

Proposition 38. Let us assume that (A0) holds. Let wj be a L2-normalized eigenform associated with the 
smallest eigenvalue λh(Vj) of ΔFD,(1)

f,h (Vj) (j ∈ {1, . . . , m∂Ω
1
}
). Then, there exists h0 > 0 such that for all 

h ∈ (0, h0) one has:

∥∥∥θj(wj − cj(h)u(1)
j,wkb

)∥∥∥
H1

= O
(
h∞) (97)

where

cj(h)−1 =
〈
wj , θju

(1)
j,wkb

〉
L2 .

In addition, up to replacing wj by −wj, one can assume that cj(h) ≥ 0 for h small enough and then, in the 
limit h → 0, one has:

cj(h) =
(
det Hessf |∂Ω(zj)

) 1
4

π
d−1
4
√

2∂nf(zj)
h− d+1

4
(
1 + O(h)

)
, (98)

where the remainder term O(h) admits a full asymptotic expansion in h.

Proposition 38 is proved exactly as Proposition 33.
In conclusion, a family of 1-forms (φ̃j)j∈{1,...,mΩ

1 } has been constructed in this section. Since (62) guaran-
tees that B(z, 2ε1) ∩B(z′, 2ε1) = ∅ for all z �= z′ ∈ UΩ

1 , the family (φ̃j)j∈{1,...,mΩ
1 } is orthonormal in L2(Ω). 

From now on, the parameter ε1 is fixed and ε > 0 will be successively reduced a finite number of times in 
the following.

WKB approximation of the quasi-modes (φ̃j)j∈{1,...,mΩ
1 }. For upcoming computations, one needs the follow-

ing definition.



Definition 39. Let us assume that (A0) is satisfied. For all j ∈ {1, . . . , mΩ
1 }, one defines:

φ̃j,wkb := cj(h) θj u(1)
j,wkb, (99)

where for j ∈ {1, . . . , m∂Ω
1
}
, u(1)

j,wkb satisfies (96) and θj is introduced in Definition 36 and, for j ∈ {m∂Ω
1 +

1, . . . , mΩ
1
}
, u(1)

j,wkb satisfies (84) and θj is introduced in Definition 31.

From (78), Proposition 33, (93), and Proposition 38 one has the following lemma.

Lemma 40. Let us assume that (A0) is satisfied. For j ∈ {1, . . . , m∂Ω
1
}
, let φ̃j be as defined in (92), and for 

j ∈ {m∂Ω
1 + 1, . . . , mΩ

1
}
, let φ̃j be as defined in (77). Moreover, for j ∈ {1, . . . , mΩ

1
}
, let φ̃j,wkb be as defined 

in (99). Then, one has: ∥∥φ̃j − φ̃j,wkb

∥∥
H1 = O

(
h∞).

3.2.3. Quasi-modes for −L
D,(0)
f,h and −L

D,(1)
f,h

Before defining the quasi-modes for LD,(0)
f,h and LD,(1)

f,h , let us label the quasi-modes for ΔD,(0)
f,h and the 

local minima of f using the lexicographic order.

Definition 41. Let us assume that (A0) is satisfied. Then, the family of critical connected components 
(Ek,�)k≥1, �∈{1,...,Nk} introduced in Section 2.3, the local minima (xk,�)k≥1, �∈{1,...,Nk} of f labeled in Sec-
tion 2.3, the family of cut-off functions (χε,ε1

k,� )k,�)k≥1, �∈{1,...,Nk} introduced in Definition 26 and the family 
of quasi-modes (ṽk,�)k≥1, �∈{1,...,Nk} introduced in Definition 26 are labeled according to the lexicographic 
order:

(Ek)k∈{1,...,mΩ
0 }, (χε,ε1

k )k∈{1,...,mΩ
0 }, (ṽk)k∈{1,...,mΩ

0 } and (xk)k∈{1,...,mΩ
0 }.

Let us recall that the lexicographic order is defined by (k′, �′) < (k, l) if and only if k′ < k or if k′ =
k, �′ < �. From now on, one uses the labeling introduced in Definition 41.

According to (58), the quasi-modes for LD,(0)
f,h and LD,(1)

f,h are obtained from those constructed previously 

for ΔD,(0)
f,h and ΔD,(1)

f,h using the unitary transformation U defined in (57).

Definition 42. Let us assume that (A0) is satisfied. Let (ṽk)k∈{1,...,mΩ
0 } be the family of quasi-modes for 

ΔD,(0)
f,h introduced in Definition 26 and labeled in Definition 41 and let (φ̃j)j∈{1,...,mΩ

1 } be the family of 
quasi-modes for ΔD,(1)

f,h introduced in Definitions 31 and 36. The family of quasi-modes (ũk)k∈{1,...,mΩ
0 } for 

−L
D,(0)
f,h and the family of quasi-modes (ψ̃j)j∈{1,...,mΩ

1 } for −L
D,(1)
f,h are defined by: for k ∈ {1, . . . , mΩ

0 }, and 

for j ∈ {1, . . . , mΩ
1 }:

ũk := e
1
h f ṽk ∈ Λ0H1

w,T (Ω) and ψ̃j := e
1
h f φ̃j ∈ Λ1H1

w,T (Ω) . (100)

Notice that, according to (65) and (100), for all k ∈ {1, . . . , mΩ
0 }, ũk ∈ C∞

c (Ω), and according to (77)
and (92), for all j ∈ {1, . . . , mΩ

1 }, ψ̃j ∈ Λ1C∞ (Ω).
3.3. Bases of Ran π

(0)
h and Ran π

(1)
h

Let us recall, that from (60), π(0)
h = π[0,

√
h

2 )

(
−L

D,(0)
f,h

)
and π

(1)
h = π[0,

√
h

2 )

(
−L

D,(1)
f,h

)
. In this section, one 

proves that the spectral projections of the quasi-modes introduced in Definition 42 form bases of Ranπ
(0)

h



and Ran π
(1)
h . In the following, the finite dimensional spaces Ran π

(0)
h and Ran π

(1)
h are endowed with the 

scalar product 〈·, ·〉L2
w
.

Proposition 43. Let us assume that (A0) holds. Let (ũk)k∈{1,...,mΩ
0 } be the family of quasi-modes for −L

D,(0)
f,h

and let (ψ̃j)j∈{1,...,mΩ
1 } be the family of quasi-modes for −L

D,(1)
f,h introduced in Definition 42. Then,

1. For all k ∈
{
1, . . . , mΩ

0
}

and j ∈
{
1, . . . , mΩ

1
}
, ũk ∈ Λ0H1

w,T (Ω), ψ̃j ∈ Λ1H1
w,T (Ω) and

∥∥ũk

∥∥
L2

w
=
∥∥ψ̃j

∥∥
L2

w
= 1 and ∀i ∈

{
1, . . . ,mΩ

1
}
\ {j} ,

〈
ψ̃j , ψ̃i

〉
L2

w
= 0 .

2. a) For any δ > 0, one can choose the parameter ε in (65) (see also (100)) small enough such that for 
all k ∈ {1, . . . , mΩ

0 }, in the limit h → 0:

∥∥(1 − π
(0)
h )ũk

∥∥2
L2

w
≤ h

1
2
∥∥∇ũk

∥∥2
L2

w
= O
(
e−

2
h (f(j(xk))−f(xk)−δ)

)
.

In particular, choosing the parameter ε > 0 small enough in (65), there exists c > 0 such that in the 
limit h → 0:

π
(0)
h ũk = ũk + O

(
e−

c
h

)
in L2

w(Ω).

b) There exist c > 0 such that for all j ∈
{
1, . . . , mΩ

1
}
, one has in the limit h → 0:

∥∥(1 − π
(1)
h )ψ̃j

∥∥2
H1

w
= O
(
e−

c
h

)
.

3. a) The family (ũk)k=1,...,mΩ
0

is uniformly linearly independent (for the L2
w-scalar product) for all h

sufficiently small (as defined in Lemma 28).
b) For all (i, j) ∈

{
1, . . . , mΩ

1
}2,

〈
π

(1)
h ψ̃i, π

(1)
h ψ̃j

〉
L2

w
= δi,j + O(e− c

h ).

In particular, there exists h0 > 0 such that for all h ∈ (0, h0):

Ran π
(0)
h = Span

(
π

(0)
h ũk, k = 1, . . . ,mΩ

0
)

and Ran π
(1)
h = Span

(
π

(1)
h ψ̃i, i = 1, . . . ,mΩ

1
)
.

Proof. The proof of Proposition 43 is divided into two steps.

Step 1: Proofs of items 1 and 2. The first item is immediate according to the definition of the families 
(ũk)k=1,...,mΩ

0
and (ψ̃i)i=1,...,mΩ

1
introduced in Definition 42.

The first upper bound appearing in 2a is a direct consequence of Lemma 25 applied to A = −L
D,(0)
f,h

whose associated quadratic form is given by h
2 〈∇·, ∇·〉L2

w
on H1

w,T (Ω). The second upper bound in 2a follows 
from Laplace’s methods and from the properties of the cut-off functions used to define the quasi-modes ũk

(see Definition 42 and Lemma 27). Indeed, it is just a rewriting of (71) using Definition 42 and the labeling 
introduced in Definition 41.

Let us now deal with 2b. First, Lemma 25 together with (79) and (94) implies the existence of some c > 0
such that for all i ∈ {1, . . . , mΩ

1 } and h small enough,∥∥∥( 1 − π 3 (ΔD,(1)
f,h )

)
φ̃i

∥∥∥ = O(e− c
h ). (101)
[0,h 2 ) L2



Consequently, using again (79) and (94), and owing to the following relations on Λ1H1
T (Ω): df,h

(
1 −

π
[0,h

3
2 )

(
ΔD,(1)

f,h

))
=
(
1 − π

[0,h
3
2 )

(
ΔD,(2)

f,h

))
df,h, d∗f,h

(
1 − π

[0,h
3
2 )

(
ΔD,(1)

f,h

))
=
(
1 − π

[0,h
3
2 )

(
ΔD,(0)

f,h

))
d∗f,h, 

d∗f,h = hd∗ + i∇f , and df,h = hd + ∇f∧, one obtains the existence of c > 0 such that in the limit h → 0:∥∥∥d( 1 − π
[0,h

3
2 )

(ΔD,(1)
f,h )

)
φ̃i

∥∥∥
L2

+
∥∥∥d∗( 1 − π

[0,h
3
2 )

(ΔD,(1)
f,h )

)
φ̃i

∥∥∥
L2

= O(e− c
h ). (102)

Since φ̃i ∈ Λ1H1
T (Ω), the estimates (101) and (102) then lead, owing to Gaffney’s inequality (see [33, 

Corollary 2.1.6]), to ∥∥∥( 1 − π
[0,h

3
2 )

(ΔD,(1)
f,h )

)
φ̃i

∥∥∥
H1

= O(e− c
h ).

Therefore, we deduce from the relation ‖u‖H1
w
≤ C

h ‖u e−
1
h f‖H1 , valid for all u ∈ ΛpH1(Ω) and h > 0, and 

from π
[0,h

3
2 )

(
ΔD,(1)

f,h

)
= e−

1
h fπ

(1)
h e

1
h f , resulting from (58) and (60), that there exists c > 0 such that for all 

i ∈ {1, . . . , mΩ
1 } and h small enough,∥∥∥(1 − π

(1)
h )ψ̃i

∥∥∥
H1

w

≤ C

h

∥∥∥( 1 − π
[0,h

3
2 )

(ΔD,(1)
f,h )

)
φ̃i

∥∥∥
H1

= O(e− c
h ).

This ends the proof of 2b.

Step 2: Proof of item 3. The fact that the family (ũk)k=1,...,mΩ
0

is uniformly linearly independent is a 
consequence of Lemma 28 together with (100). Item 3b follows from items 1 and 2b together with the 
relation 〈

π
(�)
h f, π

(�)
h g
〉
L2

w
= −
〈
(π(�)

h − 1)f, (π(�)
h − 1)g

〉
L2

w
+
〈
f, g
〉
L2

w
(103)

holding for f, g in Λ�L2
w(Ω) and � ∈ {0, 1}. Finally, the fact that for h small enough, Ran π

(0)
h =

Span
(
π

(0)
h ũk, k = 1, . . . , mΩ

0
)

and Ran π
(1)
h = Span

(
π

(1)
h ψ̃i, i = 1, . . . , mΩ

1
)

are consequences of items 
2a, 3a and 3b together with Lemma 23. �
4. On the smallest eigenvalue of −L

D,(0)
f,h

This section is dedicated to the proof of the following theorem.

Theorem 2. Assume that the assumptions (A0) and (A1j) are satisfied. Let λh be the principal eigenvalue 
of −L

D,(0)
f,h (see (8)). Then, denoting by λ2,h the second smallest eigenvalue of −L

D,(0)
f,h , there exists c > 0

such that in the limit h → 0:

λh = λ2,h O(e− c
h ). (104)

Moreover, when (A2j) is satisfied, one has in the limit h → 0:

λh =

∑
z∈∂C1∩∂Ω

∂nf(z)
(
det Hessf |∂Ω(z)

)− 1
2

√
π h

∑
x∈arg minC1 f

(
det Hessf(x)

)− 1
2

e−
2
h

(
f(j(x1))−f(x1)

)(
1 + O(

√
h)
)

(105)

where we recall that x1 ∈ arg minC1
f . Finally, when (A4j) holds, the remainder term O(

√
h) in (105) is 

actually of order O(h) and admits a full asymptotic expansion in h.



Remark 44. Without the assumption (A4j), we are not able to prove an asymptotic expansion in
√
h of 

the remainder term O(
√
h) in (105) except in some specific cases, see Theorem 3 below or [27, Proposition 

C.40].

Let us mention that sharp asymptotic estimates when h → 0 of the principal eigenvalue of −L
D,(0)
f,h have 

been obtained in [23,17,1] in the Dirichlet case and in [37] in the Neumann case. However, these results 
do not apply under the assumptions considered in Theorem 2. When Ω = Rd or when Ω is a compact 
Riemannian manifold, sharp asymptotic estimates of the second smallest eigenvalue of −L

(0)
f,h have been 

obtained in [30,31,38,39,28,40,41].
The analysis led in this section will also provide lower and upper bounds for the mΩ

0 small eigenvalues of 
−L

D,(0)
f,h (and not only λh) under the sole assumption (A0). This is the purpose of Theorem 4 below.

Remark 45. Combining Theorem 2 and Proposition 6, under the assumptions (A0), (A1j) and (A2j), one 
obtains that in the limit h → 0:

Eνh
[τΩ] = 1

λh
=

√
π h

∑
x∈arg minC1 f

(
det Hessf(x)

)− 1
2

∑
z∈∂C1∩∂Ω

∂nf(z)
(
det Hessf |∂Ω(z)

)− 1
2
e

2
h (f(j(x1))−f(x1))

(
1 + O(

√
h)
)
.

In some specific cases, one can drop the assumption (A2j) in Theorem 2 and still obtain a sharp asymptotic 
equivalent of λh when h → 0. Indeed, the arguments in the proof of Theorem 2 also give the following result:

Theorem 3. Assume that the assumptions (A0) and (A1j) are satisfied. Assume moreover that for all j ∈
{2, . . . , N1}, ∂C1 ∩ ∂Cj = ∅ (this last assumption is for instance satisfied when N1 = 1). Let us define,

when ∂C1 ∩ ∂Ω �= ∅, a1 :=

∑
z∈∂C1∩∂Ω

∂nf(z)
(
det Hessf |∂Ω(z)

)− 1
2

√
π

∑
x∈arg minC1 f

(
det Hessf(x)

)− 1
2

, else, a1 := 0,

when ∂C1 ∩ Ussp
1 ∩ Ω �= ∅, a2 := 1

2π

∑
z∈∂C1∩Ussp

1 ∩Ω

|λ−(z)|
(
det Hessf(z)

)− 1
2

∑
x∈arg minC1 f

(
det Hessf(x)

)− 1
2

, else, a2 := 0,

where λ−(z) is the negative eigenvalue of Hess f(z) (notice that a1 and a2 cannot be both equal to 0 since 
from Proposition 15, ∂C1 ∩ Ussp

1 �= ∅). Then, one has when h → 0:

λh =
[
a1√
h

(1 + O(h)) + a2 (1 + O(h))
]
e−

2
h

(
f(j(x1))−f(x1)

)
,

where the two remainder terms O(h) admit a full asymptotic expansion in h.

This section is organized as follows. In Section 4.1, one gives the quasi-modal estimates which are used 
to prove Theorems 2 and 3. Section 4.2 is then dedicated to the proof of Theorems 2 and 3.

4.1. Estimates of interactions between quasi-modes

The main result of this section is Proposition 47 which gives the quasi-modal estimates in L2
w(Ω) needed to 

prove Theorem 2. This section is divided into two parts. In Section 4.1.1, one gives the asymptotic estimates 



of the boundary terms 
(∫

Σ

F ψ̃j ·n e−
2
h f
)
j∈{1,...,mΩ

1 }
, which are then used in the proof of Proposition 47. In 

Section 4.1.2, one states and proves Proposition 47.
For future references, let us define the constants: for all j ∈

{
1, . . . , mΩ

1
}
,

Bj =
{
π

d−1
4
√

2 ∂nf(zj)
(
det Hessf |∂Ω(zj)

)−1/4 if zj ∈ ∂Ω,

π
d−2
4
√

|λ−(zj)| |det Hessf(zj)|−1/4 if zj ∈ Ω,
(106)

where λ−(zj) is the negative eigenvalue of Hess f(zj).

4.1.1. Asymptotic estimates of boundary terms for (ψ̃j)j∈ {1,...,mΩ
1 }

The following boundary estimates will be used several times in the sequel.

Proposition 46. Let us assume that (A0) is satisfied. Let us consider j ∈ {1, . . . , mΩ
1 }, an open set Σ of ∂Ω, 

and F ∈ L∞(∂Ω, R). Then, there exists c > 0 such that one has in the limit h → 0:

∫
Σ

F ψ̃j · n e−
2
h f =

⎧⎪⎪⎨⎪⎪⎩
0 if j ∈

{
m∂Ω

1 + 1, . . . ,mΩ
1
}
,

O
(
e−

1
h (f(zj)+c)) if j ∈

{
1, . . . ,m∂Ω

1
}

and zj /∈ Σ,

O
(
h

d−3
4 e−

1
h f(zj)

)
if j ∈

{
1, . . . ,m∂Ω

1
}

and zj ∈ Σ,

where ψ̃j is introduced in (100) and m∂Ω
1 is defined in (18). Moreover, when j ∈

{
1, . . . , m∂Ω

1
}
, zj ∈ Σ, and 

F is C∞ in a neighborhood of zj, it holds∫
Σ

F ψ̃j · n e−
2
h f = h

d−3
4 e−

1
h f(zj)

(
Bj F (zj) + O(h)

)
,

where the remainder term O(h) admits a full asymptotic expansion in h and Bj is defined by (106).

Proof. Let F ∈ L∞(∂Ω, R). From (100) and (77), the quasi-mode ψ̃j is supported in Ω for j ∈ {m∂Ω
1 +

1, . . . , mΩ
1 } and thus:

∀j ∈
{
m∂Ω

1 + 1, . . . ,mΩ
1
}
,

∫
Σ

F ψ̃j · n e−
2
h f = 0. (107)

Let us now consider the case j ∈ {1, . . . , m∂Ω
1 }. Notice that one has for all h small enough, from the trace 

theorem, (100), (92), and (91),∫
Σ

F ψ̃j · n e−
2
h f =

∫
supp θj∩Σ

F φ̃j · n e−
1
h f = O(‖φ̃j‖H1)

( ∫
supp θj∩Σ

e−
2
h f
) 1

2

= O
(
h−p
)( ∫

supp θj∩Σ

e−
2
h f
) 1

2
, (108)

where p is independent of h. Therefore, since zj is the only minimum of f on supp θj ∩ ∂Ω, if zj /∈ Σ, one 
has in the limit h → 0: ∫

F ψ̃j · n e−
2
h f = O

(
e−

1
h (f(zj)+c)) (109)
Σ



for some c > 0 independent of h.
Let us now consider the case j ∈ {1, . . . , m∂Ω

1 } and zj ∈ Σ. One has:∫
Σ

F ψ̃j · n e−
2
h f =

∫
Σ

F φ̃j · n e−
1
h f

=
∫
Σ

F φ̃j,wkb · n e−
1
h f +

∫
Σ

F
(
φ̃j − φ̃j,wkb

)
· n e−

1
h f , (110)

where φ̃j,wkb = cj(h)θju(1)
j,wkb is defined in (99). From (95), let us recall that in the limit h → 0, u(1)

j,wkb =
e−

1
hΦj
(
ãj d(f −Φj) +O(h)

)
on supp θj with ãj = 1 on ∂Ω ∩ supp θj . Thus on ∂Ω ∩ supp θj , using also (87), 

n ·u(1)
j,wkb = e−

1
hΦj ∂n(f−Φj) 

(
1 +O(h)

)
= 2∂nf e−

1
h (f−f(zj))

(
1 +O(h)

)
. Thus, the term 

∫
Σ

F φ̃j,wkb ·n e−
1
h f

appearing in the right-hand side of (110) satisfies in the limit h → 0:∫
Σ

F φ̃j,wkb · n e−
1
h f = cj(h)

∫
Σ∩supp θj

F θj u
(1)
j,wkb · n e−

1
h f

= cj(h)
∫

Σ∩supp θj

2∂nf F θj e
− 1

h (2f−f(zj))
(
1 + O(h)

)
(111)

= O
(
cj(h)

∫
∂Ω∩supp θj

2∂nf θj e
− 1

h (2f−f(zj))
)

= O
(
cj(h)h

d−1
2 e−

1
h f(zj)

)
= O
(
h

d−3
4 e−

1
h f(zj)

)
, (112)

where the last line follows from {zj} = arg min∂Ω∩supp θj f , θj(zj) = 1, Laplace’s method, and cj(h) =
O(h− d+1

4 ) according to (98). When zj ∈ Σ and F is C∞ in a neighborhood of zj, the same arguments 
applied to (111) yield, in the limit h → 0:

∫
Σ

F φ̃j,wkb · n e−
1
h f = cj(h) 2 ∂nf(zj)π

d−1
2√

det Hessf |∂Ω(zj)
h

d−1
2 e−

1
h f(zj)

(
F (zj) + O(h)

)
, (113)

where the remainder term O(h) admits a full asymptotic expansion in h (which follows from Laplace’s 
method). Besides, from the trace theorem and Lemma 40, the second term in the right-hand side of (110)
satisfies in the limit h → 0: ∫

Σ

F
(
φ̃j − φ̃j,wkb

)
· n e−

1
h f = O

(
h∞) e− 1

h f(zj). (114)

The first part of Proposition 46 then results from (107)–(110), (112), and (114), and its second part from 
(110), (113)–(114), and from the asymptotic estimate of cj(h) given in (98) which yields, when h → 0

∫
Σ

F ψ̃j · n e−
2
h f =

π
d−1
4
√

2 ∂nf(zj)(
det Hessf |∂Ω(zj)

)1/4 h
d−3
4 e−

1
h f(zj)

(
F (zj) + O(h)

)
.

This concludes the proof of Proposition 46. �



4.1.2. Quasi-modal estimates in L2
w(Ω)

We are now in position to prove Proposition 47 which will be crucial to prove Theorem 2. This proposition 
allows indeed to study accurately the singular values of the restricted differential ∇ : Ranπ

(0)
h → Ran π

(1)
h

and hence the low lying spectrum of −L
D,(0)
f,h . The square of its smallest singular value is indeed 2

hλh, where 

λh is the principal eigenvalue of −L
D,(0)
f,h (see (8) and Proposition 4).

Proposition 47. Let us assume that (A0) holds. Let (ũk)k∈{1,...,mΩ
0 } (resp. (ψ̃j)j∈{1,...,mΩ

1 }) be the family of 
quasi-modes for −L

D,(0)
f,h (resp. −L

D,(1)
f,h ) introduced in Definition 42. Then, there exists ε0 > 0 such that 

for all ε ∈ (0, ε0), for all k ∈
{
1, . . . , mΩ

0
}

and j ∈
{
1, . . . , mΩ

1
}
, there exists εj,k ∈ {−1, 1} independent of 

h such that in the limit h → 0,

〈∇ũk, ψ̃j〉L2
w

=
{
εj,kCj,k hpj,k e−

1
h (f(j(xk))−f(xk)) (1 + O(h)

)
if zj ∈ j(xk),

0 if zj /∈ j(xk),
(115)

where all the remainder term O(h) admits a full asymptotic expansions in h,

pj,k =
{
−1

2 if zj ∈ j(xk) ∩ Ω,

−3
4 if zj ∈ j(xk) ∩ ∂Ω

(116)

and

Cj,k = Bj π
− d

4( ∑
x∈arg minEk

f

(
det Hessf(x)

)− 1
2
)1/2 , (117)

where the constant Bj is defined in (106), and (Ek)k∈{1,...,mΩ
0 } is defined in Section 2.3 and labeled in 

Definition 41. Finally, if zj ∈ j(xk) ∩ ∂Ω (and thus, it holds necessarily k ∈ {1, . . . , N1}, see (46) and (34)
for the definition of N1), one has εj,k = −1.

Proof. The proof of Proposition 47 is divided into three steps.

Step 1. Let k ∈
{
1, . . . , mΩ

0
}

and j ∈
{
1, . . . , mΩ

1
}
. Let us consider the case zj /∈ j(xk). According to Defini-

tions 31, 36 and 42, one has that for all j ∈ {1, . . . , mΩ
1 }, the quasi-mode ψ̃j is supported in B(zj , 2ε1) ∩Ω. 

Moreover, from (65), (69), and Definition 42, one has supp∇χε,ε1
k ∩B(zj , 2ε1) = ∅ and thus 

〈
∇ũk, ψ̃j

〉
L2

w
= 0.

Step 2. Let us now deal with the computation of the terms 〈∇ũk, ψ̃j〉L2
w

for k ∈
{
1, . . . , mΩ

0
}

and j ∈{
1, . . . , mΩ

1
}

such that zj ∈ j(xk) ∩ Ω. In this case, we follow the proof of [31, Proposition 6.4], the only 
difference being that j(xk) and arg minsupp χ

ε,ε1
k

f were both reduced to a single point there. Let us give a 
proof for the sake of completeness. One has:

〈
∇ũk, ψ̃j

〉
L2

w
=
∫
Ω

∇ũk · φ̃j e−
1
h f =

∫
Ω

∇χε,ε1
k · φ̃j e−

1
h f

√√√√∫
Ω

(χε,ε1
k )2e− 2

h f

=

∫
B(zj ,2ε1)

∇χε,ε1
k · φ̃j e−

1
h f

√√√√∫
Ω

(χε,ε1
k )2e− 2

h f

. (118)

From (66)–(67), it holds arg minsupp χ
ε,ε1
k

f = arg minEk
f . Thus, using Laplace’s method together with the 

fact that minE f = f(xk), one has in the limit h → 0:

k



∫
Ω

(χε,ε1
k )2e− 2

h f = (π h) d
2 e−

2
h f(xk)

∑
x∈arg minEk

f

(
detHess f(x)

)− 1
2
(
1 + O(h)

)
. (119)

Let us now give the estimate of the numerator of the right-hand side of (118).
To prepare this computation, let us first recall that the set B(zj, 2ε1) ∩ {f < f(zj)} has, according to 

(63), two connected components. Since zj ∈ Ussp
1 (see Definition 13), exactly one of these two connected 

components intersects – and is then included in – the critical connected component j̃(xk) = Ek associated 
with xk (see Definition 13 and (45)). Moreover, the set B(zj , 2ε1) \W+(zj), where the stable manifold W+(zj)
has been defined in (80), has also two connected components and one of them contains the connected 
component of B(zj , 2ε1) ∩ {f < f(zj)} which intersects Ek, namely B(zj , 2ε1) ∩ Ek. Let us denote by 
Bj,k the connected component of B(zj , 2ε1) \ W+(zj) which contains Ek. Since supp φ̃j ⊂ B(zj , 2ε1), one 
has, using (68), supp

(
∇χε,ε1

k · φ̃j

)
⊂ B(zj , 2ε1) ∩ Ek ⊂ Bj,k. Therefore, by an integration by parts, it holds:

∫
Ω

∇χε,ε1
k · φ̃j e−

1
h f = −

∫
Bj,k

∇(1 − χε,ε1
k ) · φ̃j e−

1
h f

= −
∫

Bj,k

(
1 − χε,ε1

k

)
d∗
(
e−

1
h f φ̃j

)
−
∫

∂Bj,k

(
1 − χε,ε1

k

)
φ̃j · n e−

1
h f

= − 1
h

∫
Bj,k

(
1 − χε,ε1

k

)
e−

1
h f d∗f,hφ̃j −

∫
∂Bj,k∩W+(zj)

φ̃j · n e−
1
h f , (120)

since φ̃j = 0 on ∂B(zj , 2ε1). From (79), it holds for h small enough,

d∗f,hφ̃j = O(e− c
h ) in L2(Ω),

where c > 0 is independent of h. Since moreover f ≥ f(zj) − 2ε on Bj,k ∩ supp(1 − χε,ε1
k ) by (66) and (67), 

there exist c′ > 0 and ε0 > 0 such that for ε ∈ (0, ε0), in the limit h → 0:

1
h

∫
Bj,k

(1 − χε,ε1
k ) e−

1
h f d∗f,hφ̃j = O

(
e−

1
h (f(zj)+c′)). (121)

Lastly, using Lemma 40 and the trace theorem, one obtains in the limit h → 0:

∫
∂Bj,k∩W+(zj)

φ̃j · n e−
1
h f =

∫
∂Bj,k∩W+(zj)

cj(h) θj u(1)
j,wkb · n e−

1
h f + O(h∞e−

1
h f(zj))

= ± cj(h)(πh) d−1
2(

det Hess f |W+(zj)(zj)
) 1

2
e−

1
h f(zj)

(
1 + O(h)

)

= ± (πh) d−2
4 |λ−(zj)|

1
2

| detHess f(zj)|
1
4
e−

1
h f(zj)

(
1 + O(h)

)
,

where λ−(zj) denotes the negative eigenvalue of Hess f(zj). The second equality follows from Laplace’s 
method and from the fact that

u
(1) · n = e−

1
hΦj |W+(zj)

(
ãj · n + O(h)

)
= e−

1
h (f−f(zj))|W+(zj)

(
ãj · n + O(h)

)

j,wkb



and ̃aj(zj) ·n = ±1, see indeed the lines between (82) and (83). The last line follows from (86). The asymptotic 
estimate of the term 〈∇ũk, ψ̃j〉L2

w
is a consequence of the latter estimate together with (118)–(121) which 

gives in the limit h → 0:

〈∇ũk, ψ̃j〉L2
w

= ± π− 1
2 |λ−(zj)|

1
2 h− 1

2 e−
1
h (f(zj)−f(xk))∣∣det Hessf(zj)

∣∣ 14(∑
x∈arg minEk

f

(
det Hessf(x)

)− 1
2
) 1

2

(
1 + O(h)

)
,

where the remainder term O(h) admits a full asymptotic expansion in h (which follows from Laplace’s 
method). This proves Proposition 47 for all k ∈

{
1, . . . , mΩ

0
}

and j ∈
{
1, . . . , mΩ

1
}

such that zj ∈ j(xk) ∩Ω.

Step 3. Let us now deal with the computation of the terms 〈∇ũk, ψ̃j〉L2
w

for k ∈
{
1, . . . , mΩ

0
}

and j ∈{
1, . . . , mΩ

1
}

when zj ∈ j(xk) ∩ ∂Ω. Notice that according to Definition 42 and (65) and by definition of the 
lexicographic labeling introduced in Definition 41, this situation can only occur when k ∈

{
1, . . . , N1

}
. One 

has

〈∇ũk, ψ̃j〉L2
w

=
∫
Ω

∇ũk · φ̃j e−
1
h f =

∫
Ω

∇χε,ε1
k · φ̃j e−

1
h f

√√√√∫
Ω

(χε,ε1
k )2e− 2

h f

. (122)

Notice that (119) also holds here for 
∫
Ω(χε,ε1

k )2e− 2
h f . Since supp φ̃j ⊂ B(zj , 2ε1) ∩ Ω, the numerator of the 

right-hand side of (122) can be rewritten as

∫
Ω

∇χε,ε1
k · φ̃j e−

1
h f = −

∫
B(zj ,2ε1)∩Ω

∇(1 − χε,ε1
k ) · φ̃j e−

1
h f

= −
∫

B(zj ,2ε1)∩Ω

(
1 − χε,ε1

k

)
d∗
(
φ̃j e−

1
h f
)
−

∫
∂(B(zj ,2ε1)∩Ω)

(1 − χε,ε1
k )φ̃j · n e−

1
h f

= − 1
h

∫
B(zj ,2ε1)∩Ω

(1 − χε,ε1
k ) e− 1

h f d∗f,hφ̃j −
∫

∂B(zj ,2ε1)∩∂Ω

φ̃j · n e−
1
h f . (123)

From (94), there exists c > 0 such that for h small enough, d∗f,hφ̃j = O(e− c
h ) in L2(Ω). Since f ≥ f(zj) − 2ε

on B(zj , 2ε1) ∩ supp(1 − χε,ε1
k ) by (64) and (66), there exist c′ > 0 and ε0 > 0 such that for ε ∈ (0, ε0), in 

the limit h → 0:

1
h

∫
B(zj ,2ε1)∩Ω

(
1 − χε,ε1

k

)
e−

1
h f d∗f,hφ̃j = O

(
e−

1
h (f(zj)+c′)). (124)

Furthermore, applying Proposition 46 with Σ = ∂Ω and F = 1∂B(zj ,2ε1)∩∂Ω, one has in the limit h → 0:

∫
∂B(zj ,2ε1)∩∂Ω

φ̃j · n e−
1
h f =

π
d−1
4
√

2 ∂nf(zj)(
det Hessf |∂Ω(zj)

)1/4 h
d−3
4 e−

1
h f(z1)

(
1 + O(h)

)
. (125)

Therefore, injecting the estimates (119), (124), and (125) into (122), one obtains in the limit h → 0:



〈∇ũk, ψ̃j〉L2
w

= − π− 1
4
√

2 ∂nf(zj)h− 3
4 e−

1
h (f(zj)−f(xk))(

det Hessf |∂Ω(zj)
) 1

4
(∑

x∈arg minEk
f

(
det Hessf(x)

)− 1
2
) 1

2

(
1 + O(h)

)
,

where the remainder term O(h) admits a full asymptotic expansion in h (which follows from Laplace’s 
method). This is the desired estimate according to (117) and (106). This ends the proof of Proposition 47. �
4.2. Restricted differential ∇ : Ranπ

(0)
h → Ran π

(1)
h

This section is devoted to the proofs of Theorems 2 and 3. In this section, one also gives lower and 
upper bounds on the mΩ

0 first eigenvalues of −L
D,(0)
f,h , see Theorem 4 below. As explained above, the idea 

is to estimate the mΩ
0 singular values of the restricted differential ∇ : Ran π

(0)
h → Ran π

(1)
h (Ran π

(0)
h and 

Ran π
(1)
h being endowed with the L2

w inner product) since according to Lemma 23 and Proposition 4, the 

square of those singular values are the mΩ
0 first eigenvalues of − 2

hL
D,(0)
f,h .

This section is organized as follows. Section 4.2.1 is dedicated to the definition of the matrix of the 
restricted differential ∇ : Ran π

(0)
h → Ran π

(1)
h and preliminary asymptotic estimates on its coefficients. In 

Section 4.2.2, lower and upper bounds for the mΩ
0 smallest eigenvalues of −L

D,(0)
f,h are obtained. Finally, one 

proves Theorems 2 and 3 in Section 4.2.3.

4.2.1. Matrix of the restricted differential ∇ : Ran π
(0)
h → Ran π

(1)
h

Definition 48. Let us assume that (A0) is satisfied. Let (ũk)k∈{1,...,mΩ
0 } (resp. (ψ̃j)j∈{1,...,mΩ

1 }) be the family 

of quasi-modes for −L
D,(0)
f,h (resp. −L

D,(1)
f,h ) introduced in Definition 42. Let us denote by S = (Sj,k)j,k the 

mΩ
1 × mΩ

0 matrix defined by: for all k ∈ {1, . . . , mΩ
0 } and for all j ∈ {1, . . . , mΩ

1 }

Sj,k :=
〈
∇π

(0)
h ũk, π

(1)
h ψ̃j

〉
L2

w
. (126)

Notice that from (59), it holds for all k ∈ {1, . . . , mΩ
0 } and for all j ∈ {1, . . . , mΩ

1 }:

Sj,k =
〈
∇π

(0)
h ũk, π

(1)
h ψ̃j

〉
L2

w
=
〈
∇ũk, π

(1)
h ψ̃j

〉
L2

w
.

Then, using the identity 
〈
∇ũk, π

(1)
h ψ̃j

〉
L2

w
=
〈
∇ũk, ψ̃j

〉
L2

w
+
〈
∇ũk, 

(
π

(1)
h − 1

)
ψ̃j

〉
L2

w
together with item 2 in 

Proposition 43 and Proposition 47, one gets the following estimates on S:

Proposition 49. Let us assume that (A0) is satisfied. Let S be the matrix introduced in Definition 48. Let 
k ∈ {1, . . . , mΩ

0 } and j ∈ {1, . . . , mΩ
1 }. Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0) (where ε is 

introduced in (65)), there exists c > 0 such that in the limit h → 0:

if zj /∈ j(xk), Sj,k = O
(
e−

1
h (f(j(xk))−f(xk)+c)

)
,

if zj ∈ j(xk), Sj,k =
〈
∇ũk, ψ̃j

〉
L2

w

(
1 + O(e− c

h )
)

= εj,k Cj,k h
pj,k e−

1
h (f(j(xk))−f(xk))(1 + O(h)

)
where εj,k ∈ {−1, 1}, pj,k ∈ {−1

2 , −
3
4} and Cj,k have been introduced in (115), (116), and (117) (see 

Proposition 47). Moreover, when zj ∈ j(xk) ∩ ∂Ω (and thus k ∈ {1, . . . , N1}), one has εj,k = −1.

In order to study the singular values of the matrix S, let us introduce the following matrices:



• Let S̃ =
(
S̃j,k

)
j,k

be the real value mΩ
1 × mΩ

0 matrix defined by

S̃j,k :=
{
Sj,k if zj ∈ j(xk),
0 if zj /∈ j(xk).

(127)

• Let D be the diagonal mΩ
0 × mΩ

0 matrix defined by

∀k ∈ {1, . . . ,mΩ
0 }, Dk,k := hqke−

1
h (f(j(xk))−f(xk)) where qk := min

j, zj∈j(xk)
{pj,k}, (128)

and where pj,k is defined in (116). Notice that when the assumptions (A1j) and (A2j) are satisfied, one 
has in the limit h → 0 (see (51) together with the fact q1 = −3

4 since j(x1) ∩ ∂Ω = ∂C1 ∩ ∂Ω �= ∅ which 
follows from (41) and (A2j)):

D1,1 = h− 3
4 e−

1
h (f(j(x1))−f(x1)), (129)

and for some c > 0 independent of h, it holds:

for all k ∈ {2, . . . ,mΩ
0 },

D1,1

Dk,k
= O
(
e−

c
h

)
. (130)

• Let C̃ be the real value mΩ
1 × mΩ

0 matrix defined by

C̃ := S̃ D−1. (131)

The coefficients of C̃ are given by C̃j,k = S̃j,k

Dk,k
, for all (j, k) ∈

{
1, . . . , mΩ

1
}
×
{
1, . . . , mΩ

0
}
. They satisfy, 

according to Proposition 49 and (128), in the limit h → 0:

C̃j,k =
{
εj,k Cj,k h

pj,k−qk
(
1 + O(h)

)
if zj ∈ j(xk),

0 if zj /∈ j(xk),
(132)

where pj,k is defined by (116), εj,k by (115) and Cj,k by (117). From (132), one has when h → 0, C̃ = O(1)
which means that there exist K > 0 and h0 > 0 such that for all h ∈ (0, h0):

sup
(j,k)∈{1,...,mΩ

1 }×{1,...,mΩ
0 }

∣∣C̃j,k

∣∣ ≤ K. (133)

Under (A0), by definition of the matrices S, S̃, D and C̃ (see Definition 48 and Equations (127), (128), 
(131)), there exists c > 0 such that the matrix 

(
S − S̃

)
D−1 satisfies in the limit h → 0:(

S − S̃
)
D−1 = O(e− c

h ). (134)

The following lemma will be needed in the sequel.

Lemma 50. Let us assume that (A0) holds. Let C̃ be the matrix defined in (131). Then, there exist c > 0
and h0 > 0 such that for all h ∈ (0, h0):

∀x ∈ RmΩ
0 ,
∥∥C̃x
∥∥

2 ≥ c
∥∥x∥∥2, (135)

where ‖.‖2 denotes the Euclidean norm on RK , K ∈ N∗.



Proof. The proof of Lemma 50 is divided into two steps.

Step 1: Block-diagonal decomposition of C̃. According to (131), (128) and (127), C̃ has the form, up to 
reordering the zi for i ∈ {1, . . . , mΩ

1 },

C̃ =

⎛⎝ 0 0
[C̃]a 0

0 [C̃]c

⎞⎠ ,

where:

• the block matrix (0, 0) on the first line corresponds to the rows of C̃ associated with j ∈ {1, . . . , mΩ
1 }

such that zj /∈ ∪mΩ
0

k=1j(xk);
• [C̃]a is a matrix of size Card

(
∪N1
k=1 j(xk)

)
×N1 (where N1 is defined in (34)). The coefficients ([C̃]a)j,k =

C̃j,k are associated with 0-forms ũk, for k ∈ {1, . . . , N1} (see Definition 42 and (65)) and with 1-forms 
ψ̃j for j ∈ {1, . . . , mΩ

1 } such that zj ∈ ∪N1
k=1j(xk);

• [C̃]c is a matrix of size Card
(
∪mΩ

0
k=N1+1 j(xk)

)
× (mΩ

0 −N1), which has the following block diagonal form:

[C̃]c =

⎛⎜⎜⎜⎝
[C̃]c,1 0 . . . 0

0 [C̃]c,2 . . . 0
...

...
. . .

...
0 0 . . . [C̃]c,N1

⎞⎟⎟⎟⎠ ,

where for � ∈
{
1, . . . , N1

}
, [C̃]c,� is a matrix of size Card

(⋃
k, j(xk)⊂Cl

j(xk)
)
×
(
Card
(
arg minC�

f
)

−

1
)
, with the convention that [C̃]c,� does not exist if arg minC�

f = {x�}. Let us recall that for � ∈{
1, . . . , N1

}
, C� is introduced in Definition 12. For all � ∈ {1, . . . , N1}, [C̃]c,� contains the non zero terms 

of C̃ associated with 0-forms ũk and 1-forms ψ̃j with (i) ũk such that supp(ũk) ⊂ {χ̃� = 1} (according 
to (70)); (ii) for those ũk, j is such that zj ∈ j(xk) ⊂ C�. This explains in particular the block structure 
of [C̃]c since by construction S̃j,k = 0 if zj /∈ j(xk) (see (131) and (127)).

From [28, Section 7.3 and Equation (7.4) in Section 7.2], for all � ∈
{
1, . . . , N1

}
there exist c� > 0 and 

h0 > 0 such that for all h ∈ (0, h0) and for all z ∈ RCard
(
arg minC�

f
)
−1,

∥∥[C̃]c,� z
∥∥

2 ≥ c�‖z‖2.

Thus, there exist α > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all z ∈ RmΩ
0 −N1 ,

∥∥[C̃]c z
∥∥

2 ≥ α‖z‖2. (136)

For any x = t(y, z) ∈ RmΩ
0 (y ∈ RN1 and z ∈ RmΩ

0 −N1), it holds

∥∥C̃ x
∥∥2

2 =
∥∥[C̃]a y

∥∥2
2 +
∥∥[C̃]c z

∥∥2
2 ≥
∥∥[C̃]a y

∥∥2
2 + α2‖z‖2

2.

Therefore, to prove (135), let us show that there exist β > 0 and h0 > 0 such that for all h ∈ (0, h0) and 
for all y ∈ RN1 ,

∥∥[C̃]a y
∥∥ ≥ β‖y‖2. (137)
2



Step 2: Proof of (137). Let us divide the family (Ck)k∈{1,...,N1} into K groups (K ≤ N1):

{C1, . . . ,CN1} =
K⋃

�=1

{C�
1, . . . ,C�

k�}

which are such that for all � ∈ {1, . . . , K}, the set
⋃k�

j=1 C�
j is connected, and for all q ∈ {1, . . . , N1} such 

that Cq /∈ {C�
1, . . . , C�

k�}, Cq ∩
⋃k�

j=1 C�
j = ∅. Then, by definition of the matrix [C̃]a (see Step 1 above), up to 

a reordering, [C̃]a has the block-diagonal form

[C̃]a =

⎛⎜⎜⎜⎝
[C̃]a,1 0 . . . 0

0 [C̃]a,2 . . . 0
...

...
. . .

...
0 0 . . . [C̃]a,K

⎞⎟⎟⎟⎠ ,

where for � ∈
{
1, . . . , K

}
, [C̃]a,� is a matrix of size Card

(⋃N1

k=1, xk∈∪k�
j=1C�

j

j(xk)
)
× k�. For � ∈

{
1, . . . , K

}
, 

the coefficients ([C̃]a,�)j,k = C̃j,k are associated with 0-forms ũk, for k ∈ {1, . . . , N1} such that xk ∈ ∪k�
j=1C�

j

and with 1-forms ψ̃j for j ∈ {1, . . . , mΩ
1 } such that zj ∈

⋃N1

k=1, xk∈∪k�
j=1C�

j

j(xk). Therefore, to prove (137), 

let us show that for � ∈
{
1, . . . , K

}
, there exist β� > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all 

y ∈ Rk� , ∥∥[C̃]a,� y
∥∥

2 ≥ β�‖y‖2.

In view of the block structure of [C̃]a, to prove it, one can assume, without loss of generality, that K = 1
which is equivalent to the fact that the set 

⋃N1
j=1 Cj is connected. Let us thus assume that 

⋃N1
j=1 Cj is 

connected and let us then write

[C̃]a = A + O(h), (138)

where A is a matrix which has the same size as [C̃]a, and which satisfies, from (132), for all k ∈ {1, . . . , N1}
and all j such that zj ∈

⋃N1
k=1 j(xk),

if j(xk) ∩ ∂Ω �= ∅, Aj,k =

⎧⎪⎪⎨⎪⎪⎩
εj,k Cj,k if zj ∈ j(xk) ∩ ∂Ω,

O
(
h

1
4
)

if zj ∈ j(xk) ∩ Ω,

0 if zj /∈ j(xk),
(139)

if j(xk) ∩ ∂Ω = ∅, Aj,k =
{
εj,k Cj,k if zj ∈ j(xk),
0 if zj /∈ j(xk),

(140)

where, we recall, εj,k ∈ {−1, 1} and Cj,k > 0. To prove (137), it is sufficient to show that (137) holds for A
instead of [C̃]a, i.e. that there exist β > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all y ∈ RN1 ,∥∥Ay

∥∥
2 ≥ β‖y‖2. (141)

Before proving (141), let us label the family (Ck)k∈{1,...,N1} as follows. According to Lemma 17, one can 
assume without loss of generality that C1 is such that there exists z ∈ Ussp

1 such that

z ∈ ∂C1 \
(
∪N1 ∂C�

)
. (142)
�=2



Moreover, if ∂C1 ∩ ∂Ω �= ∅ (recall that ∂C1 ∩ ∂Ω ⊂ ∂C1 \ (∪N1
�=2∂C�)), one chooses z such that

z ∈ ∂C1 ∩ ∂Ω. (143)

Let us now label (Cj)j∈{2,...,N1} such that for all k ∈ {1, . . . , N1}, 
⋃k

j=1 Cj is connected. Let us prove (141)
by induction on k ∈ {1, . . . , N1} (the proof is similar to the proof made in [28, Section 7.3] in a different 
context). For k ∈ {1, . . . , N1}, one denotes by Pk the following property: there exist αk > 0 and h0 > 0 such 
that for all h ∈ (0, h0) and for all y ∈ RN1 ,

∥∥Ay
∥∥2

2 ≥ αk

k∑
�=1

y2
� .

Let us prove P1. Using (142) and (143) together with (139) and (140), the j-th row of A equals

(
εj,1 Cj,1, 0, . . . , 0

)
,

where j is such that zj ∈ ∂C1 \ (∪N1
�=2∂C�). Thus, one has for y ∈ RN1 , 

∥∥A y
∥∥

2 ≥ |εj,1 Cj,1y1|. Therefore, P1
is satisfied. Let us now assume that Pk is satisfied for some k ∈ {1, . . . , N1 − 1} and let us prove Pk+1.

If ∂Ck+1 ∩ ∂Ω �= ∅, there exists j ∈ {1, . . . , N1}, such that zj ∈ ∂Ck+1 ∩ ∂Ω. Thus, using (139), one 
has (Ay)j = εj,k+1Cj,k+1 yk+1. Therefore, one obtains y2

k+1C
2
j,k+1 =

∣∣(Ay)j
∣∣2 ≤

∥∥Ay
∥∥2

2. Applying the 

property Pk, one gets min(C2
j,k+1, αk) 

∑k+1
�=1 y2

� ≤ 2
∥∥Ay
∥∥2

2. This implies that the property Pk+1 is satisfied.
Let us now consider the case ∂Ck+1 ∩ ∂Ω = ∅. Using (140) together with the fact that the set ⋃k+1

j=1 Cj is connected, there exist � ∈ {1, . . . , k} and j such that zj ∈ ∂C� ∩ ∂Ck+1. Thus, (Ay)j =
Aj� y� + εj,k+1Cj,k+1 yk+1. As a consequence, since there exists M > 0 such that |Aj�| ≤ M for all h
small enough, one obtains using the triangular inequality and the property Pk,

y2
k+1 ≤ 2

C2
j,k+1

(∣∣(Ay)j
∣∣2 + A2

j� y
2
�

)
≤ 2(1 + M2/αk)

C2
j,k+1

∥∥Ay
∥∥2

2.

Using again the property Pk, one gets that min
(

C2
j,k+1

2(1+M2/αk) , αk

)∑k+1
�=1 y2

� ≤ 2
∥∥Ay
∥∥2

2. Therefore, the prop-
erty Pk+1 is satisfied. This ends the proof of (141) by induction. Together with (136) and (137), one then 
obtains (135). This concludes the proof of Lemma 50. �

As a consequence of (135), the rectangular matrix C̃ admits a left inverse C̃−1 which satisfies

sup
(j,k)∈{1,...,mΩ

0 }×{1,...,mΩ
1 }

|(C̃−1)j,k| ≤ M, (144)

for some M > 0 independent of h. This implies that, using (134) and (131):

S =
(
I + R

)
S̃ where R =

(
S − S̃

)
D−1C̃−1 = O(e− c

h ). (145)

4.2.2. On the mΩ
0 smallest eigenvalues of −L

D,(0)
f,h

This section is dedicated to the proof of the following proposition which gives lower and upper bounds 
for the mΩ

0 smallest eigenvalues of −L
D,(0)
f,h .

Theorem 4. Let us assume that (A0) holds. Let j be the map constructed in Section 2.3. Let us reorder the 
set {x1, . . . , xmΩ} such that the sequence
0



(
Sk

)
k∈{1,...,mΩ

0 } :=
(
f(j(xk)) − f(xk)

)
k∈{1,...,mΩ

0 } (146)

is decreasing, and, on any I ⊂ {1, . . . , mΩ
0 } such that 

(
Sk

)
k∈I is constant, the sequence (qk)k∈I is decreasing 

(where the qk’s are introduced in (128)). Finally let us denote by λk,h, for k ∈ N∗, the k-th eigenvalue of 
−L

D,(0)
f,h counted with multiplicity (with these notations, λ1,h = λh, see (8)). Then, there exist C > 0 and 

h0 > 0 such that for all k ∈
{
1, . . . , mΩ

0
}

and for all h ∈ (0, h0),

C−1 h1+2qk e−
2
hSk ≤ λk,h ≤ C h1+2qk e−

2
hSk .

The reordering of {x1, . . . , xmΩ
0
} introduced in (146) is only used in Theorem 4: except in this theorem, 

the labeling of {x1, . . . , xmΩ
0
} is the one introduced in Definition 41. A direct consequence of Theorem 4 is 

the following.

Corollary 51. Let us assume that (A0) and (A1j) are satisfied. Then, the estimate (104) is satisfied.

Before starting the proof of Theorem 4, let us recall the Fan inequalities in Lemma 52 (see for instance 
[42, Theorem 1.6] or [43]).

Lemma 52. Let A ∈ Mm,m(C), B ∈ Mm,n(C) and C ∈ Mn,n(C). Then, it holds

∀i ∈ {1, . . . , n}, ηi(ABC) ≤
∥∥A∥∥∥∥C∥∥ ηi(B),

where, for any matrix T ∈ Mm,n(C), ‖T‖ = η1(T ) ≥ · · · ≥ ηn(T ) denote the singular values of the matrix 
T and where 

∥∥T∥∥ :=
√

max σ( tTT ) is the spectral norm of T .

Let us recall that from item 3 in Proposition 43, there exists h0 > 0 such that for all h ∈ (0, h0),

Ran π
(0)
h = Span

(
π

(0)
h ũk, k = 1, . . . ,mΩ

0
)

and Ran π
(1)
h = Span

(
π

(1)
h ψ̃i, i = 1, . . . ,mΩ

1
)

where the projectors π(0)
h and π(1)

h are defined in (60). Let us define Υ̃ :=
(
π

(0)
h ũk

)
1≤k≤mΩ

0
and Ψ̃ :=(

π
(1)
h ψ̃j

)
1≤j≤mΩ

1
. For i ∈ {0, 1}, let Bi be an orthonormal basis of Ranπ

(i)
h and let us define the matrices

C0 := MatΥ̃ B0 and C1 := MatΨ̃ B1. (147)

Notice that from item 3 in Proposition 43, there exist K > 0 and h0 > 0 such that for all h ∈ (0, h0):

sup
(l,k)∈

{
1,...,mΩ

0
}2
∣∣(C0)l,k

∣∣+ sup
(i,j)∈

{
1,...,mΩ

1
}2
∣∣(C1)i,j

∣∣ ≤ K (148)

and

sup
(l,k)∈

{
1,...,mΩ

0
}2
∣∣(C−1

0 )l,k
∣∣+ sup

(i,j)∈
{
1,...,mΩ

1
}2
∣∣(C−1

1 )i,j
∣∣ ≤ K. (149)

A consequence of the Fan inequalities is the following.

Lemma 53. Let us assume that (A0) holds. Let us denote by λk,h, for k ∈ N∗, the k-th eigenvalue of −L
D,(0)
f,h

counted with multiplicity and let S̃ be the matrix defined in (127). Then, there exists c > 0 such that for all 
k ∈ {1, . . . , mΩ

0 }, one has in the limit h → 0:



λk,h = h

2

[
ηmΩ

0 +1−k

(
S̃C0
)]2 (

1 + O(e− c
h )
)
, (150)

where ‖S̃C0‖ = η1(S̃C0) ≥ · · · ≥ ηmΩ
0
(S̃C0) denote the singular values of S̃C0.

Proof. The mΩ
0 smallest eigenvalues of −L

D,(0)
f,h are the eigenvalues of −L

D,(0)
f,h |Ran π

(0)
h

=
h
2 d∗2f

h ,1|Ran π
(1)
h

d|Ran π
(0)
h

. Moreover, since the L2
w-adjoint of d|Ran π

(0)
h

: Ran π
(0)
h → Ran π

(1)
h is d∗2f

h ,1|Ran π
(1)
h

:

Ran π
(1)
h → Ran π

(0)
h , one has that the mΩ

0 smallest eigenvalues of −L
D,(0)
f,h are given by h

2 times the squares 
of the singular values of d|Ran π

(0)
h

: Ran π
(0)
h → Ran π

(1)
h . Thus, the eigenvalues of −L

D,(0)
f,h |Ran π

(0)
h

are given 

by h
2 times the squares of the singular values of the matrix Q := MatB0,B1

(
d|Ran π

(0)
h

)
. In addition, by defini-

tion of the matrices C0 and C1 (see (147)), one has Q = tC1 S C0. By (145), it holds Q = tC1
(
I+R

)
S̃ C0. 

Furthermore, from (145), there exists c > 0 such that in the limit h → 0

‖I + R‖ = 1 + O(e− c
h ), ‖(I + R)−1‖ = 1 + O(e− c

h ),

and from item 3b in Proposition 43,

‖ tC1‖ = 1 + O(e− c
h ), ‖( tC1)−1‖ = 1 + O(e− c

h ),

where we recall that 
∥∥T∥∥ :=

√
max σ( tTT ) is the spectral norm of a matrix T . Therefore, it follows from 

the Fan inequalities (see Lemma 52) that the singular values of Q are, up to multiplication by 1 +O(e− c
h ), 

the singular values of S̃ C0. This concludes the proof of Lemma 53. �
Remark 54. Notice that in general, the spectral norm of the matrix C0 defined in (147) does not equal 
1 + O(e− c

h ) when h → 0. For instance, in the case when f is a one-dimensional symmetric double-well 
potential with the saddle point lower than min∂Ω f , it can be checked that the Gramian matrix of the functions 

ũ1 and ũ2 introduced in Definition 42 converges when h → 0 towards the matrix 
(

1 c1
c1 1

)
, where 0 < c1 < 1.

Let us now prove Theorem 4.

Proof of Theorem 4. Theorem 4 is equivalent, according to Lemma 53, to the existence of C > 0 and h0 > 0
such that for all k ∈

{
1, . . . , mΩ

0
}

and for all h ∈ (0, h0)

C−1hqke−
1
hSk ≤ ηmΩ

0 +1−k(S̃C0) ≤ Chqke−
1
hSk . (151)

According to (128) and to the ordering of k ∈ {1, . . . , mΩ
0 } introduced in the statement of Theorem 4, the 

singular values of D satisfy for h small enough (see (128) and (146)):

∀k ∈ {1, . . . ,mΩ
0 }, ηmΩ

0 +1−k(D) = Dk,k = hqke−
Sk
h . (152)

Using the fact that S̃C0 = C̃DC0 (see (131)) together with (133), (148) and Lemma 52, one obtains that 
for all k ∈ {1, . . . , mΩ

0 }

ηmΩ
0 +1−k(S̃C0) ≤

∥∥C̃∥∥∥∥C0
∥∥ ηmΩ

0 +1−k(D) = O
(
Dk,k

)
, (153)

which provides the required upper bound in (151). To obtain a lower bound on the singular values of S̃C0, 
we write D = C̃−1 S̃ C0 C

−1
0 . Using (144), (149) and Lemma 52, one has for all k ∈ {1, . . . , mΩ

0 },



ηmΩ
0 +1−k(D) ≤

∥∥C̃−1∥∥∥∥C−1
0
∥∥ ηmΩ

0 +1−k(S̃ C0) = O
(
ηmΩ

0 +1−k(D)
)
. (154)

Then, (151) follows from (152), (154) and (153). This concludes the proof of Theorem 4. �
To prove Theorem 2 and to ease upcoming computations, we replace in the Fan inequalities (150) the 

matrix C0 by another matrix which has a simpler form than C0: this is the purpose of Lemma 55. Before 
stating Lemma 55, let us choose a specific orthonormal basis B0 of Ran π

(0)
h to define C0 in (147). Recall 

that when (A1j) holds, the well C1 (see Definition 12) satisfies: for all x ∈ UΩ
0 \ {x1},

f(j(x)) − f(x) < f(j(x1)) − f(x1).

Let us define e1 := π
(0)
h ũ1

‖π(0)
h ũ1‖L2

. According to item 2a in Proposition 43, there exists c > 0 such that in the 

limit h → 0, e1 =
(
1 + O(e− c

h )
)
π

(0)
h ũ1. Then, let us choose {e2, . . . , emΩ

0
} such that B0 := {e1, e2, . . . , emΩ

0
}

is an orthonormal basis of Ranπ
(0)
h . In that case, the matrix C0 defined in (147) satisfies in the limit h → 0:

∀k ∈ {1, . . . ,mΩ
0 }, (C0)k,1 =

{
1 + O(e− c

h ) if k = 1,
0 if k > 1.

(155)

Let us now define the mΩ
0 × mΩ

0 matrix C̃0 by:

∀k ∈ {1, . . . ,mΩ
0 }, (C̃0)k,1 :=

{
1 if k = 1,
0 if k > 1,

(156)

∀(k, �) ∈ {1, . . . ,mΩ
0 } × {2, . . . ,mΩ

0 }, (C̃0)k,� := (C0)k,�. (157)

Lemma 55. Let us assume that (A0) and (A1j) are satisfied. Let us denote by λk,h, for k ∈ N∗, the k-th 
eigenvalue of −L

D,(0)
f,h counted with multiplicity and let S̃ be the matrix defined in (127). Then, there exists 

c > 0 such that in the limit h → 0:

λk,h = h

2

[
ηmΩ

0 +1−k

(
S̃ C̃0
)]2 (

1 + O(e− c
h )
)
,

where ‖S̃C̃0‖ = η1(S̃C̃0) ≥ · · · ≥ ηmΩ
0
(S̃C̃0) denote the singular values of S̃ C̃0 and λ1,h = λh is the principal 

eigenvalue of −L
D,(0)
f,h (see (8)).

Proof. Let us prove that there exists c > 0 such that in the limit h → 0,

∥∥(C̃0)−1C0
∥∥ = 1 + O(e− c

h ) and
∥∥C−1

0 C̃0
∥∥ = 1 + O(e− c

h ). (158)

From (155), the mΩ
0 × mΩ

0 matrix C0 has the form C0 =
(

1 + O(e− c
h ) [C0]4

0 [C0]2

)
for some c > 0. Moreover, 

according to (156) and (157), the mΩ
0 × mΩ

0 matrix C̃0 has the form C̃0 =
(

1 [C0]4
0 [C0]2

)
. Let us recall 

that by definition of C0 (see (147)) and from item 3a in Proposition 43, C0 is invertible and thus [C0]2
is invertible. Therefore, one has C̃−1

0 =
(

1 −[C0]4 [C0]−1
2

0 [C0]−1
2

)
and thus, C̃−1

0 C0 =
(

1 + O(e− c
h ) 0

0 ImΩ
0 −1

)
. 

This proves (158). Lemma 55 is then a consequence of (158) together with Lemma 53 and Lemma 52. �



4.2.3. Proofs of Theorems 2 and 3
This section is dedicated to the proof of Theorem 2 which gives the asymptotic estimate of the principal 

eigenvalue of −L
D,(0)
f,h under the assumptions (A1j) and (A2j). The proof of Theorem 3 is similar, and we 

will only indicate the appropriate modifications (see Remarks 56 and 57).

Proof of Theorem 2. Let us assume that (A0) and (A1j) hold. The spectral gap (104) has already been 
proved, see Corollary 51. It thus remains to prove (105). The proof of (105) is partly inspired by the 
analysis led in [28, Section 7.4]. According to Lemma 55, there exists c > 0 such that in the limit h → 0:

λ1,h = h

2

[
ηmΩ

0
(S̃C̃0)

]2 (
1 + O(e− c

h )
)
, (159)

where C̃0 is defined in (156) and (157). Therefore, the analysis of the estimate of λh is then reduced to 
precisely computing ηmΩ

0
(S̃C̃0). One has:

ηmΩ
0
(S̃C̃0) = min

y∈RmΩ
0 , ‖y‖2=1

∥∥S̃ C̃0 y
∥∥

2. (160)

Let us assume in addition to (A0) and (A1j) that (A2j) holds. Recall that assumptions (A1j) and (A2j)
imply that for all x ∈ UΩ

0 \ {x1}, f(j(x)) − f(x) < f(j(x1)) − f(x1) and ∂C1 ∩ ∂Ω �= ∅. Then, it holds 
j(x1) ∩ ∂Ω = ∂C1 ∩ ∂Ω �= ∅ (see (52)). In addition, using Proposition 49 and (127), one has in the limit 
h → 0:

mΩ
1∑

j=1
S̃2
j,1 =

∑
j:zj∈j(x1)∩∂Ω

S̃2
j,1 +

∑
j:zj∈j(x1)∩Ω

S̃2
j,1, (161)

where: ⎧⎨⎩
∑

j:zj∈j(x1)∩∂Ω S̃2
j,1 = h− 3

2

(∑
j:zj∈j(x1)∩∂Ω C2

j,1

)
e−

2
h (f(j(x1))−f(x1))(1 + O(h)),∑

j:zj∈j(x1)∩Ω S̃2
j,1 = h−1

(∑
j:zj∈j(x1)∩Ω C2

j,1

)
e−

2
h (f(j(x1))−f(x1))(1 + O(h)),

(162)

where the constants Cj,1 are defined in (117) and where all the remainder terms O(h) admit a full asymptotic 
expansion in h.

Let us first obtain an upper bound on ηmΩ
0
(S̃C̃0). Let us denote by y0 the vector t(1, 0, . . . , 0). Then, it 

holds from (160), ηmΩ
0
(S̃C̃0)2 ≤

∥∥S̃ C0 y0
∥∥2

2. Using in addition the fact that from (156), one has C̃0y0 = y0, 
one obtains

[
ηmΩ

0
(S̃C̃0)

]2
≤
∥∥S̃y0
∥∥2

2 =
mΩ

1∑
j=1

S̃2
j,1. (163)

This provides the required upper bound. Notice that (163), (161), and (162) imply that in the limit h → 0,

ηmΩ
0
(S̃C̃0) = O

(
h− 3

4 e−
1
h (f(j(x1))−f(x1))

)
. (164)

Let us now give a lower bound on ηmΩ
0
(S̃C̃0). To this end let us consider y∗ ∈ RmΩ

0 with ‖y∗‖2 = 1, 
realizing the minimum in (160). Let us write y∗ = t(y∗α, y∗β), where y∗α ∈ R and y∗β is a row vector of size 
mΩ

0 − 1. We claim that there exists μ > 0 such that for h small enough,

‖y∗β‖2 = O
(
e−

μ
h

)
. (165)



Let us prove (165). By definition of y∗ and according to (131), one has ηmΩ
0
(S̃C̃0) =

∥∥S̃C̃0y
∗∥∥

2 =∥∥C̃DC̃0y
∗∥∥

2. To prove (165), we use the block structures of the matrices C̃, C̃0 and D. Let us recall 
that from (52) and (53), since (A2j) holds, k∂C1

1 = Card
(
j(x1) ∩ ∂Ω

)
≥ 1. Then, according to (131), (128)

and (127), the mΩ
1 × mΩ

0 matrix C̃ has the form, up to reordering the zi, i ∈ {1, . . . , mΩ
1 },

C̃ =
(

[C̃]1 0
[C̃]3 [C̃]2

)
, (166)

where:

• [C̃]1 is a matrix of size k∂C1
1 × 1 where we recall that k∂C1

1 is defined in (53). The coefficients ([C̃]1)j,1 =
C̃j,1 are associated with the function ũ1 (see Definition 42 and (65)) and with 1-forms ψ̃j for j ∈
{1, . . . , k∂C1

1 } (or equivalently, j such that zj ∈ j(x1) ∩ ∂Ω).
• [C̃]3 is a matrix of size 

(
mΩ

1 − k∂C1
1
)
× 1. The coefficients ([C̃]3)j,k = C̃j,k are associated with the 

function ũ1 and with 1-forms ψ̃j for j ∈ {k∂C1
1 +1, . . . , mΩ

1 } (or equivalently, j such that zj /∈ j(x1) ∩∂Ω).
• [C̃]2 is a matrix of size 

(
mΩ

1 − k∂C1
1
)
×
(
mΩ

0 − 1
)
. The coefficients ([C̃]2)j,k = C̃j,k are associated with 

0-forms ũk, for k ∈ {2, . . . , mΩ
0 } and with 1-forms ψ̃j for j ∈ {k∂C1

1 + 1, . . . , mΩ
1 } (or equivalently, j such 

that zj /∈ j(x1) ∩ ∂Ω).

Remark 56. To prove Theorem 3, one uses the block decomposition:

C̃ =
(

[C̃]1 0
0 [C̃]2

)

where [C̃]1 is a matrix of size Card
(
j(x1)
)
× 1 associated with the function ũ1 and the 1-forms ψ̃j for j

such that zj ∈ j(x1), and [C̃]2 is a matrix of size 
(
mΩ

1 − Card
(
j(x1)
))

×
(
mΩ

0 − 1
)

associated with the 
0-forms ũk, for k ∈ {2, . . . , mΩ

0 } and with 1-forms ψ̃j for j such that zj /∈ j(x1). The fact that the lower left 
and upper right block matrices are zero is a consequence of the following assumption of Theorem 3: for all 
j ∈ {2, . . . , N1}, ∂C1 ∩ ∂Cj = ∅.

From (135) and (166), [C̃]2 is injective and satisfies, for some constant c > 0 and for all h > 0 small 
enough,

∀x ∈ RmΩ
0 −1,

∥∥[C̃]2x
∥∥

2 ≥ c
∥∥x∥∥2. (167)

This is indeed obvious by applying (135) to the vector t(0, x). Let us now decompose the square matrices D
and C̃0 in blocks which are compatible with the decomposition of C̃ made in (166). According to (128), (156), 
and (157), one has

D =
(
D1,1 0

0 [D]β

)
and C̃0 =

(
1 [C̃0]γ
0 [C̃0]β

)
, (168)

where for a square matrix U of size mΩ
0 , [U ]β = (Ui,j)2≤i,j≤mΩ

0
, and [U ]γ = (U1,j)2≤j≤mΩ

0
. Notice that 

from (129), it holds

D1,1 = h− 3
4 e−

1
h (f(j(x1))−f(x1)), (169)

and from (149), there exists M > 0 such that for h small enough,∥∥[C̃0]−1∥∥ ≤ M. (170)
β



We are now in position to prove (165). Let us recall that by definition of y∗, one has

ηmΩ
0
(S̃ C̃0) =

∥∥S̃ C̃0
t(y∗α, y∗β)

∥∥
2 ≥
∥∥S̃ C̃0

t(0, y∗β)
∥∥

2 −
∥∥S̃ C̃0

t(y∗α, 0)
∥∥

2.

Therefore, since C̃0
t(y∗α, 0) = t(y∗α, 0) (see (156)) and S̃ = C̃D (see (131)), one has using (164), (166), 

and (169) together with the fact that |y∗α| ≤ 1 and [C̃]1 = O(1) (see (166) and (133)),

‖S̃ C̃0
t(0, y∗β)‖2 ≤ ηmΩ

0
(S̃ C̃0) +

∥∥C̃D t(y∗α, 0)
∥∥

2 ≤ ηmΩ
0
(S̃ C̃0) +

∥∥[C̃]1D1,1y
∗
α

∥∥
2

= O
(
h− 3

4 e−
1
h (f(j(x1))−f(x1))

)
. (171)

Moreover, using (169) and since [C̃]3 = O(1) (see (166) and (133)) and [C̃0]γ = O(1) (since C̃0 = C0+O(e− c
h )

and C0 = O(1) see (156), (157), and (148)), one has

∥∥S̃ C̃0
t(0, y∗β)

∥∥
2 =
(∥∥[C̃]1 D1,1 [C̃0]γ ty∗β

∥∥2
2 +
∥∥[C̃]3 D1,1 [C̃0]γ ty∗β + [C̃]2 [D]β [C̃0]β ty∗β

∥∥2
2

) 1
2

≥
∥∥[C̃]2 [D]β [C̃0]β ty∗β

∥∥
2 −
∥∥[C̃]3 D1,1 [C̃0]γ ty∗β

∥∥
2

=
∥∥[C̃]2 [D]β [C̃0]β ty∗β

∥∥
2 + O

(
h− 3

4 e−
1
h (f(j(x1))−f(x1))

)
.

Therefore, one deduces from the latter inequality and from (171) and (167) that

∥∥[D]β [C̃0]β y∗β
∥∥

2 = O
(
‖[C̃]2[D]β [C0]β ty∗β‖2

)
= O
(
h− 3

4 e−
1
h (f(j(x1))−f(x1))

)
. (172)

In addition, since [C̃0]−1
β = O(1) (which follows from C̃0 = C0 + O(e− c

h ), see indeed (156), (157), (149)
and (168)), and since there exists c > 0 such that [D]−1

β = O
(
e

1
h (f(j(x1))−f(x1)−c)) which follows from (128)

and (130), one obtains from (172) that there exists μ > 0 such that for h small enough, ‖ty∗β‖2 = O(e−μ
h ). 

This ends the proof of (165).
We are now in position to give a lower bound on ηmΩ

0
(S̃C̃0). Notice that from (165) together with the 

fact that ‖y∗‖2 = 1, one has

|y∗α| = 1 + O(e−
μ
h ). (173)

Using (166) and (168), it holds,

[
ηmΩ

0
(S̃C̃0)

]2
≥

k∂C1
1∑
j=1

(C̃ D C̃0 y
∗)2j =

k∂C1
1∑
j=1

D2
1,1C̃

2
j,1

(
y∗α +

mΩ
0∑

�=2

(C̃0)1,� y∗�
)2

,

where we recall that k∂C1
1 is defined by (53). Using in addition (165) and (173) together with the fact that 

C̃0 = O(1), there exists c > 0 such that

[
ηmΩ

0
(S̃C̃0)

]2
≥ D2

1,1

k∂C1
1∑
j=1

C̃2
j,1
(
1 + O(e− c

h )
)2
,

in the limit h → 0. By definition of k∂C1
1 (see (53)) it holds



D2
1,1

k∂C1
1∑
j=1

C̃2
j,1
(
1 + O(e− c

h )
)2 =

∑
j: zj∈j(x1)∩∂Ω

C̃2
j,1D

2
1,1
(
1 + O(e− c

h )
)2

=
∑

j: zj∈j(x1)∩∂Ω

S̃2
j,1
(
1 + O(e− c

h )
)2
,

where the last equality follows from (131). Thus, one obtains the following lower bound:

[
ηmΩ

0
(S̃C̃0)

]2
≥

∑
j: zj∈j(x1)∩∂Ω

S̃2
j,1
(
1 + O(e− c

h )
)2
. (174)

In conclusion, from (163) and (174), one has for some c > 0, in the limit h → 0:

∑
j: zj∈j(x1)∩∂Ω

S̃2
j,1
(
1 + O(e− c

h )
)2 ≤ η2

mΩ
0
(S̃C̃0) ≤

mΩ
1∑

j=1
S̃2
j,1. (175)

Remark 57. In the case of Theorem 3, using the block decomposition of C̃ given in Remark 56 and a similar 
reasoning, one gets instead of (175):

∑
j: zj∈j(x1)

S̃2
j,1
(
1 + O(e− c

h )
)2 ≤ η2

mΩ
0
(S̃C̃0) ≤

mΩ
1∑

j=1
S̃2
j,1.

This concludes the proof of Theorem 3, using the formulas (161)–(162) to estimate the lower and upper 
bounds.

Using (161), (162), and the fact that j(x1) ∩ ∂Ω �= ∅, one gets

mΩ
1∑

j=1
S̃2
j,1 =

⎧⎪⎪⎨⎪⎪⎩
∑

j:zj∈j(x1)∩∂Ω
S̃2
j,1 if j(x1) ∩ Ω = ∅,∑

j:zj∈j(x1)∩∂Ω
S̃2
j,1
(
1 + O(

√
h)
)

if j(x1) ∩ Ω �= ∅.

Thus, since λ1,h = λh, using in addition Proposition 49, (159), and (175), it holds in the limit h → 0:

λh =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h
2

∑
j:zj∈j(x1)∩∂Ω

〈
∇ũ1, ψ̃j

〉2
L2

w

(
1 + O(e− c

h )
)

if j(x1) ∩ Ω = ∅,

h
2

∑
j:zj∈j(x1)∩∂Ω

〈
∇ũ1, ψ̃j

〉2
L2

w

(
1 + O(

√
h)
)

if j(x1) ∩ Ω �= ∅.
(176)

Then, from (176) and Proposition 47, it holds when h → 0:

λh =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h
2

∑
j:zj∈j(x1)∩∂Ω

C2
j,1h

− 3
2 e−

2
h (f(j(x1))−f(x1))

(
1 + O(h)

)
if j(x1) ∩ Ω = ∅,

h
2

∑
j:zj∈j(x1)∩∂Ω

C2
j,1h

− 3
2 e−

2
h (f(j(x1))−f(x1))

(
1 + O(

√
h)
)

if j(x1) ∩ Ω �= ∅,

where the O(h) admits a full asymptotic expansion in h. Since (A4j) consists in assuming that j(x1) ∩Ω = ∅, 
this concludes the proof of Theorem 2. �



5. On the principal eigenfunction of −L
D,(0)
f,h

This section is dedicated to the proofs of Proposition 58 and Theorem 5 stated below which give respec-
tively the asymptotic behavior in the limit h → 0 of 

∫
Ω

uh e−
2
h f and ∂nuh on ∂Ω.

Proposition 58 gives a sufficient condition to obtain that uh e
− 2

h f (and thus the quasi-stationary dis-
tribution νh, see Proposition 5) concentrates in only one of the wells (Ck)k∈{1,...,N1} when h → 0 in the 
L1(Ω)-norm.

Proposition 58. Assume that (A0) and (A1j) are satisfied and minC1
f = minΩ f . Let uh be the eigenfunction 

associated with the principal eigenvalue λh of −L
D,(0)
f,h (see (8)) which satisfies (9). Let O be an open subset 

of Ω. On the one hand, if O ∩ arg minC1
f �= ∅, one has in the limit h → 0:

∫
O

uh e−
2
h f = h

d
4 π

d
4

∑
x∈O∩arg minC1 f

(
det Hessf(x)

)− 1
2(∑

x∈arg minC1 f

(
det Hessf(x)

)− 1
2
) 1

2
e−

1
h minΩ f

(
1 + O(h)

)
. (177)

On the other hand, if O ∩ arg minC1
f = ∅, then, there exists c > 0 such that when h → 0:∫
O

uh e−
2
h f = O

(
e−

1
h (minΩ f+c)). (178)

When (A0) and (A1j) are satisfied and when minC1
f = minΩ f holds, Proposition 58 implies that when 

h → 0, uh e
− 2

h f concentrates in the L1-norm on the global minima of f in Cmax. Proposition 58 together 
with (11) and the fact that C1 = Cmax when (A1j) holds imply Proposition 9. Notice that when O = Ω in 
Proposition 58, one has from (177), when h → 0:∫

Ω

uh e−
2
h f = h

d
4 π

d
4 e−

1
h minΩ f

( ∑
x∈arg minC1 f

(
det Hessf(x)

)− 1
2
) 1

2 (1 + O(h)
)
. (179)

The following theorem shows that, under the hypotheses (A1j), (A2j), and (A3j), the L1
w(∂Ω)-norm of the 

normal derivative of the principal eigenfunction of −L
D,(0)
f,h concentrates when h → 0 on ∂Ω ∩ ∂C1.

Theorem 5. Let us assume that (A0), (A1j), (A2j), and (A3j) are satisfied. Let uh be the eigenfunction 
associated with the principal eigenvalue λh of −L

D,(0)
f,h which satisfies (9). Let F ∈ L∞(∂Ω, R) and Σ be an 

open subset of ∂Ω.

(i) When Σ ∩ {z1, . . . , zk∂Ω
1
} = ∅, one has in the limit h → 0:

∫
Σ

F ∂nuh e
− 2

h f = O
(
e−

1
h

(
2 min∂Ω f−minΩ f+c

))
,

where c > 0 is independent of h.
(ii) When Σ ∩ {z1, . . . , zk∂C1

1
} = ∅, one has in the limit h → 0:

∫
F ∂nuh e

− 2
h f = O

(
h

d−6
4 e−

1
h

(
2 min∂Ω f−minΩ f

)√
εh

)
,

Σ



where, for some c > 0 independent of h,

εh =
{√

h or ,

e−
c
h if (A4j) is satisfied.

(180)

(iii) When, for some i ∈ {1, . . . , k∂C1
1 }, Σ ∩ {z1, . . . , zk∂C1

1
} = {zi}, zi ∈ Σ, and F is C∞ in a neighborhood 

of zi, one has in the limit h → 0:∫
Σ

F ∂nuh e
− 2

h f = −
(
F (zi) + O(

√
εh) + O(h)

)
Ci,1Bi h

d−6
4 e−

1
h

(
2 min∂Ω f−minΩ f

)
,

where εh satisfies (180) and the constants Bi and Ci,1 are defined in (117)–(106).

The following simple consequences of Theorem 5 will be useful to prove Theorem 1. Assume that the 
assumptions (A0), (A1j), (A2j), and (A3j) are satisfied. Let F ∈ L∞(∂Ω, R) and (Σi)i∈{1,...,k∂Ω

1 } be a 
family of disjoint open subsets of ∂Ω such that for all i ∈ {1, . . . , k∂Ω

1 }, zi ∈ Σi, where we recall that 
{z1, . . . , zk∂Ω

1
} = U∂Ω

1 ∩ arg min∂Ω f (see (22)). Then:

1. There exists c > 0 such that in the limit h → 0,

∫
∂Ω

F ∂nuh e
− 2

h f =
k∂Ω
1∑

i=1

∫
Σi

F ∂nuh e
− 2

h f + O
(
e−

1
h

(
2 min∂Ω f−minΩ f+c

))
, (181)

and

k∂Ω
1∑

i=k∂C1
1 +1

∫
Σi

F ∂nuh e
− 2

h f = O
(
h

d−5
4 e−

1
h

(
2 min∂Ω f−minΩ f

))
, (182)

with the convention
m∑
i=n

= 0 if n > m and where we recall that (see (52), (53) and (A3j)), 

{z1, . . . , zk∂C1
1

} = ∂C1 ∩ ∂Ω ⊂ arg min∂Ω f ∩ U∂Ω
1 . The asymptotic estimate (181) follows from item (i)

in Theorem 5 taking Σ = ∂Ω \ ∪k∂Ω
1

i=1Σi, while (182) follows from item (ii) in Theorem 5 taking 

Σ = ∪k∂Ω
1

i=k∂C1
1 +1

Σi.

2. Moreover, when, for some i ∈ {1, . . . , k∂C1
1 }, F is C∞ in a neighborhood of zi, one has in the limit h → 0:∫

Σi

F ∂nuh e
− 2

h f = Ai

(
F (zi) + O

(
h

1
4
))

h
d−6
4 e−

1
h

(
2 min∂Ω f−minΩ f

)
, (183)

where

Ai = −2 ∂nf(zi)π
d−2
4

⎛⎝det Hessf |∂Ω(zi)
∑

x∈arg minC1 f

(
det Hessf(x)

)− 1
2

⎞⎠− 1
2

. (184)

This asymptotic equivalent follows from item (iii) in Theorem 5 taking Σ = Σi for some i ∈
{1, . . . , k∂C1

1 }.



3. Lastly, when (A4j) holds (i.e. when j(x1) ⊂ ∂Ω), the remainder term O
(
h

d−5
4 e−

1
h (2f(z1)−f(x1))

)
in (182)

is of the order O
(
e−

1
h

(
2 min∂Ω f−minΩ f+c

))
for some c > 0 and the remainder term O

(
h

1
4
)

in (183) is of 
the order O(h) and admits a full asymptotic expansion in h.

According to Theorem 5, when the function F belongs to C∞(∂Ω, R), one has the following equivalent 
of (181) in the limit h → 0:

∫
∂Ω

F ∂nuh e
− 2

h f =
k∂C1
1∑
i=1

Ai

(
F (zi) + O(h 1

4 )
)
h

d−6
4 e−

1
h

(
2 min∂Ω f−minΩ f

)
.

Remark 59. When the assumption (A4j) is not satisfied, the remainder terms in (182) and (183) are not 
optimal. In [27, Section C.4.2.2], it is proved on a one-dimensional example, that when the assumption (A4j)
is not satisfied, the optimal remainder term in (182) is O

(
h

d−4
4 e−

1
h

(
2 min∂Ω f−minΩ f

))
and the optimal re-

mainder term in (183) is O(
√
h). In higher-dimension, these optimal remainder terms can be obtained in 

some specific cases, see [27, Proposition C.40]. It is however unclear how to obtain these optimal remainder 
terms in general.

This section is organized as follows. In Section 5.1, one proves Proposition 58. Section 5.2 is then dedicated 
to the proof of Theorem 5.

5.1. Proof of Proposition 58

Let us first give a corollary of Theorem 4 which is used in the proof of Proposition 58.

Corollary 60. Let us assume that (A0) and (A1j) are satisfied. Then, there exists β0 > 0 such that for all 
β ∈ (0, β0), there exists h0 > 0 such that for all h ∈ (0, h0), the orthogonal projector

π̃
(0)
h := π[

0,e−
2
h

(f(j(x1))−f(x1)−β))(−L
D,(0)
f,h ) (185)

has rank 1. Moreover, choosing the parameter ε > 0 appearing in (65) small enough, there exists h0 > 0
such that for all h ∈ (0, h0), one has:

Ran π̃
(0)
h = Span

(
π̃

(0)
h ũ1
)
, (186)

where the function ũ1 is introduced in Definition 42.

Proof. The fact that dim Ran π̃
(0)
h = 1 is a direct consequence of Corollary 51. Let us now prove (186). Using 

Lemma 25, Proposition 4, and using item 2a of Proposition 43, for any δ > 0, there exist ε > 0 (see (65)), 
C > 0 and h0 > 0 such that one has for all h ∈ (0, h0),

∥∥(1 − π̃
(0)
h )ũ1

∥∥2
L2

w
≤ e

2
h (f(j(x1))−f(x1)−β) h

2
∥∥∇ũ1

∥∥2
L2

w

≤ C e
2
h (f(j(x1))−f(x1)−β) e−

2
h (f(j(x1))−f(x1)−δ) ≤ C e−

2
h (β−δ). (187)

Therefore, choosing ε > 0 small enough such that δ ∈ (0, β), there exists c > 0 and h0 > 0 such that one 
has for all h ∈ (0, h0), ∥∥π̃(0)

ũ1
∥∥

2 = 1 + O(e− c
h ). (188)
h Lw



This concludes the proof of (186) and thus the proof of Corollary 60. �
Let us now prove Proposition 58.

Proof of Proposition 58. Let us first assume that only (A0) and (A1j) are satisfied. As a direct consequence 
of Corollary 60 and (188), one has (since the functions uh and ũ1 are non negative),

uh =
π̃

(0)
h ũ1

‖π̃(0)
h ũ1‖L2

w

= ũ1 + O(e− c
h ) in L2

w(Ω). (189)

Let O be an open subset of Ω. Using (189) and thanks to the Cauchy-Schwarz inequality, one obtains in the 
limit h → 0:

∫
O

uh e−
2
h f =

∫
O

ũ1 e
− 2

h f + O(e− c
h )

√√√√∫
O

e−
2
h f =

∫
O

ũ1 e
− 2

h f + O
(
e−

1
h

(
minΩ f+c

))
. (190)

Let us recall that by construction (see Definition 42 and (65)), ũ1 = χ
ε,ε1
1

‖χε,ε1
1 ‖L2

w

. Then, from the definition 

of χε,ε1
1 (see (65) and the lines below) and using Laplace’s method, one has in the limit h → 0,∫

Ω

(χε,ε1
1 )2 e− 2

h f = (hπ) d
2 e−

2
h f(x1)

∑
x∈arg minC1 f

(
det Hessf(x)

)− 1
2 (1 + O(h)). (191)

Let us assume that O ∩ arg minC1
f �= ∅. Then, using Laplace’s method, one has when h → 0,∫

O

χε,ε1
1 e−

2
h f = (hπ) d

2 e−
2
h f(x1)

∑
x∈O∩arg minC1 f

(
det Hessf(x)

)− 1
2 (1 + O(h)), (192)

where we recall that x1 ∈ arg minC1
f . Thus, from (190), (191), and (192), one has when h → 0:

∫
O

uh e−
2
h f = h

d
4 π

d
4

∑
x∈O∩arg minC1 f

(
det Hessf(x)

)− 1
2(∑

x∈arg minC1 f

(
det Hessf(x)

)− 1
2
) 1

2
e−

1
h f(x1)

(
1 + O(h)

)
+ O
(
e−

1
h

(
minΩ f+c

))
. (193)

Let us assume moreover that minC1
f = minΩ f . Then, (177) in Proposition 58 is a consequence of (193).

Let us now consider the case where O ∩ arg minC1
f = ∅. Then, it holds

min
O∩C1

f > min
C1

f = min
Ω

f. (194)

Since in the limit h → 0, 
∫
O χε,ε1

1 e−
2
h f = O

(
e−

2
h minO∩C1

f
)
, one obtains using (194), (190), and (191), that 

there exist c > 0 and c̃ > 0 such that when h → 0:∫
O

uh e−
2
h f = O

(
h− d

4 e−
2
h minO∩C1

f e
1
h minΩ f

)
+ O
(
e−

1
h

(
minΩ f+c

))
= O
(
e−

1
h

(
minΩ f+c̃

))
.

This proves (178) and concludes the proof of Proposition 58. �



5.2. Proof of Theorem 5

Let us briefly explain the strategy for the proof of Theorem 5. The basic idea is to notice that, since ∇uh

belongs to Ran π
(1)
h (according to (61)), one has for any open set Σ of ∂Ω and for any L2

w-orthonormal basis 
(ψ1, . . . , ψmΩ

1
) of Ran π

(1)
h ,

∫
Σ

F ∂nuh e−
2
h f =

mΩ
1∑

i=1
〈∇uh, ψi〉L2

w

∫
Σ

F ψi · n e−
2
h f . (195)

Notice that this decomposition of ∇uh is valid on ∂Ω. Indeed, for all i ∈ {1, . . . , mΩ
1 }, ψi has a smooth trace 

on ∂Ω since ψi ∈ Λ1C∞(Ω) (due to the fact that the eigenforms of LD,(1)
f,h belongs to C∞(Ω) and π

(1)
h is 

a projector onto a finite number of eigenforms of −L
D,(1)
f,h ). In the rest of this section, one first introduces 

such a family {ψ1, . . . , ψmΩ
1
} using a Gram-Schmidt orthonormalization of the family

{
π

(1)
h ψ̃1, . . . , π

(1)
h ψ̃mΩ

1

}
. 

Then, one gives estimates of the terms 〈∇uh, ψi〉L2
w

appearing in (195). Finally, one concludes the proof of 
Theorem 5 in Section 5.2.3, with estimations of the boundary terms 

∫
Σ F ψi · n e−

2
h f .

5.2.1. Gram-Schmidt orthonormalization
Let us assume that the hypothesis (A0) holds, and assume that h > 0 is small enough such that the family {

π
(1)
h ψ̃i, i = 1, . . . ,mΩ

1

}
is independent (which is guaranteed for small h by item 3b in Proposition 43). Using 

a Gram-Schmidt procedure, there exists, for all j ∈
{
1, . . . , mΩ

1
}
, a family (κji)i=1,...,j−1 ⊂ Rj−1 such that 

the 1-forms

fj := π
(1)
h

[
ψ̃j +

j−1∑
i=1

κjiψ̃i

]
(196)

satisfy: (i) for all k ∈ {1, . . . , mΩ
1 }, Span

(
{fi, i = 1, . . . , k}

)
= Span

(
{π(1)

h ψ̃i, i = 1, . . . , k}
)
; (ii) for all 

i �= j, 〈fi, fj〉L2
w

= 0. One defines moreover, for j ∈
{
1, . . . , mΩ

1
}
,

Zj := ‖fj‖L2
w

and ψj := 1
Zj

fj , (197)

so that (ψj)j∈{1,...,mΩ
1 } is a L2

w-orthonormal basis of Ranπ
(1)
h . By reasoning by induction (see [1, Section 2]

for a similar proof), Proposition 43 easily leads to the following estimates showing in particular that the 
family (π(1)

h ψ̃i)i∈{1,...,mΩ
1 } is close to the family (ψi)i∈{1,...,mΩ

1 }.

Lemma 61. Let us assume that (A0) is satisfied. Then, there exists c > 0 such that for all j ∈{
1, . . . , mΩ

1
}
, i ∈ {1, . . . , j − 1} and h > 0 small enough, Zj = 1 + O(e− c

h ) and κji = O(e− c
h ).

5.2.2. Estimates of the interaction terms 
(
〈∇uh, ψj〉L2

w

)
j∈{1,...,mΩ

1 }

Let us start with estimates for the terms 〈∇π
(0)
h ũk, ψj〉L2

w
, where j ∈

{
1, . . . , mΩ

1
}

and k ∈ {1, . . . , mΩ
0 }

(recall that estimates of the terms 〈∇ũk, ψ̃j〉L2
w

are given in Proposition 47).

Lemma 62. Let us assume that (A0) holds. Then, there exists c > 0 such that for all k ∈ {1, . . . , mΩ
0 }, 

j ∈
{
1, . . . , mΩ

1
}
, and h > 0 small enough, it holds:



〈∇π
(0)
h ũk, ψj〉L2

w
=

⎧⎨⎩〈∇ũk, ψ̃j〉L2
w

(
1 + O(e− c

h )) if zj ∈ j(xk),
O
(
e−

1
h

(
f(j(xk))−f(xk)+c

))
if zj /∈ j(xk).

Proof. Using (196), (197), and Lemma 61, one has for some c > 0 and for all j ∈
{
1, . . . , mΩ

1
}

and h > 0
small enough,

〈∇π
(0)
h ũk, ψj〉L2

w
= Z−1

j

[
〈∇π

(0)
h ũk, π

(1)
h ψ̃j〉L2

w
+

j−1∑
i=1

κji 〈∇π
(0)
h ũk, π

(1)
h ψ̃i〉L2

w

]

=
(
1 + O(e− c

h )
) [

〈∇π
(0)
h ũk, π

(1)
h ψ̃j〉L2

w
+

j−1∑
i=1

O(e− c
h ) 〈∇π

(0)
h ũk, π

(1)
h ψ̃i〉L2

w

]
.

Using Proposition 49, the statement of Lemma 62 follows immediately. �
Let us now give asymptotic estimates of the terms 〈∇uh, ψj〉L2

w
for j ∈

{
1, . . . , mΩ

1
}
, by proving that 

〈∇uh, ψj〉L2
w

is well approximated by 〈∇π
(0)
h ũ1, ψj〉L2

w
, namely that π(0)

h ũ1 is an accurate approximation 
of uh in H1

w(Ω).
Let us recall that when (A0) and (A1j) hold, Corollary 60 implies that there exists β0 > 0 such 

that for all β ∈ (0, β0), there exists h0 > 0 such that for all h ∈ (0, h0), the orthogonal pro-
jector π̃(0)

h = π
[0,e−

2
h

(f(j(x1))−f(x1)−β))
(−L

D,(0)
f,h ) has rank 1. Therefore, π̃

(0)
h is the orthogonal projector 

onto Span (uh). Moreover, from the second equality in (189) and item 3a in Proposition 43, one has 
uh = π

(0)
h ũ1 + O(e− c

h ) in L2
w(Ω). Therefore, π(0)

h ũ1 is an accurate approximation of uh in L2
w(Ω). The 

following lemma extends this result in H1
w(Ω) when assuming (A2j) in addition to (A0) and (A1j).

Lemma 63. Assume that (A0), (A1j), and (A2j) hold. Then, it holds in the limit h → 0:

∥∥∇π
(0)
h ũ1
∥∥2
L2

w
= 2

h
λh

(
1 + O(εh)

)
and

∥∥∇(π(0)
h − π̃

(0)
h )ũ1

∥∥2
L2

w
= 2

h
λh O(εh) = O

(
h− 3

2 e−
2
h (f(j(x1))−f(x1)) εh

)
,

where εh satisfies (180).

Proof. Applying the Parseval’s identity to ∇π
(0)
h ũ1 ∈ Ran π

(1)
h (see (59)), one gets 

∥∥∇π
(0)
h ũ1
∥∥2
L2

w
=

mΩ
1∑

j=1
〈∇π

(0)
h ũ1, ψj〉2L2

w
. Using Lemma 62, there exists consequently c > 0 such that for all h > 0 small enough,

∥∥∇π
(0)
h ũ1
∥∥2
L2

w
=

∑
j: zj∈j(x1)

〈
∇ũ1, ψ̃j

〉2
L2

w
(1 + O(e− c

h )).

Using in addition (176), one then obtains the first part of Lemma 63, i.e.:

∥∥∇π
(0)
h ũ1
∥∥2
L2

w
= 2

h
λh

(
1 + O(εh)

)
, (198)

where, in the limit h → 0, εh satisfies (180).



Let us recall that from (189) and (188), one has for any h small enough

uh =
π̃

(0)
h ũ1

‖π̃(0)
h ũ1‖L2

w

where
∥∥π̃(0)

h ũ1
∥∥
L2

w
= 1 + O(e− c

h ). (199)

Now, since the projectors π(0)
h and π̃(0)

h commute with LD,(0)
f,h , and π̃(0)

h π
(0)
h = π̃

(0)
h , one has

h

2
∥∥∇(π(0)

h − π̃
(0)
h )ũ1

∥∥2
L2

w
=
〈
(π(0)

h − π̃
(0)
h )ũ1,−L

D,(0)
f,h (π(0)

h − π̃
(0)
h )ũ1

〉
L2

w

=
〈
π

(0)
h ũ1,−L

D,(0)
f,h (π(0)

h − π̃
(0)
h )ũ1

〉
L2

w

=
〈
π

(0)
h ũ1,−L

D,(0)
f,h π

(0)
h ũ1
〉
L2

w
−
〈
π̃

(0)
h ũ1,−L

D,(0)
f,h π̃

(0)
h ũ1
〉
L2

w

= h

2
∥∥∇π

(0)
h ũ1
∥∥2
L2

w
− λh

(
1 + O(e− c

h )
)
,

where the last line follows from (199). Using in addition (198), one obtains in the limit h → 0:

h

2
∥∥∇(π(0)

h − π̃
(0)
h )ũ1

∥∥2
L2

w
= λh

(
1 + O(εh)

)
− λh

(
1 + O(e− c

h )
)

= λh O(εh),

which proves Lemma 63, using also the asymptotic estimate of λh given in Theorem 2, see (105). �
We are now in position to estimate the interaction terms 

(
〈∇uh, ψj〉L2

w

)
j∈{1,...,mΩ

1 }.

Corollary 64. Let us assume that (A0), (A1j) and (A2j) hold. Let uh be the eigenfunction associated with 
the principal eigenvalue λh of −L

D,(0)
f,h (see (8)) which satisfies (9). Then, in the limit h → 0:

(i) for all j ∈
{
1, . . . , mΩ

1
}

such that zj ∈ j(x1) ∩ ∂Ω (i.e. for all j ∈
{
1, . . . , k∂C1

1
}
, see (52) and (53)),〈

∇uh, ψj

〉
L2

w
=
〈
∇ũ1, ψ̃j

〉
L2

w

(
1 + O(

√
εh)
)

= −Cj,1 h− 3
4 e−

1
h (f(j(x1))−f(x1))

(
1 + O(

√
εh) + O(h)

)
,

(ii) for all j ∈
{
1, . . . , mΩ

1
}

such that zj ∈ j(x1) ∩ Ω,〈
∇uh, ψj

〉
L2

w
=
〈
∇ũ1, ψ̃j

〉
L2

w

(
1 + O(h− 1

4
√
εh)
)

= O
(
h− 1

2 e−
1
h (f(j(x1))−f(x1))

)
,

(iii) and for all j ∈
{
1, . . . , mΩ

1
}

such that zj /∈ j(x1),〈
∇uh, ψj

〉
L2

w
= O
(
h− 3

4 e−
1
h (f(j(x1))−f(x1)) √εh

)
,

where εh satisfies (180).

Proof. Using (199), there exists c > 0 such that for all j ∈
{
1, . . . , mΩ

1
}
, in the limit h → 0:

〈
∇uh, ψj

〉
L2

w
=
〈
∇π̃

(0)
h ũ1, ψj

〉
L2

w

(
1 + O(e− c

h )
)
. (200)



In addition, using the Cauchy-Schwarz inequality and the second statement in Lemma 63, it holds for all 
j ∈
{
1, . . . , mΩ

1
}
, in the limit h → 0:〈

∇π̃
(0)
h ũ1, ψj

〉
L2

w
=
〈
∇π

(0)
h ũ1, ψj

〉
L2

w
+
〈
∇(π̃(0)

h − π
(0)
h )ũ1, ψj

〉
L2

w

=
〈
∇π

(0)
h ũ1, ψj

〉
L2

w
+ O
(
h− 3

4 e−
1
h (f(j(x1))−f(x1)) √εh

)
, (201)

where εh is of the order given by (180). Then, the statement of Corollary 64 follows by injecting (201) into 
(200) and by using the estimates of the terms 

〈
∇π

(0)
h ũ1, ψj

〉
L2

w
(j ∈ {1, . . . , mΩ

1 }) given in Lemma 62. �
5.2.3. Estimates of the boundary terms (

∫
Σ F ψj · n e−

2
h f )j∈{1,...,mΩ

1 }

Proposition 65. Let us assume that (A0) is satisfied. Let us consider i ∈ {1, . . . , mΩ
1 }, an open set Σ of ∂Ω, 

and F ∈ L∞(∂Ω, R). Then, there exists c > 0 such that in the limit h → 0:

∫
Σ

F ψi · n e−
2
h f =

⎧⎪⎪⎨⎪⎪⎩
O
(
e−

1
h (min∂Ω f+c)) if i ∈

{
k∂Ω
1 + 1, . . . ,mΩ

1
}
,

O
(
e−

1
h (min∂Ω f+c)) if i ∈

{
1, . . . , k∂Ω

1
}

and zi /∈ Σ,

O
(
h

d−3
4 e−

1
h min∂Ω f

)
if i ∈

{
1, . . . , k∂Ω

1
}

and zi ∈ Σ,

where we recall that {z1, . . . , zk∂Ω
1
} = U∂Ω

1 ∩arg min∂Ω f (see (22)). Moreover, when i ∈
{
1, . . . , k∂Ω

1
}
, zi ∈ Σ, 

and F is C∞ in a neighborhood of zi, it holds in the limit h → 0:∫
Σ

F ψi · n e−
2
h f = h

d−3
4 e−

1
h min∂Ω f

(
Bi F (zi) + O(h)

)
,

where the constant Bi is defined in (106).

Proof. Let F ∈ L∞(∂Ω, R). Using (196), (197), the trace theorem, and the Cauchy-Schwarz inequality, one 
has for all j ∈ {1, . . . , mΩ

1 },

Zj

∫
Σ

F ψj · n e−
2
h f =

∫
Σ

F ψ̃j · n e−
2
h f +

∫
Σ

F
(
(π(1)

h − 1)ψ̃j

)
· n e−

2
h f

+
j−1∑
i=1

κji

⎡⎣∫
Σ

F ψ̃i · n e−
2
h f +

∫
Σ

F
(
(π(1)

h − 1)ψ̃i

)
· n e−

2
h f

⎤⎦
=
∫
Σ

F ψ̃j · n e−
2
h f +

∥∥(1 − π
(1)
h )ψ̃j

∥∥
H1

w
O
(
h−1 e−

min∂Ω f

h

)

+
j−1∑
i=1

κji

⎡⎣∫
Σ

F ψ̃i · n e−
2
h f +

∥∥(1 − π
(1)
h )ψ̃i

∥∥
H1

w
O
(
h−1 e−

min∂Ω f

h

)⎤⎦ .
From Lemma 61 and item 2b in Proposition 43, there exists c > 0 such that for all j ∈

{
1, . . . , mΩ

1
}
, i ∈

{1, . . . , j − 1}, in the limit h → 0, Zj = 1 + O(e− c
h ), κji = O(e− c

h ), and 
∥∥(1 − π

(1)
h )ψ̃j

∥∥
H1

w
= O(e− c

h ). 
Therefore, using Proposition 46, there exists c > 0 such that for all j ∈ {1, . . . , mΩ

1 }, in the limit h → 0:∫
Σ

F ψj · n e−
2
h f =

∫
Σ

F ψ̃j · n e−
2
h f + O

(
e−

1
h (min∂Ω f+c)).

The statement of Proposition 65 is then a straightforward consequence of Proposition 46. �



We are now in position to prove Theorem 5.

Proof of Theorem 5. Let us assume that (A0), (A1j), (A2j), and (A3j) hold. Recall that in this case, for all 
x ∈ UΩ

0 \ {x1}, one has f(j(x)) − f(x) < f(j(x1)) − f(x1) and j(x1) ∩ ∂Ω = ∂C1 ∩ ∂Ω = {z1, . . . , zk∂C1
1

} ⊂
arg min∂Ω f ∩ U∂Ω

1 . Moreover, from (55), it holds x1 ∈ arg minC1
f = arg minΩ f = arg minΩ f . Thus, one 

has

f(j(x1)) = min
∂Ω

f and f(x1) = min
Ω

f. (202)

Let us now consider F ∈ L∞(∂Ω, R) and an open subset Σ of ∂Ω. First, since 
{
ψj , j = 1, . . . , mΩ

1
}

is an 

orthonormal basis of Ranπ
(1)
h and ∇uh ∈ Ran π

(1)
h , one has the following decomposition:

∫
Σ

F ∂nuh e
− 2

h f =
mΩ

1∑
j=1

〈
∇uh, ψj

〉
L2

w

∫
Σ

F ψj · n e−
2
h f .

Using in addition Corollary 64, Proposition 65, and (202), there exists c > 0 such that for all h > 0 small 
enough,

∫
Σ

F∂nuh e
− 2

h f =
k∂Ω
1∑

j=1

〈
∇uh, ψj

〉
L2

w

∫
Σ

F ψj · n e−
2
h f

+
mΩ

1∑
j=k∂Ω

1 +1

O
(
h− 1

2 e−
1
h (min∂Ω f−minΩ f))O(e− 1

h (min∂Ω f+c)). (203)

Hence, when Σ does not contain any of the zi, i ∈ {1, . . . , k∂Ω
1 }, from (203), Corollary 64, Proposition 65, 

and (202), one deduces the following relation for some c > 0 independent of h and every h > 0 small enough:

∫
Σ

F ∂nuhe
− 2

h f =
k∂Ω
1∑

j=1
O
(
h− 3

4 e−
1
h (min∂Ω f−minΩ f))O(e− 1

h (min∂Ω f+c))
+ O
(
e−

1
h (2 min∂Ω f−minΩ f+c))

= O
(
e−

1
h (2 min∂Ω f−minΩ f+ c

2 )).
This proves item (i) in Theorem 5.

Assume now that Σ does not contain any of the zi, i ∈ {1, . . . , k∂C1
1 }. Then, from (203), Corollary 64, 

Proposition 65, and (202), one deduces that in the limit h → 0:

∫
Σ

F ∂nuh e
− 2

h f =
k∂C1
1∑
j=1

O
(
h− 3

4 e−
1
h (min∂Ω f−minΩ f))O(e− 1

h (min∂Ω f+c))

+
k∂Ω
1∑

j=k∂C1
1 +1

O
(
h− 3

4 e−
1
h (min∂Ω f−minΩ f) √εh

)
O
(
h

d−3
4 e−

1
h min∂Ω f

)
+ O
(
e−

1
h (2 min∂Ω f−minΩ f+c))

= O
(
e−

1
h (2 min∂Ω f−minΩ f+ c

2 ))+ O
(
h

d−6
4 e−

1
h (2 min∂Ω f−minΩ f) √εh

)
,

where the constant c > 0 is independent of h and εh satisfies (180). This proves item (ii) in Theorem 5.



Assume lastly that Σ∩ {z1, . . . , zk∂C1
1

} = {zi}, F is C∞ in a neighborhood of zi, and zi ∈ Σ. From (203), 
Corollary 64, Proposition 65, and (202), one then deduces that in the limit h → 0, it holds for some c > 0
and εh which satisfies (180),∫

Σ

F ∂nuh e
− 2

h f =
〈
∇uh, ψi

〉
L2

w

∫
Σ

F ψi · n e−
2
h f + O

(
h

d−6
4 e−

1
h (2 min∂Ω f−minΩ f) √εh

)
= −Bi Ci,1 h

d−6
4 e−

1
h (2 min∂Ω f−minΩ f) (F (zi) + O(

√
εh) + O(h)

)
,

where the constants Bi and Ci,1 are defined in (117)–(106). This concludes the proof of item (iii) in 
Theorem 5. �
5.3. Proof of Theorem 1

The proof of Theorem 1 is a straightforward consequence of Theorem 2, Proposition 58 and Theorem 5. 
Indeed, let us recall that from (12), one has:

Eνh
[F (XτΩ)] = − h

2λh

∫
∂Ω

F ∂nuhe
− 2

h f

∫
Ω

uhe
− 2

h f
. (204)

Moreover, recall that (A1), (A2), and (A3) (see Section 2.4 and more precisely Lemma 21) are equivalent to 
the assumptions (A1j), (A2j), and (A3j). In addition, under (A1j), one has C1 = Cmax (see Lemma 21), k∂C1

1 =
k∂Cmax
1 (see (54)), f(j(x1)) = min∂Ω f (see (A3j) together with the fact that j(x1) ⊂ ∂C1) and f(x1) =

minΩ f (see (55)). Thus, injecting the results of Theorem 2 (and more precisely (105)), Proposition 58
(applied to O = Ω, see (179)) and Theorem 5 in (204), one obtains the statements of Theorem 1.

Main notation used in this work

• τΩ, Equation (2)
• L

(0)
f,h, LD,(0)

f,h , Equation (7) and Proposition 4
• λh, uh, νh, Equations (8)–(9), (10)–(11)
• Assumptions (A0), (A1), (A2), (A3), and (A4), 

Section 1.3.1
• {f < a}, {f ≤ a}, {f = a}, Section 1.3.1
• Hf (x), Equation (13)
• Cmax, Section 1.3.1
• C, C(x), Equations (14)–(15) and (32)
• UΩ

0 = {x1, . . . , xmΩ
0
} and mΩ

0 , Equation (16)
• UΩ

1 = {zm∂Ω
1 +1, . . . , zmΩ

1
} and mΩ

1 , Equation 
(21)

• U∂Ω
1 = {z1, . . . , zm∂Ω

1
} and m∂Ω

1 , Equations
(17)–(18) and (20)

• UΩ
1 = {z1, . . . , zm∂Ω

1
, zm∂Ω

1 +1, . . . , zmΩ
1
} and mΩ

1 , 
Equation (19)

• {z1, . . . , zk∂Ω
1
} and k∂Ω

1 , Equation (22)
• {z1, . . . , z ∂Cmax }, and k∂Cmax

1 , Equation (23)

• ai, Equation (27)
• C(λ, x), C+(λ, x), λ(x), Definition 10
• N1, (C�)�∈{1,...,N1} = (E1,�)�∈{1,...,N1}, Defini-

tion 12
• Ussp

1 , Ccrit, Definition 13
• j, ̃j, (Nk)k≥2, (xk,�)k≥1,�∈{1,...,Nk}, 

(Ek,�)k≥2,�∈{1,...,Nk}, Section 2.3
• ΛpC∞(Ω), ΛpC∞

T (Ω), ΛpL2
w(Ω), ΛpHq

w(Ω), 
ΛpHq

w,T (Ω), ΛpL2(Ω), ΛpHq(Ω), ΛpHq
T (Ω), 

ΛpHq
N (Ω), Section 3.1.1

• ‖.‖Hq
w
, 〈 , 〉L2

w
, ‖.‖Hq , 〈 , 〉L2 , Section 3.1.1

• Δ(p)
f,h, ΔD,(p)

f,h (Ω), LD,(p)
f,h (Ω), Section 3.1.2

• πE , Lemma 25
• π

(p)
h , Equation (60)

• ṽk,� and χk,�, Definition 26
• Φj , Equations (73) and (87)
• wj , Propositions 30 and 35
• θj and φ̃j , Definitions 31 and 36
k1
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• u
(1)
j,wkb, cj(h), Propositions 33 and 38

• φ̃j,wkb, Equation (99)
• (Ek)k∈{1,...,mΩ

0 }, (χ
ε,ε1
k )k∈{1,...,mΩ

0 }, (ṽk)k∈{1,...,mΩ
0 }, 

(xk)k∈{1,...,mΩ
0 }, Definition 41

• ũk and ψ̃j , Definition 42
• λ2,h, Theorem 2
• Bj , Equation (106)
• εj,k, pj,k and Cj,k, Equations (115), (116), (117)
• S = (Sj,k), Equation (126)
• S̃ = (S̃j,k), Equation (127)

• D, Dk,k, and qk, Equation (128)
• C̃ = (C̃j,k), Equations (131)–(132)
• Sk, Equation (146)
• ηi(T ), Lemma 52
• C0, C1, Equation (147)
• λk,h, Equation (150)
• εh, Equation (180)
• π̃

(0)
h , Equation (185)

• κji, Equation (196)
• Zj and ψj , Equation (197)
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