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ABSTRACT

We consider the first exit point distribution from a bounded domain € of the
stochastic process (X¢):>0 solution to the overdamped Langevin dynamics

dX; = =V f(X:)dt + Vh dB:

starting from the quasi-stationary distribution in 2. In the small temperature regime
(h — 0) and under rather general assumptions on f (in particular, f may have
several critical points in ), it is proven that the support of the distribution of the
first exit point concentrates on some points realizing the minimum of f on 92. Some
estimates on the relative likelihood of these points are provided. The proof relies on
tools from semi-classical analysis.

RESUME

Dans ce travail, nous étudions la distribution du point de sortie d’un domaine borné
Q pour le processus stochastique (X;)¢>o solution de la dynamique de Langevin
suramortie

dX; = =V f(X:)dt + Vh dB:

initialement distribué suivant la distribution quasi-stationnaire dans 2. Dans la
limite basse température h — 0 et sous des hypotheéses générales sur la fonction f
(f pouvant notamment avoir plusieurs points critiques dans £2), nous montrons que
la distribution du lieu de sortie se concentre sur certains points réalisant le minimum
de f sur 992. Nous calculons aussi les probabilités relatives de sortir autour de chacun
de ces points. Nos preuves reposent sur des outils issus de ’analyse semi-classique.
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1. Introduction and main results
1.1. Setting and motivation

We are interested in the overdamped Langevin dynamics
dX; = =V f(X;)dt +Vh dBy, (1)

where X, is a vector in R%, f : R — R is a C* function, h is a positive parameter and (By)i>0 is a standard
d-dimensional Brownian motion. Such a dynamics is prototypical of models used for example in computa-
tional statistical physics to simulate the evolution of a molecular system at a fixed temperature, in which
case f is the potential energy function and h is proportional to the temperature. It admits as an invariant
measure the Boltzmann-Gibbs measure (canonical ensemble) Z “le=wf (@) dx where Z = f]Rd e~ il < oo In
the small temperature regime h — 0, the stochastic process (X;)¢>o is typically metastable: it stays for
a very long period of time in a neighborhood of a local minimum of f (called a metastable state) before
hopping to another metastable state. In the context of statistical physics, this behavior is expected since
the molecular system typically jumps between various conformations, which are indeed these metastable
states. For modeling purposes as well as for building efficient numerical methods (see for instance [1-3]), it
is thus interesting to be able to precisely describe the exit event from a metastable state, namely the law of
the first exit time and the first exit point.

The main objective of this work is to address the following question: given a metastable domain Q C R,
what are the exit points in the small temperature regime i — 07 This is formalized mathematically by the
notion of concentration, which is now introduced. For a domain © C R? and a given initial condition X,
let us consider the exit event (7q, X,,) from Q where

o = inf{t > 0|X, ¢ Q} (2)

is the first exit time from 2. We will consider the family of laws of X,,, as h goes to zero, and prove that
these distributions concentrate on a subset of 0f2, as defined below.

Definition 1. Let Y C 02 and let us consider a family of random variables (Y3,)n>0 which admits a limit in
distribution when h — 0. The law of Y}, concentrates on Y in the limit h — 0 if for every neighborhood Vy
of YV in 09,

lim P [Y; =1
lim P[Y, € Vy] =1,
and if for all x € Y and for all neighborhoods V,, of x in 052,

lim P [V}, € V,] > 0.
h—0

In other words, Y is the support of the law of Yy, in the limit h — 0.

Previous results on the behavior of the law of X, when i — 0. Let us report on previous results on the
law of X, in the limit h — 0 (see also [4] for a comprehensive review of the literature).

First, some results have been obtained using formal asymptotic expansions. For example, in [5], the
concentration of the law of X, on argmingg f in the small temperature regime (h — 0) has been studied
when 9, f > 0 on 9Q (here and in the following, 9, f is the outward normal derivative of f on 9Q). See
also [6,7] for generalizations to the case d,, f = 0 on Jf.



Using partial differential equation techniques, some of the formal results above have been rigorously
proven. For example, when

Onf >0 on 99, (3)
and

{z € Q,|Vf(z)] =0} = {zo} with f(xo) = H%nf and det Hessf(zg) > 0, (4)

the concentration of the law of X, in the limit A — 0 on argmingy, f has been obtained in [8-10], when
Xo =z € Q, see also [11,12] for more recent results with similar techniques.

Finally, another rigorous approach to study the exit point distribution is to rely on the theory of large
deviations. When (3)—(4) hold and f attains its minimum on 92 at a single point yo, [13, Theorem 2.1
in Chapter 4.2] implies that the law of X,, concentrates on yo in the limit h — 0, when Xy = z € Q.
This result has then been generalized in [14,15] when only (3)—(4) are satisfied. In [13, Theorem 5.1 in
Chapter 6.5], under more general assumptions on f, for ¥ C 012, the limit of hInP [X,, € ¥] when h — 0
is related to a minimization problem involving the quasipotential of the process (1). Let us mention two
limitations when applying [13, Theorem 5.1 in Chapter 6.5] in order to obtain some information on the
first exit point distribution. First, this theorem requires to be able to compute the quasipotential in order
to get useful information: this is trivial under the assumptions (3)—(4) but more complicated for a general
function f (in particular when f has several critical points in 2). Second, even when the quasipotential is
analytically known, this result only gives the subset of 9€) through which exit occurs with an exponentially
small probability in the limit A — 0. It does not allow to exclude points through which exit occurs with a
polynomially small probability in h for example (this indeed happens, see Section 1.4). Besides, it does not
give the relative probability of the exit points which have a non-zero probability in the limit h — 0.

The quasi-stationary distribution approach which is used in this work to study the exit event has been
introduced in [16,17,1]. Notice that compared to the work [1], we here only identify the support of the first
exit point distribution, and the relative likelihood of the points in this support, whereas in [1], we also study
the exit through points which occur with exponentially small probability in the limit h — 0. The results
here are thus less precise than in [1], but the assumptions on f are also much more general.

To conclude this short review of the literature, let us mention that [8-10,14,15,13] also cover the case of
non reversible diffusions, while we here only consider the reversible dynamics (1).

Purpose of this work: a general geometric setting and a precise description of the exit point distribution.
In this work, we study the concentration of the law of X, on argmingg f in the limit A — 0. Compared
to results previously obtained in the literature, the novelty is twofold: first, the geometric setting is much
more general, and second, we obtain a precise description of the first exit point distribution, by providing
the relative probabilities of the exit points.

More precisely, we exhibit assumptions on f which ensure that when X is distributed according to the
quasi-stationary distribution vy, in Q (see Definition 2 below), the law of X, concentrates in the limit h — 0
on some global minima of f on 0€: these global minima and the relative probability of these exit points
are made explicit. The geometric setting is much more general than (3)—(4). For instance, it is not assumed
that 9, f > 0 on 09, there is no restriction on the number of critical points of f in Q and f is allowed to
have critical points in Q with larger energies than mingg f (however we do not consider the case when f
has critical points on 02, and we work under some Morse assumption on f).

Let us emphasize that this work requires that Xy is distributed according to the quasi-stationary distri-
bution vy, in Q (see Definition 2 below). This is relevant when the exit from the domain Q is metastable,
namely when the process (1) reaches a local equilibrium within Q before exiting Q (see Section 1.2 below



and [1-3]). The companion paper [18] builds on and extends the result of the present work to general initial
conditions in €2, as explained in Remark 8 below.

Here are representative examples of outputs of this work. First, if {y € Q, f(y) < mingq f} is connected
and contains all the critical points of f in Q, and if ,, f > 0 on arg min,, f, then the law of X, concentrates
on argmingg f when Xy ~ vy. Besides, when some critical points of f in Q are larger in energy than
mingq f, then the law of X, concentrates on a subset of 9€2 which may be strictly included in arg mingg f.
In particular, the following phenomena may occur:

(i) There may exist points z € argmingg f, C > 0 and ¢ > 0, such that for every sufficiently small
neighborhood X, of z in 9, in the limit h — 0, P,, [X,, € ¥.] < Ce™# (see (24) in Theorem 1 and
the discussion after the statement of Theorem 1).

(ii) There may exist points z € argmingg f and C' > 0 such that for every sufficiently small neighborhood
Y,ofzin 9Q, P, [ X, € X.] = C’\/E(l + o(1)). This is explained in Section 1.4.

Let us finally mention that while proving these results, we also obtain a sharp asymptotic estimate on the
principal eigenvalue (when h — 0) and on the principal eigenfunction of the infinitesimal generator of the
diffusion (1) with Dirichlet boundary conditions on 92, see Section 1.3.4. These results have their own
interests.

Organization of the end of Section 1. In Section 1.2, the quasi-stationary distribution of the process (1) in Q2
is introduced. In Section 1.3, the assumptions on f which will be used throughout this paper are presented
and the main result of this work is stated (see Theorem 1). Finally, the necessity of the assumptions of
Theorem 1 is discussed in Section 1.4.

1.2. Metastability and the quasi-stationary distribution

The quasi-stationary distribution is the cornerstone of our analysis. Here, we assume that Q C R? is
smooth, open, bounded and connected (see Section 1.3 for the general geometric setting).

Definition 2. A quasi-stationary distribution for the stochastic process (Xi)i>o in the domain Q C R is a
probability measure vy, supported in Q such that for all measurable sets A C Q and for allt >0

/Px [X: € At < o] vp(dx)

vn(A) = (5)

Q
/IP’I [t < o] vh(dx)
Q

Here and in the following, the subscript z indicates that the stochastic process starts from z € R?
(Xo = z). In words, (5) means that if X, is distributed according to v, then for all ¢ > 0, X; is still
distributed according to v, conditionally on X, € 2 for all s € [0, t]. The following results have been proven
in [16] (see also [19] for much more general results on quasi-stationary distributions):

Proposition 3. Let Q C R? be a bounded domain and consider the dynamics (1). Then there exists a prob-
ability measure vy, with support in Q such that, whatever the law of the initial condition Xy with support

in Q, it holds:

tlggo [|[Law (Xt < 7q) — vpllTv = 0. (6)



Here, Law(X:|t < 7q) denotes the law of X; conditional to the event {t < 7q}. A corollary of this
proposition is that the quasi-stationary distribution 1}, exists and is unique. For a given initial distribution
of the process (1), if the convergence in (6) is much quicker than the exit from €2, the exit from the domain
is said to be metastable. When the exit from 2 is metastable, it is thus relevant to study the exit event from 2
assuming that the process (1) is initially distributed according to the quasi-stationary distribution v4. This
will be the setting of this work.

Let us now relate the notion of quasi-stationary distribution to the infinitesimal generator of the dynam-
ics (1)

h
L§?%=—Vf~v+§A. (7)

In the notation Lgcol)l, the superscript (0) indicates that we consider an operator on functions, namely 0-forms.

The basic observation to define our functional framework is that the operator L;O% is self-adjoint on the

weighted L2 space

L2(Q) = u:Q%]R,/u%f%f < 00
Q

(the weighted Sobolev spaces HE (Q) are defined similarly). Indeed, for any smooth test functions u and v
with compact supports in §2, one has

h
[ = [(@foets = [ vets
Q Q 2

:(0) (0)

This gives a proper framework to introduce the Dirichlet realization L? on ) of the operator L F.h A8

follows:

Proposition 4. The Friedrichs extension associated with the quadratic form ¢ € C () — % fQ Vo|”e s

denoted by —Lﬁ;l(o). It is a non negative unbounded self-adjoint operator on L2 () with domain D (L?}l(o))
= H,, o(Q) N HZ (), where H,, ,(Q) = {u € H,(Q), u=0 on 9Q}.

The compact injection H. (Q) C L2 (£2) implies that the operator LJ?;L(O) has a compact resolvent and its

spectrum is consequently purely discrete. Let us introduce A\, > 0 the smallest eigenvalue of —L?’;l(o) (a.k.a.
the principal eigenvalue):

Ay =info(— L7, (8)

From standard results on elliptic operators (see e.g. [20,21]), A is non degenerate and its associated eigen-
function wuj, has a sign on €. Moreover, u;, € C*(Q). Without loss of generality, one can then assume
that:

up >0 on Q and /uie*%f = 1. (9)
Q
The eigenvalue-eigenfunction pair (A, up) satisfies:
—Lfl?,)l up = Apup on €2,
up, = 0 on 0.



The link between the quasi-stationary distribution v}, and the function uy, is given by the following propo-
sition (see for example [16]):

Proposition 5. The unique quasi-stationary distribution vy, associated with the dynamics (1) and the do-
main § is given by:
7 f(x)
h
vp(dz) = un(z)e dx. (11)
2,
/uh(y)e_ﬁf(y)dy
Q

Let us recall that 9,, = n - V stands for the normal derivative and n is the unit outward normal on 0f).
The next proposition (see again [16]) characterizes the law of the exit event from €.

Proposition 6. Let us consider the dynamics (1) and the quasi-stationary distribution vy, associated with
the domain Q. If X is distributed according to vy, the random wvariables 7o and X., are independent.
Furthermore 1q is exponentially distributed with parameter A, and the law of X, has a density with respect
to the Lebesgue measure on 0L given by

~35()
ceon . - Ol

2 ety
Q

(12)

1.3. Hypotheses and main results

1.3.1. Hypotheses and notation

In the following, we consider a setting that is actually more general than the one of Section 1.2: Q is a
C*° oriented compact and connected Riemannian manifold of dimension d with boundary 0f2.

The following notation will be used: for a € R, {f < a} ={zr € Q, f(z) <a}, {f <a}={r € Q, f(z) <
a} and {f = a} = {x € Q, f(z) = a}. Let us now introduce the basic assumption on f which is used
throughout this work:

The function f: Q — R is C*°, and for all z € 99, |V f(z)| # 0.
The functions f: Q — R and f: {z € 90,0, f(z) > 0} — R are Morse. (A0)
Moreover, f has at least one local minimum in 2.

Let us recall that a function ¢ :  — R is a Morse function if all its critical points are non degenerate (which
implies in particular that ¢ has a finite number of critical points since ) is compact and a non degenerate
critical point is isolated from the other critical points). A critical point z € Q of ¢ is non degenerate if the
Hessian matrix of ¢ at z, denoted by Hess ¢(z), is invertible. We refer for example to [22, Definition 4.3.5]
for a definition of the Hessian matrix on a manifold. A non degenerate critical point z € Q of ¢ is said to
have index p € {0,...,d} if Hess¢(z) has precisely p negative eigenvalues (counted with multiplicity). In
the case p =1, z is called a saddle point.
For any local minimum « of f in €, the height of the energy barrier to leave {2 from x is

He(x) := inf ma t)), 13
(@) et o) fr(®) (13)
7(0)=z, v(1)€09

where C9(]0,1],9Q) is the set of continuous paths from [0,1] to Q. Let us now define a set of assumptions
which will be used below:



o (A0) holds and

F1Cnax € C such that max {mgxf — min f} = max f — min f (A1)
CecC C C Crnax Crax
where
C:= {C(x), z is a local minimum of f in Q}, (14)

with, for any local minimum z of f in 2,

C(z) is the connected component of {f < Hy(z)} containing x. (15)

e (A1) holds and
OCrmax N O # 0. (A2)

« (A1) holds and
OCmax N O C argaﬂmin I (A3)

It will be shown that the assumptions (A0), (A1), (A2), and (A3) ensure that when Xy ~ v, the law
of X, concentrates on the set 0Cpax N 082, see items 1 and 2 in Theorem 1. Finally, let us introduce
assumption (A4):

e (A1) holds and
OCmax N € contains no separating saddle point of f. (A4)

Roughly speaking, a saddle point z of f is separating if for any sufficiently small connected neighborhood
V, of z, V., N {f < f(2)} has two connected components included in two different connected compo-
nents of {f < f(z)}. We refer to Definition 13 below for more details. The assumption (A4) together
with (A0), (A1), (A2), and (A3), ensures that the probability that the process (1) leaves © through any
sufficiently small neighborhood of z € 9\ 0Cpax in O is exponentially small when h — 0, see item 3 in
Theorem 1.

Fig. 1 gives a one-dimensional example where (A1), (A2), (A3) and (A4) are satisfied. In Section 1.4,
the necessity of assumptions (A1), (A2), (A3), and (A4) is discussed. We will actually work with equivalent
formulations of the assumptions (A1), (A2), (A3), and (A4) which will be given in Section 2.4.

1.8.2. Notation for the local minima and saddle points of the function f

The main purpose of this section is to introduce the local minima and the generalized saddle points
of f. These elements of ) are used extensively throughout this work and play a crucial role in our analysis.
Roughly speaking, the generalized saddle points of f are the saddle points z € Q of the function f extended
by —oo outside 2 (which is indeed consistent with the homogeneous Dirichlet boundary conditions in (10)).
Thus, when the function f satisfies the assumption (A0), a generalized saddle point of f (as introduced
in [23]) is either a saddle point z € Q of f or a local minimum z € 9 of f|sq such that 9, f(z) > 0.

Let us assume that the function f satisfies the assumption (A0). Let us denote by

U(?:{ml,...,xmgz}cfl (16)



Hf(l'l) — f(z1)

Fig. 1. A one-dimensional case where (A1), (A2), (A3) and (A4) are satisfied. On the figure, f(z1) = f(x5), Hf(z1) = Hyp(zs) =
Hy(z5), C = {Cmax, C2,C3}, 8C2 N OCmax = ® and C3 N OCpax = 0.

the set of local minima of f in  where m§} € N is the number of local minima of f in 2. Notice that since
f satisfies (A0), mf! > 1. The set of saddle points of f of index 1 in © is denoted by U{’ and its cardinality
by m$%. Let us define
U9 .= {2 € 99, z is a local minimum of f|sq but not a local minimum of f in Q }.

Notice that an equivalent definition of U9 is

U9? = {2 € 9Q, z is a local minimum of f|sq and 9, f(z) > 0}, (17)
which follows from the fact that V f(x) # 0 for all z € 9Q. Let us introduce

m? .= Card(U9?). (18)

In addition, one defines:

U? := U2 UU¢ and m? := Card(U®) = m?? + m{. (19)

As explained above, the set Ulﬁ is the set of the generalized saddle points of f. If U? is not empty, its
elements are denoted by:

U9® = {z1,..., 2o} C 09, (20)

and if U{ is not empty, its elements are labeled as follows:

Q
Ul = {ch;iQJrl,...,Zmlﬁ} c Q. (21)
Thus, one has: U1ﬁ ={z,..., ZmdSt Zmdi 1, -+ -y Zmlﬁ}. Moreover, we assume that the elements of U are
ordered such that:
Zlye ey 200 :Uaﬂﬁargmin . 22
kg 1
aQ

Notice that k¥ € {0,..., m$?}.



flag

Fig. 2. Schematic representation of C (see (14)) and f|se when the assumptions (A0), (A1), (A2) and (A3) are satisfied. In this
representation, z1 € € is the global minimum of f in Q and the other local minima of f in £ are z2 and z3 (thus U(? ={z1,22,23}

and m? = 3). Moreover, mingo f = f(21) = f(22) = f(z3) = Hf(z1) = Hy(z2) < Hy(zs) = f(za), {f < Hf(Z1)} has two
connected components: Cmax (see (Al)) which contains ;1 and Co which contains 3. Thus, one has C = {Cpax, C2, C3}. In addition,
Uim = {21, 22,23,24} (m‘lSQ = 4), {#1, 22,23} = argmingg, f (kim = 3 and k?cmax = 2), U® = {25, 26, 27} where {z5} = Cmax N C2
(m$ = 3 and (A4) is not satisfied) and min(f(ze), f(27)) > F(24), OCrmax N O = {21, 22} (kY™ = 2). Finally, one has m¥ = 7. The
point y,, € Q is a local maximum of f with f(ym) > f(z;) forall i € {1,...,7}

Let us assume that (A1), (A2), and (A3) are satisfied. Let us recall that Cp,ax is defined by (A1). Moreover,
in this case, one has k7 > 1 and

8Cmax NN C {2’1, e ,Zk(?sz}.

Indeed, by assumption OCpmax N I C {f = mingq f} (see (A3)) and there is no local minima of f in
on OCnax (since Cpax is a connected component of a sublevel set of f). We assume lastly that the set
{z1,...,2¢n} is ordered such that:

{z1,..+, Zk‘fc"‘ax} = {21, .., %00} N OCpax. (23)

Notice that k?c’“ax € {0,..., k¥, We provide an example in Fig. 2 to illustrate the notations introduced in
this section.

As introduced in [23, Section 5.2], Ug is the set of generalized critical points of f of index 0, associated
with eigenforms of the Witten Laplacian A?;L(O) and U1ﬁ is the set of generalized critical points of f of index

1, associated with eigenforms of the Witten Laplacian A?,"fl), see Section 3.1.2 for more details.

1.8.3. Main results on the exit point distribution
The main result of this work is the following.

Theorem 1. Let us assume that (A0), (A1), (A2), and (A3) are satisfied. Recall that vy, is the quasi-stationary
distribution of the process (1) in € (see Definition 2). Let F € L>(0Q,R) and (¥;);c(y,... xooy be a family of
disjoint open subsets of 02 such that for all i € {1, ceey k‘?Q}, z; € X;, where we recall that {217 RN zkzlm} =
U9 Nargming, f (see (22)). Then:



1. There exists ¢ > 0 such that in the limit h — 0:
Ko

Ey, [F(X7)] = ZEuh (12, F (Xrg)] + O(e™H) (24)

and
o
kl

S By [1nF (X)) = Ofh

i=k{max 11

IS

) (25)

where we recall that {zl, . ,zk?cmax} = OCpmax N O (see (23)).

2. When for some i € {1, e k?Cm“} the function F is C°° in a neighborhood of z;, one has when h — 0:
Eu, [Le,F (Xr)] = F(zi) ai + O(h%), (26)
where
kfcmax _1

T Vdet Hessflaa(z;) \ = +/det Hessfloa(z;)

3. When (A4) is satisfied, the remainder term O(ht) in (25) is of the order O(e™#) for some ¢ >0 and
the remainder term O(hi) in (26) is of the order O(h) and admits a full asymptotic expansion in h (as
defined in Remark 7 below).

Remark 7. Let us recall that for o > 0, (r(h))n>0 admits a full asymptotic expansion in h® if there exists a
sequence (ar)k>0 € RN such that for any N € N, it holds in the limit h — 0:

N
r(h) = aph®® + O(h*WN D).
k=0

Theorem 1 implies that in the limit h — 0, when Xy ~ v, the law of X, admits a limit in distribution
and concentrates on the set {z1, ..., Zk‘fmax} = 00N IChax with explicit formulas for the probabilities to exit
through each of the z;’s.

As a simple corollary, notice that when the function F' belongs to C*° (92, R), one has in the limit A — 0:

kacmax

L _2
K¢ Z Fa"fe wl
1 i=1

1 oM
E,, [F(Xr,)] = § a;iF'(z;) + O(h%) = O Cmax +on (1),
s 1
- X [ onfert
i=1

where the order in h of the remainder term o (1) depends on the support of F and on whether or not the
assumption (A4) is satisfied.

Another consequence of Theorem 1 is the following. The probability to exit through a global minimum z of
flaq which satisfies 0, f (z) < 0 is exponentially small in the limit & — 0 (see (24)) and when assuming (A4),
the probability to exit through the points Zymax 15+ o5 209 is also exponentially small even though all these
points belong to argmingg f.



Remark 8. In [18], we show that the results of Theorem 1 still hold when Xo = x € Cnax. Moreover, we also
prove that when Xg = x € C, for C € C such that 9C N IQ # O, the law of X,, concentrates on IC N N
when h — 0, with explicit exit probabilities. We also refer to the preprint [24] which concatenates the results
of this manuscript and of [18], and to [25] which presents a simplified version of the results of these works.

The proof of Theorem 1 relies on a crucial result on the concentration of the quasi-stationary distribution
on neighborhoods of the global minima of f in Cyax.

Proposition 9. Assume that (A0) and (A1) are satisfied. Furthermore, let us assume that

min f = min f,
Cmax Q

where we recall that Crmay is introduced in (A1). Let O be an open subset of Q. Then, if ONargming _ f # 0,
one has in the limit h — 0:

M

ZwEOﬁarg mincmax f (det Hessf(x))_

D rearg ming,__ f (det Hessf(z))

v (0) = (1+0(h)).

[N

When O N arg mine _ f =10, there exists ¢ > 0 such that when h — 0:

Proposition 9 is a direct consequence of (11) and Proposition 58 below. Notice that ming — f = ming f
is satisfied when (A1), (A2), and (A3) hold, see Lemma 22.
. D,(0)
1.8.4. Intermediate results on the spectrum of —Lf’h
Let us recall that from (12), one has:

/ F 8nuhe_%f

h s0
By, [F(Xrq)] = —Eﬁ
upe h

Q

Therefore, to obtain the asymptotic estimates on E,, [F' (X,,)] stated in Theorem 1 when A — 0, it is
sufficient to study the asymptotic behavior of the quantities Ap, fQ uhe’%f and J,uyp. Let us point to the
results which will be proven below on these quantities, and which may have their own interest:

1. In Theorem 4, one gives for h — 0 small enough, a lower and an upper bound for all the mg small
eigenvalues of fLi’h(O) when (A0) is satisfied.

2. In Theorems 2 and 3, one gives a sharp asymptotic equivalent in the limit h — 0 of the smallest
eigenvalue Ay, of —LJIZ;L(O) when (A0) and (A1) are satisfied.

3. In Proposition 58, when (A0), (A1) and ming— f = ming f hold, one shows that uy, e~/ concentrates
in the L!(Q)-norm on the global minima of f in Cpay in the limit A — 0.

4. In Theorem 5, one studies the concentration in the limit A — 0 of the normal derivative of the principal
eigenfunction wuy, of 7L?7,h(0) on 02 when (A0), (A1), (A2), and (A3) are satisfied. In particular, sharp
asymptotic equivalents of 9, u; in neighborhoods of 0Cy. N OS2 in 0N are obtained.



1.4. Discussion of the hypotheses

In this section, we discuss the necessity of the assumptions (A1), (A2), (A3) and (A4) to obtain the
results stated in Theorem 1.

On the assumption (Al). To study the concentration of the law of X, when h — 0 when Xy ~ v,
one needs in particular to have access to the repartition of v in neighborhoods of the local minima of f
in Q when h — 0. When (A1) is not satisfied, the analysis of the repartition of vy, is tricky. When (A1) is
not satisfied, one has from Theorem 4 below (see Section 4.2.2), limp_,o hln A, = limp_o h1In Ay j,, where

Az2,p, is the second smallest eigenvalue of —Lﬁ}fo)

. The first two eigenvalues thus have the same exponential
scaling in h. As a consequence, it is difficult to measure the quality of the approximation of u; by an ansatz
projected on Span(uy), since the error is related to the ratio of A, over g, (see Lemma 25). For example,
when (A1) is not satisfied, it is difficult to predict in which well v, concentrates, as explained in [26].

On the assumptions (A2) and (A3). When (A1) is satisfied but not (A2), or when (A1), (A2) are satisfied
but not (A3), it is possible to exhibit functions f : [21, 22] — R (with f(21) < f(22)) such that P, [X; = =
23] = 14+ O(e™#) for some positive constant ¢ (see [24, Section 1.4.3, Section 1.4.4] for details). In those
cases, the process (1) thus leaves @ = (21, 22) through the point z; which is not a global minimum of f|sq.

On the assumption (A4). In [24, Section 1.4.5], we give a one-dimensional example to show that when (A4)
is not satisfied, the remainder term O(h%) in (25) is not of the order O(e™#) for some ¢ > 0, but actually of
the order O(\/E) This can be generalized to higher-dimensional settings, see for example [27, Proposition
C.40, item 3]. We thus expect that the remainder terms O(hi) in (25) and (26) are actually of the order
O(\/E), but proving this fact would require some substantially finer analysis.

1.5. Organization of the paper and outline of the proof

The aim of this section is to give an overview of the strategy of the proof of Theorem 1. From (12) and
in order to obtain an asymptotic estimate of E,, [F (X,,)], we study the asymptotic behavior when h — 0
of the quantities A, fQ upe~ 74 and Onup, where A\p, is defined by (8) and wy, by (10).

To study Ap and J,up, the first key point is to notice that Vuy, is a solution to an eigenvalue problem.
Indeed, by differentiating the eigenvalue problem (10) satisfied by wy, one gets:

—L;l’,)LVuh = /\hVuh on Q,
VTuh =0on 89,

(28)
h ..
<§d1V — Vf) Vuyp =0 on 09,
where
L“)—@A—Vf-V—H f (29
TG ess )

is an operator acting on 1-forms (namely on vector fields). Therefore, the vector field Vuy, is an eigen-1-form

of the operator —L?}fl) which is the operator —Lgc%,)l with tangential Dirichlet boundary conditions (see (28)),

associated with the eigenvalue Aj,.

The second key point (see for example [23]) is that, when (A0) holds, —L?’h(o) admits exactly m{} eigenval-
ues smaller than 4 (where m§} is the number of local minima of f in €, see Section 1.3.2) and that —L?’h(l)
vh

admits exactly mlﬁ eigenvalues smaller than *5* (where mlﬁ is the number of generalized saddle points of f
in Q, see Section 1.3.2). Actually, all these small eigenvalues are exponentially small in the regime h — 0
(namely they are bounded from above by e~# for some ¢ > 0), the other eigenvalues being bounded from



below by a constant in this regime. This implies in particular that A\ is an exponentially small eigenvalue

of —L?’h(l). Let us denote by 7T}(LO) (resp. F}(ll)) the orthogonal projector onto the vector space spanned by

the eigenfunctions (resp. eigen-1-forms) associated with the m$ (resp. m$) smallest eigenvalue of —L?’}fo)

(resp. of —LJ?;I(I)).

To obtain an asymptotic estimate on A\, when h — 0, the strategy consists in studying the singular
values of the (finite-dimensional) operator V acting from Ran W,SO) to Ran 71',(11), both spaces being equipped
with the scalar product of L2 (£2). Indeed, from Proposition 4, the squares of the singular values of this

matrix are the smallest eigenvalues of f%L?;L(O). To this end, one constructs an appropriate basis (with so

called quasi-modes) of Ran W;LO) and Ran wél). Besides, from (28), Vu;, € Ran Wél) and thus, to study the
asymptotic behavior of 0,uy on 92 when h — 0, one decomposes Vuy, along a basis of Ran wél).

In terms of mathematical tools, the proofs heavily rely on constructions made in [28,23]. The main novelty
is to combine those techniques to get precise estimates of d,uy: this requires to go beyond the standard
semiclassical estimates which focus on the eigenvalues. The crucial steps in the proofs are: (i) Proposition 47

which gives the interaction terms between the quasi-modes for L?’h(o) and for L?}fl)7 (ii) Lemma 50 which

uses a matrix representation of the operator V : Ran 77,(10) — Ran 77,(11), thanks to an appropriate labeling of
the connected components attached to the local minima of f and (iii) Lemma 63 which explains how to get
H -estimates of the error between uy, and its approximation by quasi-modes.

The paper is organized as follows. In Section 2, one constructs two maps j andjwhich will be extensively
used in Section 3. These maps are useful in order to understand the different timescales of the process (1)
in Q. Section 3 is dedicated to the construction of quasi-modes for —L]?;L(O) and —L?;fl). In Section 4, we
study the asymptotic behaviors of the smallest eigenvalues of —L?,;l(o) (see Theorem 4) and we give an
asymptotic estimate of A\, when h — 0, see Theorem 2. In Section 5, we give asymptotic estimates for
fQ uhe_%f and for 9, up on 9 when h — 0 (see Proposition 58 and Theorem 5), and we finally conclude
the proof of Theorem 1. For the ease of the reader, a list of the main notation used in this work is provided

at the end.
2. Coupling local minima of f with saddle points of f

This section is dedicated to the construction of two maps: the map j which associates each local minimum
of f with an ensemble of saddle points of f and the map ] which associates each local minimum of f with a
connected component of a sublevel set of f. These maps are useful to define the quasi-modes in Section 3.

This section is organized as follows. In Section 2.1, one introduces a set of connected components which
play a crucial role in our analysis. The constructions of the maps j and :]v require two preliminary results
(Propositions 15 and 18) which are introduced in Section 2.2. Then, the maps j and :]v are defined in
Section 2.3. Finally the assumptions (A1)-(A4) are reformulated in terms of the map j in Section 2.4.

2.1. Connected components associated with the elements of U}
The aim of this section is to give an equivalent definition of the elements in C = {C(z),x € U§} (see (14)

and (16)) which will be easier to handle in the following. For that purpose, let us introduce the following
definitions.

Definition 10. Let us assume that (A0) holds. For all x € U} and X\ > f(z), one defines
C(\,z) as the connected component of {f < \} in Q containing © (30)

and



Ct(\,z) as the connected component of {f < A} in Q containing x. (31)
Moreover, for all z € U, one defines
M) :=sup{A > f(z) s.t. C\,z2) NIV =0} and C(z):=C(A(x),z). (32)

A direct consequence of Lemma 11 below is that for all z € U, C(z) defined in (32) coincides with C(x)
introduced in (15). Notice that under (A0), for all € U C Q, A(x) is well defined. Indeed, for all x € UY,
{A> f(z) st. C(A\,2) N9 = 0} is bounded by supg f + 1 and nonempty because for § > 0 small enough
C(f(xz)+ B, z) is included in § (since x € Q and f is Morse). One has the following result which permits to
give another definition of Hy (compare with (13)) which will be easier to handle in the sequel.

Lemma 11. Let us assume that (A0) holds. Then, for all x € U
Hy(2) = M), (33)
where Hy(x) is defined by (13) and A\(zx) is defined by (32).
The proof of Lemma 11 is made in [24, Lemma 15].
Definition 12. Let us assume that (A0) holds. The integer Nq is defined by:
N; := Card(C) = Card({C(z), z € U$}) € {1,...,mg}, (34)

where we recall that m{! = Card (U) (see (16)), C(z) is defined by (32) and C = {C(z), = € U} (see (14)).
The elements of C are denoted by Cy,...,Cn,. Finally, for all £ € {1,...,N1}, Ci is also denoted by

ELg = C[. (35)

For example, on Fig. 1, one has m{ = 4 and N; = 3. The notation (35) will be useful when constructing
the maps j and j in Section 2.3 below.

2.2. Topological results and separating saddle points

The constructions of the maps j and 3 made in Section 2.3 are based on the notions of separating saddle
points and of critical components as introduced in [28, Section 4.1] for a case without boundary. Let us
define and slightly adapt these two notions to our setting. To this end, let us first recall that according
to [23, Section 5.2], for any non critical point z € Q, for » > 0 small enough

{f < f(z)} N B(z,7) is connected, (36)

and for any critical point z € Q of index p of the Morse function f, for » > 0 small enough, one has the
three possible cases:

either p =0 (z is a local minimum of f) and {f < f(2)} N B(z,7) = 0,
or p=1and {f < f(z)} N B(z,r) has exactly two connected components, (37)
orp>2and {f < f(2)} N B(z) is connected,

where B(z,r) := {z € Q s.t. |z — z| < r}. The separating saddle points of f and the critical components
of f are defined as follows (see Fig. 3 for an illustration):



> f(2) {f; f(=2)}

The two connected components

of {f < f(2)} 1 B(z)

<

Fig. 3. An example in dimension 2 of a saddle point which is not separating. The points ;1 and z2 are two local minima of f, and
the points y; and yz are two local maxima of f. The two connected components of {f < f(z)} N B(z,r) are contained in the same
connected components of {f < f(z)} (see the arrowed path on the figure).

Definition 13. Assume (A0). Let C = {Cq,...,Cn, } be the set of connected sets as introduced in Definition 12.

1. A point z € U? is a separating saddle point if either z € U?Q N ug‘;laci or z € U? N UiN:llc_i and for
r > 0 small enough, the two connected components of {f < f(z)} N B(z,r) are contained in different
connected components of {f < f(z)}. Notice that in the former case z € 9Q while in the latter case
z € Q. The set of separating saddle points is denoted by UTP.

2. For any o € R, a connected component E of the sublevel set {f < o} in Q is called a critical connected

component if OE NUTP # 0. The family of critical connected components is denoted by Cerit.

Remark 14. It is natural to define generally a separating saddle point of a Morse function f as follows: z is
a separating saddle point if for any sufficiently small connected neighborhood V, of z, V., N{f < f(2)} has
two connected components included in two different connected components of {f < f(z)}. Our definition
of separating saddle point is equivalent to this general definition when the function f is extended by —oo
outside Q. In particular, with this extended definition of f, there cannot be a separating saddle point outside
UN' C;. We refer to [24, Remark 19] for more details.

In the rest of this section, we give a series of results on {Cy, ..., Cy, } which will be used throughout this
paper. These results are rather intuitive and, for the sake of conciseness, we refer to [24] for detailed proofs.

Proposition 15. Let us assume that (A0) holds. Let C = {Cy,...,Cn, } be the set of connected sets introduced
in Definition 12 and let (k,€) € {1,...,N1}? with k # {. Then,

Cy is an open subset of Q@ and C, NCp = 0. (38)
In addition, one has
IC,L, NN CUTPNIN and 9C,NOC, C UTP NQ, (39)
where the set UT® is introduced in item 1 in Definition 13. Finally, 0Cy NUTP # 0.

The proof of Proposition 15 is made in [24, Proposition 20] and is based on the following technical lemma
(see [24, Lemma 17]).



Lemma 16. Let us assume that the function f : Q — R is a C* function. Let x € US. For all p > f(z),
it holds C(p,x) = Uy, C(\, @) and C* () = N5, CT (A, 2) where C(u, ) and C*(u,x) are respectively
defined in (30) and (31).

The following technical result will be needed in the sequel.

Lemma 17. Let us assume that (A0) is satisfied. Let C = {Cy,...,Cn, } be the set of connected sets introduced
in Definition 12. Let us consider {j1,...,jk} C {1,..., N1} with k € {1,...,N1} and j1 < ... < ji such
that U%_ C;, is connected and such that for all ¢ € {1,... ,Ny}\ {j1,..-, 7k}, CuNUE_,C;, = 0. Then, there
exist z € UTP and £y € {1,...,k} such that

z € 0Cj, \ (Ulzczu;ﬁzo 8Cj£>.
The proof of Lemma 17 is made in [24, Lemma 21]. Let us end this section with the following proposition.

Proposition 18. Let us assume that (A0) is satisfied. Let us consider Cq for ¢ € {1,...,N1} (see Defini-
tion 12). From (30) and (32), there exists x, € USNC, such that C; = C(xy, A(z,)). Let A € (ming f, Mzq)]
and C be a connected component of Cg N {f < A}. Then,

(CAUTP#£0) iff CNUF contains more than one point. (40)
Moreover, let us define

O :=— 1mnax
Jona, f(y)

with the convention o = ming f when CNUT® = 0. Then, the following assertions hold.

1. For all p € (0,A], the set CN{f < p} is a connected component of {f < p}.
2. If CNUSP # 0, one has CNU C {f < o} and the connected components of CN{f < o} belong to Cepi-

The proof of Proposition 18 is made in [24, Proposition 22]. It relies on properties of the sublevel sets of
a Morse function in R?.

2.8. Constructions of the maps j and,]T

In this section we construct, under (A0), two maps j and :jv, using an association between the local
minima U§¥ and the (generalized) saddle points U$?. Such maps have been introduced in [29-31,28] in the
boundaryless case. This has been generalized in [23] to the boundary case (where the authors introduced

the notion of generalized saddle points for A?’h(o)).

Let us recall (see Lemma 23 below), that L?;Z(O) has exactly m{! eigenvalues smaller than Vh/2 for
sufficiently small h. Actually, from [32,23], it can be shown that these m{f eigenvalues are exponentially
small. The goal of the map j is to associate each local minimum x of f with a set of generalized saddle
points j(z) € U such that f is constant over j(z) and for sufficiently small h,

eo(— LYY, lim hin X = =2(f(3(2)) - /().

The map j associates each local minimum = of f with the connected component of {f < f(j(z))} which
contains x. To construct the maps j and j, the procedure relies on the results of Section 2.2, following the



general analysis of the sublevel sets of a Morse function on a manifold without boundary of [28, Section
4.1] which generalizes the procedure described in [31]. The idea is to consider the connected components of
{f <A} NUT® appearing as A decreases from max e f to —0o. Each time a new connected component
appears in U,’;‘;le, one picks arbitrarily a global minimum of f in it and then, one associates this local
minimum with the separating saddle points on the boundary of this new connected component.

Let us assume that the assumption (A0) holds. The constructions of the maps j and}are made recursively
as follows:

1. Initialization (¢ = 1). We consider E;, = C, for £ € {1,...,N1} (see (35)). For each ¢ € {1,...,N1},

x1,¢ denotes one point in argming—, f = argming , f. Then we define, for all k € {1,...,Ny},
o1 = Iyif, j(x1,0) = E1p and j(w1,4) 1= 9E 0 N USP. (41)
1,6

Notice that according to Proposition 15 and item 2 in Definition 13, it holds

Ny

J(@10) #0, OB C{f =014}, J(@1.) € Corir and | j(w1,0) NOQ C UT?
/=1

Moreover, one has from Proposition 15 (and more precisely the second inclusion in (39)),
Ve#qe{l,...,Ny}, OE; 4 NOE; , CUTP N (42)

2). From Proposition 18, for each £ € {1,...,Ny}, E1, N U§ # {z1,} if and only if

2. First step (¢ =
UTP NEyr # 0. As a consequence, one has:

Usispﬂ (U?‘:ll EM) #0 it {11, 218} # Ug'

If U N (UL,N:ll ELE) = () (or equivalently Ny = m$), the constructions of the maps j and j are finished

and one goes to item 4 below. If UTP N ( Uy, EM) # () (or equivalently N; < m}), one defines

o9 1= max f(z) € ( min f, max crm).
2eUTP ) (U)L,Eqe) UM Ey . £E{1,N1}
The set
Ny
U (Eu n{f < 02})
=1
is then the union of finitely many connected components. We denote by Ez1,...,Ean, (with No >

1) the connected components of Uyzll (Ere N {f < o2}) which do not contain any of the min-
ima {z11,...,21,n,}. From items 1 and 2 in Proposition 18 (applied to C = E;, N {f < o9} for
each £ € {1,...,Ny}),

VYl e {1, ceey NQ}, E21[ c Ccrit~
Notice that the other connected components (i.e. those containing the z1 ,’s) may be not critical. Let

us associate with each Bz ¢, 1 < £ < Ny, one point z2 ¢ arbitrarily chosen in argming_ f = argming, , f
(the last equality follows from the fact that 0B, C {f = 02}). For £ € {1,..., Ny}, let us define:



j(ng) = Eg)g and j(xg)g) = aEz,g n Usfp C {f = 0’2}.

3. Recurrence (¢ > 3). If all the local minima of f in © have been labeled at the end of the previous step
above (¢ = 2), i.e. if U?zl{xjﬁl, TN = U§ (or equivalently if Ny + Ny = m§), the constructions of
the maps ] and j are finished and one goes to item 4 below. If it is not the case, from Proposition 18,
there exists m € N* such that

Ny
vae {2, om+1h U (Bents <og) # 0 (43)
{=1

where one defines recursively the decreasing sequence (0)g=3,... m+2 by

Ny
04 = max {f(x), x € U515pﬂ U (Eren{f< aq_l})}.
=1

Notice that o, € (minun1 E, 1, Uq,1>. Let us now consider the largest integer m* € N* such that (43)
=1 s

holds. Notice that m™* is well defined since the cardinal of Ug is finite. By definition of m*, one has:

Ny
v (El,g n{f< am%}) — 0 (4a)
(=1

Then, one repeats recursively m* times the procedure described in the first step above. For ¢ €
{2,...,m* 41}, one defines (Eg41,¢)ref1

N,4.} as the set of connected components of U?:ll (Elygﬂ{f <

Uq+1}> which does not contain any of the local minima Uf_,{2;1,...,x;n,} of f in Q which have been
previously chosen. From items 1 and 2 in Proposition 18, V¢ € {1,...,Ng11}, Eq+1,¢ € Cerit. For £ €
{1,...,Ng4+1}, we associate with each E411,¢, one point z411,¢ arbitrarily chosen in argming  , f. For

e {1,...,Ng41}, let us define:
:]:(xq+1,€) = Egt1,0 and j(zg41,0) 1= 0Bqu1,e NUTY C {f = 011 }-
From (44) and Proposition 18, Uf} = U;";fﬂ {zj1,...,2;n,} and thus, all the local minima of f in €2 are

labeled. This concludes the constructions of the maps 3 and j.
4. Properties of the maps j and j. The two maps

U2 —Chu and j: U2 — PUD (45)

are clearly injective. Notice that the j(z), x € U{}, are not disjoint in general. For all x € Uf}, f(j(x))
contains exactly one value, which will be denoted by f(j(x)). Moreover, since U?':llEu C Q (see the first
statement in (38)), one has for all x € U}, j(z) C Q. Moreover, it holds

Ve e UP\{z11,...,21n, ), jlz) CQNUTP, (46)

Finally, for all x € UY, f(j(z)) — f(z) > 0 and for all z € U N j(z1.0) \ {z1.¢}

fG(@) = f(z) < min - f(j(z1,0) = f(210)- (47)

0=1,... N
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Fig. 4. The maps j and ] on a one-dimensional example for which the maps are uniquely defined and the construction requires three
steps.

The constructions of the maps j and ] are illustrated in Fig. 4 on a one-dimensional example. Since one can
pick a minimum or another in a critical connected component at each step of the construction of j and 3,
the maps are not uniquely defined if over one of the connected components E,, (k> 1, ¢ € {1,...,Ng}),
argmin f contains more than one point (see [24, Fig. 9] for a one-dimensional example). As will become
clear below, this non-uniqueness has no influence on the results proven hereafter.

Remark 19. In the case when for all local minima © of f, j(x) is a single point, j(x)Nj(y) =0 for allz £y
and when all the heights (f(j(x)) — f(l'))xeulﬁ are distinct, the map j is exactly the one constructed in [23].

The next definition will be used in Section 3.2 to construct the quasi-modes.

Definition 20. Let us assume that (A0) is satisfied. Let € be such that

0<e<

n (r@ff max f), (48)

mi
k>1,0e{1,....,Np} \ Ez, UTPNEk, ¢

where the family (Ex¢)p>1,¢eq1,....N,y 5 defined in the construction of the map j above. For k > 1 and
Le{1,...,Ng}, one defines

Erele) =EpeN{f < @f —¢}, (49)

which is a connected component of {f < maxg, f — 5} according to item 1 in Proposition 18.
2.4. Rewriting the assumptions (A1)-(A4) in terms of the map j

Lemma 21. Let us assume that (A0) is satisfied. Then, the assumption (A1) is equivalent to the fact that
there exists £ € {1,...,N1} such that for all k € {1,...,N1}\ {¢},

fG(@ie) = f@ir) < f(@10) = f(@1,0)-

Thus, when (A1) holds, the elements of C = {Cy,...,Cn, } (see Definition 12) are ordered such that ¢ =1,
i.e. forallk € {2,... Ny }:

FG@1e) = floe) < f((w11) = f(z11). (50)

With this numbering, one has C; = Cpax, where Cax is defined in (Al).



Proof. Assume that the hypothesis (A0) is satisfied. Let us recall that C = {C(z), z € U$} = {Cy,...,Cn, }.
Let C € C and let k € {1,...,Ny}, such that C = Cg. Then, from (33) and the first step of the construc-
tion of j in Section 2.3, one has for all ¢ € {1,...,Ni}: Hy(21,4) = AMa1,q) = f(i(21,4)) = supc, [ and
flz1,q) = ming - f. Thus, it holds supc f — ming f = f(j(z1,x)) — f(21,x). This implies the results stated in
Lemma 21. O

In view of Lemma 21 and by construction of the map j (see the first step in Section 2.3), one can rewrite
the assumptions (A1), (A2), (A3), and (A4) with the map j as follows:

o The assumption (A1) is equivalent to the fact that, up to reordering the elements of C = {Cy,...,Cn, }
such that (50) is satisfied, it holds:

Va € {xl,Qa s 7x17N1}a f(j(CU)) - f({L‘) < f(j(xl,l)) - f(xLl)' (Alj)

Furthermore, in this case, C; = Cpax, where Cpay is defined by (A1).
o The assumption (A2) rewrites when (A1j) holds,

0CL NN # . (A2])
o The assumption (A3) rewrites when (A1j) holds,

0C1 N O C argmin f. (A3j)
9Q

o When (A1j) holds, the assumption (A4) is equivalent to
j(xm) C 9. (A4j)

This equivalence between (A4) and (A4j) follows from (A1j) together with the fact that j(z1,1) = 0C; NUTP
(see (41)) and by definition of a separating saddle point. From now on, we work with the formula-
tions (Al1j), (A2j), (A3j), and (A4j) of the assumptions (A1), (A2), (A3), and (A4).

For one-dimensional illustrations of the assumptions, we refer to [24, Figures 6 to 9]. Notice that un-
der (A1j), it holds from (47):

Vo € UG\ {z11}, f(i(2) = f(2) < f(i(z10)) = f(z10)- (51)

When (A1j) and (A2j) are satisfied, from Definition 13 and Proposition 15 (see the first inclusion in (39)
and (41)), one has

0N j(x11) = 0NNAC, = U NaC,. (52)
In that case, we assume that the elements {21, ..., zy00} of U9 (see (20)) are ordered such that
8908C1 = {Zl,...,Zk?cl} (53)

where k7 € N* satisfies k9 < m9? (see (20)). Notice that from Lemma 21, this labeling implies when
(A3j) is satisfied:

kIS = Kk, (54)

where k?™ is defined by (23). Let us finally prove the following result which will be used in the sequel.



Lemma 22. Let us assume that (A0), (A1j), (A2j), and (A3j) hold. Then, one has ming f = ming f <
mingq [ and

argmin f = arg min f. (55)
Cy Q

Proof. The fact that ming f < mingg f is obvious. Let us prove (55). Let & € {1,...,N;} and let us
recall that from Definition 12, there exists € U} N Cy such that C; = C(A(z), ). Let us assume that
x € argming f. Then, by definition of the map j and by definition of A(x) (see (32)) together with the fact
that (Alj), (A2j), and (A3j) hold, one has f(j(z1,x)) = A(z) > mingg f = f(j(x1,1)). Thus, if f(z1x) =
f(x) < f(z1,1), it holds AM(z) — f(z) = f(i(x1,k)) — f(x1,6) > f(§(21,1)) — f(21,1). This implies C;, = C; from
the assumption (A1j). This concludes the proof of (55). O

3. Constructions of the quasi-modes

This section is dedicated to the constructions of two families of quasi-modes approximating the eigenforms
of —L?’;l(o) and —Lﬁ}fl) associated with exponentially small eigenvalues. These constructions use the maps
jand 5 introduced in the previous section.

This section is organized as follows. In Section 3.1, we introduce the notations used throughout this paper
for operators, and the properties of Witten Laplacians and of the operators Lg;fp ) needed in our analysis.

The quasi-modes are then built in Section 3.2.
3.1. Notations and Witten Laplacian

8.1.1. Notation for Sobolev spaces

For p € {0, ...,d}, one denotes by APC>(Q) the space of C™ p-forms on 2. Moreover, APC3°(Q) is the
set of C*° p-forms v such that tv = 0 on 0f), where t denotes the tangential trace on forms. The weighted
space APL2 (Q) is the completion of APC*°(€Q2) for the norm

Likewise, for p € {0,...,d} and ¢ € N, APHZ(Q) is the weighted Sobolev spaces of p-forms on Q with
regularity index ¢: v € APHY(Q) if and only if for every multi-index a with |a| < ¢, 9%v is in APL2(Q).
See for example [33] for an introduction to Sobolev spaces on manifolds with boundaries. For p € {0,...,d}
and ¢ > %, the set APH /() is defined by

APHY () == {v € APHE(Q) [tv = 0 on 0Q} .

Notice that APL () is the space APH,(Q2), and that A°H (2) is the space Hy, 4(€2) already introduced
in Proposition 4. We will denote by ||.||zg the norm on the weighted space APHZ (). Moreover (-,-)r2
denotes the scalar product in APL2 (Q). Finally, we will also use the same notation without the index w to
denote the standard Sobolev spaces defined with respect to the Lebesgue measure on ).

3.1.2. The Witten Laplacian and the infinitesimal generator of the diffusion (1)
In this section, we recall some basic properties of Witten Laplacians, as well as the link between those
and the operators Lgfj ,)L introduced above (see (7) and (29)).



For p € {0,...,n}, one defines the distorted exterior derivative ¢ la Witten d;’f}{ : APC®(Q) —
APFTLC°() and its formal adjoint: dgfj})l* : APTLC%(Q) — AP C(Q) by
df) = e i hd® et and df)" = bl hd@* e h T

h

The Witten Laplacian, firstly introduced in [34], is then defined similarly as the Hodge Laplacian Ag) =
(d+ d*)? by

AP = (g +d5 )% = dpnd ), + dfpdpn 0 AP C®(Q) = AP C2(Q).
The Dirichlet realization of A}’j ,)I on APL?(Q) is denoted by A}?}l(p ) and its domain is
D (A?;l(p)) ={w e APH?(Q)| tw =0, td} w=0}.

The operator A?jfp ) is self-adjoint, nonnegative, and its associated quadratic form is given by

¢ € APHE(Q) — [[dD) )32 + 1dF) o135,
where
APHE(Q) = {w € APH' (Q) | tw =0}

We refer in particular to [23, Section 2.4] for a comprehensive definition of Witten Laplacians with Dirichlet

tangential boundary conditions and statements on their properties. The link between the Witten Laplacian

and the infinitesimal generator LS‘% of the diffusion (1) is the following: since

h
L =-Vi-V -3 AR and AT} = AR + |V + hAR S, (56)
one has:
A = 2nu LD U

where U is the unitary operator

APL2 (Q) — APL%(Q)
: 1 (57)
¢ e nlg.
In particular, the operator L?;fo) has a natural extension to p-forms defined by the relation
D, () L -1 oD
L7 = = U AL UL (58)

For p = 1, one recovers the operator L;l,)l with tangential Dirichlet boundary conditions defined by (28)—(29).

The operator Lﬁ}fp ) with domain

D (L") =u D (A7) = {we A H2 (@) | tw =0, tds; w =0},



is then self-adjoint on APL2 (), non positive and its associated quadratic form is

h *
NHRQ) 5 ¢ = =3 [[dP9]]], + 20l |

Let us also recall that —L?,h(p (and equivalently A

elliptic operators when p = 0, —L 7 ,h(o) (and A}jh(o ) admits a non degenerate smallest eigenvalue with an

D (p )) has a compact resolvent. From general results on

associated eigenfunction which has a sign on €. Denoting moreover by 7TE(L D.(p )) the spectral projector

7(17)

associated with L and some Borel set £ C R, the following commutation relatlons hold on AP HL(Q):

4P wp (L") = mp(LE" (@) d and d) we(LE") = me(Li"0) ). (59)

Let us recall that from the elliptic regularity of P 7 h for any bounded Borel set £ C R, Ranng (Lg;l(d)) C
AP C5°(Q), the relation (59) then leads to the followmg complex structure:

D,(0)

{0} — Ranmp(Ly), )—>Ran7rE(Lf (1)) din . i

Ran (L7 ") = {0}

and

dyy dy d% dys
{0} + " Ran WE(L%L(O)) <" Ran 7rE(Lf h(l)) <—1 .« Ran ’/TE(L?;L(d)) «— {0}.

For ease of notation, one defines:

vpedfo,....dy, == . ﬁ)(—L]’if;fp)). (60)

The following result, instrumental in our investigation of the smallest eigenvalue A, of fL?;l(O), is an
immediate consequence of [23, Theorem 3.2.3] together with (58).

Lemma 23. Under assumption (A0), there exists ho > 0 such that for all h € (0, hg),

dimRanngO) =mf and dim Ran 7r( ) = ml,

where m$ = Card(UR) and m$ = Card(U$) are defined in Section 1.5.2.

Remark 24. In [23, Theorem 3.2.3] it is assumed that f : 0Q — R is a Morse function while in (A0), we
only assume that f: {x € 00,0, f(x) > 0} = R is a Morse function. As mentioned in [35, Section 7.1],

the statement of Lemma 23 still holds under this weaker assumption. This is explained in details in [2/,
Appendiz A].

In the sequel, with a slight abuse of notation, one denotes the exterior differential d acting on functions
by V. Note that it follows from the above considerations and Lemma 23 that under (A0), it holds

up € Ran 71'}(:)) and Vup € Ran 77,(11). (61)

Moreover, from (58), it is equivalent to study the spectrum of L?}fo) or the spectrum of A?;fo). We end
this section with the following standard lemma which will be frequently used throughout this work (see for
instance [36, Theorem 8.15]).



Lemma 25. Let (A, D (A)) be a non negative self-adjoint operator on a Hilbert space (H, || - ||) with associated
quadratic form qa(x) = (z, Az) whose domain is Q (A). It then holds, for any u € Q (A) and b > 0,

o) < 2402,

where, for a Borel set E C R, mg(A) is the spectral projector associated with A and E.

D,(

3.2. Construction of the quasi-modes for —Lf h ) and LD (1)

(0)

Let us recall that from Lemma 23, one has for any h small enough dim Ran (1) —

= m{} and dim Ran ),
m{’, where m{ is the number of local minima of f in © and m$ is the number of generalized saddle points
of f in Q, see Section 1.3.2. To prove Theorem 1, the strategy consists in constructing a family of m§}

quasi-modes in order to approximate Ran w}(LO and a family of m$® quasi-modes in order to approximate

Ran 77,(11) (see (60) for the definitions of the spectral projectors 7r,(lp )).
Since the construction of the quasi-modes rely on the one made for Witten Laplacians in [31,23,28], w
first construct quasi-modes for the Witten Laplacians AP f;L in Section 3.2.1, and A ( ) in Section 3.2.2.

D (1)

The quasi-modes for —th( ) and —L}," are then obtained using (58) in Section 3.2‘3.

3.2.1. Quasi-modes for the Witten Laplacian A?;l(o)

Let us assume that (A0) is satisfied. Let us recall that from Lemma 23 and (58), there exists hg > 0
such that for any h € (0, ho), dimRanw_ s (A?’;l(o)) = m{}. In this section, the maps j and j introduced in

[07h 2 )
Section 2.3 are used to build a family of m{ functions whose span approximates Ran Tond )(A (0)) The
properties of this family which are listed in this section will be useful to prove Proposmon 43 below and
Propositions 46 and 47 in the next section. Following [31,23,28], each critical point = € Ug is associated

D(O

with a quasi-mode for A . The notation follows the one introduced in Section 2.3.

Let us first introduce two parameters €1 > 0 and € > 0 which will be used to define the quasi-modes
for A?’h(o). In the following, d is the geodesic distance on Q for the initial metric. Let us consider &1 > 0
small enough such that

Vz, 2 € U , 2z # 2/ implies d(z,2") > 6&1 (62)
and for all z € UL (thanks to (37)),

either z € U and {f < f(z)} N B(z,2¢;) has two connected components, (63)
or z € U9 and {f < f(2)} N B(z,2¢;) is connected. (64)
The parameter €1 > 0 will be successively reduced a finite number of times in this section and in Section 3.2.2,

and it will be kept fixed from the end of Section 3.2.2.
Let € > 0 be such that

1 .
O<e< = min (maxf— max f)
2 k>1,0e{1,...Nu} \ Ep, Ve,
which ensures in particular that Ej (¢) and Eg¢(2¢) are connected for all k£ > 1 and ¢ € {1,...,Ny},

see (49). The parameter € > 0 will be further reduced a finite number of times in the following sections so

s€1

that d{x; ;' = 1} is as close as necessary to O ¢ near j(xy¢), where the cut-off function x;’;' is introduced

in the next definition of the quasi-mode for A?,}fo) associated to xj o.



Definition 26. Let us assume that (A0) holds. For k > 1 and £ € {1,...,Ny}, the quasi-mode associated with
Zp,e 15 defined by:

1
X ek

[Pl 1P

vl e {1,...7N/€}, 5/9,6 = (65)

£,€1

where the functions x;,' € C° (2, RT) satisfy the following properties: there exists €} > 0 such that for all
g1 € (0,€%), there exists €Y > 0 such that for all € € (0,€Y],

a) It holds
Ere(2¢) C {xy' =1} and (66)
supp X7 C {x € Q, d(z,Err) < 3e1} \j(zr0),
see (35) for the definition of E, and (49) for the definition of Ey ¢(2¢).
b) For ally € supp x;',
fy) < fG(are)) implies y € Exp
and hence, according to (66),
arlgminsupp X f= z‘irgminEkve f and (67)
Milg,pp in’;l f > f(.]('rk,€>) — 2.
c) For all z € j(xzk o) N, it holds
supp xy'¢' N B(z,2¢1) # 0 and supp x};* N B(z,2¢e1) C B (68)
d) For all z € UR\ j(zxy), it holds
z € B and B(z,2e1) C {xy7' =1} or (69)
2 ¢ By and B(z,2¢1) C {x;;5" = 0}.
e) Forallq € {1,...,Ng}\ {£}, it holds supp x;,' Nsupp x;.5" = 0.
) For k > 2 and for any (K',¢') € {1,...,k —1} x {1,..., Ny} such that Ex ¢ C Ejs ¢, it holds
supp x'¢" C {xp e = 1} (70)

Notice that by a connezity argument, it holds Ey ¢ C Er ¢ or E ¢ NEgr o = 0.
In Figs. 5 and 6, for & > 1, one gives a schematic representation of the cut-off function )(Z’,‘zl near z € Ulﬁ
in the three situations: (i) k =1, £ € {1,...,N1} and z € j(z1,)NOQ; (ii) £ € {1,..., Ny} and z € j(zg,e) N
(iii) € € {1,...,Ng}, z € (U \ j(zk,e)) NOEg ..
For the ease of notation, we do not indicate explicitly the dependence on the parameters € and €7 in the
notation of the functions vy, for & > 1, £ € {1,...,Ng}. The following lemma will be useful to estimate
H(l - ﬂgo))'ﬁk,gHLz when h — 0, for k> 1 and ¢ € {1,...,Ny}, see indeed item 2a in Proposition 43 below.



Fig. 5. Schematic representation of the cut-off function x3'5'. Left: near z € j(z1,¢) N 9Q C U2 N US® for £ € {1,...,N;}. Right:
near z € j(zg,e) NQ C U? for k > 1 and £ € {1,...,Ng} (W4 is the stable manifold of the saddle point z). The point z is a
separating saddle point as introduced in Definition 13. The dashed line represents 9E ¢(2¢) and the thick solid line represents
supp sz’jl .

--- 0Eg0(2¢)
£,61

— supp VXM

€,e1

k¢ near z € (U?\j(l‘ky[)) N OEg,¢. The point z is a saddle point on 9Ey ¢
but is not a separating saddle point as introduced in Definition 13.

Fig. 6. Schematic representation of the cut-off function x

Lemma 27. Let us assume that (A0) holds. Then, for k > 1 and £ € {1,...,Ng}, there exist ¢ >0, C > 0
and ho > 0 such that for all h € (0, hg),

ne i axg

\|d s nk.e| 2 = 1

HL2 < C e~ 1 (FU(@k,0))—f(zk,e)—ce) (71)

)

e+ x52  a

where the function vy ¢ has been introduced in Definition 26.

Proof. This estimate follows from (65)-(67), and Laplace’s method applied to ||x}’5 e~ nf|2. O

The following lemma ensures that the family (Vk¢)r>1,¢e1,...n,} i uniformly linearly independent for
any h small enough (the proof of this result is made in [28, Section 4.2]).

Lemma 28. Let us assume that (A0) holds. The family B, = (Ur.e)k>1, te{1,...,N,} introduced in Definition 20,
is linearly independent, uniformly with respect to h small enough: for some (and hence for any) orthonormal



(for the L?-scalar product) family B, spanning Span(B,), for any matriz norm || - | on R™0XMG | there exist
C >0 and ho > 0 such that for all h € (0, hg),

|Matg By|| < C  and ||Matg,B,| < C. (72)

8.2.2. Quasi-modes for the Witten Laplacian A?;L(l)
Let us assume that (A0) is satisfied. Let us recall that from Lemma 23 and (58), there exists ho > 0 such

that for any h € (0, ho), dim Ran T h%)(Aﬁ}fl)) = m%. In this section, a family of 1-forms (&;), jeqn

(A (1)) is built. To this end, for each z € U1 , one constructs a 1-form locally

peesm§
approximating Ran 77[0 nd)
supported in a neighborhood of z in Q, following the procedure in [31,28] if z € U$}, and the procedure
in [23] if 2 € UL For the sake of completeness, we recall these constructions, and we provide associated
estimates which will be used throughout this work.

Quasi-mode associated with z € US!. Let us recall that from (21), U = {Zmoo g1y s Zmlﬁ} C Q is the set of

saddle points of fin Q. Let j € {m9?41,..., mlﬁ} and z; € UL Let V; be some small smooth neighborhood
of z; such that V; N 9Q = 0 and for x € V}, |Vf(z)| = 0 if and only if x = 2;. Let us now consider the full
Dirichlet realization AFD (1)(Vj) of the Witten Laplacian AE}% in V; whose domain is

D(AfP D (V) = {we A H2 (1), wlay, =0}

Let us recall that according to [32, Section 2], there exists, choosing if necessary V; smaller, a C'*° non
negative solution ®; : V; — R™ to the eikonal equation

|[V®;| = |V f|inV; such that ®;(y) =0 iff y = z,. (73)

Moreover, ®; is the unique non negative solution to (73) in the sense that if <I> V — RT is another non
negative C* solution to (73) on a neighborhood V of z;, then <I> =&, on V nYVj.

Remark 29. The function ®; is actually the Agmon distance to z;, i.e. ®; is the distance to z; in Q associated
with the metric |V f|?dx?, where dz? is the Riemannian metric on Q0 (see [32, Section 1]).

The next proposition, which follows from [32, Theorem 1.4 and Lemma 1.6], gathers all the estimates
one needs in the following on the operator A} £o, (1)(Vj).

Proposition 30. Let us assume that (A0) is satisfied. Then, the operator A?ﬁ)’(l)(Vj) is self-adjoint, has
compact resolvent and is positive. Moreover:

o There exist g > 0 and hg > 0 such that for all h € (0, hg):
dim Ran 7o o) (Aif’(l)(vj)) =1. (74)

o The smallest eigenvalue A\ (V;) of AFD (1)(Vj) is exponentially small: there exist C > 0, ¢ > 0 and
ho > 0 such that for any h € (0, hg):

(V) < Ce i, (75)

o Any L?-normalized eigenform w; associated with the smallest eigenvalue A, (V;) of AFD 1)(Vj) satisfies
the following Agmon estimate: for all € > 0, there exist C; > 0 and hg > 0 such that for any h € (0, ho),
it holds:



He%{)jijHl(vj) <C.en, (76)
where ®; is the solution to (73).

Choosing €1 smaller if necessary, one may assume that there exists a > 0 such that B(z;,2¢1 +a) C V;.
Let us now define the quasi-mode associated with z; € U{.

Definition 31. Let us assume that (A0) is satisfied. Let j € {m9?+1,. .., mlﬁ} and z; € USL. The quasi-mode
associated with z; is defined by

~ 0w
G = A0 o NLo(Q), 77)
A TRR (

where w; is a L?-normalized eigenform associated with the smallest eigenvalue A, (V;) of A?f’(l)(vj) and
0; is a smooth non negative cut-off function satisfying, supp6; C B(z;,2e1) CV; and 65 =1 on B(z;,€1).

Notice that both w; and —w; can be used to build a quasi-mode: the choice of the sign will be determined
in Proposition 33 below. Moreover, using (76) together with the fact that for all j € {m{? +1,..., m?},
infsupp (1-0,)nv, ®; > 0 (see (73)), one has when h — 0:

H(l — Gj)ijLQ(vj) = O(e_’%) and therefore, ||9j ijL2 =1+ 0(6_%), (78)

for some ¢ > 0 independent of h. Using Proposition 30 and (78), one deduces the following estimate on the
quasi-mode ¢; introduced in Definition 31.

Corollary 32. Let us assume that (A0) holds. Let (;j be the quasi-mode associated with z; € Uit (j €
{m‘im + 1,...,m§2}), see Definition 31. Then, there exist C' > 0, ¢ > 0 and hg > 0 such that for any
h e (O, ho)

s + 15852 < . )

Let us now recall the construction of a WKB approximation of w; made in [32] and which will be needed
in the following. Let us denote by W, (z;) and W_(z;) respectively the stable and unstable manifolds
of z; associated with the flow of —V f which are defined as follows. Denoting by ¢;(y) the solution of

%gpt(y) = —V f(p+(y)) with initial condition po(y) =y,
Wa(z) = {y € Lou(y) ,— 2} (80)

It then holds (see indeed [32, Section 2] and [31, Section 4.2]): dim Wy (z;) =d — 1, dimW_(z;) = 1, and
for all y € V; (assuming V; small enough),

|f(y) = [(z)] < @;(y) and [f(y) — f(z;)] = @;(y) il y € Wi(2;) UW_()) (81)
with moreover

®; = +(f — f(z;)) on Wa(z;) and det Hess ®;(z;) = | det Hess f(z;)]. (82)
Additionally, there exists from [32, Proposition 1.3 and Section 2] a C°°(V;) 1-form a;(x, h) = a;(z) + O(h)
such that a;(z;,h) = @;(z;) = n(z;), where n(z;) is a unit normal to Wy (z;), and such that the 1-form

1 G
ug ) b = a;e" 1+ % satisfies



1 1) )
(Agw)z — u(h)) gwkb =0(h>)e” % in Vi,
where p(h) ~ h? > 72 uih®. Moreover, one has in the limit h — 0 (see [32, Section 2]):

(wh)’

ot Hess £())[F (1+0(n), (83)

1
||9ju;‘,1)ukb||L2 =

where the remainder term O(h) admits a full asymptotic expansion in h. Using in addition the fact that
®; > 0 on supp V#b;, there exists ¢ > 0 such that for h small enough:

| (A% = nm)@;ul)|| , = 0(4) + 0(e™F) = O(n).

From (83), one then obtains that AFD (1)(1/-) admits an eigenvalue which equals u(h) + O(h®). Since
u(h) = O(h?), from (74) and (75), one deduces that pg = 0 for all £ > 0 and thus p(h) = O(h*°). Finally,
one has:

A(lhuglz)kb =0(h™) e #% in V;. (84)

1)

In the following proposition, w; and (O

, are compared.
Proposition 33. Let us assume that (AO) is satisfied. Let w; be a L*-normalized eigenform associated with

the smallest eigenvalue A (V) of AFD 1)( V) (G € {mP?+1,..., mlﬁ}) Then, there exists ho > 0 such that
for all h € (0, ho) one has:

Ha wj — ¢j(h)u E}ikb)H =0(h*™) (85)

where cj(h)™! = (w;,0; u;, gjkb> . In addition, up to replacing w; by —w;, one can assume that c;(h) > 0
for h small enough and then, in the limit h — 0, one has:

=

B |det Hess f(z;)]
ICOE

(1+0(n)), (86)

where the remainder term O(h) admits a full asymptotic expansion in h.

Proof. Let us define k;j(h) = <wj79ju§-2)kb>m = ¢j(h)7'. If kj(h) < 0, then one changes w; to —w; so
that one can suppose without loss of generality that k;(h) > 0. For h small enough, one has from (74)
T[0,20h) (Af n (1)(1/ ) (6; ujlgjkb) = kj(h)w;. Let us define the following 1-form «a; := 6; (ugzkb — kj(h) wy).
Thus, the following identity holds for A small enough

aj =kj(h) (1 —0;)w; + TMleoh,+00) (AFD (1)(V])) (9 %kb)

Notice that, from (83), there exist C' > 0 and ho > 0 such that for all h € (0, ho) |k;(h)| < Ch'i. Therefore,
using Lemma 25, (78), and (84), there exist ¢ > 0 and C' > 0 such that for h small enough:

2

IN

leslza < 2k | (L= 033 w57 + 2 |[mieanson (AT P 00) Ojullls)]

L2

IN

Ch? e~k + Ch1O(h®) = O(h™).



Moreover, since dy,;, = hd + df A and d} ;, = hd* + iy, one obtains using the Gaffney inequality (see [33,
Corollary 2.1.6]):

lloilFn < C(llday 72 + lld" 12 + lloy[72)

<Ch™? (Hdﬁhay‘Hi? + [d5 el + ||04j||i2) :

Furthermore, from (79), it holds ||d(0;w;)]| . p(O3w;)|| ., < Ce™7 and from (84) ||dy,,(6;
+ [|d5 . ( Hjuj’wkb | > = O(h*). Thus, there exists C > 0 such that:

e
ka‘b HL2

e[ 72 = O (p*°).

This concludes the proof of (85). Finally, since ||6;w;| 2 = 1+O0(e~#) (see (78)), by considering ||, (u u; gjkb

kj(h)w;)||2. = O(h*), one gets using (83):

16 “J o slZe +0(h*) _ (rh)%
||9jwj||L2 |det Hess f(zj)|%

kj(h)? = (1+0(h)).

da
Since k;(h) > 0, one has k;(h) = S ) — (1+ O(h)). This concludes the proof of (86) since c;(h) =
|det Hess f(z;)]4
kj(h)7'. O

Quasi-mode associated with z € U, Let us recall that from (20), U?? = {z,..., Zmoa} C Of) is the set
of generalized saddle points on 0. Let j € {1,...,m?} and z; € U??. To construct a 1-form locally
supported in a neighborhood of z; in Q, one proceeds in the same way as in [23, Section 4.3]. Let V; be a
small neighborhood of z; in Q such that V; satisfies: [V f| > 0 on V;, for all z € 9V; N 9Q, |Vrf(z)| =0
if and only if x = 2;, and 0,f > 0 on 002 N JV;. Let us now consider the mixed full Dirichlet—tangential

MD, (1)(1) )

Dirichlet realization A of the Witten Laplacian AY h in V; whose domain is

D(A}WhD (1) ) {w e AT H? (V ), w|av na =0, tw|ay noe = 0 and tdf hw‘av noQ = 0},

see [23, Remark 4.3.1] for the characterization of its domain. Since 9, f > 0 on 9QNV;, from [23, Section
4.2], one has that, choosing V; small enough, there exists a C°>°(V;,R") non negative solution ®; to the
eikonal equation

[V®,|=|Vflin QN
®; = f— f(z;) on 02NV, (87)
On®; = =0, f on 0QNYV;

Moreover, up to choosing V; small enough
Qi(y) =0iff y = 2;. (88)

Besides, ®; is the unique non negative solution to (87) in the sense that if éj : 9; — RT is another non
negative C'>° solution to (87) on a neighborhood V; of z;, then ®; = ®; on V; N V.

Remark 34. The function ®; is actually the Agmon distance to z;, see [1, Section 3] for a precise definition
of the Agmon distance in a bounded domain.



Choosing £1 smaller if necessary, one can assume that there exists o > 0 such that B(z;,2e1+a)NQ C V;.
The next proposition, which follows from [23, Proposition 4.3.2], gathers all the estimates one needs in the
following on the operator AMD @ V).

Proposition 35. Let us assume that (A0) is satisfied. Then, the operator A%P’(l)(ﬁ/j) is self-adjoint, has
compact resolvent and is positive. Moreover:

o There exists hg > 0 such that for all h € (0, ho):

dimRanm (AP =1. (89)

o The smallest eigenvalue A\, (V;) of AMD( )(Vj) is exponentially small: there exist C > 0, ¢ > 0 and
ho > 0 such that for any h € (0, ho):

(V) € CeF (90)

o Any L?-normalized eigenform w; associated with the smallest eigenvalue Ay (V;) of AMD @ (V) satisfies
the following Agmon estimates: there exist C > 0, n € N and hg > 0 such that for any h € (0, hg), it
holds:

<Ch™™ (91)

He%(bjwj HHl(B(zj,Zsl)ﬂQ)

where ®; is the solution to (87).

Let us now define the quasi-mode associated with z; € U,

Definition 36. Let us assume that (A0) holds. Let j € {1,...,m?%} and z; € UY9. The quasi-mode associated
with z; is defined by
~ 0, w;

¢; = ——2—— e AN'Hp(Q)NA'C™(Q), (92)
165wl >

where w; is a L*-normalized eigenform associated with the first eigenvalue A, (V;) of A(l MD(Vj) and 0; is
a smooth non negative cut-off function satisfying supp0; C B(z,2e1) NQ C V;, {2;} = arg ming,,u 0,000 f
and 0; =1 on B(zj,e1) N Q.

Notice again that both w; and —w; can be used to build a quasi-mode: the sign will be chosen in
Proposition 38. The fact that 5]- € A C> (ﬁ) follows from standard elliptic regularity results. In addition,
for all j € {1,..., m?Q}, using (91) together with the fact that infy,,, (1-9,)mv;, ; > 0 (see (88)), there
exists ¢ > 0 such that when h — 0:

H(1—9j)ijL2(vj) = O(e ) and thus, =1+0(e ). (93)

Using Proposition 35 and (93), one deduces the following estimate on the quasi-mode &Fj introduced in
Definition 31.

Corollary 37. Let us assume that (A0) holds. Let gz~5j be the quasi-mode associated with z; € UP? (j €
{1,..., m?Q}), see Definition 36. Then, there exist C > 0, ¢ > 0 and hg > 0 such that for any h € (0, hg):

@il 2 < CeTh (94)

[ ds.ndsl



Let us now give the WKB approximation estimates for the quasi-mode <Zj introduced in Definition 36.
From [23, Section 4.2], there exists a C*°()V;) function a;(x, h) = a;(z) + O(h) with a; = a; =1 on QN V;
such that the 1-form

i = drn (5@ W)eFP0) = (@ d(f = @;) + O(h)e ™+, (95)
satisfies

A(lhuj wkb = O(hoo)e 7% in V;
tug}ikb =0on dQNYV; (96)

td?,hug&kb = O0(h*™) e 7% on 90N V.

Moreover, one has in the limit ~ — 0 (see [23, Section 4.2]):

055 anall 2 = S

1+ 0(h)
(det Hess f[on(2;)) " )

where the remainder term O(h) admits a full asymptotic expansion in h. In the following proposition, w,

(1)

and U ypep BT€ compared.

Proposition 38. Let us assume that (A0) holds. Let w; be a L*-normalized eigenform associated with the

smallest eigenvalue A\, (V;) of AFD 1)( Vi) (G €{1,...,mP?}). Then, there exists ho > 0 such that for all
h € (0, ho) one has:

05 (ws = esmullly)| = 00) (97)
where
cj(h)~h = <wjv0ju§‘,13;kb>L2

In addition, up to replacing w; by —wj;, one can assume that c;(h) > 0 for h small enough and then, in the
limit h — 0, one has:

PN

(det Hessf|aq(z;))

c;(h) = h~ (14 0(h)), (98)

where the remainder term O(h) admits a full asymptotic expansion in h.

Proposition 38 is proved exactly as Proposition 33.

In conclusion, a family of 1-forms (5]»)],6{17‘__,“5} has been constructed in this section. Since (62) guaran-
tees that B(z,2¢;) N B(z',2e1) = 0 for all z # 2’ € UL, the family (q})je{lwm
From now on, the parameter ¢; is fixed and € > 0 will be successively reduced a finite number of times in

oy Is orthonormal in L2(Q).

the following.

WKB approximation of the quasi-modes (qb]) m0} For upcoming computations, one needs the follow-

ing definition.



Definition 39. Let us assume that (A0) is satisfied. For all j € {1,...,m$}, one defines:
Gk = ¢ (1) 0 ull) (99)
j,wkb = Cj J u],wkb’

where for j € {1 ., mde} u;’ll)ukb satisfies (96) and 0; is introduced in Definition 56 and, for j € {m{* +
} uj wkb satisfies (84) and 6; is introduced in Definition 31.

From (78), Proposition 33, (93), and Proposition 38 one has the following lemma.

Lemma 40. Let us assume that (A0) is satisfied. For j € {1,...,m9%}, let (;SJ be as defined in (92), and for
je{mf?+1,...md } let quJ be as defined in (77). Moreover fOT‘j e{1,...,mj } let ¢],wkb be as defined
n (99). Then, one has:

165 = djwmd|| ;= O (™).

8.2.3. Quasi-modes for — fh and L 1)

,(0

Before defining the quasi-modes for L and Lg;fl), let us label the quasi-modes for A?;l(o) and the

local minima of f using the 1ex1cographlc order.

Definition 41. Let us assume that (A0) is satisfied. Then, the family of critical connected components
(Ek,0)k>1, ee{1,....N,.} introduced in Section 2.3, the local minima (Tk)k>1,ee1,..., N,y Of f labeled in Sec-
tion 2.3, the family of cut-off functions (Xi’;l)kl)kzl,ée{l,...,Nk} introduced in Definition 26 and the family
of quasi-modes (5k,g)k217ge{17__,Nk} introduced in Definition 26 are labeled according to the lexicographic
order:

€1

Eireft,.mor 0% ket mgt @)keq,...mgy and (Tk)peq1,...mo}-

Let us recall that the lexicographic order is defined by (k',¢") < (k,1) if and only if &’ < k or if ¥’ =

k, ¢’ < £. From now on, one uses the labeling introduced in Definition 41.

According to (58), the quasi-modes for LJJZ;L(O) and L?,’h(l) are obtained from those constructed previously

for A?’h(o) and A?;l(l) using the unitary transformation U defined in (57).

Definition 42. Let us assume that (A0) is satisfied. Let (Uk)peqs,...mgy be the family of quasi-modes for
A?}fo) introduced in Definition 26 and labeled in Definition /1 and let (qu)je{1 m@) be the family of
quasi-modes for A?;l(l) introduced in Definitions 31 and 36. The family of quasi-modes (ﬂk)ke{l m@} for
_Lﬁh(()) and the family of quasi-modes (wj)je{l iy Jor — 7( ) are defined by: for k € (1,...,m%}, and
forje{l,...,m}:

U =erl oy € A°Hy, () and Jj = en! $j eEANH, (). (100)

Notice that, according to (65) and (100), for all k € {1,...,m§}, ux € C (), and according to (77)

and (92), for all j € {1,...,m{}, wj € AIC> (Q).

3.3. Bases of Ran ﬂ}(lo) and Ran W}(ll)
Let us recall, that from (60), 7r,(I ) = T, \/_)( Lﬁ;fo)) and w}(Ll) = T, 5 (- L?);l(l)). In this section, one

proves that the spectral projections of the quasi-modes introduced in Definition 42 form bases of Ran F}(LO)



and Ran 7T}(11). In the following, the finite dimensional spaces Ran 7T}(LO) and Ran F}(Ll) are endowed with the

scalar product (-,-)rz .

Proposition 43. Let us assume that (A0) holds. Let (uk)ieqa,... moy be the family of quasi-modes for —L?}fo)

and let ({/)vj) o be the family of quasi-modes for fLﬁ’h(l) introduced in Definition 42. Then,

je{1,....m

1. Forallke {1,....m§} and j € {1,....mP}, @ € AH + (), ); € AH 7 (Q) and

[l = 193]l,5 =1 and Vi€ {1, .mPI\{G}, (95, 8i),, =0

2. a) For any 6 > 0, one can choose the parameter € in (65) (see also (100)) small enough such that for
allk € {1,...,m$}, in the limit h — 0:

11— m)a]|2, < b ||V, =0 (e—%<f(j<mk>>ff<wk>76>> .

In particular, choosing the parameter € > 0 small enough in (65), there exists ¢ > 0 such that in the
limit h — 0:

%y, =g + O(e™F) in L2(Q).

b) There exist ¢ > 0 such that for all j € {17 ey mlﬁ}, one has in the limit h — 0:

= m )y = Oe™F).

3. a) The family (Ur)p—1,.. mg 4 uniformly linearly independent (for the L2 -scalar product) for all h
sufficiently small (as defined in Lemma 28).
b) For all (i,5) € {1,..., m¥}2,

<7T21)1E¢,7T}(11)7:/;j>1112u = 6,’73' + 0(67%)
In particular, there exists hg > 0 such that for all h € (0, hg):
Ran 77,(10) = Span(ﬂ}(lo)ﬂk, k=1,...,mg) and Ranw}(f) = Span(w,(Ll)qzi, i=1,...,m{).

Proof. The proof of Proposition 43 is divided into two steps.

Step 1: Proofs of items 1 and 2. The first item is immediate according to the definition of the families
(Uk)p=1,...,mg and (wi)izl,-“7mg? introduced in Definition 42.

The first upper bound appearing in 2a is a direct consequence of Lemma 25 applied to A = ng;L(O)

whose associated quadratic form is given by 2(V-, V) 12, on Hy 1-(Q). The second upper bound in 2a follows
from Laplace’s methods and from the properties of the cut-off functions used to define the quasi-modes 1y,
(see Definition 42 and Lemma 27). Indeed, it is just a rewriting of (71) using Definition 42 and the labeling
introduced in Definition 41.

Let us now deal with 2b. First, Lemma 25 together with (79) and (94) implies the existence of some ¢ > 0
such that for all ¢ € {1,..., mlﬁ} and h small enough,

H( 1= ”[ow%mg}fl)))@ =0(e™h). (101)

L2



Consequently, using again (79) and (94), and owing to the following relations on A'HL(Q): dfh(l —

D,(Dy) _ D,(2) * D,(Dy) _ D,(0)\ %
[om)(Afh )) B (1_ o, %>(A ))df’“ dfh( a [0h2)<Afh )) - (1_”[0h2>(A )>dfh’
dfhfhd +ivy, and dyp = hd + V fA, one obtains the existence of ¢ > 0 such that in the limit A — 0:

Hd(l_”mh 5 (A7 ))d’l +‘

Since ¢; € AYHL(Q), the estimates (101) and (102) then lead, owing to Gaffney’s inequality (see [33,
Corollary 2.1.6]), to

=O0(e #). (102)

L2

(1=, 5 (B7))o

H( [th) D(l)))sz =0(e n).

Therefore, we deduce from the relation |[ul|z: < %Hu e~ || 1, valid for all uw € APH*(Q) and h > 0, and
from o h%)(A?,h(l)) = e_%fwg)e%f, resulting from (58) and (60), that there exists ¢ > 0 such that for all
ie{l,...,m?} and h small enough,

H(l - W;(Ll)) < % H( 1- w[o7h%)(A?}fl)))% o O(e ).

This ends the proof of 2b.

Step 2: Proof of item 3. The fact that the family (ux)y—y . mg is uniformly linearly independent is a
consequence of Lemma 28 together with (100). Item 3b follows from items 1 and 2b together with the
relation

(M 1.m09) 1 = () = DL = 19) s +(19) 12 (103)

holding for f,g in A’L?(Q) and ¢ € {0,1}. Finally, the fact that for h small enough, Ranw}(LO) =
Span(ﬂ,(bo)ﬂk, k = 1,...,m8) and Ranﬁ}(}) = Span(ﬂ,(Ll)wi, i = 1,...,m?) are consequences of items
2a, 3a and 3b together with Lemma 23. O

4. On the smallest eigenvalue of LD :(0)

This section is dedicated to the proof of the following theorem.

Theorem 2. Assume that the assumptions (A0) and (Alj) are satisfied. Let Ap be the principal eigenvalue

of —L?,;l(o) (see (8)). Then, denoting by Aaj, the second smallest eigenvalue of —LJ?;L(O), there exists ¢ > 0

such that in the limit h — 0:
A=A O(e™h). (104)

Moreover, when (A2j) is satisfied, one has in the limit h — 0:

=

S 9.(2)(det Hessfloa())

A, = 2€0€1N00 o 7 (FG(1) = f(z1)) (1+0(Vh)) (105)

VT h > (det Hessf(x))fé

rEarg minc1 f

where we recall that x1 € argming, f. Finally, when (A4j) holds, the remainder term O(V'h) in (105) is
actually of order O(h) and admits a full asymptotic expansion in h.



Remark 44. Without the assumption (A4j), we are not able to prove an asymptotic expansion in Vh of
the remainder term O(vV'h) in (105) except in some specific cases, see Theorem 3 below or [27, Proposition

C.40].

Let us mention that sharp asymptotic estimates when h — 0 of the principal eigenvalue of —L?’h(o) have
been obtained in [23,17,1] in the Dirichlet case and in [37] in the Neumann case. However, these results
do not apply under the assumptions considered in Theorem 2. When Q = R? or when € is a compact
Riemannian manifold, sharp asymptotic estimates of the second smallest eigenvalue of —Lgc?;l have been
obtained in [30,31,38,39,28,40,41].

The analysis led in this section will also provide lower and upper bounds for the mg small eigenvalues of
—L?’h(o) (and not only Ap) under the sole assumption (A0). This is the purpose of Theorem 4 below.

Remark 45. Combining Theorem 2 and Proposition 6, under the assumptions (A0), (A1j) and (A2j), one
obtains that in the limit h — 0:

[N

vrh > (det Hessf(z))
1 x€arg ming, f

E,, [to] = — = er FGED)=F@0) (1 4 O(Vh)).

An S 9uf(2)(det Hessfloa(z))”
2€0C1NONQ

W=

In some specific cases, one can drop the assumption (A2j) in Theorem 2 and still obtain a sharp asymptotic
equivalent of A\, when A — 0. Indeed, the arguments in the proof of Theorem 2 also give the following result:

Theorem 3. Assume that the assumptions (A0) and (A1j) are satisfied. Assume moreover that for all j €
{2,...,N1}, 9C1 NOC; =0 (this last assumption is for instance satisfied when Ny = 1). Let us define,

(S

Z 8nf(z)(det Hessf|ag(z))_

when OC; NON # 0, ay = 2€0C1No% , else, ay := 0,

VT 3 (det Hessf(z)) 3

z€arg ming, f

Z IA_(2)|(det Hessf(z))

1 zeaCinusPnO
when 0C; NUTPNQ #0, az := — e , else, as =0,

2m > (det Hessf(x))fé

rEarg minc1 f

(S

where A_(z) is the negative eigenvalue of Hess f(z) (notice that a1 and as cannot be both equal to 0 since
from Proposition 15, 9Cy NUT® # 0). Then, one has when h — 0:

%
Vh

where the two remainder terms O(h) admit a full asymptotic expansion in h.

Ap = (1+0(h)) + az (1+O(h))| e 7 FGE)=(z2)

This section is organized as follows. In Section 4.1, one gives the quasi-modal estimates which are used
to prove Theorems 2 and 3. Section 4.2 is then dedicated to the proof of Theorems 2 and 3.

4.1. Estimates of interactions between quasi-modes

The main result of this section is Proposition 47 which gives the quasi-modal estimates in L2 (£2) needed to
prove Theorem 2. This section is divided into two parts. In Section 4.1.1, one gives the asymptotic estimates



, which are then used in the proof of Proposition 47. In

of the boundary terms (/F{/;j one*%f)
je{1,...,.m}

b
Section 4.1.2, one states and proves Proposition 47.

For future references, let us define the constants: for all j € {1, ey mlﬁ},

b 7T /20, F(2;) (det Hessfloa(z)) /" if 2; € 09,
! 7T¥\/|>\_(Zj)| |det Hess f(z;)|~1/* if z; € Q,

where A_(z;) is the negative eigenvalue of Hess f(z;).

(106)

4.1.1. Asymptotic estimates of boundary terms for (%)je (1,...m7}
The following boundary estimates will be used several times in the sequel.

Proposition 46. Let us assume that (A0) is satisfied. Let us consider j € {1,...,m}, an open set ¥ of L,
and F € L*(0Q,R). Then, there exists ¢ > 0 such that one has in the limit h — 0:

0 ifje{mP?+1,...,md},
/szj nenl = O(e’%(f(zf)“)) ifje{l,...,mf?} and z; ¢ %,
z O(h%e*%f@j)) ifj € {1,...,m?9} and z; € X,
where {/;j is introduced in (100) and m$ is defined in (18). Moreover, when j € {1, RN m?Q}, zj € X, and

F is C* in a neighborhood of z;, it holds

/F{z?j ne il = p%T e 1@ (B F(z) + O(R)),
b

where the remainder term O(h) admits a full asymptotic expansion in h and B; is defined by (106).

Proof. Let ' € L*>°(99Q,R). From (100) and (77), the quasi-mode {Ej is supported in Q for j € {m9? +
1,...,m$} and thus:

Vj e {m?QH,...,m?},/F{/?j.ne*%f =0. (107)
b

Let us now consider the case j € {1,...,m?}. Notice that one has for all 4 small enough, from the trace
theorem, (100), (92), and (91),

1
[ripmeit= [ Fg et —oUla( [ e t)
>z supp 6;N% supp 6,13

—o(m)( / e*%f)%, (108)

supp 0;NZ

where p is independent of h. Therefore, since z; is the only minimum of f on supp§; N 0L, if z; ¢ 3, one
has in the limit h — 0:

/ng n et = O kUGED+) (109)
b



for some ¢ > 0 independent of h.
Let us now consider the case j € {1,...,m??} and z; € ¥. One has:

/quj-ne_%f

P

F¢>j~ne_%f

U— U~

F(Ej,wkb ne il 4 /F (<l~5g - (Ej,wkb) “n 6_%f, (110)
S

where qzj,wkb = cj(h)ejug-’lzjkb is defined in (99). From (95), let us recall that in the limit A — 0, uf&)kb =

e (a; d(f —®;)+O(h)) on suppb; with @; =1 on dQNsupp6;. Thus on QN supp b;, using also (87),

n~u§.7ll)ukb =e ¥ On(f—2;) (1+0(h)) =20, f e~ w(f=f(=) (1+O(h)). Thus, the term /F(Ejﬂukb% e
5

—

appearing in the right-hand side of (110) satisfies in the limit 2 — 0:

/F(Ej’w“.ne_%f:cj(h) / F9ju(1) b-ne‘%f
S

j,wk
SNsupp 6;
=¢;(h) / 20, f F 0; e~ #2I=1ED) (14 0(h)) (111)
YNsupp 65
= 0(ey(h) / 20,16, H&I~1G0)
9QNsupp 0
— O(cj(h) st e—%ﬂzﬂ) — O(h"T" e W TG, (112)

where the last line follows from {z;} = argminggneuppe, f5 05(2;) = 1, Laplace’s method, and ¢;(h) =
O(h’%) according to (98). When z; € ¥ and F is C* in a neighborhood of z;, the same arguments
applied to (111) yield, in the limit h — 0:

200fG)TE L a i (s
\/det Hessf|,99(zj)h € (F(z) +O(h)), (113)

/F%wkb me vl = ¢;(h)

P

where the remainder term O(h) admits a full asymptotic expansion in h (which follows from Laplace’s
method). Besides, from the trace theorem and Lemma 40, the second term in the right-hand side of (110)
satisfies in the limit A — 0:

/F (65 — Gjwks) - el = O(h*™) e il ), (114)
b

The first part of Proposition 46 then results from (107)—(110), (112), and (114), and its second part from
(110), (113)—(114), and from the asymptotic estimate of ¢;(h) given in (98) which yields, when h — 0

~ 2 at \/20, j a3 1
/ij e il =_T 0 f(Z])1/4 h™3 eiﬁf(zj)(F(zj)JrO(h)).
J (det Hessf\ag(zj))

This concludes the proof of Proposition 46. 0O



4.1.2. Quasi-modal estimates in L2 (£2)
We are now in position to prove Proposition 47 which will be crucial to prove Theorem 2. This proposition

allows indeed to study accurately the singular values of the restricted differential V : Ran 71(0) — Ran 77(1)

and hence the low lying spectrum of — LD ©)

D(O) (

. The square of its smallest singular value is indeed E)‘h’ where

An is the principal eigenvalue of L see (8) and Proposition 4).

Proposition 47. Let us assume that (A0) holds. Let (ur)ieqy,.. moy (Tesp. (&J’)je{l g}) be the family of
quasi-modes for —Lf D.(0) (resp. —L?}fl)) introduced in Definition /2. Then, there exists g > 0 such that
for all e € (0,e9), for allk € {1,...,m{} and j € {1,...,mlﬁ}, there exists e € {—1,1} independent of
h such that in the limit h — 0,

.....

~ 7 1 C hpjrk 7%(f(j(a:k))*f($k)) 1+ O h . = . ’
(Viig, )2 = {gﬂvk 3k € ( (h)) Z.fZ] J(Cck) (115)
! if 2 ¢ (),
where all the remainder term O(h) admits a full asymptotic expansions in h,
L ifziejlxy) N,
Pik=9 5 . .( : (116)
-1 ifzy € j(zr) NON
and
By
Cik= g (117)

( 3 (det Hessf(z)) %) v

rEarg minE,€ f

where the constant Bj is defined in (106), and (Ex)peqr,.. mgy i defined in Section 2.3 and labeled in
Definition 41. Finally, if z; € j(zx) N O (and thus, it holds necessarily k € {1,...,Ny}, see (46) and (34)
for the definition of N1 ), one has €, = —1.

Proof. The proof of Proposition 47 is divided into three steps.

Step 1. Let k € {1,...,mf} and j € {1,..., m{ } Let us consider the case z; ¢ j(zx). According to Defini-
tions 31, 36 and 42, one has that for all j € {1 m$}, the quasi-mode z/)J is supported in B(z;,2e1) N Q.
Moreover, from (65), (69), and Definition 42, one hab supp Vx5, “' NB(z;,2e1) = 0 and thus (Vay, wj> =0.

Step 2. Let us now deal with the computation of the terms (Vﬂk,%ﬁgﬂ for k € {1,...,m{} and j €
{1, ce m?} such that z; € j(zx) N Q. In this case, we follow the proof of [31, Proposition 6.4], the only

difference being that j(zj) and argmin «.s1 [ were both reduced to a single point there. Let us give a

/ Vg g e

B(z;,2¢e1)

Supp X,
proof for the sake of completeness. One has:

(Vak,@lj)% :/vak.gj el — (118)

From (66)-(67), it holds arg ming, v f =argming, f. Thus, using Laplace’s method together with the
fact that ming-f = f(zx), one has in the limit h — 0:



/(X;’fl)%*%f:(wh)%e*%f@w > (detHess f(x)) P (1+0(h). (119)
Q

rEarg minEk f

Let us now give the estimate of the numerator of the right-hand side of (118).

To prepare this computation, let us first recall that the set B(z;,2¢1) N {f < f(z;)} has, according to
(63), two connected components. Since z; € UT® (see Definition 13), exactly one of these two connected
components intersects — and is then included in — the critical connected component ](xk) = E; associated
with z, (see Definition 13 and (45)). Moreover, the set B(z;,2e1)\W4 (z;), where the stable manifold W, (z;)
has been defined in (80), has also two connected components and one of them contains the connected
component of B(zj,2¢1) N {f < f(z;)} which intersects Ej, namely B(zj,2e1) N Ej. Let us denote by
Bj,k the connected component of B(z;,2e1) \ W4 (2;) which contains E;. Since supp QNSJ- C B(z;,2¢1), one

g,€1

has, using (68), supp (VX" - ¢;) C B(zj,2e1) NEj C Bj 1. Therefore, by an integration by parts, it holds:

/VXZ’E1 Gy e =~ /V(1 —XPT) by e
Q

Bj,k

- /(1_Xi’sl)d*(eﬁf5]‘) - /(I_X?&)gj'ne*%f

Bjk 9B,k
1 ~ ~
= [ =) e H 3,35 — / 3 omet, (120)
Bj.k 9B MW (25)

since gj =0 on 0B(zj,2¢1). From (79), it holds for h small enough,
0535 = O(e™F) in L2(),

where ¢ > 0 is independent of h. Since moreover f > f(z;) — 2¢ on B;; Nsupp(l — x3°*) by (66) and (67),
there exist ¢ > 0 and g9 > 0 such that for € € (0,), in the limit A — 0:

- / (1— X?El) e—%f d},h(gj — O(e—%(f(zj)'*'cl))' (121)

Lastly, using Lemma 40 and the trace theorem, one obtains in the limit h — 0:

6Bj,kmw+(zj) aBjﬁkﬂW_'_(zj)
d—1
4 cj(h)(mh) = 6_%,f(zj)<l+0(h))

[N

(det Hess f\w+(Zj)(Zj))

d—2 1
_ WA ()l e G (14 0(h)),
| det Hess f(z;)]1

where A_(z;) denotes the negative eigenvalue of Hess f(z;). The second equality follows from Laplace’s
method and from the fact that

ul =T %y o) (@ n+O(h) = e FUED |y, Ly (@ n+ O(h))



and @;(z;)-n = %1, see indeed the lines between (82) and (83). The last line follows from (86). The asymptotic
estimate of the term (Viy, ;)2 is a consequence of the latter estimate together with (118)-(121) which
gives in the limit A — 0:

ﬂ—%M_(Zj)\% h—3% e— % (F(z)—f(xk))

(Vitg, )12 = + T 1
|det Hessf(z;)|* (ch@rg min, f (det Hessf(z)) 2)

- (1+0(n)),

2

where the remainder term O(h) admits a full asymptotic expansion in h (which follows from Laplace’s
method). This proves Proposition 47 for all k € {1,...,mf} and j € {1,...,m$} such that z; € j(z;) N €.

Step 3. Let us now deal with the computation of the terms (Vﬂk,izjﬁgu for k € {1, .. .,mg} and j €
{1,...,m{} when z; € j(z1) N 0. Notice that according to Definition 42 and (65) and by definition of the
lexicographic labeling introduced in Definition 41, this situation can only occur when k € {1, oo Ny } One
has

(Vi ¥) 12 = /vak e wd =& (122)
Q

Notice that (119) also holds here for fQ(XZ’El)%_%f. Since supp ¢; C B(z;,2¢1) N €, the numerator of the
right-hand side of (122) can be rewritten as

[ aeti=a [ va-xg) g et
Q

B(z;,2e1)NQ

=" / (L=xi™) a7 (65 ¢ ) - / (1= x)g; ne

B(z;,261)NQ 0(B(z;,261)NQ)
1 _1p o T ~ 1
~Th / (L—=xy™) e nl dj o, — / ¢j-ne il (123)
B(Zj,261)ﬁﬁ 6B(Zj7251)maﬂ

From (94), there exists ¢ > 0 such that for h small enough, d}’hgj = O(e™#) in L%(Q). Since f > f(z;) —2¢
on B(z;,2¢1) Nsupp(l — x3 ") by (64) and (66), there exist ¢’ > 0 and g9 > 0 such that for € € (0,¢), in
the limit h — 0:

% / (1—xy") e_%fd;‘c’hzgj = O(e_%(f(zj)“l)). (124)

B(zj,2e1)NQ

Furthermore, applying Proposition 46 with 3 = 0Q and F' = 152, 2:,)noq, one has in the limit & — 0:

3, ometl = T \20.f(2) s —HIED (14 0(h)). (125)

1/4 e "
OB(z;,261)NON (det Hessfloa(z)))

Therefore, injecting the estimates (119), (124), and (125) into (122), one obtains in the limit A — 0:



- ~1./20, f(z.) h—de~#(f(z)=F(@x))
(Vg ¥j)r2 = — i - 1) ¢ T (1 + O<h)) ;
(det Hess flan(z;))* (ZIEarg ming, f (det Hessf(z)) )

where the remainder term O(h) admits a full asymptotic expansion in h (which follows from Laplace’s
method). This is the desired estimate according to (117) and (106). This ends the proof of Proposition 47. O

=

4.2. Restricted differential V : Ran W,(LO) — Ran W;Ll)

This section is devoted to the proofs of Theorems 2 and 3. In this section, one also gives lower and
;1(0), see Theorem 4 below. As explained above, the idea

is to estimate the m{ singular values of the restricted differential V : Ran W;LO) — Ran w,(ll) (Ran W,(LO) and

upper bounds on the mf)z first eigenvalues of fL?

Ran 77,(11) being endowed with the L2 inner product) since according to Lemma 23 and Proposition 4, the
square of those singular values are the m{! first eigenvalues of —%L?;l(o).
This section is organized as follows. Section 4.2.1 is dedicated to the definition of the matrix of the

1)

restricted differential V : Ran w,(lo) — Ran W}(L and preliminary asymptotic estimates on its coefficients. In

:(0)
h

Section 4.2.2, lower and upper bounds for the mgz smallest eigenvalues of fL? are obtained. Finally, one

proves Theorems 2 and 3 in Section 4.2.3.
4.2.1. Matriz of the restricted differential V : Ran W}(LO) — Ran ﬂél)

Definition 48. Let us assume that (A0) is satisfied. Let (ur)peqr,... mgy (TeSP- ({EJ) mlﬁ}) be the family

Je{tL,..,
of quasi-modes for —L?;l(o) (resp. —Lﬁ}fl)) introduced in Definition 42. Let us denote by S = (Sj i)k the
m$ x m$ matriz defined by: for all k € {1,...,m$} and for all j € {1,..., m$’}
Sj,k = <V7T}(10)ﬂk,7r}(11)'(Zj>L120- (126)

Notice that from (59), it holds for all k € {1,...,m§} and for all j € {1,...,m$}}:
Sik = (Vm e m 05) 1y = (Vi)

Then, using the identity <Vﬂk, ﬂél)zl)vj>L2 = <V1~Lk, {Z;j>L2 + <Vﬂk, (ﬂ}(ll) — 1){[1}>L2 together with item 2 in
Proposition 43 and Proposition 47, one gets the followinwg estimates on S: h

Proposition 49. Let us assume thatjAO) is satisfied. Let S be the matrix introduced in Definition 48. Let
ke {l,...,ml} and j € {1,...,m$’}. Then, there exists ey > 0 such that for all e € (0,2¢) (where ¢ is
introduced in (65)), there exists ¢ > 0 such that in the limit h — 0:

if zj € j(zr), Sjk=0 (e‘%(f(j(“))_f(m’“)“)) )

72 €3, Sy = (Vi) (106 )

=&jn Cj,k hPik e*%(f(j(wk))*f(ﬁc)) (1 + O(h))

where €5, € {=1,1}, pjr € {—3,-3} and C;i have been introduced in (115), (116), and (117) (sece
Proposition 47). Moreover, when z; € j(x) N0 (and thus k € {1,...,Ny}), one has €, = —1.

In order to study the singular values of the matrix S, let us introduce the following matrices:



e Let S = (§J;€)J . be the real value ml5 x mf¥ matrix defined by

~ S if z; €] ,
Sipr= {0k T f(x’“) (127)
0 if zj ¢ j(xr).
 Let D be the diagonal m$ x m$ matrix defined by
Vk e {l,...,m{}, Dy = Rk = (FG@)=F(#)  where qr = mln {pj ks (128)

J» 2 €§(zk)

and where p;  is defined in (116). Notice that when the assumptions (A1j) and (A2j) are satisfied, one
has in the limit A — 0 (see (51) together with the fact gy = —2 since j(z1) NN = 9C; N IN # () which
follows from (41) and (A2j)):

D= h*%e*%(f(.i(rl))*f(ml)), (129)

and for some ¢ > 0 independent of h, it holds:

for all k € {2,...,m{}, %:O(e_%). (130)

« Let C be the real value m1 x m§! matrix defined by
C:=SD " (131)
The coefficients of C are given by C;x = - , for all (j,k) € {1,.. mlﬁ} x {1,...,m{}. They satisfy,

according to Proposition 49 and (128), in the hmlt h—0:

~ {sj,k Cjp P (14 0(h))  if 2; € j(x), 152)

.
’ 0 if z; ¢ (1),

where p; . is defined by (116), €, 5 by (115) and C; by (117). From (132), one has when h — 0, C=0(1)
which means that there exist K > 0 and hg > 0 such that for all h € (0, hg):

sup ‘5Jk| < K. (133)
(G,k)E{L,....m@}x{1,....mF}

Under (A0), by definition of the matrices S, S, D and C (see Definition 48 and Equations (127), (128),
(131)), there exists ¢ > 0 such that the matrix (S — S)D~! satisfies in the limit h — 0:

(S—S)D™t =0(e#). (134)
The following lemma will be needed in the sequel.

Lemma 50. Let us assume that (A0) holds. Let C be the matriz defined in (131). Then, there exist ¢ > 0
and ho > 0 such that for all h € (0, hg):

Vo € ng, HémHQ > cHxHQ, (135)

where ||.||2 denotes the Euclidean norm on R, K € N*.



Proof. The proof of Lemma 50 is divided into two steps.

Step 1: Block-diagonal decomposition of C. According to (131), (128) and (127), C has the form, up to
reordering the z; for i € {1,...,m{}},

0 0
C = [C]a 9 I
0 [Cl
where:
« the block matrix (0,0) on the first line corresponds to the rows of C' associated with j € {1,...,m¥}

such that z; ¢ Uzqilj(xk);

¢ [Clq is a matrix of size Card(Ug;lj(xk)) x Ny (where Ny is defined in (34)). The coefficients ([é]a)j,k =
5j7k are associated with O-forms @y, for & € {1,...,Ny} (see Definition 42 and (65)) and with 1-forms
Jj for j € {1,...,m%} such that z; € UNL j(a);

+ [C]. is a matrix of size Card( U?ENH_l j(zr)) x (mf — Ny), which has the following block diagonal form:

[Clea 0 0
N 0 [Cles 0
[C]c = . . )
0 0 ... [Clen,

where for £ € {1,...,N;}, [CN']M is a matrix of size Card (Uk,j(zk)CCl _](xk)) X (Card(argminaf) —
1), with the convention that [C~’]C,g does not exist if argming; f = {z¢}. Let us recall that for £ €

{1, .o, Ny }, Cy is introduced in Definition 12. For all £ € {1,..., Ny}, [5]C7g contains the non zero terms
of C' associated with 0-forms @y, and 1-forms Jj with (i) @ such that supp(uy) C {X¢ = 1} (according
to (70)); (ii) for those g, j is such that z; € j(x) C Cp. This explains in particular the block structure
of [C]. since by construction §j’k =0if z; ¢ j(xx) (see (131) and (127)).

From [28, Section 7.3 and Equation (7.4) in Section 7.2], for all £ € {1,...,N;} there exist ¢, > 0 and
ho > 0 such that for all h € (0, hg) and for all z € RCard(arg mingg f) —1

I[Cle.e 2ll, > celll>
Thus, there exist & > 0 and ho > 0 such that for all h € (0, ho) and for all z € R™0 —N1
[1Ce 2, = allz]l2- (136)
For any z = *(y,2) € R™ (y € RNt and z € R™—N1), it holds
IC |2 = [[IClayls+ [Cle 2|2 > ||1Cla yll + a?)12]13-

Therefore, to prove (135), let us show that there exist 5 > 0 and hy > 0 such that for all h € (0, hg) and
for all y € RN1,

11Cayll, = Blyllo. (137)



Step 2: Proof of (137). Let us divide the family (Cg)reqi,...n,} into K groups (K < Nyp):

K
{Ci,o G} = (JHC, G
/=1

which are such that for all £ € {1,...,K}, the set Uf"zl @ is connected, and for all ¢ € {1,...,N;} such
that C, ¢ {C{,...,C,}, CgN Ufil C_ﬁ = (). Then, by definition of the matrix [C], (see Step 1 above), up to

a reordering, [C], has the block-diagonal form

[Clax 0 0
- 0 [Cla2 0
[C}a = . ’
0 0 [Clax
where for ¢ € {1,...,K}, [Cla.e is a matrix of size Card(U:;kaeufilqj(xk)) X ke. For £ € {1,...,K},

the coefficients ([5]a7g)j’k = 5j,k are associated with 0-forms wy, for k € {1,...,N;} such that x; € U?’“’=1C§
and with 1-forms zzj for j € {1,...,m$} such that zj € UZ‘I L et ng(mk). Therefore, to prove (137),

=hPRCY =1
let us show that for ¢ € {17 . K}7 there exist 8¢ > 0 and hg > 0 such that for all h € (0, hg) and for all
y € R™,

[(Claeyll, = Bellylla-

In view of the block structure of [C],, to prove it, one can assume, without loss of generality, that K = 1
which is equivalent to the fact that the set U;\I;1C is connected. Let us thus assume that U3N;1§ is
connected and let us then write

[Cla = A+ O(h), (138)

where A is a matrix which has the same size as [C],, and which satisfies, from (132), for all k € {1,..., Ny}
and all j such that z; € Ug;lj(xk),

Ejk Cj,k if Zj Gj(:z:k) N ox,
if j(ak) NOQ#D, Ajr =S O(h7)  if 2 € j(z1) N, (139)

0 if zj & j(wk),
Ejk Cng if Zj Gj(xk),

140
0 it 2 ¢ Jan), e

lfj(xk) NoN =0, Aj’k = {

where, we recall, €, € {—1,1} and C; ; > 0. To prove (137), it is sufficient to show that (137) holds for A
instead of [C],, i.e. that there exist 8 > 0 and hg > 0 such that for all h € (0, ko) and for all y € RN,

1Ay, = Blyla- (141)

Before proving (141), let us label the family (Ck)keqr,...n,y as follows. According to Lemma 17, one can
assume without loss of generality that C; is such that there exists z € UT™ such that

2e0C\ (U, 0C,). (142)



Moreover, if dC; N 9N # O (recall that 9C; N AN € AC; \ (UN2,8C,)), one chooses z such that

z € 0Cy N oA (143)
Let us now label (C;) eq2,...,n,} such that for all & € {1,..., Ny}, U§:1C is connected. Let us prove (141)
by induction on k € {1,...,N;} (the proof is similar to the proof made in [28, Section 7.3] in a different

context). For k € {1,...,N;}, one denotes by P}, the following property: there exist a, > 0 and hy > 0 such
that for all h € (0,h) and for all y € RN,

k
Ayl > ax 3o
=1

Let us prove P;. Using (142) and (143) together with (139) and (140), the j-th row of A equals

(Ej,l 0'71,0,...,0),

where j is such that z; € C; \ (U}X,0C,). Thus, one has for y € RN, |

Z |€j71 Cj71y1|. Therefore, 7)1

is satisfied. Let us now assume that Py is satisfied for some &k € {1,...,N; — 1} and let us prove Py ;.
If 9Cry1 N O # O, there exists j € {1,...,Ny}, such that z; € 8Ck+1 N 8(2 Thus, usmg (139), one
has (Ay); = €jk+1C)jk+1Yk+1. Therefore, one obtains yk_HC’] kel = | Ay) | HAyH2 Applying the

property Py, one gets min(C7 ., o) Sty < 2HAyH2 This implies that the property P is satisfied.

Let us now consider the case 9Ciiq1 N IQ = . Using (140) together with the fact that the set
U;H_ll C; is connected, there exist £ € {1,...,k} and j such that z; € 0Cy N OCiyq. Thus, (Ay); =
Ajoye + €jk+1C; k1 Ykt1. As a consequence, since there exists M > 0 such that |Ajo] < M for all h

small enough, one obtains using the triangular inequality and the property Py,

2 2(1 + M?
i < o ([ + a2 7) < 2EEM0 2
J,k+1 jk+1

Using again the property P, one gets that min (m, ak) Z’ZJrll y? < QHAyHg Therefore, the prop-

erty P41 is satisfied. This ends the proof of (141) by induction. Together with (136) and (137), one then
obtains (135). This concludes the proof of Lemma 50. O

As a consequence of (135), the rectangular matrix C' admits a left inverse C~1 which satisfies

sup (C™1)ml < M, (144)

(G,k)e{L,....mZ}x{1,....m$}

for some M > 0 independent of h. This implies that, using (134) and (131):

S=(I+R)S where R=(S—S8)D7'C~'=0(e#). (145)
4.2.2. On the m§} smallest eigenvalues of —L; h(o)
This section is dedicated to the proof of the following proposition which gives lower and upper bounds

for the m§} smallest eigenvalues of LD (0).

Theorem 4. Let us assume that (A0) holds. Let j be the map constructed in Section 2.3. Let us reorder the
set {x1,... ,Z‘m(f)i} such that the sequence



(Sk)ke{l ,,,,, mg} T (f(-](xk)) - f(xk))ke{L...,mgl} (146)

is decreasing, and, on any T C {1,..., m{} such that (Sk)kez is constant, the sequence (qi)rez is decreasing

(where the qi’s are introduced in (128)). Finally let us denote by A, for k € N*, the k-th eigenvalue of

—L?’h(o) counted with multiplicity (with these notations, A\, = A, see (8)). Then, there exist C > 0 and

ho > 0 such that for all k € {1, cee mf)z} and for all h € (0, hg),
o1 pit2ae ef%Sk < < C hi+2ak 6*%51« )
The reordering of {1,..., 29} introduced in (146) is only used in Theorem 4: except in this theorem,
the labeling of {z1,..., 2,0} is the one introduced in Definition 41. A direct consequence of Theorem 4 is
the following.

Corollary 51. Let us assume that (A0) and (Alj) are satisfied. Then, the estimate (104) is satisfied.

Before starting the proof of Theorem 4, let us recall the Fan inequalities in Lemma 52 (see for instance
[42, Theorem 1.6] or [43]).

Lemma 52. Let A € M, ,,»,(C), B € M, n,(C) and C € M, ,,(C). Then, it holds

where, for any matric T € My, o(C), |T|| = m(T) > --- > n,(T) denote the singular values of the matriz
T and where ||T|| := /max o (*TT) is the spectral norm of T.

Let us recall that from item 3 in Proposition 43, there exists hg > 0 such that for all h € (0, hy),

Ranw,(lo) = Span(wgo)ﬂk, k=1,..., mg) and Ranw,(ll) = Span(w,(ll){/;i, i=1,..., mlﬁ)
where the projectors TF;LO) and 7T}(Ll) are defined in (60). Let us define T .= (W}(Lo)ﬂk)1<k<mg and ¥ :=
==

(ﬂ';(ll)lzj )1§j§mlﬁ- For i € {0,1}, let B; be an orthonormal basis of Ran W,(j) and let us define the matrices

Co := Matg By and C) := Matg B. (147)

Notice that from item 3 in Proposition 43, there exist K > 0 and hg > 0 such that for all h € (0, hp):

sup |(Co)l,k| + sup |(Cl)m—| <K (148)
(k)ef1,...mg}? (i.5)€{1,...,mE}?
and
sup ’(C'O_l)l,k’ + sup ‘(C’fl)iyj‘ < K. (149)
(Lk)e{1,...m2}? (6.9)€{1,....m¥}>

A consequence of the Fan inequalities is the following.

Lemma 53. Let us assume that (A0) holds. Let us denote by A\ n, for k € N*, the k-th eigenvalue of fL?’h(o)
counted with multiplicity and let S be the matriz defined in (127). Then, there exists ¢ > 0 such that for all
ke {l,...,m}, one has in the limit h — 0:



h =~ 2 _c
MNen =5 [nmgﬂ_k(sco)} (14 0(e™#)), (150)
where ||SCy|| = m (SCp) > --- > N 0 (5Cy) denote the singular values of SCy.
D,(O)

Proof. The m$ smallest eigenvalues of —Ly are the eigenvalues of fLD (O)\Ra o =
1’171'}

b d*_t 1|Ranw<1) dlgan ©- Moreover, since the L2, adJomt of dl, 0 : Ran 71'( ) 5 Ran 77,(1 is d’l 1|Ram UK
Ran 77(1) — Ran 7r( ) , one has that the m{’ smallest eigenvalues of —L; ’( ) are given by & 5 times the squares
of the singular values of d|R : Ran 7'('(0) — Ran 7T§L ) Thus, the ergenvalues of LD 0) |R (o) are given

by & 5 times the squares of the smgular values of the matrix @) := Matg, 5, (d|R (0)). In auddltlon7 by defini-

tion of the matrices Co and C; (see (147)), one has Q = *Cy S Cy. By (145), it holds Q = *Cy (I+R) S Co.
Furthermore, from (145), there exists ¢ > 0 such that in the limit A — 0

||I+RH =1 —I—O((g_%)7 ||(I+R)—1H -1 +O(€_%>7
and from item 3b in Proposition 43,
[Cill = 1+ 0(e ), (*Cr) | =1+0(e ),

where we recall that ||TH := y/max o (!TT) is the spectral norm of a matrix 7. Therefore, it follows from
the Fan inequalities (see Lemma 52) that the singular values of Q are, up to multiplication by 1+ O(e™#),
the singular values of S Cj. This concludes the proof of Lemma 53. O

Remark 54. Notice that in general, the spectral norm of the matriz Cy defined in (147) does not equal

1+ O(e™#) when h — 0. For instance, in the case when f is a one-dimensional symmetric double-well
potential with the saddle point lower than mingq f, it can be checked that the Gramian matriz of the functions

uy and ug introduced in Definition 42 converges when h — 0 towards the matriz <c11 011 ) , where 0 < ¢ < 1.

Let us now prove Theorem 4.

Proof of Theorem 4. Theorem 4 is equivalent, according to Lemma 53, to the existence of C' > 0 and hg > 0
such that for all k € {1, ceey mg} and for all h € (0, hp)

C'h®e w5 < o, (8Cy) < Ch¥e w5 . 151
§+1-k

According to (128) and to the ordering of k € {1,...,m§} introduced in the statement of Theorem 4, the
singular values of D satisfy for h small enough (see (128) and (146)):

k€ {1,....m3}, o1 _i(D) = Diyps = h¥e™ . (152)

Using the fact that SCy = CDCy (see (131)) together with (133), (148) and Lemma 52, one obtains that
for all k € {1,...,m}

77m8+1—k(§CO) < HGH HCOH 77m09+17k(D) = O<Dk,kz>7 (153)

which provides the required upper bound in (151). To obtain a lower bound on the singular values of §C’0,
we write D = C~1 5§ Cy CyL. Using (144), (149) and Lemma 52, one has for all k € {1,...,m%},



77m§,2+1—k(D) S Hé—lH HCO_1H nm§)2+1—k(§co) = O(ngl+1—k(D))- (154)
Then, (151) follows from (152), (154) and (153). This concludes the proof of Theorem 4. O

To prove Theorem 2 and to ease upcoming computations, we replace in the Fan inequalities (150) the
matrix Cy by another matrix which has a simpler form than Cj: this is the purpose of Lemma 55. Before
stating Lemma 55, let us choose a specific orthonormal basis By of Ran 7T§LO) to define Cy in (147). Recall

that when (A1j) holds, the well C; (see Definition 12) satisfies: for all z € U$ \ {z},

FG(@) = (@) < f((21)) = flan).

7
Let us define e; := H - Null‘ . According to item 2a in Proposition 43, there exists ¢ > 0 such that in the
w2

limit h = 0, e1 = (1+O0(e"#)) ﬂéo)ﬂl. Then, let us choose {ea, ..., ene} such that By := {e1,e2,...,en0}

is an orthonormal basis of Ran 71'}(10). In that case, the matrix Cy defined in (147) satisfies in the limit & — O:

14+ 0(e %) ifk=1,
Vk € {1,...,m5}, (Colk1 = TOleTE) (155)

if k> 1.

Let us now define the mf} x m§} matrix Co by:
~ 1 ifk=1

VEe{l,....m{}, (Copa:= ’ 156
{ 0} (Colka {0 k1, (156)
V(k,6) € {1,...,m$} x {2,...,mE}, (Co)re := (Co)r.e- (157)

Lemma 55. Let us assume that (A0) and (Alj) are satisfied. Let us denote by Ay, for k € N*, the k-th
etgenvalue of —L?;L(O) counted with multiplicity and let S be the matriz defined in (127). Then, there exists
c > 0 such that in the limit h — 0:

h
Ak = 5

g1 (3G0)] (L 0(e ),

where ||SCol| = m (SCy) > -+ > Nmg (SCo) denote the singular values of S Co and Ay, = A, is the principal
eigenvalue of —Lﬁ’h(o) (see (8)).

Proof. Let us prove that there exists ¢ > 0 such that in the limit h — 0,
[(Co)™Co|| = 1+ O(e™7) and ||Cy ' Co|| = 1+ O(e™ 7). (158)

1+ 0(6_%) [00]4

From (155), the m{ x m{} matrix Cy has the form Cy = ( 0 [Cols

) for some ¢ > 0. Moreover,

1 [Cola

0 [Colz ) Let us recall

that by definition of Cy (see (147)) and from item 3a in Proposition 43, Cy is invertible and thus [Co|a
1 —[Cols[Colst ~ 1, _ (1+0( ") 0

0 [00]2_1 and thus, Cy " Cp = 0 Loy )

This proves (158). Lemma 55 is then a consequence of (158) together with Lemma 53 and Lemma 52. O

according to (156) and (157), the m$ x m$ matrix Co has the form Cy = (

is invertible. Therefore, one has 5& t= (



4.2.8. Proofs of Theorems 2 and 3
This section is dedicated to the proof of Theorem 2 which gives the asymptotic estimate of the principal

D(O

eigenvalue of —L under the assumptions (A1j) and (A2j). The proof of Theorem 3 is similar, and we

will only mdlcate the appropriate modifications (see Remarks 56 and 57).

Proof of Theorem 2. Let us assume that (A0) and (A1j) hold. The spectral gap (104) has already been
proved, see Corollary 51. It thus remains to prove (105). The proof of (105) is partly inspired by the
analysis led in [28, Section 7.4]. According to Lemma 55, there exists ¢ > 0 such that in the limit h — 0:

M= 2 [ngp(80)]” 1+ 0(e ), (159)

where Cj is defined in (156) and (157). Therefore, the analysis of the estimate of \j, is then reduced to
precisely computing 7,2 (5SCo). One has:

Umgl(géo) = in }!550 y||2 (160)
yeR™0, [lyll2=1

Let us assume in addition to (A0) and (A1j) that (A2j) holds. Recall that assumptions (A1j) and (A2j)
imply that for all x € U} \ {21}, f(§(2)) — f(z) < f(j(z1)) — f(z1) and OC; N IQ # (. Then, it holds
jx1) NoQ = 0C, NI # B (see (52)). In addition, using Proposition 49 and (127), one has in the limit
h —0:

YoS= > S+ > S (161)

j=1 jizj€j(z1)NOQY Jizj€j(x1)NQ

where:

Z] :z;€§(x1)NON SJ 1 h'_7 (Z] :2;€§(x1)NON Cj21 %(f(J(zl))_f(rl))(l + O(h))a

(&
. (162)
Zjiaseitenna S = h” (Za eienne & ) e RUGED =T (1 + O(h),

where the constants C; ; are defined in (117) and where all the remainder terms O(h) admit a full asymptotic
expansion in h.
Let us first obtain an upper bound on nmg(SCO). Let us denote by yo the vector *(1,0,...,0). Then, it

holds from (160), Nye (5Cy)? HS Co yo
one obtains

||2. Using in addition the fact that from (156), one has Coyo = Yo,

[nmg (5“50)} 1Syol|2 = Z (163)

This provides the required upper bound. Notice that (163), (161), and (162) imply that in the limit A — 0,
Nont (SCo) = O(h~ e~ #UfGEN)=F @) (164)

Let us now give a lower bound on 7,0 (SCp). To this end let us consider y* € R™ with ly*[l2 = 1,
realizing the minimum in (160). Let us write y* = *(y%,y5), where ¢, € R and y} is a row vector of size
m§ — 1. We claim that there exists 1 > 0 such that for i small enough,

lysllz = O(e™ ). (165)



Let us prove (165). By definition of y* and according to (131), one has nmsz(SCo
HCDCOy H2 To prove (165), we use the block structures of the matrices C, Cy and D. Let us recall
that from (52) and (o?) since (A2j) holds, kO = Card(j(z1) N 9Q) > 1. Then, according to (131), (128)

and (127), the m? x m matrix C has the form, up to reordering the z;, i € {1,...,m$},
~ Cli © )
G- (lCh 0y 166
(& @ 1o
where:

« [C]y is a matrix of size k! x 1 where we recall that kY is defined in (53). The coefficients ([é]l)j,l =
Cj1 are associated with the function u; (see Definition 42 and (65)) and with 1-forms +; for j €
{1,...,k'} (or equivalently, j such that zj € j(z1) N 0OQ).

e [C]s is a matrix of size (m1 — kacl) x 1. The coefficients ([C]3);x = Cjx are associated with the
function u; and with 1-forms w] for j € {k9°1 +1,...,m®} (or equivalently, j such that z; ¢ j(z1)N0RQ).

« [C], is a matrix of size (mf? kacl) x (mf —1). The coefficients ([C], )J k= ijk are associated with
0-forms uy, for k € {2,.. mo} and with 1-forms wj for j € {k?“ +1,...,m?} (or equivalently, j such
that z; ¢ j(z1) N 0N).

Remark 56. To prove Theorem 3, one uses the block decomposition:

where [5’]1 is a matriz of size Card(j(z1)) x 1 associated with the function Uy and the I1-forms Jj for j
such that z; € j(x1), and [Cl is a matriz of size (mlﬁ — Card(j(z1))) x (m§ — 1) associated with the
O0-forms g, for k € {2,...,m$} and with 1-forms 1b; for j such that z; ¢ j(x1). The fact that the lower left
and upper right block matrices are zero is a consequence of the following assumption of Theorem 3: for all

jG{Q,...,Nl}, 8C1ﬂ8Cj=(Z).

From (135) and (166), [C], is injective and satisfies, for some constant ¢ > 0 and for all A > 0 small
enough,

Vo e R™ 1, H[é]za:HZ > cHxHZ (167)

This is indeed obvious by applying (135) to the vector (0, x). Let us now decompose the square matrices D
and Cj in blocks which are compatible with the decomposition of C' made in (166). According to (128), (156),

and (157), one has
o= (% ) ma=(; @) 16

where for a square matrix U of size m$, [U]s = (Uij)a<ij<mg, and [Uly = (U1j)e<j<mg- Notice that
from (129), it holds

Dy, = h*%e*%(f(j(ﬂfl))*f(m))’ (169)
and from (149), there exists M > 0 such that for h small enough,

[1Col5* || < . (170)



We are now in position to prove (165). Let us recall that by definition of y*, one has

iy (5 Co) = [15 Co (v 5) |, 2 115 Co (0. )], = 15 Co " (v, 0

Therefore, since Co(y%,0) = (y%,0) (see (156)) and § = CD (see (131)), one has using (164), (166),
and (169) together with the fact that |y%| < 1 and [C]; = O(1) (see (166) and (133)),

1S Co (0, 55)ll2 < M2 (S Co) + |CD (55, 0)]|, < 1mg (S Co) + [|[Ch D1y,

_ O(h,%ef%(f(j(zl))*f(fl)))_ (171)

Moreover, using (169) and since [C]s = O(1) (see (166) and (133)) and [50]7 = O(1) (since Cy = Co+O0(e™#)
and Cp = O(1) see (156), (157), and (148)), one has

1
AR
2

1580 (0.5, = (1€ D1y (Gl “will3 + 1€ D [Coly 5 + [C: [D]s (o]

> [[[C12 [D)s [Cols w3, — [1[Cls Dux [Coly 'y,

= ||[C]2 [D] [Cols tys|l, + O(h~Fe #UGED =Sy,

Therefore, one deduces from the latter inequality and from (171) and (167) that

IiD)s [Cols yjll, = O (I1CTalDls [Cols ‘yslz) = O(h~Fe FUGEN =/ (), (172)

In addition, since [CN'O}g1 = O(1) (which follows from Cy = Cy + O(e™#), see indeed (156), (157), (149)
and (168)), and since there exists ¢ > 0 such that [D]El = O(e%(f(j(zl))*f(“"l)*c)) which follows from (128)
and (130), one obtains from (172) that there exists 1 > 0 such that for h small enough, |"y5|l2 = Oe™ 7).
This ends the proof of (165).

We are now in position to give a lower bound on Tlmg(géo)- Notice that from (165) together with the
fact that [|y*||2 = 1, one has

lyal =1+0(e™h). (173)
Using (166) and (168), it holds,
k0C1 s
~ o0 - 2
[ (5C)] > > (CDCoy); ZD21 2 (va+ Y Coheni)
j=1 =2

where we recall that k9! is defined by (53). Using in addition (165) and (173) together with the fact that
Co = O(1), there exists ¢ > 0 such that

Ko<

|:’I7mgz<§00} >D%IZ 1 1+O ))27

in the limit h — 0. By definition of k% (see (53)) it holds



acl
Dflzc 1+oe ™)'= S D (1+0(e )’

j:z;€§(x1)NOQ

= Y 8,(1+roE )

j:z;€§(x1)NOQ
where the last equality follows from (131). Thus, one obtains the following lower bound:
e 72 - . 9
[nmg(sco)} > Y 82,1+06 ) (174)
jiz;€§(x1)NOQ

In conclusion, from (163) and (174), one has for some ¢ > 0, in the limit A — 0:

> SH+0(e ) <ne(SCo) < Z (175)

jiz; €§(x1)NON

Remark 57. In the case of Theorem 3, using the block decomposition ofé given in Remark 56 and a similar
reasoning, one gets instead of (175):

my’
ST S (1+0(e7)* <n2g(SCo) < D 5.
Ji 2;€j(=1) Jj=1

This concludes the proof of Theorem 3, using the formulas (161)—(162) to estimate the lower and upper
bounds.

Using (161), (162), and the fact that j(x1) N IQ # O, one gets

¥ S?, if j(z1) NQ =0,

Z 521 _ )i z;€j(21)NON N
=7 > S2,(1+0Wh) i jlz1) NQ 0.

jiz;€j(x1)NON

Thus, since A1,5, = Ap, using in addition Proposition 49, (159), and (175), it holds in the limit A — 0:

vl

S (V). (1+0(e 1)) if jz) nQ =0,

A Jizj €)(x1)NON _ 176
" > <va1,¢j>ii(1+0(\/ﬁ)) if j(x1) NQ # 0. (176)

Jiz;€j(x1)NON

vl

Then, from (176) and Proposition 47, it holds when h — 0:

b Z Cj%lh*% e~ 7 (FG@)=F(x1)) (1+0(h) ifjz)NQ=0,
A, = Jiz; €j(x1)NON ‘
% Z Cilh—% e~ 7 (f(z1) = f(z1)) (1+ O(\/E)) if j(z1) N Q #£0,

Jizj€§(x1)NOQ

where the O(h) admits a full asymptotic expansion in h. Since (A4j) consists in assuming that j(z1)NQ = 0,
this concludes the proof of Theorem 2. O



5. On the principal eigenfunction of —Lg;l(o)
This section is dedicated to the proofs of Proposition 58 and Theorem 5 stated below which give respec-
tively the asymptotic behavior in the limit h — 0 of /uh e i/ and Onup, on 0f.

Q
Proposition 58 gives a sufficient condition to obtain that wuy e if (and thus the quasi-stationary dis-

tribution v, see Proposition 5) concentrates in only one of the wells (Ck)ke{l,___7N1} when A — 0 in the
L(Q)-norm.

Proposition 58. Assume that (A0) and (A1j) are satisfied and ming f = ming f. Let uy, be the eigenfunction

associated with the principal eigenvalue Ay, of —L?;l(o) (see (8)) which satisfies (9). Let O be an open subset

of 2. On the one hand, if O Nargmine, f # 0, one has in the limit h — 0:

1
2

)

On the other hand, if O N arg ming, f =0, then, there exists ¢ > 0 such that when h — 0:

(det Hessf(z))

e~k mina S (14 O(h)). (177)

N

/Uh e~ 7 = pi gt ZwEOﬁargmincl !
0 (Zx@rg ming, f (det Hessf(z))

Nf=

/uh e il = O(e_%(minﬁfﬂ)). (178)
0
When (A0) and (A1j) are satisfied and when ming; f = ming f holds, Proposition 58 implies that when
h — 0, up e~ #f concentrates in the Ll-norm on the global minima of f in Cyax. Proposition 58 together

with (11) and the fact that C; = Cyax when (A1j) holds imply Proposition 9. Notice that when O = Q in
Proposition 58, one has from (177), when h — 0:

/uh e inf = pi e wming ( Z (det Hessf(:z:))fé)% (1+O(n)). (179)

Q rcarg minc1 f

The following theorem shows that, under the hypotheses (A1j), (A2j), and (A3j), the L} (9Q)-norm of the
normal derivative of the principal eigenfunction of —L?;fo concentrates when h — 0 on 02 N 0C;.

Theorem 5. Let us assume that (A0), (Alj), (A2j), and (A3j) are satisfied. Let uy be the eigenfunction
associated with the principal eigenvalue Ay, of —Lﬁ’h(o) which satisfies (9). Let F € L>®(92,R) and ¥ be an
open subset of 0N2.

(i) When XN {z,... s %00} = 0, one has in the limit h — 0:

/Fanuh 67%]0 =0 (67’71‘(2 minoq f—ming f+c)) )
=

where ¢ > 0 is independent of h.
(i) When SN {z1,..., 200} =0, one has in the limit h — 0:
1

/Fﬁnuh e il =0 (h%e,%@ mingg f—ming f) \/5) 7

b))



where, for some ¢ > 0 independent of h,

{\/E or ,
Ep =

. (180)
e~ if (A4j) is satisfied.

(iii) When, for somei e {1,...,k%}, Tn{z,..., Zk?cl} ={z}, z €X, and F is C* in a neighborhood
of z;, one has in the limit h — 0:

/F@nuh e il = —(F(zl) + O(\/en) + O(h))CmBZ- BATe e~k (2minoe f_minﬁf),
5

where ey, satisfies (180) and the constants B; and C; 1 are defined in (117)—(106).

The following simple consequences of Theorem 5 will be useful to prove Theorem 1. Assume that the
assumptions (A0), (Alj), (A2j), and (A3j) are satisfied. Let F' € L>*(9Q,R) and (2;);cqq,. koo) be a
family of disjoint open subsets of 9 such that for alli € {1,...,k{?}, 2z € %;, where we recall that
{21, 200} = U9 N argmingg, f (see (22)). Then:

1. There exists ¢ > 0 such that in the limit h — 0,

aQ
kl

/Fa’nuh 67%f — Z/Fanuh ef%f + O (67%(2minan ffminﬁerc)) , (181)
09 =13,
and
k9
Z Foyupe i/ =0 (h%e*%(2 minso f*minﬁf)) , (182)
i=kP1 415,
with the convention . = 0 if n > m and where we recall that (see (52), (53) and (A3j)),

{z1,... ’Zkfcl} = 9C; NN C argmingg, f N U2, The asymptotic estimate (181) follows from item (i)
on
in Theorem 5 taking ¥ = 00 \ UlglzlEh while (182) follows from item (i) in Theorem 5 taking
kBQ
x= Ui;k?clﬂzi'

2. Moreover, when, for some i € {1,..., k?cl }, F'is C™ in a neighborhood of z;, one has in the limit h — 0:

ISee

/Fanuhei%f = A; (F(Zl)—l-O(h

P

)) h% 67%(2 mingo ffminﬁf)7 (183)

where

=

A; = —20,f(z) T | det Hessf|39(zi)z (det Hessf(;v))_% . (184)

TrEarg minc1 f

This asymptotic equivalent follows from item (i%) in Theorem 5 taking ¥ = X; for some i €

{1,..., k).



3. Lastly, when (A4j) holds (i.e. when j(z1) C 99), the remainder term O(h% e_%@f(zl)—f(xl))) in (182)
is of the order O(e_%(2 minog f—ming f+c)) for some ¢ > 0 and the remainder term O(hi) in (183) is of
the order O(h) and admits a full asymptotic expansion in h.

According to Theorem 5, when the function F belongs to C*° (92, R), one has the following equivalent
of (181) in the limit h — 0:
K<
/F Onun et = 3 A, (F(z) + O(h¥)) h*3* ¢~ (2minon f-ming 1)
o

=1

Remark 59. When the assumption (A4j) is not satisfied, the remainder terms in (182) and (183) are not
optimal. In [27, Section C.4.2.2], it is proved on a one-dimensional example, that when the assumption (A4j)
is not satisfied, the optimal remainder term in (182) is O(h%e*%(2 minge f—ming f)) and the optimal re-
mainder term in (183) is O(v/h). In higher-dimension, these optimal remainder terms can be obtained in
some specific cases, see [27, Proposition C.40]. It is however unclear how to obtain these optimal remainder
terms in general.

This section is organized as follows. In Section 5.1, one proves Proposition 58. Section 5.2 is then dedicated
to the proof of Theorem 5.

5.1. Proof of Proposition 58

Let us first give a corollary of Theorem 4 which is used in the proof of Proposition 58.

Corollary 60. Let us assume that (A0) and (Alj) are satisfied. Then, there exists By > 0 such that for all
B € (0,0), there exists hg > 0 such that for all h € (0, hg), the orthogonal projector

) D,(0
771(1) = ﬂ-[o)e—%(f(j(m))—f(m)—ﬁ))(_Lf,h( )) (185)

has rank 1. Moreover, choosing the parameter € > 0 appearing in (65) small enough, there exists hg > 0
such that for all h € (0, hg), one has:

Ran %20) = Span(%ﬁo)ﬂl), (186)

where the function uy is introduced in Definition /2.

Proof. The fact that dim Ran %20) = 1 is a direct consequence of Corollary 51. Let us now prove (186). Using
Lemma 25, Proposition 4, and using item 2a of Proposition 43, for any 6 > 0, there exist ¢ > 0 (see (65)),
C > 0 and hy > 0 such that one has for all h € (0, ho),
(1= 7OV |12, < e CGa-ren-5) 2)gy, 12
1O =7 )i [, < et SV,

O 2 FG@D))=F@)=B) (~ 3 (Fi@))=F@)=8) < (1 o=3(8-0) (187)

IN

Therefore, choosing € > 0 small enough such that § € (0, 3), there exists ¢ > 0 and hg > 0 such that one
has for all h € (0, hg),

7|, =140 H). (188)



This concludes the proof of (186) and thus the proof of Corollary 60. O
Let us now prove Proposition 58.

Proof of Proposition 58. Let us first assume that only (A0) and (A1j) are satisfied. As a direct consequence
of Corollary 60 and (188), one has (since the functions uj and @; are non negative),
~(0)~

T U1

up, = +O0(e" ) in L2(Q). (189)

170%, ||

Let O be an open subset of Q. Using (189) and thanks to the Cauchy-Schwarz inequality, one obtains in the
limit h — 0:

Jetr= [ametspo(ettmmaria). (o)

o [0}

Let us recall that by construction (see Definition 42 and (65)), u3 = . Then, from the definition

1
ToEET
G s,

of x7°* (see (65) and the lines below) and using Laplace’s method, one has in the limit A — 0,

/(Xi’el)Qe_’%f = (hm)2e” i@ 3™ (det Hessf(z)) " * (1 + O(h)). (191)

Q x€arg ming, f

Let us assume that O Nargmine, f # 0. Then, using Laplace’s method, one has when h — 0,

/Xi»sle*%f:(hﬁ)%e*%f@l) > (det Hessf(x)) "2 (1 + O(h)), (192)

o) z€0Narg ming, f

where we recall that ; € argminc, f. Thus, from (190), (191), and (192), one has when h — 0:

N

- det H B
[ Zerconmumin, s W) * 4y (14 o)
— 2
(6] <Zx€arg minc1 f (det Hessf(x)) )

L0 (e—%(minﬁ f+c)) . (193)

=

Let us assume moreover that ming- f = ming f. Then, (177) in Proposition 58 is a consequence of (193).
Let us now consider the case where O N arg ming, f = . Then, it holds

min f > min f = min f. (194)
oncCy Cy Q

Since in the limit h — 0, 5 x7™" e il = O(ef% minoncy f), one obtains using (194), (190), and (191), that
there exist ¢ > 0 and ¢ > 0 such that when h — 0:

/uh e—%f _ O(h—% 67% minmfe% minﬁf) _’_O(e—%(minﬁf—i—c)) _ O<e—%(minﬁf+6)).
o

This proves (178) and concludes the proof of Proposition 58. O



5.2. Proof of Theorem 5

Let us briefly explain the strategy for the proof of Theorem 5. The basic idea is to notice that, since Vuy,
belongs to Ran 7721) (according to (61)), one has for any open set 3 of 90 and for any L2 -orthonormal basis

(1, ... ,¢m§7) of Ran 71',(11),

Q
my

/Fanuh el = Z(Vuh,z/}iﬁgu /F@/)i neid, (195)
b i=1 b
Notice that this decomposition of Vuy, is valid on 92. Indeed, for all i € {1, ..., mlﬁ}, 1; has a smooth trace

on 9 since 1; € A'C®(Q) (due to the fact that the eigenforms of Lg;fl) belongs to C>(£2) and W;Ll) is

a projector onto a finite number of eigenforms of —L?’h(l)). In the rest of this section, one first introduces

such a family {1, ..., ’(/)mlﬁ} using a Gram-Schmidt orthonormalization of the family {W}(Ll)izl, e ,ng)zzmlﬁ}.
Then, one gives estimates of the terms (Vup, ;)2 appearing in (195). Finally, one concludes the proof of
Theorem 5 in Section 5.2.3, with estimations of the boundary terms fz Fi,-n el

5.2.1. Gram-Schmidt orthonormalization
Let us assume that the hypothesis (A0) holds, and assume that h > 0 is small enough such that the family

{W,(Ll){/)vi,i =1,..., mlﬁ} is independent (which is guaranteed for small i by item 3b in Proposition 43). Using
a Gram-Schmidt procedure, there exists, for all j € {1,..., mlﬁ}, a family (kji)i=1,.. j—1 C RI7! such that
the 1-forms

fj = 77}(11) |:wj + Z i :| (196)
i=1

satisfy: (i) for all k € {1,...,m}, Span({fi,i = 1,...,k}) = Span({mVs,i = 1,...,k}); (ii) for all
i # j, (fi, fj)r2, = 0. One defines moreover, for j € {1, . .,m?}7

1

Zj = |fjllz2, and ¢; = 7fj» (197)
J

so that (wj)je{l m7} isa L2 -orthonormal basis of Ran 7'('](11). By reasoning by induction (see [1, Section 2]
for a similar proof), Proposition 43 easily leads to the following estimates showing in particular that the
family (W;Ll)wi) is close to the family (v;)

ie{l,...,m$} ie{l,....,m$}"

Lemma 61. Let us assume that (AO) is satisfied. Then, there exists ¢ > 0 such that for all j €
{1,...,m¢},ie{1,...,5— 1} and h > 0 small enough, Z; =1+ O(e~#) and kj; = O(e™#).

5.2.2. Estimates of the interaction terms (<Vuh, V)2 )je{l T}
w yeoesMY

Let us start with estimates for the terms <V7T](_LO)ﬁk,’l,[}j>L22‘}, where j € {1,..., mlﬁ} and k € {1,...,m{}

(recall that estimates of the terms (Viiy, ;)2 are given in Proposition 47).

Lemma 62. Let us assume that (A0) holds. Then, there exists ¢ > 0 such that for all k € {1,...,m§},
J € {1, R m?}, and h > 0 small enough, it holds:



. B (Vi ¥y e (L+O0(e™#))  if 2 € j(z),
( 7Th Ukﬂ/hﬁﬁ, O( E(fGzr))— f(xk)—i—c)) if zj ¢J(ﬂﬁk)

Proof. Using (196), (197), and Lemma 61, one has for some ¢ > 0 and for all j € {1,.. ,m?) and h > 0
small enough,

(VD )2 = 27!

j—1
<V7T}(lo)ﬂk,7fi(ll)1/}j>[‘12u + Zﬂji <V7I'(O)”LL 7Th1)1/)l> ‘|

i—1
= (1+0(e 1)) [<Vﬂ';€0 uk,ﬂ'h @ZJJ L2 +ZO (Vﬂh UkﬂTh 1/%) ] .

i=1

Using Proposition 49, the statement of Lemma 62 follows immediately. O

Let us now give asymptotic estimates of the terms <Vuh,¢j>,;gu for j € {17 e mlﬁ}, by proving that
(Vun, ;)12 is well approximated by <V7T}(lo)ﬂ1,’(/Jj> 2, namely that ﬂ',(lo)% is an accurate approximation
of up, in HL ().

Let us recall that when (A0) and (A1j) hold, Corollary 60 implies that there exists Sy > 0 such
that for all 5 € (0,8p), there exists hy > 0 such that for all » € (0,hp), the orthogonal pro-
jector %,(10) = 77[0’6_%(f(jm))_f(ml)_m)(—L?}fo)) has rank 1. Therefore, %,(IO) is the orthogonal projector
onto Span (up). Moreover, from the second equality in (189) and item 3a in Proposition 43, one has
up = W,(Lo)ﬂl + O(e”#) in L2(9). Therefore, 7 )ul is an accurate approximation of wuj, in L2 (£2). The

following lemma extends this result in H} () when assuming (A2j) in addition to (A0) and (A1j).
Lemma 63. Assume that (A0), (A1j), and (A2j) hold. Then, it holds in the limit h — 0:

_ 2
Va5, = 2 (14 0(en))

and

|V - 70 2, = %)\h O(en) = O(h—3 e FUGED 1) o).

where €, satisfies (180).

Proof. Applying the Parseval’s identity to Vwéo)ﬁl € Ran W,(ll) (see (59)), one gets ||V7r§LO)ﬁl|‘iQ =

my’
> <V7r}(LO)ﬂl, ¥;)2, . Using Lemma 62, there exists consequently ¢ > 0 such that for all 4 > 0 small enough,
i=1 R
0)~ 112 _ ~ T\2 _c
|V, ulHL?U = > (Vi ¥) ;. (14+0(e™H)).
jrzj€§(w1)
Using in addition (176), one then obtains the first part of Lemma 63, i.e.:

_ 2
1V, = (14 O(en)), (198)

where, in the limit h — 0, g, satisfies (180).



Let us recall that from (189) and (188), one has for any h small enough

~(0)~

T, U ~(0)~ —c
up = (o};% where HW}(LO)WHLz =14+0(e r). (199)
[EPTIZ)
Now, since the projectors w}(LO) and %Igo) commute with LJ?;L( ), and 77(0) (0) = w}(LO), one has

h . ~ ~
IV =7, = (" - 70w, L3 (@) - 5)w),,

D,(0 0 ~(0)\~
(0T LB e A
D~ P

~ 12 _c
IVm |7, —An (140 ),
where the last line follows from (199). Using in addition (198), one obtains in the limit A — 0:
h ~ _e
SV =7V [7s = 1+ Oen) = An(1+0(e™F)) = A Oen),
which proves Lemma 63, using also the asymptotic estimate of A; given in Theorem 2, see (105). O
We are now in position to estimate the interaction terms ((Vuh, %)Lz )

Corollary 64. Let us assume that (A0), (A1j) and (A2j) hold. Let uy, be the eigenfunction associated with
the principal eigenvalue \p, of LD ©) (see (8)) which satisfies (9). Then, in the limit h — 0:

i) forallj € 1,...7m_ such that z; € j(xr1) N i.e. forallj €1,..., i, see (52) and (53)),
for all Q h that z; o0 for all ko< d
<VUh,¢j>LgU = <V51,1Zj>Lgu (1+0(/en))
— —Cjy Wi #UGEDIED) (14 0(/&) + O(R)),

(ii) forallje{1,..., mlﬁ} such that z; € j(z1) N Q,

<Vuha ¢j>LZJ = <Vﬂ1, 1:/;]'>L12U (1 + O(h*%\/a))
= O(hiéefh (f(j(il))*f(ml)))7

(iii) and for all j € {1,...,m1§} such that z; ¢ j(x1),
(Vup, ¥;),, = O(h—%e—%(f(j(wl))—f(wl)) VEn),
where €y, satisfies (180).

Proof. Using (199), there exists ¢ > 0 such that for all j € {1, cee mlﬁ}, in the limit A — 0:

(Vun, ;) = <v%,§0)a1,¢j>% (14 0(e~#)). (200)



In addition, using the Cauchy-Schwarz inequality and the second statement in Lemma 63, it holds for all
jE {1,...,m§2}, in the limit A — O:
<v,ﬁ20)ﬂla ¢j>L%U = <V7T£LO);L717 ¢j>L12U + <v(%§LO) - Tr;LO))alv wj>L12U
= <V7r£0)ﬂ1,1/;j>L2 + O(h*% e~ # (FG(z1) = f(21)) \/a), (201)

where ¢, is of the order given by (180). Then, the statement of Corollary 64 follows by injecting (201) into
(200) and by using the estimates of the terms <V7r£0)ﬂ1, 1/’j>L2 (j € {1,...,m$}) given in Lemma 62. O

5.2.3. Estimates of the boundary terms ([, F1; -ne*%f)je{1 T}

Proposition 65. Let us assume that (A0) is satisfied. Let us consider i € {1,..., mlﬁ}, an open set % of 02,
and F € L*(0Q,R). Then, there exists ¢ > 0 such that in the limit h — 0:

O(e~nminan f+o)) 4 j e [k9? +1,...,mP},
/Fwi cn et = { O(e-kminon f+0)  ific {1,... k%) and % ¢ 5,
b

d—3

O(hTe_%minaﬂf) ifie{l,...,k?ﬂ} and z; € 3,

where we recall that {z1, ..., 2o} = U92Nargmingg f (see (22)). Moreover, wheni € {1,...,k%}, z; € &,
and F is C*° in a neighborhood of z;, it holds in the limit h — 0:

/lewn e~ i = BT e~ n minon f (Bi F(z) + O(h)),
5

where the constant B; is defined in (1006).

Proof. Let I € L*°(99,R). Using (196), (197), the trace theorem, and the Cauchy-Schwarz inequality, one
has for all j € {1,...,m$},

b Py Y

j—1
+ DK /F¢i~ne*%f+/F((7r£}) —1)¢;) -ne" it
i=1 5 %,

mingg f
")

:/F@.ne—%f+||(1_7Tgl>)zzj||%o(h—1e—
¥

Jj—1 |
+ S | [F R 0= Ay 00 )
=1 5

From Lemma 61 and item 2b in Proposition 43, there exists ¢ > 0 such that for all j € {1, ceey mlﬁ}, s
{1,...,j — 1}, in the limit b — 0, Z; = 1+ O(e™#), rj; = O(e”#), and ||(1 — W}(Ll))szHHl = O(e ).
Therefore, using Proposition 46, there exists ¢ > 0 such that for all j € {1,..., mlﬁ}, in the limit A — O:

/ij e S :/F{Ej -nef%f—i—O(e*%(minaQ f+c)).

z P

The statement of Proposition 65 is then a straightforward consequence of Proposition 46. 0O



We are now in position to prove Theorem 5.

Proof of Theorem 5. Let us assume that (A0), (Alj), (A2j), and (A3j) hold. Recall that in this case, for all
x € UL\ {21}, one has f(j(x)) — f(z) < f(j(x1)) — f(x1) and j(z1) N IN = 9C; NN = {z1,.. .,zk?cl} C
arg mingg, f N U2, Moreover, from (55), it holds x; € arg ming, f = argming f = arg ming f. Thus, one
has

f(G(z1)) = rg}znf and f(z1) = min f. (202)
Q

Let us now consider F' € L>(9€,R) and an open subset ¥ of Q. First, since {¢;, j = 1,..., mlﬁ} is an

orthonormal basis of Ran W,(Ll) and Vuy, € Ran W}(Ll), one has the following decomposition:

my
/Fanuh e nl = Z <Vuh,wj>L2 /ij newt,
2 ]:1 '(UE

Using in addition Corollary 64, Proposition 65, and (202), there exists ¢ > 0 such that for all A > 0 small
enough,

o0
kl

/Fc?‘nuh e~ il = Z<vuh’wj>Li /Fq/;j nenf
5 J=l1 o
m{
+ Z O(h*%e*%(minan f—ming f)) O(e*%(minan f+C))_ (203)
7=k9?+1
Hence, when ¥ does not contain any of the z;, i € {1,...,k??}, from (203), Corollary 64, Proposition 65,

and (202), one deduces the following relation for some ¢ > 0 independent of h and every h > 0 small enough:

k9
[ F e = 37 0 e i ) = on 140
Y J=1

+0 (e—% (2mingq f—ming f+c))
-0 (67%(2 mingo f—ming f+%)) )
This proves item (¢) in Theorem 5.

Assume now that X does not contain any of the z;, i € {1,..., kf\cl}. Then, from (203), Corollary 64,
Proposition 65, and (202), one deduces that in the limit A — 0:

Ko<
[ P o et = 3 Ot Hmnon i 0) 0 nen )
> i=1
K9S
+ Z O(h—%e—%(minag f—ming f) \/a) O(h%e_’% mingo f)
aq,
j=k; 41

+ O (e k(2 minoa foming fe))
= O(e‘%<2 mingg f-ming f+5)) 4 O(h¥e‘%(2 minon f-ming f) /=)

where the constant ¢ > 0 is independent of h and e}, satisfies (180). This proves item (i¢) in Theorem 5.



Assume lastly that SN {z1,..., 200 } = {2}, F is C* in a neighborhood of z;, and z; € ¥. From (203),
1
Corollary 64, Proposition 65, and (202), one then deduces that in the limit h — 0, it holds for some ¢ > 0
and 5, which satisfies (180),

/F@nuh e il = (Vun, ¥i) /F%‘ e i 4 O(h%e_%(mmaQ fming 1)\ /er)
5 )

= -B;Ciy BEFE o~ £ (2 mingg f-ming f) (F(z) + O(v/en) + O(h)),

where the constants B; and C;; are defined in (117)—(106). This concludes the proof of item (#ii) in
Theorem 5. O

5.8. Proof of Theorem 1

The proof of Theorem 1 is a straightforward consequence of Theorem 2, Proposition 58 and Theorem 5.
Indeed, let us recall that from (12), one has:

/ F anuhef%f

E,, [F(Xp) = -2 (204)

2Ah /uhef%f

Q

Moreover, recall that (A1), (A2), and (A3) (see Section 2.4 and more precisely Lemma 21) are equivalent to
the assumptions (A1j), (A2j), and (A3j). In addition, under (A1j), one has C; = Cpax (see Lemma 21), k¢t =
k9Cma (see (54)), f(j(z1)) = mingq f (see (A3j) together with the fact that j(x1) € 9Cy) and f(z;) =
ming f (see (55)). Thus, injecting the results of Theorem 2 (and more precisely (105)), Proposition 58
(applied to O = Q, see (179)) and Theorem 5 in (204), one obtains the statements of Theorem 1.

Main notation used in this work

e 7o, Equation (2) e a;, Equation (27)
o Lgf’),)l, LJI?”(O)7 Equation (7) and Proposition 4 e C(\,x), Ct(\,z), A\(z), Definition 10
e )\, up, vy, Equations (8)—(9), (10)—(11) o Ni, (Co)eeqr,..niy = (Eie)eeqt,... Ny}, Defini-
e Assumptions (A0), (A1), (A2), (A3), and (A4), tion 12
Section 1.3.1 e UTP Copit, Definition 13
o {f <a}, {f <a}, {f=a}, Section 1.3.1 o 3, 3y (NW 2, (Th0)k>10e(1,.Ne}»
e Hy(z), Equation (13) (Ek,0)k>2,0€11,... N, }» Section 2.3
e Cax, Section 1.3.1 e APC(Q), APC¥(Q), APL2(Q), APHI(Q),
e C, C(x), Equations (14)—(15) and (32) APHY 1(Q), APL*(Q), APHY(Q), APHE(Q),
o Ul ={z1,... s Tme } and m§}, Equation (16) APHY, (), Section 3.1.1
o U = {zm?n+1,...,zmlﬁ} and m{’, Equation o ||z, (s )2, [[-lma, (, )r2, Section 3.1.1
(21) Agfj})w Ag}fp)(Q), Lﬁ}fp)(ﬂ), Section 3.1.2
o U9 = {zl,...,zm?n} and m{?, Equations 7E, Lemma 25
(17)=(18) and (20) - W;Lp), Equation (60)
° U? = {Zl7 ce e ZmOs ZmdR s - e s Zmlﬁ} and m?, Ek,é and Xk, 05 Definition 26

Equation (19)
o {z1,..., %090} and kP, Equation (22)
o {z1,..., Zk?cmax}, and k‘?c’“a*, Equation (23)

®;, Equations (73) and (87)
w;, Propositions 30 and 35
0; and ¢;, Definitions 31 and 36
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o ul') . c;(h), Propositions 33 and 38 e D, Dy, and gy, Equation (128)

e ;.wib, Equation (99) e C = (C;1), Equations (131)-(132)

o (Ereqtnmgys O ket mgys @reqi,..mgy,  ® Sk Equation (146)

(Tk)keq1,...mgy» Definition 41 e 7;(T), Lemma 52

e uy and Jj, Definition 42 o Cy, C1, Equation (147)

e )y 1, Theorem 2 e )\ 1, Equation (150)

e B;, Equation (106) e ¢;, Equation (180)

e ¢, pjr and Cj i, Equations (115), (116), (117) o %,(10), Equation (185)

e S =(Sk), Equation (126) e r;;, Equation (196)

o S =(8;x), Equation (127) e Z; and ¢, Equation (197)
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