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Effect of water and lipophilic alcohols or amines on the
4-dodecylbenzenesulfonic acid-catalyzed esterifications,
trans-esterifications, and amidations

Christopher Wallis, Muriel Cerny, Eric Lacroux and Zephirin Mouloungui

Laboratoire de Chimie Agro-Industrielle (LCA), Universit�e de Toulouse, INRA, INPT, Toulouse, France

4-Dodecylbenzenesulfonic acid (DBSA) was employed in the esterification of oleic acid (OA) and the 
trans-esterification of oleic oil (OO) with 1-butanol as alcohol in the presence of various degrees of excess 
water. Under these conditions DBSA was found to be a highly active esterification catalyst regardless of 
excess water content, but was found to be a less effective for trans-esterification reactions. Lipophilic 
alcohols of differing straight and branched C3-6 chains were also tested on mixtures of OA/water (1:1) in 
DBSA-catalyzed esterifications; OO/water (1:1) in trans-esterifications; and OA/OO/water (1:1:1) in 
simultaneous esterifications and trans-esterifications. While longer straight chain alcohols generally gave 
a two-fold increase in yield of their corresponding alkyl oleates to 80%þ, we observed a doubling from 
30–50% to 60–95% of alkyl oleate yield for the OO/OA/water mixture. DBSA-catalyzed amidations of 
OO and methyl oleate emulsions in water were conducted with 1-butyl and 1-heptyl amine where it was 
found that the more lipophilic the ester moiety the higher the yield of alkyl amide.

Practical applications: The practical advantages of DBSA as catalyst are high conversions to the 
desired product along with its tolerance to high quantities of water, emulsified within the lipid material. A 
capacity to transform a range of substrates with varying lipophilic character in a range of condensation 
reactions. In addition, we demonstrate that esterification and trans-esterification reactions could be 
performed simultaneous and in the presence of high quantities of water. This is of direct interest to the 
transformation of waste sources of lipids that often contain a mixture of triglycerides and free fatty acids 
in various concentrations, emulsified with waste water. Furthermore, we demonstrate that all of the 
value-added products/co-products can be separated by an effective and industrially relevant 
methodology, including recovery of the DBSA catalyst as well as the water and water soluble co-
products, such as glycerol.

Keywords: amidation / DBSA / esterification / lipophilic / trans-esterification
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1 Introduction

Performing catalytic dehydrative condensation reactions in
the presence of water is a demanding challenge as the reaction
is forced to go against LeChatelier’s Principle (Scheme1) [1].
This is because by increasing the concentration of water in
the reaction mixture the equilibrium constant is shifted in
favor of the starting materials.

Kobayashi et al. were thefirst in 2001 to demonstrate the use
of 4-dodecylbenzenesulfonic acid (DBSA) to act as an acid
catalyst in dehydrative esterifications of carboxylic acids using
waterassolvent[2,3].Theirresultswerefollowedbyotherreports
usingsimilarcatalystscapableofworking inbiphasicoremulsified
media,whichworkedona similar principle of creating an isolated
hydrophobic environment inwhich the reagentswould condense
and the produced water molecule would be expulsed upon
production [4–6].Within this field surfactant (micellar) catalysts
areof particular interest [7, 8] asdue to their hydrophobic tail and
hydrophilic head they are able to either:Formmicelles that create
isolatedhydrophobicenvironments inwhichorganic reagentscan
react within an aqueous media [2, 3, 9–12], or form reverse
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camera. All catalytic experiments and GC measurements
were performed three times and the average reported, as is
clearly stated in the methodology.

2.1 Quantitative determination of product
distribution of samples by gas chromatography

All samples for GC analysis were prepared in the same
manner: 10mg of sample were taken up in 10mL of
cyclohexane, to which 100mL of internal standard solution
was added, (heptadecane – 10mg in 1mL cyclohexane). To
160mL of this solution was added 40mL of the silylating
agent BSFTA and the sample was heated at 103°C for 3min.
For analysis 1mL was injected directly onto the column. The
samples were characterized on a Perkin Elmer Autosystem
XL Instrument (Perkin Elmer, USA) fitted with a Restek
Rtx-5 column (15m�w0.32mm�0.25mm) using helium
as carrier gas at 15 psi of pressure which was coupled to a
flame ionization detector (FID). The injector temperature
was set at 55°C for 30 s, and then ramped at 200°C per
minute to 340°C. The oven temperature ramp was
programmed to be 55°C for 0.5min, rising by 45°C per
minute until 80°C, then 10°C per minute up to 360°C where
the temperature was held constant for 16min. The
temperature of the detector (FID) was set at 360°C. The
product distributions were determined by their retention
times, in comparison to those obtained with pure, purchased
samples of the same product.

2.2 Catalytic procedures

2.2.1 Esterification of OA

OA (10 g) and the desired weight of water were added to a
50mL round bottom flask. DBSA (10mol% with respect to
OA) was added followed by the alcohol of choice (2 eq.). The
reactionmixture was heated at 80°C for 3 h, before cooling to
room temperature, where the emulsified mixture was placed
at 4°C overnight. The resulting biphasic mixture was
transferred into a separating funnel, and the aqueous layer
was recovered by decantation. Lewatit 500 MP (1 g) was
added to the organic phase and stirred at room temperature
for 1 h. Filtration followed by drying upon a rotary evaporator
produced the product mixture for GC analysis.

2.2.2 Trans-esterification of OA

OA(5g)andthedesiredweightofwaterwereadded toa50mL
roundbottomedflask.DBSA (5mol%with respect to triolein)
was added followed by the alcohol of choice (6 eq.). The
reaction mixture was heated at 80°C for 6 h, before cooling to
room temperature,where the emulsifiedmixturewas placed at
4°C overnight. The resulting biphasicmixture was transferred
into a separating funnel, and the aqueous layer was recovered
by decantation. Lewatit 500 MP (0.5 g) was added to the

Scheme 1. Le chatelier’s principle in relation to the reaction 
equilibrium when performing esterifications in water.

micelles that trap the water released from the condensation 
reactioninhydrophilicpockets, separate fromtheorganicphaseof 
thereactionmixture [13, 14]. Inmany of these cases, however, the 
catalytic dehydrative esterifications performed in water were 
conducted with long-chain hydrophobic carboxylic acids and 
long-chain, equally hydrophobic, alcohols [2–4]. In reports where 
short chain hydrophilic alcohols (methanol or ethanol) were used, 
the ester production is dramatically reduced [3, 15], except where 
the reactions are performed neat, and the surfactant catalysts act 
as a trap for the water produced from the reaction, without the 
need for an azotrope distillation apparatus [14].

As early as 1999, we had demonstrated the ability of DBSA 
to act as a highly efficient catalyst for the partial esterification of 
oleic acid (OA) and glycerol [16, 17]. In light of this, and our 
recent development of a catalytic process for the recovery and 
transformation of slaughterhouse animal fatty wastewater 
sludge into fatty acid butyl esters (FABE) as potential biofuels, 
using 1-butanol as alcohol and DBSA as catalyst [18, 19], we 
were interested to further investigate the effect of hydrophilic 
substrates upon DBSA-catalyzed reactions in the presence of 
water. Recent reports in the literature have suggested that the 
fatty acid esters of short (C2–4), straight or branched chain 
alcohols have potential as possible biofuels, exhibiting similar 
properties to those of fatty acid methyl esters (biodiesel) in 
engine tests[20, 21]. Wepresent hereourresults on the effect of 
different concentrations of water upon the DBSA-catalyzed 
esterification and trans-esterification with 1-butanol. In 
addition, we have investigated the substrate scope of the 
DBSA catalyst by varying the lipophilic nature of the alcohols 
or amines employed. Most significantly, we have evaluated 
DBSA as a novel catalyst for simultaneous esterification and 
trans-esterification with lipophilic alcohols in the presence of 
excess water.

2 Materials and methods

OA was obtained from high oleic sunflower oil, generated 
from enzymatic hydrolysis by a method developed in our 
laboratories [22]. Oleic oil (OO) was purchased as high oleic 
sunflower oil (87.6% OA) from ITERG (Pessac, France). 
Unless otherwise stated all reagents and solvents were 
purchased from Sigma–Aldrich and used without further 
purification. Lewatit MP 500 was pre-conditioned via a 
method developed in our laboratories [23]. 1H and 
13C nuclear magnetic resonance (NMR) spectra were 
recorded on a Bruker Advance1 300 MHz instrument using 
tetramethylsilane (TMS) as an internal standard. Optical 
Microscopic images were recorded using a Nikon Eclipse 
E600 microscope fitted with a Nikon Digital Sight DS-Fi2



free fatty acids (FFA) and hydrophilic alcohols even in the
presence of large amounts of water. The advantage being that
DBSA not only acts as an acid catalyst but also an emulsifying
agent that organizes the reaction mixture in such a way that
defined hydrophobic pockets of reactivity can be created
within the emulsifiedmilieu, a phenomenon already noted by
our research team [16, 17] and Kobayashi [2, 3].

3.1.2 Effect of alcohol

We wished to see if there was a correlation between the
lipophilic nature of the alcohol and it’s reactivity in theDBSA
catalyzed esterification reaction (Table 2). To this end we
evaluated the alcohols with respect to the logarithm of their
partition coefficient.1 All experiments were performed on a
model system of a 1:1 mixture of OA and water. Excluding
methanol and ethanol, which have already been extensively
reported on [26–31]. 1-(or n-) propanol produced the
corresponding 1-propyl oleate in 84% yield. Surprisingly, 2-
(or i-) propanol gave a 33% yield of 2-propyl oleate under the
same reaction conditions. This phenomenon was equally
observed with the straight and branched isomers of butanol
with 1-butanol giving 91% of 1-butyl oleate while 2-butanol
gave only 39% of 2-butyl oleate.2 Similar observations have
already been reported and suggest that the differences are due
to the steric influence of the alcohol upon its propensity to
react with the carboxylic acid [32, 33]. Thus, the more

Table 1. Effect of H2O content on butyl oleate yield in DBSA
catalyzed esterification and trans-esterificationa

Entry
wt%
H2O

Butyl oleate yield from
OA (%)b

Butyl oleate yield from
OO (%)b

1c 0 8 4
2 0 97 98
3 30 93 32
4 50 93 42
5 70 92 29
6 100 91 31

aExperimental conditions: 10 g of OA/5 g of OO, 2 eq. 1-butanol,
10mol% DBSA, 80°C for 3 h (for OA), or 5mol% DBSA, 80°C for
6 h (for OO).
bDetermined quantitatively by GC.
cWithout DBSA catalyst.

1The authors note that the LogP value is not an exact measure of a
compound’s lipophilicity, but is highly representative when compared
in a series.

2The authors have deliberately chosen not to study the tert-butanol
isomer as our interest lies in potential biofuels, and the price of t-
butanol remains too high to be considered. The price of the n- and i-
isomers, however, is predicted to dramatically reduce due to their use
as bio-additives in petrol, see Bio-butanol: The game changer. An
emerging biofuel and biochemical. Informa Economics. 05–2013.
http://www.informaecon.com/MCSBiobutanol2013.asp

organic phase and stirred at room temperature for 1 h. 
Filtration followed by drying upon a rotary evaporator 
produced the product mixture for GC analysis.

2.2.3 Simultaneous esterification of OA and
trans-esterification of OO

OA (5 g), OO (5 g), and water (5 g) were added to a 50 mL 
round bottomed flask. DBSA (10 mol% with respect to OA, 
þ5 mol% with respect to OO) was added followed by the 
alcohol of choice (2 eq. with respect to the total number of FFA 
chains present). The reaction mixture was heated at 80°C for 
6 h, before cooling to room temperature, where the emulsified 
mixture was placed at 4°C overnight. The resulting biphasic 
mixture was transferred into a separating funnel, and the 
aqueous layer was recovered by decantation. At this stage a 
sample of the organic phase was taken for quantitative analysis 
of the product mixture by GC analysis. Pure alkyl oleate was 
isolated by adding Lewatit 500 MP (1 g) to the organic phase 
and stirred at room temperature for 3 h. Filtration followed by 
drying upon a rotary evaporator produced the pure alkyl oleate: 
1-butyl oleate (5.61 g, 48%); 1-pentyl oleate (10.2 g, 84%); 
and 1-hexyl oleate (9.4 g, 74%).

3 Results and discussion

3.1 Catalytic esterification of OA

3.1.1 Effect of water

Similarly, to that of Kobayashi, [2, 3] we evaluated the effect 
of water upon the DBSA-catalyzed esterification of Oleic 
Acid (OA) at a catalyst loading of 10 mol% and 1-butanol as 
alcohol. We created emulsions of OA and water based upon a 
percentage weight of water with respect to OA (Table 1). 
Without DBSA as catalyst (Table 1, entry 1) no esterification 
reaction occurred suggesting that the acidity of the OA is not 
sufficient enough to auto-catalyze the esterification. In the 
absence of water, DBSA is an extremely active catalyst for the 
esterification of OA to 1-butyl oleate without the need for the 
removal of water produced (Table 1, entry 2). Increasing 
incrementally the water content of the reaction mixture had 
only a negligible effect upon the conversion of OA to 1-butyl 
oleate (Table 1, entries 3–6). Importantly, and with respect 
to a sustainable system, the emulsified reaction mixture can 
be easily broken at low temperature (4°C), resulting in well-
defined organic and aqueous layers. The water can be 
recovered for further use by decantation, while the organic 
phase can be treated with a basic resin [24], to remove the 
DBSA, and subsequently dried to produce pure butyl oleate. 
Our results are of industrial importance as the current 
catalyst technologies employ acid-resin catalysts that are 
poisoned by the presence of water [25]. A DBSA-catalyzed 
process, on the other hand, would be capable of esterifying

http://www.informaecon.com/MCSBiobutanol2013.asp


sterically hindered the alcohol (i.e., the branched isomers),
the more encumbered it is to react, and subsequently lower
conversions to esters are found Scheme 2.

The straight chain alcohols of 1-pentanol and 1-hexanol
gave ester conversions of 86 and 92%, respectively (Table 2,
entries 5 and6).Comparison of the straight chain alcohols and
their reactivity to give the corresponding ester suggests that the
lipophilic nature of the short (C3–6), straight chain alcohols has
a negligible effect upon its reactivity in the DBSA catalyzed
esterification of OA (Fig. 1). For example, 1-propanol and 1-
hexanol gave comparable conversions to their corresponding
alkyl esters despite 1-propanol being freelymiscible withwater
and1-hexanol being verypoorly soluble (Table2, entries2 and
6). Therefore, the steric encumbrance of the alcohol is the
determining factor of theDBSA catalyzed esterification of OA
in water, rather than the lipophilic nature. This suggests that
the contact between the reagents (acid and alcohol) is
sufficiently good enough in the emulsified reaction mixture
to allow high conversions to esters.

Another advantage of our catalytic procedure is the mild
conditions employed. Under harsher reaction conditions it

has been shown that when using an unsaturated FFA, such as
OA, isomerisation, and cyclization can occur producing the
lactone [34], and/or butyoxylation of the double bond by the
excess butanol [35]. 1H and 13C NMR analysis of our esters
revealed that no cyclization or butyoxylation of the double
bond in OA occurred under the employed reaction
conditions (see ESI Figs. S1 and S2).

3.2 Catalytic trans-esterification of OO

3.2.1 Effect of water

DBSA has already been reported to be an effective catalyst for
the trans-esterification of triglycerides at a catalyst loading of
5mol%, but was shown to be significantly inhibited by 5 vol%
ofaddedwater [36].Reports todate,however,haveyet tostudy
the ability of DBSA as catalyst in the presence of equal
quantitiesofwater to triglycerides.Thus, aswithOA,we tested
the water tolerance of DBSA as catalyst in the trans-
esterificationofOO, as representative example of a triglyceride
(Table 1).Similarly toOA, the reactiondoesnotproceed in the
absence of the DBSA catalyst (Table 1, entry 1). The trans-
esterification of OO by DBSA takes 6 h to arrive at 98%
conversion at a catalyst loading of 5mol%, similar to that
already reported by Cuellar et al. [36] (Table 1, entry 2). In
addition, the catalysis is severely affected by the addition of
water to the reactionmixture.Evenat30wt%ofwater theyield
of 1-butyl oleate decreases to 32%, in comparison to 98%with
no added water. Interestingly, the yield of 1-butyl oleate does
notcontinuetodecreaseuponfurtheradditionofwater(entries
3–6), andappears tostabilizearound30–40%conversion.This
suggests that while the DBSA catalyst is tolerant to the water
produced from the dehydrative trans-esterification of OO, if
additional water is added, the rate of the trans-esterification is
greatlydiminished,but this effect isuniqueand independent to

Scheme 2. Esterification of oleic acid
emulsified in water.

Table 2. Esterification of OA with ROHa

Entry Alcohol (ROH) LogP of ROH Alkyl oleate yield (%)b

1 (CH3)2CH2OH 0.26 33
2 CH3CH2CH2OH 0.34 84
3 (CH3)2CH2CH2OH 0.61 39
4 CH3(CH2)2CH2OH 0.88 91
5 CH3(CH2)3CH2OH 1.6 86
6 CH3(CH2)4CH2OH 2.0 92

aExperimental conditions: 10 g OA, 10 g H2O, 2 eq. ROH, 10mol%
DBSA, 80°C for 3 h.
bDetermined quantitatively by GC.



theamountofwateradded.Uponanalysisof thebreak-downof
the components of the reaction mixture after 6 h, we noticed
that the amount of partial or complete hydrolysis of the OO
remains relatively small (see ESI Table S1). The amounts of
diglycerides (DG), monoglycerides (MG), and OA are
relatively low suggesting that neither partial, nor complete
hydrolysis of the OO occurs to a large degree. Thus,
we concluded that the predominant pathway for formation
of thebutyl oleate is via theDBSAcatalyzed trans-esterification
ofOO, and not the hydrolysis of theOO, by the excesswater in
the emulsified reaction mixture, and then esterification of the
resulting OA to 1-butyl oleate.

3.2.2 Effect of alcohol

All reactions were performed on 1:1 mixtures of OO and
water (Table 3 and Scheme 3). In the absence of any alcohol
no hydrolysis of the OO to OA is observed (Table 3, entry 0).
This result confirms that the reaction proceeds via a trans-
esterification process and not by hydrolysis followed by
esterification.

The data shows that both the straight and branched
isomers of propanol are unreactive, possibly due to their free

solubility in water (Table 3, entries 1 and 2). 2-Butanol is also
unreactive, while the straight chain isomer 1-butanol gives a
31% conversion to the 1-butyl oleate (Table 3, entries 3 and
4). The straight chain isomers of pentanol and hexanol give
37 and 57% conversions to the corresponding esters,
respectively, suggesting that the longer the carbon chain of
the alcohol, or, an alcohol with a LogP value greater than 0.8,
the more reactive it is to the trans-esterification process
(Fig. 1). With the exception of 2-butanol, we postulate that
the reactivity of the alcohol in the DBSA catalyzed trans-
esterification of a 1:1 OO/water mixture is tied specifically to
the alcohol’s solubility in water. Thus, we propose that the
higher the solubility of the alcohol in water, the lower
conversion to ester observed, due to the alcohol’s tendency to
remain within the droplets of water within the emulsified
reaction mixture. This effect would dramatically reduce the
contact between the OO (in the organic phase of the
emulsion) and the alcohol, and reduce the chance of the
trans-esterification reaction occurring (see ESI Fig. S1). In
the case of 2-butanol, it is lipophilicity could be the major
attributing factor, but as we have shown with the esterifica-
tion of OA, the steric encumbrance of the branched isomer
versus the straight chain isomer, could equally be a
determining factor in the lack of reactivity observed with
2-butanol compared to 1-butanol.

3.3 Catalytic amidations of esters

Fatty amides (FAs) are important industrial compounds and
have a plethora of uses in industrial applications from:
Coatings; lubricants; printing; etc. In addition, recent reports
have suggested that it could be feasible to consider FAs as a
potential biodiesel [37–39]. Commonly, the amidation of a
triglyceride is base-catalyzed, and to the best of knowledge
there are neither reports in the literature of the DBSA
catalyzed amidation of oils, nor reports of the amidation
being performed in water. All reactions were performed on a
1:1 mixture of OA/OO and water. Initial attempts to achieve
the DBSA catalyzed amidation of OA with 1-butylamine or
1-heptylamine were unsuccessful due to the formation of the
ammonium salt and no further reactivity. This is a commonly
reported phenomenon in the case of the direct reaction
between carboxylic acids and amines [40].

The DBSA-catalyzed amidation of esters with
1-butylamine and 1-heptylamine, on the other hand,
successfully gave the corresponding amides in modest
yields. OO gave higher conversions to the corresponding
alkyl amide the more lipophilic the amine used, a correlation
we have already observed in this work. Methyl oleate,
however, gave a slighter higher conversion to the amide with
the shorter chain butylamine than with heptylamine. The
difference in reactivity between the two esters is presumable
due to their differences in lipophilicity. OO exhibits a
partition coefficient three times higher than that of methyl
oleate. Therefore, once mixed as an emulsion in water and

Figure 1. Esterification of OA and trans-esterification of OO with
ROH (see Tables 2 and 3).

Table 3. DBSA catalyzed trans-esterificationa

Entry Alcohol ROH LogP of ROH Alkyl oleate (%)b

0 None – 0
1 (CH3)2CH2OH 0.26 0
2 CH3CH2CH2OH 0.34 0
3 (CH3)2CH2CH2OH 0.61 0
4 CH3(CH2)2CH2OH 0.88 31
5 CH3(CH2)3CH2OH 1.6 37
6 CH3(CH2)4CH2OH 2.0 57

aExperimental conditions: 5 g OO, 5 g H2O, 6 eq. ROH, 5 mol%
DBSA, 80°C for 6 h.
bDetermined quantitatively by GC.



in the presence of DBSA catalyst, the more lipophilic ester
would possess a greater probability of contact with the
amine and thus a greater degree of reactivity. The amidation
reactions appear to be unaffected by the excess water
present, producing higher conversions to the product amide
than the corresponding alcohol does to ester when
comparing the same carbon chain (C4) (Table 3, entry 4
cf Table 4, entries 1 and 3). This is presumably due to the
amine moiety on 1-butylamine being a stronger nucleophile
than the corresponding alcohol moiety of 1-butanol. Also,
and in agreement with our results for the alcohols, the longer
the carbon chain of the amine the higher the amide product
yield, due to greater solubility of the amine in the organic
phase, and a higher probability of contact with the ester. Our
investigations here constitute the first examples of DBSA as
a viable catalyst for amidation reactions in the presence
of water.

3.4 Simultaneous catalytic esterification and
trans-esterification

Catalysts capable of simultaneous trans-esterification and
esterification remain an active area of research [41–44]. To
the best of our knowledge, however, there are no reports of a

catalyst capable of simultaneous trans-esterification and
esterification in the presence of equal amounts of water to
reagents. To this end we tested DBSA as catalyst for the
simultaneous esterification of OA and the trans-esterification
of OO in the presence of an equal weight of water.

Without DBSA catalyst being added (Table 5, entry 1)
trace amounts of 1-butyl oleate are observed, suggesting that
OA is not a sufficiently strong enough acid to auto-catalyze
it’s esterification with 1-butanol, nor initiate the trans-
esterification of OO. Upon analysis of the reaction mixture at
the end of the reaction, we also observed that only trace
amounts of the OO have been hydrolyzed to OA. This
correlates with our observations for the catalysis of OO alone,
suggesting that hydrolysis of the OO to OA is not the
predominant mechanism of the reaction (see ESI, Table S3),
rather that the DBSA catalyst acts as a trans-esterification
catalyst and an esterification catalyst, simultaneously.
Therefore with DBSA as catalyst we observed a dramatic
increase in the conversion rate to 1-butyl oleate upon a
mixture of OA andOO compared to OO alone. After only 3 h
a 60% conversion rate is observed, while after 6 h the yield of
1-butyl oleate is 89% (Table 4, entries 2 and 3). This
compares to a 1-butyl oleate yield of only 31% (Table 3, entry
4) for the trans-esterification of OO alone in water. We
postulate that the addition of the OA to the reaction mixture

Scheme 3. Trans-esterification of OO
emulsified in water.

Table 4. DBSA catalyzed amidationsa

Entry Ester (LogP) Amine (LogP)
Alkyl amide
yield (%)b

1 Oleic oil (18.10) CH3(CH2)2CH2NH
(1.45)

63

2 Oleic oil (18.10) CH3(CH2)5CH2NH
(2.62)

83

3 Methyl oleate
(6.20)

CH3(CH2)2CH2NH
(1.45)

66

4 Methyl oleate
(6.20)

CH3(CH2)5CH2NH
(2.62)

56

Table 5. DBSA catalyzed simultaneous esterification and trans-
esterificationa

Entry Alcohol (ROH) LogP of ROH Alkyl oleate yield (%)b

1c CH3(CH2)2CH2OH 0.88 2
2d CH3(CH2)2CH2OH 0.88 61
3 CH3(CH2)2CH2OH 0.88 89
4 CH3(CH2)3CH2OH 1.6 76
5 CH3(CH2)5CH2OH 2.0 95

aExperimental conditions (see ESI): OA:OO:H2O (1:1:1), DBSA,
80°C for 6 h.
bDetermined quantitatively by GC.
cWithout DBSA catalyst.
dThree hours reaction time.

aExperimental conditions: 5 g ester, 5 g H2O, 6 eq. amine, 5 mol%
DBSA, 80°C for 6 h.
bDetermined quantitatively by GC.



enhances the activity of the DBSA catalyst by increasing the
acidic nature of the emulsified reaction mixture, especially in
the organic phase, and an enhancement of the reaction rate
and higher conversions to the 1-butyl oleate were observed.
The same enhancement of the catalysis is observed for 1-
pentanol (37–76%) and 1-hexanol (57–95%) in the simulta-
neous catalysis compared to the trans-esterifications per-
formed alone.

In addition, the significant advantage of our system is the
ability to recover and separate all of the potentially value-
added products contained in the emulsified raw materials
and, considering environmental factors, the water itself. We
have thus developed a protocol in which the starting material
emulsion is converted “in situ” by the DBSA catalyst and
chosen alcohol, into the respective carboxylic esters under
mild conditions. At the end of the reaction, in the case of 1-
hexanol, the reaction mixture can be decanted at low
temperature (4°C) into the organic and aqueous phases.
After decantation the aqueous phase was distilled to produce
pure water for recycling and the highly valued commercial
product glycerol isolated in modest yield (44%). The organic
phase was treated with a solid basic resin to recover the
DBSA catalyst, as well as to absorb the remaining trace
FFAs, that after drying gave the pure 1-hexyl oleate in high
yield (74%) (see ESI). (The DBSA can then be recovered off
the resin by treatment with a basic solution of methanol).
Thus, our work-up does not require the use of additional
solvents or prolonged treatments in order to obtain each
commercially valued product (Scheme 4).

4 Conclusions

In conclusion, we have demonstrated that DBSA is an
extremely effective polyvalent catalyst for either the acid-
catalyzed: Esterifications; trans-esterifications; or amidations
with substrates of varying lipophilicity in the presence of
water. Adding excess water to the reaction mixtures has a
negligible effect on the esterification reactions, regardless of
the excess amount added. Excess water added to the trans-
esterification reactions, on the other hand, causes a
significant decrease in the conversion rate to alkyl esters
(30–40%). This rate decrease in conversion shows no
observed correlation with the total concentration of water
in the reaction mixture. The lipophilic nature of the alcohol
employed in the trans-esterification DBSA-catalyzed reac-
tions in water is a critical factor in determining the conversion
rate to ester. The higher the LogP value of the alcohol (above
0.8) the higher the conversion to the corresponding alkyl
ester. A similar effect is observed for the DBSA-catalyzed
amidations where we have demonstrated that the greater
lipophilic character of either the ester or alcohol substrates
employed causes a higher conversion to alkyl amide. For
DBSA-catalyzed esterifications in water the lipophilic nature
of the alcohol is negligible and the conversion rate to esters is
determined by the steric encumbrance of the alcohol
employed. Simultaneous DBSA-catalyzed esterification
and trans-esterification in the presence of water is reported
here for the first time. In addition, we have demonstrated an
environmentally favorable post-treatment process in which
all of the value added products generated via the tranforma-
tion are isolated without the need for the use of costly solvents
or co-reagents.
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