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Abstract. This article presents a large scale quasi-experiment to in-
troduce primary school pupils to Computational Thinking. The aim is
to enhance their capability to spot repetitive patterns and to express
them as loops. Unplugged and plugged-in activities are used to train
the pupils. Trace analysis and pre and post questionnaires were used to
measure the impact of the intervention. This article deals with the 2018
session involving 20 classes. The results show a positive impact of the
activities and give information about the skills acquired.
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1 Introduction

Computational thinking (CT) brings abstraction and problem solving skills that
can be exploited in many contexts and subject matters at school and in broader
contexts. While not being equal to computer science and programming, com-
putational thinking skills definitively lays the ground to explore more computer
science related topics such as algorithms. In her seminal article about Compu-
tational Thinking, J. Wing advocates for the introduction of CT to non-majors
in Computer Science and pre-college students [12]. Since then CT has been con-
sidered in many domains like mathematics and experimental sciences [11], arts
[6] and even language learning [8].

In this article, we present our work to bring CT skills to pupils in elementary
school (8 - 10 years old) in France. Within this project, we have mainly considered
the ability of pupils to abstract data, to recognize redundant patterns in data
and to express them as a loop structure. This opens the way to systematic and
repetitive treatment of data. Towards this end, we have devised a pedagogical
sequence including unplugged and plugged-in activities. We will focus in this
article on the result from year 2018 which involved 20 classes from 16 schools
and 447 pupils. For this quasi-experiment, we have set up pre and post tests to
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assess the capability to identify patterns and we have collected traces from their
on line programming activities.

This article seeks to answer the following questions:

RQ1 Does the pedagogical sequence presented in this article (section 3) bring
an improvement of the pupils cognitive skill of recognizing and expressing
repetitive patterns as loop structure ?

RQ2 To what extent do the pupils manage to transfer their skills from one kind
of language to the other while solving similar puzzles ?

In the next section, we review existing works about CT, its introduction
in pre-college classes and the assessment of CT skills. Section 3 presents the
pedagogical sequence we have devised and the experimental setting described in
section 4. In section 5 we discuss the analysis of the experimental data before
drawing conclusion and perspectives.

2 Related Works

In this section, we review general definitions about Computational Thinking be-
fore considering how it is introduced in schools. We then review existing frame-
works to assess CT skills.

2.1 Introducing Computational Thinking Concepts

The first concepts of Computational Thinking date back to the work of Seymour
Papert with Logo [7]. More recently, the article by Jeannette Wing advocating
CT as a primary skill along reading, writing and arithmetic raised a great interest
in the education and research community [12]. Wing stresses that CT is not equal
to programming but rather the capability to manipulate abstractions and to solve
problems that can be applied to many fields. She called for the introduction of
CT to pre-college audience.

Since then, the research community has explored ways and means to in-
troduce CT at school : what are the fundamental concepts to teach ? Which
technology can support that learning ? Etc. These questions are even more im-
portant since many countries have started to update their curricula to introduce
these topics at different school levels.

Different works try to organize CT concepts around taxonomies. Gouws et
al. propose a CT framework that describe skills related to computational think-
ing [4]. The framework proposes different kind of CT skills learned through pro-
gramming out of their literature review : Processes and Transformations, Models
and Abstractions, Patterns and Algorithms, Tools and Resources, Inference and
Logic, Evaluations and Improvements. They combine these skills with a level
of mastery inspired by Bloom’s taxonomy of learning : Recognize, Understand,
Apply, Assimilate. The framework can be used as an analysis or design frame-
work. Weintrop et al. consider the introduction of CT practices in maths and
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science providing the ground for a definition of CT activities away from com-
puter science [11]. The authors define a taxonomy of 22 CT practices grouped
into the following categories : Data and Information, Modeling and Simulation,
Computation, Problem Solving and Systems Thinking.

Ching et al. rather take a technological entry to the introduction of CT
concepts [3]. They provide an analysis of existing readily available technologies
for teaching computational thinking. They have identified robot toys, robot kits,
board games, augmented reality tools, (visual) programming applications/websites
and animation/game development tools. These categories vary by whether it uses
physical manipulation or screen interaction and concrete (i.e., robot) or visual
feedback. Concepts learned through these technologies range from sequence and
loop to more advanced concepts and may imply creativity and problem solving
for some of them.

These taxonomies do not necessarily provide insights about the order in which
CT concepts should be introduced. Based on a literature survey, Rich et al.
have started to work on Learning Trajectories to define the concepts that can be
addressed depending on the grade level and at which level of details . A Learning
Trajectory is formalized as a set of learning goals, an associated learning path
to achieve these goals and illustrative activities. Their literature study shows
that many research results focus on a single or independent learning goals. They
observe that the same goals have been introduced at multiple grade levels since
they usually address inexperienced learners. For this reason, they have relied
on maths pedagogical approaches and curricula to propose an ordering of the
concepts introduced (learning path). Their article illustrates their approach on
three CT concepts : Sequence, Repetition, and Conditionals.

The notion of repetition is one of the fundamental concepts present in all
these works. We also believe that pattern recognition and redundant patterns
reduction constitute one of the atomic skill in computational thinking, which is
why we have focused specifically on this aspect in this study.

2.2 Assessment of CT skills

The assessment of students’ skills is an additional dimension of the introduc-
tion of CT at school. One can find different approaches in the literature. Bren-
nan & Resnick articulate CT around three dimensions: computational concepts
(programming level : loops, parallelism...), computational practices (iterative
development, debugging...), and computational perspectives (expressing oneself,
connecting to others...) [1]. They propose to assess these dimensions through
portfolio analysis, artifact-based interviews and design scenario (projects).

The SRI report by Snow et al. considers the means to assess CT skills (prob-
lem solving, abstraction...) in the context of the year long high school course
”Exploring Computer Science” (ECS) [10]. Towards this end, they propose de-
sign patterns to create sound assessments to measure knowledge and practices.
The report covers the assessment of the following ECS units : HCI, Problem
Solving, Web Design and Introduction to Programming. The assessments in-
clude quizzes, problems and code reading and tracing.
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Grover et al. used formative and summative assessment in the context of a
6 weeks middle school module involving computational concepts [5]. The assess-
ments relied on multiple choice quizzes many of them including Scratch code
snippets. Some exercises involved reordering code blocks or code tracing / de-
bugging activities.

Seiter et al. propose a framework to assess CT skills in primary grades (1 to 6)
called Progression of Early Computational Thinking (PECT) [9]. The framework
provides measures based on Scratch programs (use of specific instructions) in
the scope of common design patterns (e.g., animation, collision management...).
These patterns are then related to CT concepts. The framework has been eval-
uated against programs found on the Scratch web site.

This later work as well as the approach by Brennan & Resnick are rather
time consuming since they involve the study of students’ productions potentially
in the context of open-ended activities. The other approaches are more tractable
since they rely on different kinds of quizzes.

3 Pedagogical Sequence

The sequence we have designed is based on two main inspirations. The first one
is the pioneering work of Seymour Papert with his work on Logo [7] and the
importance of thinking about the way we think by describing procedures that
have to be interpreted by a computer. The second inspiration comes from work
done by Jerome Bruner [2] on stages of representation : enactive (action-based),
iconic (image-based) and symbolic (language-based). The pedagogical sequence
was designed along these stages to support knowledge construction by the pupils.

The pedagogical sequence is presented Fig. 1. This progression includes un-
plugged and plugged-in activities to support the identification and synthesis of
repetitive patterns and their expression in the form of sequence of actions and
loops. There are three different phases. The first two ones last one hour and
half, the last one takes two hours. The pupils came to university for a whole day.
They have the first two phases in the morning and the last one in the afternoon.
The different phases are described hereafter.

3.1 Absolute Orientation

In this phase pupils have to move a character on a grid to a given square using
absolute directions (North, South, East, West). They start with a board game
(see Fig. 2). Pupils work by groups of four to six and take turn at different roles
: defining a solution, program counter (telling the instruction to perform), and
processor (executing the instruction). The activity evolves from simple paths
to more complex ones with the addition of obstacles and bonuses. When the
sequence of instructions starts to get longer, pupils usually start to express frus-
tration. This is the right time to introduce the loop notion (repeat n times).

When main concepts of instruction, sequence, loop, execution (and bugs...)
are (dis)covered, the pupils switch to a similar activity on tablets by groups of
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Fig. 1. Pedagogical sequence to train loop recognition and expression

Fig. 2. Board game and tablet interface.

two. They use a visual block-based programming language (Blockly). Figure 2
shows one of the puzzles presented on tablets. For each puzzle, there is a specific
instruction set provided (Fig. 2). The activities and instructions set evolve again
from sequence to loop. The goal of this sequence on tablet is to reinforce learnings
done through the unplugged activity and to lead slowly pupils towards autonomy
by working by two instead of 4 to 6 in the first phase.

3.2 Relative Orientation

This phase follows a similar organization to the previous one. The main change
is that by using an oriented character, the pupils have to handle a different
instructions set (turn left, turn right, forward). This also implies remembering
the character orientation when planning the moves. Turning is only by 90° and
is not parameterized. It prepares the last phase where orientation is necessary
for the drawing activity.
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3.3 Drawing Activity : Back To Papert’s Turtle

The last phase is done in a computer laboratory where each pupil is alone with
a computer. The activities are oriented towards drawing with a turtle (in the
spirit of Logo). The instructions set is similar to the previous one with addition
of the pencil management (putting it up or down to draw) and parameterized
functions (e.g. forward(distance) or turn right(angle)). The pupils use the
same platform as on the tablets. In the first part, they continue to use the
blockly block-based programming language. In the second part, we introduce
some Python programming making them switch from a graphical to a textual
notation within the same context (Fig. 3). To make it easier for the pupils, they
use functions translated in French (e.g. forward(10) becomes avancer(10)),
as it is their primary language. Nonetheless, they are introduced to the regu-
lar Python loop notation. This last part enables us to observe the transfer of
competencies from block-based to textual programming

Fig. 3. From block-based to textual programming

4 Experimental Setting

4.1 Participants and Organization

The 2018 experiment involved pupils from 16 elementary schools around the
university. Twenty classes participated for a total of 447 pupils. The age of the
pupils is 8 - 10 years old and we had a balanced gender representation (49%
girls). The experiment lasted for one week with 5 classes per day (excluding
Wednesday). The classes came to the university for a whole day. To cope with
the large number of pupils, they where supervised by second year computer
science students with the support of their teachers. The students were presented
with the pedagogical progression and learning activities beforehand so as to be
able to manage the pupils and help them during activities.
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4.2 Data Collection : Questionnaires And Online Activities Logging

Pre and Post Tests The pupils passed a test at the beginning and the end
of the day to measure if there was a progress in their ability to spot repetitive
patterns and to express them in a condensed notation opening the way to loop
treatment. These tests are not intended to be a full assessment of the pupils’
skills as presented in section 2.2 but rather to answer our first research question
(RQ1).

The tests involved the coding of patterns as letters. The pupils were in-
structed they could use any notation they would see fit including shorthand
notation. The pre test was presented as coding a graphical notation for music
(Fig. 4, left - each color corresponding to a music note) while the post test in-
volved coding pasta necklace crafting instructions (Fig. 4, right). We have chosen
two different contexts to avoid pupils just remembering the patterns from the
pre test. But it should be noted that patterns to be recognized and synthesized
are strictly the same in the pre and post test.

Fig. 4. Pre (left) and post (right) test patterns.

Table 1 presents patterns that were used ranging from a sequence based on
a single instruction and up to three instructions for the most complex. The
notation shown here corresponds to the pre test, but as stated before patterns
are exactly the same in pre and post tests. The Pattern corresponds to what
the pupils are given and the loop notation shows the kind of coding expected.
Table 1 also presents the pattern types and correspondence. To answer RQ1, we
look at the answers from the pupils. For instance for pattern type 1i a pupils
that has the notion of repetition would write something corresponding to 11R

(11 times R(ed)). In the other case, s.he would write all the letters.

Table 1. Patterns used in pre and post questionnaires

Type Correspondence Pattern Loop notation

1i 1 instruction pattern RRRRRRRRRRR 11R

Nx1i N x 1 instruction pattern VVRRRBBBB 2V 3R 4B

2i 2 instructions pattern BRBRBRBRBR 5x(BR)

3i+2i 2 instructions + 1 instruction patterns VRRVRRBBBBB 2(VRR) 4B / 2(V 2R) 4B
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Programming Activities The plugged-in activities were realized on a France-
IOI platform 3. The four sequences include a set of puzzles of growing difficulty
and build on each other. The study of the results from these activities will provide
insights for our second research question about the transfer of skills from one
language to the other (RQ2). As a whole, they include successively puzzles that
can be solved by a sequence of instructions, a loop with one instruction, mixed
sequence and loop, loop with multiple instructions and up to nested loops. The
first sequence includes 24 puzzles and is very progressive so the pupils can build
their skills. The next sequences provide between 15 and 18 puzzles. They all go
through the easier puzzles (e.g. sequence) so that the pupils can transfer their
skills to a new set of instructions. Then difficulty grows. Fig. 5 presents some of
the puzzles that are further analyzed in the next section.

Fig. 5. Examples of tricky puzzles in each phase.

The platform progresses from one puzzle to the other upon success but it also
allows to select a specific puzzle in a list. Each phase of the plugged-in activities
lasted between 30 and 45 minutes depending on the groups. For this reason the
pupils did not do the same number of puzzles depending on how quick they
were and if they were stuck on some puzzles. When introducing new concepts or
patterns, we have a tutorial puzzle with instructions or hints for resolution.

5 Results

5.1 Analysis of Pre and Post Questionnaires

The pre and post activity questionnaires (Fig. 4) have been coded to reflect
whether the pupils have correctly coded patterns. This gave us a value between 0
and 1. For the 447 pupils, we have a mean m = 0.147, with a standard deviation
sd = 0.07 for the pre test and m = 0.241, sd = 0.12 for the post test. A
paired t-test gives us a value t(446) = −6.76 (p < .0001) which shows that the
pedagogical sequence had a significant impact on pupils’ capability to spot and
code repetitive patterns.

3 Association that organizes the Bebras computer science challenge in France
(http://www.castor-informatique.fr)
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Table 2. Successful coding of repetitive patterns

1i Nx1i 2i 3i+2i

pre test 118 (27%) 102 (23%) 29 ( 8%) 14 ( 4%)
post test 166 (38%) 140 (32%) 70 (17%) 56 (14%)

Table 2 presents the number (and percentage) of pupils that have used a
shorthand notation (i.e. recognized the repetitive patterns) in the pre and post
tests. It is interesting to first note that the awareness of 1 instruction patterns has
significantly raised as well as sequences of several 1 instruction loop (+40% for
both). But, the most interesting aspect is probably that more complex patterns
(2 and 3 instructions) have increased even more. This could mean that after some
training on short patterns the skill is generalized to more complex patterns quite
rapidly by pupils. Fig. 4 shows a best case example of a pupil that did not use
any notation for repetition in the pre test but successfully did in the post test.

5.2 Analysis of the Online Activities Logs

Traces of online activities on the platform were limited, since we could only get
access to the last validation of each puzzle. We do not have an history of the trial
and errors of pupils. This means that for this experiment we can only compute
the number of successful vs. unsuccessful validation for the last trial.

For each sequence of puzzles we present a graph showing the success rate
(number of successful validation / total number of trials) and the total number
of trials for each puzzle. We also show the transitions between the levels of
difficulty (e.g., from sequence to loop) which enables to spot at which point the
pupils are in trouble. For the first two phases pairs of pupils share a tablet and
take turn at resolving the puzzles. In practice, they would usually collaborate
in the resolution even if they were not instructed to. This explains why we have
a maximum number of trials around 200. For the last phase, pupils are alone
in front of a computer giving a maximum of 447 trials (number of pupils). We
have lost some trials on the first and the last sequence due to some technical
problems which explains lower numbers of trials reported.

Absolute Orientation Fig. 6 presents results from the first phase. We have
a very smooth progression in the puzzle difficulty giving a success rate above
90%. We observe a decrease in the number of trials when we enter the loop
puzzles showing that some of the pupils start to get stuck. However, the real gap
in success rate shows when we have loops with more than one instruction (i.e.
longer patterns to identify) with the success rate going down to 66% for puzzle
19 (Fig. 5(a)) (puzzle 18 being a tutorial).

Relative Orientation Fig. 7 corresponds to the second phase. The success rate
around or above 90% indicates that the pupils successfully managed to cope with
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Fig. 6. Absolute orientation: success rate and trials.

a different set of instructions. There was also an improvement in their ability
to handle loops with one instructions since we still have 139 trials for puzzle 7
(comparing to the 51 trials on puzzle 17 from previous phase) still with a good
success rate. Again, moving to puzzles with more than one instruction is a major
difficulty with puzzle 8 reaching a 56% success rate while having a significant
number of trials. Fig. 5(b) shows the corresponding puzzle. It should be noted
that being the first puzzle of this kind in the sequence there was a hint about
the pattern to manage.

Drawing : Visual Syntax (Blockly) Entering the drawing phase introduces
new challenges. First instructions are parameterized, second we start to use
different kind of angles (i.e. other than 90°) that the pupils have not studied
yet. Again, the number of trials and success rates for the first puzzles (including
loops) indicate that the change of language is not a problem for pupils and they
are still able to manage sequence and loop concepts (figure 8).

Mixing sequence and loops with more than one instructions seems to be
quite difficult (puzzle 9 - 11, 9 providing hints) has we see the number of trials
dropping. Fig. 5(c) shows puzzle 11 which still had 129 trials but a success rate
of 58%. Few pupils did the nested loops puzzles but with more than 60% of
success. This result could sustain the hypothesis that once patterns of length 2
are acquired, they are quickly generalized to more complex patterns.
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Fig. 7. Relative orientation: success rate and trials.

Fig. 8. Blockly drawing: success rate and trials.
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Drawing : Textual Syntax (Python) As one can see on Fig. 3, pupils can use
buttons corresponding to the instructions to avoid too much typing. Nonetheless,
they still have to adapt the parameters to their needs. As can be seen on figure
9, the first sequence puzzles still achieve good results above 82% with a good
participation4. This is an interesting result that shows that the pupils transferred
well their skills from visual to textual language. Again mixed sequence and loops
seem quite difficult (puzzles 8 and 9) with success rate barely above 50%. Nested
loops are also a hard point. Puzzle 10 is a tutorial puzzle. Puzzle 11 shown Fig.
5(d) has only 18% success with very few trials. The last puzzle corresponds to
a free activity where the pupils could draw what they want with no validation
condition. The graph shows that a good number of pupils enjoyed it.

Fig. 9. Python drawing: success rate and trials.

6 Conclusion and Perspectives

This paper is focused on the learning of some fundamental Computational Think-
ing concepts and abilities by 8-10 years old pupils. We have designed a peda-
gogical sequence to initiate pupils to notions of instruction, sequence and loops,
and to practice these concepts with several languages (free form (unplugged),
block-based and textual language).

4 we have lost some logs due to a technical problem.
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The quasi-experiment reported in this article considered two research ques-
tions : whether the pedagogical sequence improves pupils’ ability to recognize
and express repetitive patterns as loops (RQ1) and to which extent they can
transfer these skills to different languages (RQ2)

The statistical analysis of the questionnaires shows a significant impact of the
sequence and we have a clear increase of pupils that identify repetitive patterns
and are able to synthesize their description by using some notation to express a
loop (RQ1). More interestingly it seems that when pupils acquire a pattern of
length 2 (2 instructions) they quickly generalize it to longer patterns.

The results form the analysis of activities should be handled with more care
since, being a learning session for the pupils, they, of course, get help from the
students and even their professors and accompanying parents. However, having
a student for 4 to 6 pupils, we hopefully get the results from their own thinking.
The analysis shows that the pupils transfer quite easily their skills from one
language to the other (RQ2). They manage well sequences and loops with one
instruction then we have a gradual degradation of the results (number of trials)
for loops with more than one instruction. Nested loops is a real hard point with
very few trials and low success rate.

The pupils get a diploma which provides the address of the platform as well
as their identifying code. This allowed us to see that around 300 of them did
get back to the platform in the following days and up to two months later (by
which we retrieved the data). All sequences were used by the pupils and we had
271 trials for the Python one which seems the hardest.

The results from this study can benefit to practitioners who could use the
proposed activities. In terms of research, the questionnaires are a first step to
assess the cognitive skill with a non-programming activity which, to our knowl-
edge, is not so much explored as seen in section 2.2. There is still further work
to quantify the relative contribution of the unplugged and plugged-in activities
to the skills acquisition.

Future research should explore at what time the pupils acquire the concepts
of repetitive patterns and loops and what level of practice is necessary for them
to be able to transfer these concepts from one context or language to the other.
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