

Forcing a dynamic model for oil production and EROI evolution: The Oil Game

Aymeric Lamorlette

To cite this version:

Aymeric Lamorlette. Forcing a dynamic model for oil production and EROI evolution: The Oil Game. 2019. hal-02383025v1

HAL Id: hal-02383025 <https://hal.science/hal-02383025v1>

Preprint submitted on 27 Nov 2019 (v1), last revised 4 Jul 2023 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Disclamer

I would like to apologise to the reader for the crudeness of this version. References are sparse and results lack discussion. Nevertheless I had the feeling the model should be published rapidly in order to discuss it with readers. In forthcoming versions, this paper will be updated based on these comments.

Forcing a dynamic model for oil production and EROI evolution: The Oil Game

A. Lamorlette

Aix Marseille Univ, Marseille, France Correspondence to aymeric.lamorlette@univ-amu.fr Tel (33) 491 113 811 ; Fax (33) 491 118 502

Abstract

Since 1940, many attempts to model world oil production have been proposed. Those approach, using growing complexity, consider the growing and decay of production independently of external, time-varying, causes. It is here proposed to extend the production equation by modelling a dynamic dependency between oil production and its EROI, using Lotka-Volterra equations. The model obtained, after comparison with oil extraction and EROI evolution on the period 1960-2010, illustrates the production dynamic and the existence of an external, controlling parameter: the production effort which account for the re-investment in the production process. The evolution of this parameter provides some possible explanations about the progress of the oil shocks and also some possible explanations about the peak prediction issues of the classical Hubbert model. Studying this evolution also suggests an attempt to control the oil production in order to obtain a linear time evolution on the period 1960-2010: the oil game. Since the end of the oil shocks, this control has been slightly inflected for the first time around 2000-2005, what could explain the evolution in fossil fuel investment from that time. Unfortunately, in order to keep playing the oil game, this control has now to be strongly inflected, in a manner that our economy never faced before. Finally, it is suggested that even if this new dynamic is kept for twenty years, the production will be at the peak between 2040 and 2048 for the liquid fossil fuels, rushing the EROI decay down to 3.2-4.5 at the peak.

Keywords: Oil production, EROI, dynamic model, production effort

Preprint submitted to ??? November 28, 2019

¹ Introduction

2 Models that account for oil production have been published from 1962 (Hubbert (1962)), with increasing complexity (Bartlett (2000); Cavallo (2002); Duncan (2003), citing only very few of them). These models rely on a pro- duction dynamic with constant parameters. The aim of this study will be to evaluate how the parameters could evolve in time, based on a coupling be- tween oil production and its EROI. Through this dependency, it is expected to explain why the prediction of peak is always delayed. The model suggested is based on a Lotka-Volterra set of equations, linking an oil production Q with $_{10}$ its mean EROI. In this approach, Q is the EROI predator.

 The article is organised as follow: A first part is dedicated to a presenta- tion of an assumption on the oil distribution as a function of EROI, which should allow to extend this study to any liquid fossil fuel. It also presents a discussion on a "physical" meaning of a mean EROI, as presented in studies like Hill (2015) where EROI is derived based on thermodynamics assump- tions. The model itself and the set of equation are then presented, along with the meaning of the parameters that appear in the model. Some sub-models are here suggested for these parameters. A fitting of the model parameters based on historical evolution of oil production and mean EROI is then per- formed. Finally, an analysis of the production effort, a forcing parameter, is done, suggesting the existence of a benefit/production optimization: the oil game.

 A second part is dedicated to the projection of the production effort that followed the same trend from the mid eighty's to 2000. An extension to the year 2020 is also discussed, showing an evolution of the production dynamic and a need to update the dynamic in 2020 in order to keep a linearly growing production.

 Finally, a few conclusions are suggested about the potential peak and an opening is presented, proposing a strategy to adapt the oil extraction dy-namic to an acceptable ecological impact and acceptable economy dynamic.

31 1. Modelling the interaction between oil production and EROI

 1.1. An assumption about the oil production distribution as a function of $_{33}$ EROI

 This section is dedicated to the description of the interactions between oil production Q and EROI. This description is based on the assumption that the EROI considered is representative of the mean EROI at a given time. Therefore, it is suggested that this value can only decrease with time, even if at a given time some wells with higher EROI than the mean value can exist. Also, the following assumption is suggested: if there is no oil (in any form) available at a given EROI, there will always be some existing oil at a lower EROI. This assumption suppose the existence of an oil distribution as a function of EROI. It should allow extending this model from conven- tional oil to non-conventional oil and liquid fossil fuels. This definition does not exactly fit the reality of "measured" EROI, nevertheless it has some "physical" meaning which presents some interest for modelling purpose. The value of this mean EROI should be close to actual wells EROI for a given year. A good candidate to represent this quantity could be the thermody- namic model suggested by Hill (2015), which behave as described above and presents values at different times which are consistent with actual, measured values.

1.2. A dynamic model for oil production and EROI evolution

 The approach suggested in this study considers oil production Q (in billion barrels) as a predator of a mean EROI.

 The oil production Q is then growing as a function of EROI and Q , and has a natural decay due to the mortality rate of wells, therefore proportional $56\text{ to }Q$. The production time derivative is composed of two terms: the growing term and the decaying term. The growing term can be justified the following way: At a given time, a production Q is available, so that an amount of 59 oil $Q \cdot EROI$ could be extracted the next year. Lets consider a parameter ⁶⁰ k_0 (in year⁻¹), called production effort. The growth of Q is then equal to 61 $k_0 \cdot Q \cdot EROI$. The decaying term of Q is simply equal to $k_1 \cdot Q$, where k_1 is ϵ ² the mean well mortality (in year⁻¹).

 ϵ ₆₃ The prey is decreasing proportionally to EROI and Q , and is suppos- edly growing due to the renewal of fossil fuels, which can be considered as happening at geological times. This effect is therefore neglected. The decay ϵ can be explained the following way: For each unit of Q that is extracted, σ the relative EROI variation is proportional to a parameter k_2 (in (billion barrels.year)[−]¹) that is expected to decrease in time, as our ability to extract oil properly increase, and according to the distribution of oil as a function σ of its availability on earth. In order to model k_2 , the following dependency ⁷¹ is proposed: $k_2 = C/(t - t_0)$ where C is a constant (in (billion barrels)⁻¹) τ_2 and t_0 (in year) is a time offset. The EROI decaying term is then equal to $k_2 \cdot Q \cdot EROI$.

⁷⁴ The following equations are then suggested for production and EROI dy-⁷⁵ namic:

$$
\dot{Q} = k_0 \cdot Q \cdot EROI - k_1 \cdot Q \,, \tag{1}
$$

76

$$
\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac
$$

$$
EROI = -k_2 \cdot Q \cdot EROI \tag{2}
$$

 It is noticed that, amongst these parameters, it seems that k_1 and k_2 τ ⁸ represent some effective "physical" properties of the system, whereas k_0 rep- resents a forcing parameter on which oil producers can play to adapt the oil extraction to their need.

⁸¹ 1.3. Fitting the model parameters on the period 1960-2010

 $\sum_{s=1}^{82}$ Since k_1 represents the wells mean mortality, it is assumed it should fit ⁸³ measured data. For instance, according to Sorrell et al. (2012), this value lies μ_{84} in the range 4.1 – 6.7%. Now, based on the previous model and suggesting a 85 value for k_1 , it is possible to plot k_0 and k_2 time evolution, based on historical ⁸⁶ data of Q and EROI:

$$
k_0 = \frac{\dot{Q}}{Q \cdot EROI} + \frac{k_1}{EROI} \,,\tag{3}
$$

87

$$
k_2 = -\frac{EROI}{Q \cdot EROI} \,. \tag{4}
$$

⁸⁸ The oil production data is extracted from Rodrigue et al. (2016) and the ⁸⁹ EROI data is extracted from Hill (2015). The analysis is performed on the 90 period 1960-2010. The evolution obtained for k_2 is presented in Fig.1. The 91 continuous line represents the model $k_2 = C/(t - t_0)$, with $C = 0.06036$ ⁹² (billion barrels)⁻¹ and $t_0 = 1950.5$ year.

 The model seems to fit adequately the data, with a mean relative error of 1.05%. The evolution shows two periods: The first one, before the first 95 oil shock, corresponds to a rapid and smooth evolution of k_2 . The second one, after the second oil shock, shows some jumps which could correspond to technological jumps, or simply the exploitation of fossil fuels that were not exploited before due to their EROI. When these wells become of interest 99 and start being exploited, the value of $k₂$ suddenly drops because exploiting these wells does not affect much the mean EROI.

Figure 1: k_2 time evolution

¹⁰¹ 1.4. Studying the production effort

 102 The parameter k_0 , which represents the forcing of the system is plot over 103 time in Fig. 2 for $k_1 = 5\%$. Its analysis provides some possible characteristics ¹⁰⁴ of the oil extraction strategy, which are presented below.

 105 On the period 1960-1968, k_0 shows a relatively linear behaviour. This ¹⁰⁶ period corresponds to an evolution of oil extraction that begin to behave as ¹⁰⁷ exponential around 1965. Due to the laws of market, and the oil price at ¹⁰⁸ this period which is rather low, keeping an exponential growth for Q could ¹⁰⁹ have been responsible for an important decrease in oil price. In order to ¹¹⁰ keep a decent benefit without using too much of their resources, producers ¹¹¹ have to reduce Q, by reducing k_1 . This strategy begins in 1969, according to $_{112}$ Fig.2. However, due to the behaviour of k_2 at this time, the system shows a 113 great inertia and damping k_0 is not sufficient to control instantaneously Q. $_{114}$ Any reasons could have been sufficient to suddenly reduce k_0 and adapt Q. 115 Three years after the first inflection of k_0 , the first oil shock happen and k_0 ¹¹⁶ is adapted.

117 After the first shock, k_0 is surprisingly constant, with a linear time evo-¹¹⁸ lution for Q. This strategy seems to optimize the production of a limited ¹¹⁹ resource (as oil). The second shock corresponds to another, longer drop of 120 k_0 .

121 After the second shock, k_0 seems to evolve (globally) linearly, with rises ¹²² and plateaus during the period 1985-2000. The solid line corresponds to the 123 equation $k_0 = 0.00349 + 0.000173 \cdot (t - 1985)$, which fits the data with a 124 mean relative error less than 1%. This behaviour allow Q to grow linearly in 125 time. Also, since the system inertia has evolved in time with k_2 , the plateaus 126 are responsible every time for a slow damping of Q , which corresponds to ¹²⁷ past predictions of a nearby peak, using Hubbert's curves. This phenomenon ¹²⁸ allows every time a rise in oil price (this can be shown in comparing Fig.2 ¹²⁹ with an oil price chart), precisely at the moment where producers need to 130 increase their investment to keep k_1 close to the solid line that ensure a $_{131}$ linearly growing Q.

Figure 2: k_0 time evolution for $k_1 = 5\%$

132 It is here noticed that k_0 depends on the choice of k_1 according to Eq.(1), ¹³³ hence the parameter k_0 has been fitted for different values of k_1 in the range $134 \quad 4-7\%$. A sensitivity study is conducted on k_1 , which lead to various results ¹³⁵ in test simulations, always in a 5% range of previsions for production and 136 EROI evolution, for k_1 in the range $4-6\%$. $k_1 = 7\%$ is discarded in this ¹³⁷ study since it always lead to underestimation of production and peak. Since the value of k_1 cannot be set with a greater accuracy, all the results presented 139 in this study will be calculated using a range on k_1 which lead to a range on 140 the ${Q, EROI}$ results.

2. Projections of the production effort

2.1. Projections based on the constant 1985-2000 dynamic

 Following this line using rises and plateaus, allow to optimize the oil benefit and production: It could be compared to a game where k_0 should be kept on this line to optimize benefits. This strategy can then be extended to 146 forthcoming years. One can observe nevertheless that k_0 begins to deviate on the period 2000-2010. It seems that, in order to keep a constant derivative for Q , k_0 should not follow the same trend any more. Extending the data 149 using Eq.(1) and Eq.(2) to fit Q values allows to evaluate the evolution of this slope. On the period 2000-2020, the slope seems to be different from the one observed on the period 1985-2000. Instead of plateaus, between 2005 and 2010, drops are required on k_1 to fasten the effect on Q, and the mean slope has to be higher than before. This behaviour could explain the evolution in fossil fuel extraction that happened around 2000-2005.

2.2. The limit of the 2000-2020 dynamic

 The extension of that game actually shows the real rule: in order to μ_{157} keep a linearly growing Q, k_0 has to evolve exponentially in time. To keep playing that game the way it started, k_0 should follow the equation $k_0 = 1.3839 \cdot 10^{-27} \exp(t/34.57)$. Fig.3 shows the extension of k_1 on the period 2005-2020 along with a projection using the exponential fit. This pro- jection suggests that the slope has again to be inflected, either by strongly inflecting the shoots between the plateaus/drops, either by shortening the plateaus/drops. In either case, this dynamic of oil extraction has never oc- curred. It means that in the forthcoming years, oil extraction strategies could take a direction that economy never experienced before. Besides, this new direction is highly unsustainable since it will have to be corrected very soon, due to the exponential behaviour that is required to get a linearly growing production. It suggests that, if these extractions strategies are kept in the forthcoming years, the frequency of economic crises may also rise exponen-tially.

Figure 3: k_0 time evolution for $k_1 = 5\%$

¹⁷¹ Conclusion and opening

 This study proposes a model which allow to study the oil extraction dynamic. This dynamic, which was constant in the period 1985-2000, seemed to deviate for a new dynamic from 2000 to 2020, what could be considered in agreement with the evolution of the energy economy since 2000. However, it suggests again an important evolution of the extraction dynamic, beginning in 2020. This new dynamic suggests an inflection in the economy that never occurs, which should be kept for twenty years in order to push back the peak between 2040 and 2048, rushing the EROI decay down to 3.2-4.5 at the peak. The following methodology can nevertheless be suggested based on this model: considering an acceptable ecological impact and an acceptable econ- omy dynamic (a scenario for the production effort that could be sustained), it should be possible to evaluate an amount of oil that could be extracted, and therefore adapt an energy transition based on that amount of oil.

¹⁸⁵ Acknowledgement

¹⁸⁶ I would like to thank Fleur who inspired me for this work.

References

- M. Hubbert, Energy resources: a report to the committee on natural resources of the national academy of sciences–national research council (1962).
- A. Bartlett, Energy resources: a report to the committee on natural resources of the national academy of sciences–national research council, Mathemat-ical Geology 1 (2000).
- A. Cavallo, Predicting the peak in world oil production, Natural ressources Reasearch 3 (2002).
- R. Duncan, Three world oil forecasts predict peak oil production, Oil and gas journal 14 (2003).
- B. Hill, Deplation A determination of the world's petroleum reserve, Hill's group (2015).
- S. Sorrell, J. Speirs, R. Bentley, R. Miller, E. Thompson, Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates, Energy 37 (2012) 709 – 724. 7th Biennial Inter-national Workshop Advances in Energy Studies.
- J. Rodrigue, C. Comtois, B. Slack, The geography of transport systems, 2016.