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One-way energy insulation using time-space modulated structures

Kaijun Yia,1,∗, Sami Karkara, Manuel Colleta

aLTDS UMR5513 Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69130 Ecully, France

Abstract

The one-way energy insulation using time-space modulated structures is theoretically
studied in this paper. Specifically, the time-space modulated structure in our studies
possesses a traveling wave-like modulation. An extended scattering matrix method is
developed and verified by comparing to the finite element method. The wave transmission
through finite time-space modulated structures is studied using the proposed method.
Results show that within the whole stop bands of the two fundamental Bloch modes of
time-space modulated structures, one-way wave transmission is achievable. This non-
reciprocal phenomenon can be exploited to realize one-way energy isolation in equivalent
infinite or semi-infinite systems, which can be found in practice. The one-way energy
isolation fails in finite systems due to a frequency conversion phenomenon resulting from
the reflection.

Keywords: time-space modulation, one-way energy insulation, non-reciprocity,
scattering matrix method

1. Introduction

Time-space modulated structures are those whose properties are changed both in
time and space. The modulation can be either coupled [1] or uncoupled [2] between time
and space. In this paper, special attention is payed to the coupled case, which means the
modulation acts like a traveling wave in the media. Real time-space modulated structures
can be found in many engineering equipments. For example, the axially moving string
[3] or rotating ring [4]. They essentially possess space periodicity, the move or rotation
further introduces a time periodicity which is coupled with the space one. Also time-space
modulated structures can be artificially realized using smart materials like piezoelectric
materials, since their effective material properties can be changed by tuning the shunt
impedance [5]. This tunable feature has been widely exploited in building metamaterials
with tunable band gaps [6–9] and devices with gradient space-varying properties [10–13].

Wave propagation in time-space modulated structures is non-reciprocal. In conven-
tional media, wave motion obeys the reciprocity, which guarantees that if waves can travel
from a source to an observer, the opposite propagation path, from the observer to the
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source, is equally possible [14]. This property is violated in time-space modulated struc-
tures. The non-reciprocity of them is implied by the symmetry breaking of the dispersion
diagram, which has been observed in real axially moving strings [3], rotating rings [4] and
structures possessing artificially time-space modulated properties [1, 15–18]. Due to the
symmetry breaking of the dispersion diagram, stop bands of the fundamental Bloch modes
in time-space modulated structures occupy different frequency ranges [1, 16]. Unidirec-
tional wave propagation was numerically demonstrated at individual frequencies within
these stop bands.

Apart from the above mentioned works, unidirectional wave propagation in time-space
modulated structures were also studied by using homogenization methods. K. Lurie [19]
designed an array composed of cells with two segments, the properties of these segments
are changing in time and space, like the whole array is moving with a constant velocity.
He obtained the effective material parameters of the dynamic array and predicted that
by appropriately designing the activated array, unidirectional wave propagation can be
observed. Following K. Lurie’s work, S. Weekes [20] validated his homogenization results
by performing direct numerical simulations. L. Shui et al. [21] used an improved multi-
scale homogenization method to obtain the effective material parameters of the time-space
modulated material. According to the homogenization results, they predicted asymmetric
wave propagation in the modulated material and numerically demonstrated it.

In brief, the above introduction indicates that the one-way wave propagation is com-
mon in diverse time-space modulated structures. This property is desired in achieving
one-way energy insulation, which can be used in many engineering applications, such as
underwater one-way communication, one-way vibration/noise manipulation, etc. Con-
sequently, time-space modulated structures have drawn and are continuously drawing
attention from many researchers in acoustics and mechanics. However, the one-way wave
propagation/transmission in them were mainly demonstrated by using numerical meth-
ods, such as finite element method [1] and finite-difference time domain method [15], at
specific individual frequencies. Limited by the numerical methods, the properties of one-
way transmission of acoustic or elastic waves impinging on time-space modulated struc-
tures have not been clearly uncovered yet, also the possibility of exploiting time-space
modulated structures to realize one-way energy insulation has not been fully discussed.

In this paper, we propose a theoretical method to study the wave transmission through
one-dimensional finite time-space modulated structures, and discuss the feasibility of one-
way energy isolation. We have the intention of making our works reach out to both
acoustical and mechanical engineers. Therefore, the longitudinal motion in slender rods is
considered. Our studies can be easily extended to other types of waves, like acoustic waves
in air and water, flexural waves in beams, etc. In what follows, time-space modulated
structures will be simply called modulated structures. Section 2 studies the dispersion
relations and Block modes in modulated rods by using the plane wave expansion (PWE)
method. Section 3 proposes a theoretical method to study the reflection and transmission
of waves incident on modulated rods. Section 4 presents the results. The proposed
theoretical method is verified in section 4.1. The properties of wave transmission are
studied in section 4.2. The feasibility of using modulated structures to realize one-way
energy insulation is discussed in section 4.3. Finally, section 5 summaries important
conclusions.
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2. Dispersion relations and Bloch modes in modulated rods

The rod lying along the x axis in figure 1(a) is studied. The density of the rod ρ0 is
constant and homogeneous, while the Young’s modulus is modulated in time and space
according to a cosine wave function:

E(x, t) = E0 + Emcos(ωmt− kmx) (1)

in which, E0 is the Young’s modulus when there is no modulation, Em is the modulation
amplitude, ωm and km are respectively the angular frequency and wavenumber of the
modulation wave, whose wavelength is λm = 2π/km. The modulation wave propagates
along the rod with the speed vm = ωm/km, as illustrated in figure 1(b).

(a)

(b)

Figure 1: (a) A slender modulated rod lying along the x axis. (b) The wave-like time-space modulation
of the Young’s modulus defined by E(x, t) = E0 +Emcos(ωmt− kmx). The time period is Tm = 2π/ωm,
the wavelength (space period) is λm = 2π/km and the wave speed is vm = ωm/km.

In the frequency range where the wavelength is much larger than the diameter of the
rod, the longitudinal motion u(x, t) in the modulated rod is governed by:

∂

∂x
[E(x, t)

∂u(x, t)

∂x
]− ρ0

∂2u(x, t)

∂t2
= 0 (2)

To have stable systems, studies in this paper are restricted to the cases satisfying
following condition [22]:

|
vm
c0

| <
1

√

1 + Em

E0

(3)

in which, c0 =
√

Eo/ρ0 is the phase velocity of the longitudinal wave in an uniform rod.
When the condition in equation (3) is satisfied, the solution of equation (2) can be

expressed in the generalized Bloch wave form:

u(x, t) =
+∞
∑

q=−∞

Uqe
i[(ω+qωm)t−(k+qkm)x] (4)
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Following the PWE method [1] to obtain the dispersion relations, the Young’s modulus
function in equation (1) is expanded by using Fourier series:

E(x, t) =
+∞
∑

p=−∞

Êpe
ip(ωmt−kmx) (5)

in which, Êp are the Fourier coefficients of corresponding bases.
Substituting equations (4) and (5) into equation (2) and forming the complex inner

product with ein(ωmt−kmx) (its complex conjugate appears in the integral), exploiting the
orthogonality of the Fourier basis that only the inner products who satisfy q + p = n are
nonzero yields:

∞
∑

q=−∞

(k + qkm)(k + nkm)Ên−qUq = (ω + nωm)
2ρ0Un (6)

By truncating the sum in equation (4) to a finite number 2N +1 of terms, and evaluating
equation (6) for−N ≤ n ≤ N , a well-posed quadratic eigenvalue problem (QEP) is formed
with a set of 2N +1 equations. The QEP could be solved in terms of k for a given ω and
vice versa. The QEP results in 4N+2 eigenvalues and 4N+2 corresponding eigenvectors,
each of size 2N + 1. Each eigenvalue together with the corresponding eigenvalue in the
form of equation (4) represents a Bloch mode that could exist in the structure. Therefore,
there are 4N + 2 Bloch modes solved from the QEP.

In all the analytical simulations, λm = 0.1 m, E0 = 70 Gpa, ρ0 = 2700 kg/m3 are
used. To make our analysis more general, results are discussed using non-dimensional
parameters. The dimensionless modulation amplitude αm = Em/E0 and dimensionless
modulation speed βm = vm/c0 are used to characterize the modulation wave in equation
(1). The dimensionless frequency Ω = λmf/c0 and dimensionless wavenumber µ = λmk
are also used during the discussion of results.

First, the QEP in equation (6) is solved by fixing k and seeking ω. Figures 2(a)
and 2(b) show the dispersion relations in a space-only periodic rod and in a time-space
modulated rod, respectively. In these figures, shadows indicate the Bragg-type stop bands.
In the space-only periodic rod (and also in other conventional spatial periodic media), due
to the fold of the dispersion diagram, all Bloch modes that could exist in the rod can be
found within the first Brillouin zone (FBZ), where µ varies in [−π, π]. However, the band
folding pattern illustrated in the band diagram of the space-only period rod does not
exist in that of the modulated rod, which means that the conventional conception of the
FBZ can not be applied to the modulated rod [1, 22], i.e., modes in a sufficiently wide
wavenumber range must be taken into account.

To study the modes in a wide Brillouin zone, one may need to distinguish and classify
the modes, which is difficult to be realized in figure 2. Therefore, in what follows, we
use an alternative way to solve the QEP by fixing ω and seeking k. Figure 3 shows
the alternative band diagram of the modulated rod with αm = 0.4 and βm = 0.2. The
Bloch modes are classified into positive-going and negative-going groups according to their
group velocities, which are calculated by cg = ∂ω/∂k. Bloch modes in each group are
organized according to their wavenumber in an ascending fashion. The nth Bloch modes
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(a) αm = 0.4, βm = 0 (b) αm = 0.4, βm = 0.2

Figure 2: Dispersion relations in a space-only periodic rod with αm = 0.4 and βm = 0 (figure 2(a)), and
in a time-space modulated rod with αm = 0.4 and βm = 0.2 (figure 2(b)). Shadows indicate the stop
bands.

in the positive-going and negative-going groups are respectively represented by u+
n and

u−

n , with n = −N, ..., 0, ...,+N . According to equation (4), they are expressed as a group
of harmonics:

u+
n (x, t, k

+
n , ω) =

+N
∑

q=−N

U+
(n,q)e

i[(ω+qωm)t−(k+n+qkm)x]

u−

n (x, t, k
−

n , ω) =
+N
∑

q=−N

U−

(n,q)e
i[(ω+qωm)t−(k−n +qkm)x]

(7)

in which, k±

n are eigenvalues obtained from the QEP, {U+
(n,−N), ..., U

+
(n,0), ..., U

+
(n,+N)}

T and

{U−

(n,−N), ..., U
−

(n,0), ..., U
−

(n,+N)}
T are the corresponding eigenvectors.

Figure 3 shows that the band diagram is asymmetric with respect to the µ = 0 line.
The dispersion curves of positive-going and negative-going modes repeat along an oblique
line, whose slope is 2π/Ωm, Ωm is the dimensionless modulation frequency. For example,
when the dispersion curve of u+

−1 mode is horizontally shifted by Ωm, then vertically shifted
by 2π, it totally overlaps the dispersion curve of u+

0 mode. In the figure, the frequency
ranges where the real part of µ is constant are stop bands of corresponding Bloch modes.
It can be seen that stop bands of different orders Bloch modes are separated. In some
previous papers [1, 16], the two stop bands of u+

0 /u
−

1 and u−

0 /u
+
−1 modes in figure 3

are termed directional band gaps, i.e., within these stop bands only positive-going or
negative-going modes can propagate. It is remarked here that these descriptions are not
appropriate. Because, for example, at frequencies within the stop bands of u−

0 /u
+
−1 modes,

even though these two modes can’t propagate in the rod, the other orders positive and
negative-going Bloch modes can. Therefore, we emphasize again that all these Bloch
modes must be taken into account when studying this type of time-space modulated
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systems. Based on this understanding, we developed a method to predict reflection and
transmission of waves incident on modulated structures, as will be shown in section 3.

Figure 3: Band diagram of the rod with αm = 0.4, βm = 0.2. Ωm is the dimensionless modulation
frequency, u+

n and u−

n indicate the nth positive-going and negative-going Bloch modes, respectively. The
frequency ranges where the real part of µ is constant are stop bands of corresponding Bloch modes.

3. Reflection and transmission of elastic waves incident on modulated rods

3.1. Introduction to the scattering matrix method

Figure 4 illustrates the scattering of incident waves by a one-dimensional scatterer.
The scatterer is between the waveguide 1 and 2. u+

i and u−

i indicate the incident waves
from these two waveguides, respectively. u−

s and u+
s indicate the scattered waves. These

incident and scattered waves are related by a scattering matrix in the following manner:

{

u−

s

u+
s

}

=

[

R11 T21

T12 R22

]{

u+
i

u−

i

}

(8)

in which, R11, T12, T21 and R22 are frequency-dependent coefficients [2].

Figure 4: Scattering of incident waves by a one-dimensional scatterer.

The scattering relations in equation (8) can be used to obtain the scattered waves. Also
the scattering matrix is very useful to describe the reflection and transmission properties
of the scatterer. R11 and T12 are the reflection and transmission coefficients corresponding
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to the incident wave from the waveguide 1. On the other hand, T21 and R22 are the trans-
mission and reflection coefficients corresponding to the incident wave from the waveguide
2. Using these features, the scattering matrix is proposed to judge whether a so-called
non-reciprocal device is really non-reciprocal [23, 24].

3.2. Extending the scattering matrix method to modulated rods

In this section, the scattering matrix method is extended to study the reflection and
transmission of elastic waves incident on time-space modulated structures. The finite
modulated rod in figure 5 occupying the region x1 ≤ x ≤ x2 is considered, the left and
right ends of it are connected to a semi-infinite uniform rod, respectively. The Young’s
modulus and density of the modulated rod are the same as in section 2, those of the
uniform rods are E0 and ρ0.

Figure 5: Scattering of incident waves by a modulated rod.

Assume that the following two harmonic waves u+
i and u−

i are incident on the modu-
lated rod from left and right sides, respectively:

u+
i (x, t) = A0e

iω(t− x

c0
)

u−

i (x, t) = G0e
iω(t+ x

c0
)

(9)

in which, A0 and G0 are corresponding amplitudes, which are known a priori.
Positive-going (u+

m) and negative-going (u−

m) waves are induced inside the modulated
rod. Mathematically these induced waves can be represented as superposition of the Bloch
modes supported by the rod. When 2R+1 Bloch modes are used, according to equations
(7), these waves are represented as:

u+
m(x, t) =

+R
∑

n=−R

Cnu
+
n =

+R
∑

n=−R

+R
∑

q=−R

CnU
+
(n,q)e

i[(ω+qωm)t−(k+n+qkm)x]

u−

m(x, t) =
+R
∑

n=−R

Dnu
−

n =
+R
∑

n=−R

+R
∑

q=−R

DnU
−

(n,q)e
i[(ω+qωm)t−(k−n +qkm)x]

(10)

in which, Cn and Dn are contribution coefficients of corresponding Bloch modes. Note
that, the number of Bloch modes used in equations (10) must be smaller than the number
of Bloch modes obtained from the QEP, details about this will be discussed later.
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It can be seen from equations (10) that the induced waves inside the modulated rod
have harmonic components with frequencies ω + qωm, q = −R, ..., 0, ..., R. Therefore,
the scattered waves (u−

s and u+
s ) must be superposition of harmonics with all possible

frequencies ω + qωm:

u−

s (x, t) =
+R
∑

q=−R

Bqe
i(ω+qωm)(t+ x

c0
)

u+
s (x, t) =

+R
∑

q=−R

Fqe
i(ω+qωm)(t− x

c0
)

(11)

Bq and Fq are amplitudes of corresponding harmonics.
The incident waves (u+

i , u
−

i ) and scattered waves (u−

s , u
+
s ), as well as the induced

waves (u+
m, u

−

m) inside the modulated rod must satisfy the continuity of displacement and
of force at interfaces x1, x2. These conditions are:

u+
i (x1, t) + u−

s (x1, t) = u+
m(x1, t) + u−

m(x1, t)

E0
∂[u+

i (x, t) + u−

s (x, t)]

∂x
|x=x1

= E(x1, t)
∂[u+

m(x, t) + u−

m(x, t)]

∂x
|x=x1

u+
m(x2, t) + u−

m(x2, t) = u+
s (x2, t) + u−

i (x2, t)

E(x2, t)
∂[u+

m(x, t) + u−

m(x, t)]

∂x
|x=x2

= E0
∂[u+

s (x, t) + u−

i (x, t)]

∂x
|x=x2

(12)

Substituting the expressions of waves (equations (9) to (11)) and the two-dimensional
Fourier expansion of the Young’s modulus of the modulated rod (equation (5)) into the
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continuity conditions results in:

A0e
−i ω

c0
x1eiωt +

+R
∑

q=−R

{Bqe
i
ω+qωm

c0
x1

−
+R
∑

n=−R

[CnU
+
(n,q)e

−i(k+n+qkm)x1 +DnU
−

(n,q)e
−i(k−n +qkm)x1 ]}ei(ω+qωm)t = 0

− E0
ω

c0
A0e

−i ω

c0
x1eiωt +

+R
∑

q=−R

{E0
ω + qωm

c0
Bqe

i
ω+qωm

c0
x1

+
+R
∑

n=−R

+1
∑

p=−1

Êpe
−ipkmx1 [Cn(k

+
n + (q − p)km)U

+
(n,q−p)e

−i(k+n+(q−p)km)x1

+Dn(k
−

n + (q − p)km)U
−

(n,q−p)e
−i(k−n +(q−p)km)x1 ]}ei(ω+qωm)t = 0

{

+R
∑

q=−R

{

+R
∑

n=−R

[CnU
+
(n,q)e

−i(k+n+qkm)x2 +DnU
−

(n,q)e
−i(k−n +qkm)x2 ]

−Fqe
−i

ω+qωm

c0
x2} −G0e

i ω

c0
x2}ei(ω+qωm)t = 0

{

+R
∑

q=−R

{

+R
∑

n=−R

+1
∑

p=−1

Êpe
−ipkmx2 [Cn(k

+
n + (q − p)km)U

+
(n,q−p)e

−i(k+n+(q−p)km)x2

+Dn(k
−

n + (q − p)km)U
−

(n,q−p)e
−i(k−n +(q−p)km)x2 ]

−E0
ω + qωm

c0
Fqe

−i
ω+qωm

c0
x2}+ E0

ω

c0
G0e

i ω

c0
x2}ei(ω+qωm)t = 0

(13)

The constraint between the truncation order of Bloch modes R introduced in equa-
tions (10) and the truncation order N for the QEP is discussed here. When 2N + 1
positive-going and 2N + 1 negative-going Bloch modes are obtained from the QEP, the
coefficients U+

(n,q−p) and U−

(n,q−p) in the second and fourth equations in equations (13)

are respectively elements in corresponding eigenvectors {U+
(n,−N), ..., U

+
(n,0), ..., U

+
(n,+N)}

T

and {U−

(n,−N), ..., U
−

(n,0), ..., U
−

(n,+N)}
T . Therefore the integral index q − p must satisfy

−N ≤ q − p ≤ +N . For indexes q and p, respectively, they satisfy −R ≤ q ≤ R and
−1 ≤ p ≤ 1 (because the Fourier series of the Young’s modulus represented in equation
(1) only have 3 nonzero terms, namely the terms associated with Ê±1 and Ê0). Taking
all these conditions into account, one can have R ≤ N − 1. Note that the constraint
between R and N depends on the type of modulation wave that is used. It is easy to
obtain the corresponding constraints for other types of modulation waves following the
process introduced here.

By exploiting the orthogonality of harmonic waves ei(ω+qωm)t, the four equations in
(13) can be rewritten into the following matrix forms:
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MB1
B −MC1

C −MD1
D = −A0MA1

I0

MB2
B +MC2

C +MD2
D = A0MA2

I0

MC3
C +MD3

D −MF3
F = G0MG3

I0

MC4
C +MD4

D −MF4
F = −G0MG4

I0

(14)

here, B, C, D and F are column vectors respectively containing coefficients Bq, Cn, Dn

and Fq, n, q = −R, ..., 0, ...R; I0 is a (2R + 1)-by-1 vector, with I0(R + 1) = 1 and other
elements are zero; dimensions of matrices represented by M(.) are all (2R+1)-by-(2R+1),
details of them are listed in Appendix A.

By solving equations (14), one can obtain the coefficient vectors B, C, D and F ,
then using the expressions in equations (10), (11), one can obtain the scattered waves, as
well as the induced waves inside the modulated part.

To further establish the scattering relations between the incident and scattered waves,
coefficients C and D in equations (14) are eliminated and the rest equations are rewritten
as:

{

B

F

}

=

[

HBF11
HBF12

HBF21
HBF22

]−1 [
HAG11

HAG12

HAG21
HAG22

]{

A0

G0

}

(15)

Details of the matrices in equations (15) are in Appendix A. Note that, coefficients A0

and G0 can be complex to include the phase of the incident waves. Therefore, according
to equation (15) and the Appendix A, one can find out that the scattering properties of
the modulated rod does not depend on the phase of the incident waves.

Equations (15) are the final scattering relations. The corresponding scattering matrix
is:

S =

[

HBF11
HBF12

HBF21
HBF22

]−1 [
HAG11

HAG12

HAG21
HAG22

]

(16)

The scattering matrix S is a (4R + 2)-by-2 matrix, as will be shown in section 4, it is a
very handy tool to characterize the reflection and transmission properties of the modulated
structures.

4. Results

4.1. Validation of the extended scattering matrix method

The finite element (FE) method is used as benchmark to verify the extended scattering
matrix method developed in section 3.2. Figure 6 shows the rod model used in the
FE simulations. It is discretized by two-dimensional Lagrange elements, there are 20
elements per λm length. The left and right parts of the model are uniform rods, the
central part is a modulated rod. Absorption boundary conditions (ABC) are used to avoid
reflection at the rod ends, therefore to mimic the scattering problem illustrated in figure 5.
Since there is a time-varying material parameter in the model, the traditional frequency-
domain analysis by performing Fourier transform on the whole governing equations is
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not available. Therefore, in the FE simulations, the time-domain analysis is used. The
responses are evaluated by using the generalized α method with a fixed time step equal to
0.0025λm/c0. In the theoretical simulations using the extended scattering matrix method,
the incident wave is a pure harmonic wave. Therefore, to obtain a similar incident wave in
the FE simulations, hanning-windowed tone-burst excitations are used, with 200 cycles.

Figure 6: The rod model used in the FE simulations. The left and right parts are uniform rods, the
central part is a modulated rod. ABC are applied at the two ends. The modulation parameters of the
modulated rod are αm = 0.4, βm = 0.2. The lengths are Lu = 10λm and Lm = 20λm. OL and OR are
the two observation points, which are the centers of the two uniform rods, respectively.

In the FE simulations, λm = 0.1 m, E0 = 70 Gpa, ρ0 = 2700 kg/m3. Modulation
parameters of the modulated rod are chosen as αm = 0.4, βm = 0.2. The lengths of the
uniform and modulated parts in figure 6 are Lu = 10λm and Lm = 20λm, respectively.
The tone-burst excitation F (t) (with the spectrum centred at Ωe) is applied at the left end
of the model to generate longitudinal waves incident from the left side of the modulated
rod. The responses of the model in time domain are evaluated; then the spectra at two
observation points, namely OL and OR in figure 6, are obtained by performing FFT on
the passing waves at these two points. Note that waves at point OL are superposition
of the incident and reflected waves, those at point OR are the transmitted waves. These
spectra are compared with the theoretical results, which are obtained by solving equations
(15) with G0 = 0 at Ωe (one can also solve equations (14) to have these results). In the
theoretical simulations, the modulation parameters and length of the modulated rod are
the same to those in the FE simulations. In addition, the truncation order used in the
theoretical method is R = 4. It will be seen that the truncation order R = 4 is enough
to take into account all the significant scattered harmonics. Thus, this truncation order
is used in all the following theoretical simulations.

Figures 7 and 8 show the comparison between the numerical and theoretical results
at a frequency inside the first stop band of the u+

0 mode (Ωe = 0.584) and at a frequency
outside all the stop bands (Ωe = 0.49), respectively. The first frequency is the center of
the stop band of the u+

0 mode, and the second one is the center between the stop bands
of the u+

0 and u−

0 modes (see figure 3). In figures 7 and 8, the black lines represent the
results obtained by the FE method. The red matches are the results from the theoretical
method. The length of them indicates the amplitude value. To facilitate comparison,
all the results are normalized by the maximum amplitude. Recall that Ωm = βm is the
dimensionless modulation frequency.

It can be seen that the extended scattering matrix method can accurately predict
the reflected and transmitted harmonics. Figures 7(a) and 7(b) show discrepancies at
some crests. These disagreements are caused by the inconsistency between the incident
waves in the theoretical and FE simulations. In particular, as can be seen in figures 7(a)

11



and 7(b), when the excitation frequency is Ωe = 0.584, most of the incident waves are
reflected by the modulated rod (more details about the reflection and transmission will
be discussed in section 4.2). These reflected waves will interact with the source in the
FE simulation (for example, parts of these waves will be reflected at the source point due
to the discontinuity and make contribution to the incident waves), consequently causing
the differences between the incident waves in the theoretical and FE simulations. This
interpretation is supported by the better agreement shown in figures 8(a) and 8(b), in
which case, the reflection from the modulated rod is weak hence the incident waves are
less disturbed in the FE simulation.

(a) spectra at point OL

(b) spectra at point OR

Figure 7: Comparison between the results obtained by the FE method and the theoretical method
when the modulated rod is stimulated by a left incident harmonic wave at frequency Ωe = 0.584. The
modulation parameters of the modulated rod are αm = 0.4, βm = 0.2. The dimensionless modulation
frequency is Ωm = 0.2. The length of the modulated rod is Lm = 20λm.

4.2. Reflection and transmission properties

In this section, the reflection and transmission properties within a frequency range
covering the first stop bands of the u+

0 and u−

0 modes are studied. The scattering matrix
in equation (16) can be divided into four equal quadrants:

S =

[

RL TR

TL RR

]

(17)
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(a) spectra at point OL

(b) spectra at point OR

Figure 8: Comparison between the results obtained by the FE method and the theoretical method
when the modulated rod is stimulated by a left incident harmonic wave at frequency Ωe = 0.49. The
modulation parameters of the modulated rod are αm = 0.4, βm = 0.2. The dimensionless modulation
frequency is Ωm = 0.2. The length of the modulated rod is Lm = 20λm.

elements in quadrants RL and TL are respectively the reflection and transmission coeffi-
cients of a harmonic wave incident from the left side. Elements in quadrants TR and RR

are respectively the transmission and reflection coefficients of a harmonic wave incident
from the right side.

Figures 9 and 10 show the reflection and transmission coefficients at different frequen-
cies corresponding to a short modulated rod (Lm = 20λm) and a long modulated rod
(Lm = 40λm), respectively. In these figures, each curve is associated with a harmonic
composing the reflected or transmitted waves of frequency Ω + qΩm.

From figure 9 we can see that, when a harmonic wave with a frequency inside the stop
band of the u+

0 mode is incident from the left side, most of it will be reflected (see figure
9(a)). In contrary, when this harmonic wave is incident from the right side, most of it
will be transmitted (see figure 9(b)). This unidirectional transmission is also observed at
frequencies inside the stop band of the u−

0 mode. In this case, a harmonic wave from the
right side will be mostly reflected, but the same harmonic wave from the left side will be
mostly transmitted.

Also, some nonlinear phenomena occur during the reflection and transmission. It
can be seen that, no matter which direction the mono-harmonic wave is incident from,
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(a) For a harmonic wave incident from the left side.

(b) For a harmonic wave incident from the right side.

Figure 9: Reflection and transmission coefficients for harmonic waves incident from two opposite direc-
tions when the length of the modulated rod is Lm = 20λm. The modulation parameters are αm = 0.4,
βm = 0.2.

the reflected and transmitted waves both contain multiple harmonics with frequencies
Ω + qΩm, which theoretically verifies the numerical observation in [18, 25]. Also we can
observe frequency conversion from the reflected waves. In particular, the left incident
harmonic wave is mainly reflected into the −1st harmonic with frequency Ω − Ωm (see
the left figure in figure 9(a)). On the contrary, the right incident harmonic wave is
mainly reflected into a harmonic with frequency Ω + Ωm (see the left figure in figure
9(b)). The frequency conversion is especially significant in the vicinity of and within
the corresponding stop bands since the reflection is more intense at these frequencies.
This frequency conversion phenomenon is also numerically demonstrated in [17, 18, 26]
at individual frequencies within the stop bands of the two fundamental modes. The
mechanism behind the frequency conversion was explained in the authors’ previous paper
[27].

It should be noted that obvious exceptional sharp peaks of the amplitude of the
−2nd harmonic at Ω = 0.4 are observed. These peaks are caused by the rigid body
motion of the rod, because frequency (Ω − 2Ωm) of the −2nd harmonic tends to 0 as Ω
approaches Ω = 0.4. Note that rigid body motion may occur at other frequencies that
satisfy Ω + qΩm = 0. The length of the modulated rod may have significant influences
on the reflection and transmission properties of the modulated rod. By comparing the
results in figures 9 and 10 we can see that a 20λm long modulated rod is long enough to
eliminate those influences in our simulations.
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(a) For a harmonic wave incident from the left side.

(b) For a harmonic wave incident from the right side.

Figure 10: Reflection and transmission coefficients for harmonic waves incident from two opposite direc-
tions when the length of the modulated rod is Lm = 40λm. The modulation parameters are αm = 0.4,
βm = 0.2.

4.3. The feasibility of using modulated structures as one-way energy insulators

The one-way wave transmission revealed in figures 9 and 10 indicates that, modulated
structures can serve as one-way energy insulators in approximate infinite systems or semi-
infinite systems. For example, modulated structures could be used to protect coasts and
harbors from waves. They will let the offshore disturbance propagates to the ocean
however block the impact from the ocean. The ocean can be treated as semi-infinite in
these cases. Modulated structures could also be used in finite structures which can be
approximated by equivalent infinite ones [28], in these structures the scattered waves are
attenuated by damping or radiation therefore are not reflected back to the modulated
structures.

However, the one-way energy insulation will fail in finite systems. To demonstrate
this, the finite system composed of three parts shown in figure 11 is considered. The
central part is a modulated rod, the rest two parts are uniform rods. The left and right
ends of the whole system are respectively free and clamped.

The responses of the system excited by a harmonic load F (t) = Leiωt applied at the
left end (see figure 11) are obtained by using the wave-based theory developed in section
3.2. For the system in figure 11, waves u+

m, u
−

m, u
+
s and u−

s are still expressed by equations
(10) and (11). However, waves u+

i and u−

i are unknown now, they should be represented
as:
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Figure 11: A finite system contains three parts. The left and right parts are uniform rods, the central
part is a modulated rod.

u+
i (x, t) =

+R
∑

q=−R

Aqe
i(ω+qωm)(t− x

c0
)

u−

i (x, t) =
+R
∑

q=−R

Gqe
i(ω+qωm)(t+ x

c0
)

(18)

Aq and Gq are coefficients to be determined.
These waves need to satisfy not only the continuity conditions at x1 and x2 but also

the boundary conditions at the two ends of the system:

E0
∂[u+

i (x, t) + u−

s (x, t)]

∂x
|x=0 = Leiωt

u+
s (x3, t) + u−

i (x3, t) = 0

(19)

Following the process introduced in section 3.2, a set of linear equations are obtained
by first substituting the wave expressions (equations (10), (11) and (18)) and the two-
dimensional Fourier expansion of the Young’s modulus of the modulated rod into the
continuity conditions (12) as well as the boundary conditions (19), then exploiting the
orthogonality of harmonic functions ei(ω+qωm)t. The unknown coefficients of the waves
are solved from these equations. The responses of a particular location in the system are
then obtained by superposition of corresponding waves. For example, the responses at
point O in figure 11 can be expressed as: u(xO) = u+

s (xO) + u−

i (xO). In what follows,
the responses at this point are studied to verify whether the one-way energy insulation is
available in finite systems.

Figure 12 shows the responses at point O in a large frequency band. In the simulations,
the lengths are Lu = 10λm and Lm = 20λm. Figure 12(b) shows the frequency responses
when the central part is a modulated rod with αm = 0.4, βm = 0.2. In this case,
the response u(xO) excited by the excitation at frequency Ω is composed of multiple
harmonics due to the nonlinear phenomena caused by the modulated rod shown in section
4.2. Therefore, the maximum amplitude of the response is evaluated in figure 12(b). As
references, figure 12(a) shows the responses when the central part is only space periodic
with αm = 0.4, βm = 0. The two stop bands of u−

0 and u+
0 modes are totally overlapping in
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this case. In these two figures, results corresponding to two truncation orders are shown.
They have very good agreement in both figures, which means that the simulations are
convergent.

From figure 12(a), it can be seen that within the stop band, the central space-only
periodic rod can significantly prevent the energy from being transmitted to the right part.
However, when the central rod is time-space modulated, no such effect can be observed
within the stop band of u+

0 mode (see figure 12(b)), which verifies that one-way energy
insulation fails in finite systems.

(a)

(b)

Figure 12: Frequency responses at point O shown in figure 11: (a) the central part is only space periodic
with αm = 0.4, βm = 0; (b) the central part is a modulated rod with αm = 0.4, βm = 0.2.

The failure of one-way energy insulation in finite systems is mainly caused by the fre-
quency conversion phenomenon. In the finite system shown in figure 11, when a harmonic
is incident on the modulated rod from the left side at a frequency Ω within the stop band
of the u+

0 mode, according to the results in figure 9(a) or 10(a), most of the incident
harmonic will be reflected, also the main frequency will be down-converted. Due to the
conversion, the main frequency of the reflected waves is outside the stop band of u+

0 mode.
Therefore, when this harmonic is reflected back by the left end of the whole system and is
incident on the modulated rod the second time, most of it will be transmitted through the
modulated rod, causing the failure of the energy insulation. Similar phenomena happen
inside the stop band of the u−

0 mode when waves are incident from the right side.

17



5. Conclusions

This paper theoretically studied the properties of one-way transmission through finite
one-dimensional modulated structures and discussed the one-way energy isolation. Caused
by the extra time periodicity, modulated structures posses no full band gaps, which are
common in space-only periodic media. Stop bands of different orders Bloch modes could
be well separated. At any frequency, multiple Bloch modes can be stimulated and make
considerable contribution to the forced responses of the modulated structure. Based
on this understanding, we developed an extended scattering matrix method to study
the reflection and transmission of elastic waves incident on modulated structures. We
theoretically demonstrated that, within the whole stop bands of the two fundamental
Bloch modes, approximate one-way wave transmission is available. Also it is demonstrated
that, when a single harmonic wave is incident on the modulated structure, many frequency
components will be generated in the reflected and transmitted waves. Particularly, the
main frequency of the reflected waves is up or down converted, depending on the wave
incident direction and modulation wave direction. The one-way energy insulation fails
in finite systems caused by the frequency conversion. Nevertheless, it can be achieved in
those real-life structures which can be approximated by equivalent infinite ones.
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Appendix A. Details of matrices

Details of the matrices in equations (14):

MA1
= diag(e

−i
ω+qωm

c0
x1); MB1

= M−1
A1

MA2
= diag(E0

ω + qωm

c0
e
−i

ω+qωm

c0
x1); MB2

= MB1
MA2

MB1

MF3
= diag(e

−i
ω+qωm

c0
x2); MG3

= M−1
F3

MF4
= diag(E0

ω + qωm

c0
e
−i

ω+qωm

c0
x2); MG4

= MG3
MF4

MG3

MC1
(q +R + 1, n+R + 1) = U+

(n,q)e
−i(k+n+qkm)x1

MD1
(q +R + 1, n+R + 1) = U−

(n,q)e
−i(k−n +qkm)x1

MC2
(q +R + 1, n+R + 1) =

+1
∑

p=−1

Êpe
−ipkmx1 [(k+

n + (q − p)km)U
+
(n,q−p)e

−i(k+n+(q−p)km)x1 ]

MD2
(q +R + 1, n+R + 1) =

+1
∑

p=−1

Êpe
−ipkmx1 [(k−

n + (q − p)km)U
−

(n,q−p)e
−i(k−n +(q−p)km)x1 ]

MC3
(q +R + 1, n+R + 1) = U+

(n,q)e
−i(k+n+qkm)x2

MD3
(q +R + 1, n+R + 1) = U−

(n,q)e
−i(k−n +qkm)x2

MC4
(q +R + 1, n+R + 1) =

+1
∑

p=−1

Êpe
−ipkmx2 [(k+

n + (q − p)km)U
+
(n,q−p)e

−i(k+n+(q−p)km)x2 ]

MD4
(q +R + 1, n+R + 1) =

+1
∑

p=−1

Êpe
−ipkmx2 [(k−

n + (q − p)km)U
−

(n,q−p)e
−i(k−n +(q−p)km)x2 ]

in which, n, q = −R, ..., 0, ...R.
Details of the matrices in equations (15):

HBF11
= MC3

M−1
C1
MB1

− (MC3
M−1

C1
MD1

−MD3
)(MC2

M−1
C1
MD1

−MD2
)−1(MC2

M−1
C1
MB1

+MB2
)

HBF21
= MC4

M−1
C1
MB1

− (MC4
M−1

C1
MD1

−MD4
)(MC2

M−1
C1
MD1

−MD2
)−1(MC2

M−1
C1
MB1

+MB2
)

HBF12
= −MF3

; HBF22
= −MF4

HAG11
= −MC3

M−1
C1
MA1

I0

+ (MC3
M−1

C1
MD1

−MD3
)(MC2

M−1
C1
MD1

−MD2
)−1(MC2

M−1
C1
MA1

−MA2
)I0

HAG21
= −MC4

M−1
C1
MA1

I0

+ (MC4
M−1

C1
MD1

−MD4
)(MC2

M−1
C1
MD1

−MD2
)−1(MC2

M−1
C1
MA1

−MA2
)I0

HAG12
= MG3

I0; HAG22
= −MG4

I0
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