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The present work extends a recent two-dimensional analytical model for sound generation
and transmission in an axial-flow outlet guide vanes row, by taking into account vane camber
and stagger, as well as cut-on/cut-off or cut-off/cut-on transitions of inter-vane channel modes.
It is aimed at demonstrating that such transitionsmay have a significant role in turbomachinery
aeroacoustics, typically by changing the balance of upstream and downstream scattered waves.
The model is based on a mode-matching procedure and generates a uniformly valid descrip-
tion of the sound field. Previous implementations neglecting the vane curvature have shown
significant limitations at high frequencies compared to numerical simulations performed with
a finite element method code. The extension presented in this paper introduces curvature by
a slowly-varying duct formalism. Comparison with numerical simulations show substantial
improvements at the cost of a reasonably higher computation time.

I. Introduction
With the exponential growth of air traffic since the 1980s, International Civil Aviation Organization (ICAO) noise

standards have become more and more stringent in order to limit noise annoyance for people living in the vicinity of
airports. Consequently, aircraft and engine manufacturers need to maintain a constant research effort to keep reducing
overall aircraft noise. In particular, with the constant increase in bypass ratio of turbofan engines, fan related noise is
today one of the main lever to reduce Effective Perceived Noise Level (EPNL). In this context, the mode-matching
technique described in Bouley et al. [1] showed promising capabilities as a tool for fan stage pre-design, especially to
further understand acoustic transmission and reflection phenomena. The present work is aimed at i) developing an
analytical tool based on the mode-matching technique to model acoustic transmission phenomena in a rotor-stator stage
and ii) bringing a deeper understanding of sound propagation in blades row. The objective is to include as many realistic
design parameters as possible in the model while preserving analytical tractability, so that fast computations are ensured
especially for broadband noise. The model should also perform efficiently in an optimization strategy.

The paper focuses on the study of sound transmission through an Outlet Guide Vanes (OGV) row using a two
dimensional formulation of the analytical model presented by Roger et al. [2]. An improvement of the model, taking
into account the effect of vane camber on sound propagation, is presented in this paper.

The implementation of camber also reproduces the diffuser effect of the OGV row by the equivalent stream-wise
variation of the inter-vane channel cross-section. This has a significant effect on the amplitudes and wavenumbers of the
acoustic modes. In particular the mechanism known as cut-off/cut-on or cut-on/cut-off transition for inter-vane channel
modes is also expected. The results shown in this paper, as a preliminary implementation, are obtained without mean
flow, though including flow is not a difficulty as shown in Bouley et al. [1].
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The outline of the paper is as follows. State of the art on the mode-matching technique and sound propagation in
ducts of varying cross-section are presented in section II alongside the geometrical approximations used to describe the
inter-vane channels. The newly added implementation of vane camber in the modified mode-matching equations is also
described. Pressure fields computed with the developed algorithm are then compared with numerical simulations in
section III. Finally, the influence of inter-vane channel mode transitions on the acoustic power balance is discussed in
section IV.

II. Mode-Matching Technique

A. Background
The mode-matching technique is used to solve boundary value problems with linear frequency-domain differential

equations. This technique is well suited when the geometry of the problem can be seen as the junction of multiple
sub-regions. Such problems can arise for wave propagation in ducts with liners on specific portions of the wall or
for wave scattering through bifurcated channels. In particular, sound propagation through an OGV row seen in a 2-D
unwrapped cut at a constant radius can be viewed as an example of the latter case. An explanatory scheme is given in
Fig. 1. An incident mode, described by its velocity potential φi , is scattered at the OGV Leading-Edge (LE) interface,
generating reflected modes φr and transmitted modes φd in the channels that scatter again at the Trailing-Edge (TE)
interface, giving rise to reflected channel modes φu and transmitted modes φt . Hard-walled boundary conditions at the
walls of inter-vane channels and periodic boundary conditions in the y-direction are imposed. In the mode-matching

Fig. 1 Scattering of an acoustic wave through an OGV row seen in 2-D at a given radius.

technique, the Helmholtz equation is solved for all scattered potentials. The method can be described in three steps:
partitioning, solving and matching. The partitioning consists in dividing the domain into different sub-domains in which
the boundary conditions are uniform, allowing a solution of the Helmholtz equation on a local modal basis. In Fig. 1,
the sub-domains are the upstream medium, the inter-vane channels and the downstream medium. The solving step
is self-explanatory and provides the solution in each sub-domains in a modal form. Finally, the matching procedure
connects the different modal solutions at both leading-edge and trailing-edge interfaces (Fig. 1). To do so, it uses
continuity equations specific to the problem in order to build a set of equations on the modal coefficients that can be
solved by matrix inversion.

The mode-matching technique was first used for electromagnetic fields by Whitehead [3] and the method was later
described in details by Mittra and Lee [4]. In the context of cascade aeroacoustics, Bouley et al. [1] recently developed
a mode-matching technique to study sound transmission and generation through OGV in axial-flow turbofan engines
(an exhaustive list of references can also be found in the paper). Bouley et al. [1] used an unwrapped 2-D model at a
given duct radius and modeled the vanes by infinitely thin flat plates with zero stagger, which corresponds exactly to the
problem in Fig. 1 with the addition of a mean flow. The model was subsequently improved to account for stagger angle
at the leading edge using Green’s second identity, as described by Roger & François [5]. Roger et al. [2] later improved
the model with a natural extension of mode-matching to make the solution of the potentials φd and φu available in the
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entire inter-vane channel for any stagger. They also did a preliminary investigation on the diffuser effect of the OGV
row due to an increasing inter-vane channel cross-section. This effect is introduced when vane mean camber is taken
into account. To do so, vane profiles were modeled using circle arcs (see Fig. 2a). With this approximation, the sound
field was only available in the domain BA’C’C. To address this problem, they slightly modified the geometry to allow
the definition of acoustic modes in the triangle part of the inter-vane channels defined by the points A, A’ and B in
Fig. 2b. Good agreements were obtained by Roger & Moreau [6] when applying the mode-matching technique with
cambered vanes compared to Hixon’s [7] results with the NASA Glenn Research Center BASS code which solves the
fully nonlinear Euler equations. Roger et al. [2] and Roger & François [5] then used Ovenden’s [8] solution for the
velocity potential to highlight the effect of cut-on/cut-off transition on sound propagation but did not implement this
mechanism in the mode-matching technique.

(a) (b)

Fig. 2 Radial cut showing vane mean camber (a) and the inter-vane channel with the modified vanes profile
used in the mode-matching problem statement (b). (Fig. (a) taken from Roger et al. [2])

To derive the solution of the velocity potentials inside the cambered part of the inter-vane channels (from the
BA’ interface to the channel outlet CC’ in Fig. 2b), two effects need to be addressed : the curvature of the channel
centerline and the stream-wise variation of the cross-section (diffuser effect). In a first approach, the centerline curvature
was not included in the mode-matching technique [2, 5, 6] because i) its impact on sound transmission phenomena
has been considered of secondary importance compared to the diffuser effect and ii) this hypothesis ensures faster
computations. In that case, the velocity potentials were given by Rienstra’s [9] linearized slowly-varying solution, based
on a multiple-scale analysis. This formulation provides closed-form expressions for sound transmission through the
OGV row. The model proved to perform well in some cases [6] but showed limitations when increasing frequency. At
higher frequencies, the effect of curvature can no longer be neglected. Assuming a slowly-varying curvature, Brambley
& Peake [10] developed an extension of Rienstra’s work [9] including the effects of curvature. This solution can
be implemented to compute the velocity potentials in the inter-vane channels. Both Rienstra [9] and Brambley &
Peake’s [10] formulations are tested in this paper. The following section describes how these solutions are implemented
in the mode-matching technique of Roger et al. [2] and gives all needed velocity potential formulations and matching
equations.

B. Matching Equations

1. Conservation Laws for Axial-Flow Rotor-Stator Stages
The basic equations that need to be satisfied through the OGV row are the conservation of mass and the conservation

of total enthalpy. Assuming an inviscid perfect isentropic irrotational gas flow and harmonic fluctuations, Bouley
et al. [1] showed that the aforementioned conservation laws reduce to the continuity of fluctuating pressure p′ and
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fluctuating axial velocity u′x written as
p′ = iρ0kc0φ + ρ0U0 · ∇φ,

u′x =
∂φ

∂x
,

in which k is the acoustic wavenumber and ρ0, c0 and U0 are the mean fluid density, sound speed and velocity. Finally,
without mean flow, the continuity equations simply concern the velocity potential φ and its gradient ∂φ/∂x. Two sets of
equations are then written at the leading-edge (x = 0) and the trailing-edge (x = cx) interfaces. The velocity potential
and its gradient are gathered into a vector Γγ. The index γ stands either for the incident (i), reflected (r) or transmitted
(t) waves, or for the downstream (d) and upstream (u) acoustic waves inside the channels

Γγ(x, y) =

(
φγ

∂φγ/∂x

)
, γ = i, r, t, d, u.

The matching equations for the leading-edge (LE) and trailing-edge (TE) interfaces then read{
Γi + Γr = Γd + Γu at LE,
Γd + Γu = Γt at TE.

(1)

These equations can be directly rewritten on the acoustic modal coefficients. The related developments are described in
the following sections.

2. Leading-Edge Interface
Matching equations at the leading-edge interface involve the incident wave φi , the scattered reflected φr and

transmitted φd waves. The velocity potential φu generated from trailing-edge scattering will be added in section II.B.4.
Since the inter-vane channel is staggered by an angle Ψ, the transmitted φd velocity potential is written in the channel
system of coordinates (ξ,η) shown in Fig. 2b. With the modal function for a straight duct of constant height being
ψq(η) = cos

(
αqη

)
, the potentials read

φi(x, y) = eiαj yeik
+
j x, φr (x, y) =

+∞∑
p=−∞

Rpeiαpyeik
−
p x, φd(ξ, η) =

+∞∑
q=0

Dqψq(η)eik
+
qξ ,

where αj , αp , αq , k j , kp and kq are the transverse and axial wavenumbers defined by

αj =
j

R0
, αp = αj + p

2π
hM

, αq =
qπ
h0

and k±ζ = ±
√

k2 − α2
ζ , ζ = j, p, q.

Indices ( j, p) ∈ Z2 are the azimuthal modal orders of the incident and reflected waves respectively and q ∈ N∗ is the
order of the inter-vane channel mode. R0 is the radius of the cut through the OGV row.

From Roger et al. [2], the matching equations at the leading-edge interface (1) can be recast to yield a first equation (2)
on the modal coefficients Dq of the transmitted channel modes and a second one on the reflected modes coefficients
Rp (3), as

+∞∑
q=0

Dqϕ
+
q,p

(
k−p − K

+
q,p

)
= hM

(
k−p − k+j

)
δp,0, (2)

Rp =
1

hM

+∞∑
q=0

Dqϕ
+
q,p − δp,0, (3)

with

ϕ±q,p(Ψ) =


−iu±q,p(Ψ)

(qπ/hM )
2 − u± 2

q,p(Ψ)

(
1 − (−1)qeihMu±q ,p (Ψ)

)
,

hM

2
(1 + δq,0) if

��u±q,p(Ψ)�� = qπ
hM

,

δq,0 =

{
1 if q = 0,
0 otherwise,

K±q,p = k±q cosΨ −
(

qπ
hM

)2 tanΨ
u±q,p(Ψ)

, u±q,p(Ψ) = k±q sinΨ − αp .
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3. Trailing-Edge Interface
At the trailing-edge interface the downstream wave φd is scattered into a reflected upstream wave φu in the channel

and a transmitted wave φt downstream of the OGV row. The channel velocity potentials φd and φu are now expressed in
terms of a curvilinear abscissa s, varying from 0 at the inlet (BA’) to Lc at the outlet (CC’), and its associated curvilinear
ordinate n(s) represented in Fig. 2b. The cross-height h(s) varies from h0 at the inlet (BA’) to hM at the outlet (CC’).
The velocity potentials φd and φu can be expressed using either Rienstra’s solution [9] if the curvature is neglected or
Brambley & Peake’s solution [10] otherwise. The transmitted potential φt is expressed in its local system of coordinates
(x̃,ỹ) linked to (x,y) by x̃ = x − cx and ỹ = y − Rc(1 − cosΨ). This gives (details are provided in Appendix A)

φd(s,n) =
+∞∑
q=0

Dqeik
+
qhM sinΨ

+∞∑
ν=0

Bq
ν (0)
Υ+ν (s)
Υ+ν (0)

+∞∑
µ=0

Aνµ(s)ψ
∗
µ(s,n),

φu(s,n) =
+∞∑
q=0

Uq

+∞∑
ν=0

Bq
ν (Lc)

Υ−ν (s)
Υ−ν (Lc)

+∞∑
µ=0

Aνµ(s)ψ
∗
µ(s,n) and φt (x̃, ỹ) =

+∞∑
p=−∞

Rpeiαp ỹeik
+
p x̃,

where the star symbol ∗ denotes modal functions and wavenumbers of the slowly-varying part of the channel. The
coefficients Aq

µ, Bq
ν , the modal function ψ∗q and the modal amplitude variation Υ±q are computed differently in the cases

of Rienstra [9] and Brambley & Peake [10].
When using Rienstra’s solution, Aq

µ = δµ,q , Bq
ν = δν,q , and

ψ∗q(s,n) = cos
(
α∗q(s)

[
n +

h(s)
2

] )
, Υ±q (s) =

exp
(
i
∫ s

s0
k±∗q ds′

)
(
ρ0k±∗q

)1/2 with s0 =

{
0 for Υ+q ,
Lc for Υ−q ,

while the wavenumbers are given by

α∗q(s) = qπ/h(s) and k±∗q (s) = ±
√

k2 − α∗2q (s).

If Brambley & Peake’s solution is used instead, the modal shape ψ̃q and the axial wavenumber are computed numerically
using a Chebyshev collocation method [10]. Since the modal basis varies from the leading-edge interface to the
trailing-edge interface, a projection is needed and coefficients Aq

µ and Bq
ν are computed as

ψ̃q(s,n) =
+∞∑
µ=0

Aq
µ(s)ψ

∗
µ(s,n) and ψ∗q(s,n) =

+∞∑
ν=0

Bq
ν (s)ψ̃ν(s,n).

The modal amplitude variation Υ±q is also changed to

Υ
±
q (s) =

exp
(
i
∫ s

s0
k±∗q ds′

)
(
ρ0k±∗q

∫ h(s)/2
−h(s)/2 ψ̃

2
q/(1 − κn) dn

)1/2 ,

in which κ is the channel centerline curvature. In Brambley & Peake’s formulation [10], ψ̃q is normalized so that the
integral of ψ̃2

q over the cross-height is equal to one. Hence, this solution generalizes Rienstra’s solution [9] given that
the modal shapes and wavenumbers computed numerically converge toward the analytical solution as κ tends to zero.

Using the continuity equations at the trailing-edge interface (1) gives the equations on both sets of reflected Uq and
transmitted Tp modal coefficients as

+∞∑
q=0

Uq(k+p − k−∗q (Lc))ϕ
0
q,p =

+∞∑
q=0

Dqeik
+
qhM sinΨ

+∞∑
ν=0

Bq
ν (0)
Υ+ν (Lc)

Υ+ν (0)
(k+∗ν (Lc) − k+p)

+∞∑
µ=0

Aνµ(Lc)ϕ
0
µ,p, (4)

Tp =
1

hM

©«
+∞∑
q=0

Dqeik
+
qhM sinΨ

+∞∑
ν=0

Bq
ν (0)
Υ+ν (Lc)

Υ+ν (0)

+∞∑
µ=0

Aνµ(Lc)ϕ
0
µ,p +Uqϕ

0
q,p

ª®¬ , (5)

The projection function ϕ0
q,p = ϕ±q,p(Ψ = 0) stands for the particular case of a zero-stagger interface, such as the

trailing-edge interface for an OGV row.
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4. Iterative Procedure
The mode-matching technique runs an iterative procedure of leading-edge/trailing-edge matchings until a converged

solution on modal coefficients is reached. At the beginning only the incident wave φi is known. At the first iteration, the
leading-edge matching equations (2) and (3) are solved to get Dq and Rp . The modal coefficients Dq are then used to
compute the trailing-edge matching equations (4) and (5), giving Uq and Tp . At the following iterations, the modified
leading-edge matching equations (6) and (7), taking into account the reflected channel wave φu , are solved. Then
the same trailing-edge matching equations (4) and (5) as for the first iteration are used. This iterative procedure ends
when modal coefficients are considered converged, i.e when the difference in acoustic power between two consecutive
iterations is sufficiently low.

The modified equations at the leading-edge interface are

+∞∑
q=0

Dq

(
k−p − K

+
q,p

)
ϕ+q,p = hM

(
k−p − k+j

)
δp,0 +

+∞∑
q=0

Uq

+∞∑
ν=0

Bq
ν (Lc)

Υ−ν (0)
Υ−ν (Lc)

+∞∑
µ=0

Aνµ(0)
(
K−µ,p − k−p

)
ϕ−µ,pe−ik

−
µhM sinΨ,

(6)
and

Rp =
1

hM

©«
+∞∑
q=0

Dqϕ
+
q,p +Uq

+∞∑
ν=0

Bq
ν (Lc)

Υ−ν (0)
Υ−ν (Lc)

+∞∑
µ=0

Aνµ(0)ϕ−µ,pe−ik
−
µhM sinΨª®¬ − δp,0, (7)

III. Comparison With Numerical Simulations

A. Methodology
A couple of test cases have been defined to test the present analytical solution against numerical simulations

computed with the commercial software Simcenter 3D Acoustics [11]. The two-dimensional Helmholtz problem is
addressed using a high-order adaptive Finite Element Method (FEM) [12, 13]. Periodic boundary conditions are
enforced and the far-field reflections are avoided using Perfectly Matched Layers (PML) [14] as shown in Fig. 3.
Qualitative and quantitative comparisons in terms of real values of fluctuating pressure between FEM results and the
mode-matching technique are presented below.

Fig. 3 Explanatory scheme of the numerical setup showing how boundary conditions are treated.

B. Results

1. Vane Camber Effect
Four vanes (V = 4) are taken at a duct radius of R0 = 38 mm, with a leading-edge camber angle Ψ = 30◦ and

an axial chord length cx = 60 mm. No mean flow is considered (M = 0) and the mean density and sound speed are
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(a) (b) (c)

Fig. 4 Instantaneous pressure maps computed with FEM (a), Mode-Matching without camber (b) and Mode-
Matching with camber (c) for j = 1 and kcx = 2.44. Dashed black lines are the locations for quantitative
comparisons and solid black lines in Fig. 4a show the limit of PML.
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(b)

0 0.05 0.1 0.15 0.2

-1

0
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downstream pressure trace at x = 0.07 m

(c)

Fig. 5 Comparison of instantaneous pressure profiles between FEM and Mode-Matching technique for j = 1
and kcx = 2.44 at x = −0.01 m (a), y = 0.04 m (b) and x = 0.07 m (c).

assumed constant and set to ρ0 = 1.225 kg/m3 and c0 = 340 m/s. Incident acoustic waves of unit amplitude are scattered
by the OGV. Computations have been performed for two distinct incident mode orders, j = 1 at kcx = 2.44 ( f ' 2200
Hz) and j = 5 at kcx = 12.2 ( f ' 11000 Hz), with corresponding angles of incidence from the x-direction given by
θ j = arcsin( j/kR0) to ensure periodicity in the y-direction.

Figure 4 shows the instantaneous pressure maps computed with the FEM code and the mode-matching technique at
j = 1 and kcx = 2.44. The pressure patterns are in good agreement upstream and downstream the OGV row, as well as
in the inter-vane channels, for both analytical models with and without camber effects. Figure 5 shows the instantaneous
pressure profiles extracted upstream, downstream and through the OGV row as shown in dashed black lines in Fig. 4.
These quantitative results comfort the conclusion that the model based on Rienstra’s solution [9] performs well at low
frequencies even without accounting for vane curvature. Yet accounting explicitly for the curvature produces a better
match with the numerical solution.

When increasing the frequency to kcx = 12.2 and changing the incident mode order to j = 5, the same fairly good
agreement is still observed upstream (Fig. 7a). However the simplified model displays significant discrepancies beyond
x = 2cx/3 compared to the numerical simulation (Fig. 7b). These differences are also observable on the downstream
profile (Fig. 7c). Including the vane camber using Brambley & Peake’s solution [10] then gives much better results
(Fig. 6 and Fig. 7). The new model proves to be efficient to predict the pressure pattern evolution inside the inter-vane
channels but there are still some differences with FEM results when looking at the downstream pressure profile in
Fig. 7c. Work is still in progress to understand the residual errors at high frequencies. The new algorithm already shows
promising capabilities at the cost of a reasonably higher computation time. The mode-matching code without camber
effects runs in less than 2 seconds for a given frequency while it takes around 17 seconds accounting for vane camber,
with a not yet optimized MATLAB code.
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(a) (b) (c)

Fig. 6 Instantaneous pressure maps computed with FEM (a), Mode-Matching without camber (b) and Mode-
Matching with camber (c) for j = 5 and kcx = 12.2. Dashed black lines are the locations for quantitative
comparisons and solid black lines in Fig. 6a show the limit of PML.
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(c)

Fig. 7 Comparison of instantaneous pressure profiles between FEM and Mode-Matching technique for j = 5
and kcx = 12.2 at x = −0.01 m (a), y = 0.04 m (b) and x = 0.07 m (c).

2. Vane Profile Approximation Effect
In the previous analysis, numerical simulations were performed using the same geometry as in the mode-matching

model. In an industrial case of vane row pre-design the vane profile could have thickness and camber varying along
the chord. It is therefore important to quantify the effect of the approximated vane geometry to see if a more refined
description will be needed for future acoustics predictions. To test this effect, the NASA Source Diagnostic Test (SDT)
OGV geometry studied by Hixon [7] has been chosen. The cascade is made of fifty-four vanes (V = 54) of chord
length c = 40 mm taken at a duct radius of R0 = 22.35 cm. Numerical simulations using the real geometry have been
carried out to compare the results with those of the mode-matching technique including camber effects and using two
different approximated vane geometries (Fig. 8). The camber-angle model uses the same leading-edge camber angle of
Ψ = 33.66◦ to fit the real deviation from the leading edge to the trailing edge. It has therefore a greater stagger angle
(16.83◦) than the real stagger angle of 11◦ and a slightly longer chord length c = 41 mm. The stagger-angle model has
instead the same stagger angle of 11◦ but a substantially lower leading-edge camber angle (Ψ = 22◦). No mean flow is
considered (M = 0) and the mean density and sound speed are constant and set to ρ0 = 1.225 kg/m3 and c0 = 340
m/s. Computations have been performed for two different incident acoustic waves: mode order j = 6 at the frequency
f = 5726 Hz and mode order j = −18 at the frequency f = 11452 Hz.

Figures 9 and 10 show the instantaneous pressure fields obtained at f = 5726 Hz with the incident mode order
j = 6. The scattered sound field is well reproduced by the modified circle arc geometry used in the mode-matching
technique (Fig. 9) but the approximated vane geometry with the real stagger angle gives slightly better results upstream
the OGV row and inside the inter-vane channels than the geometry using the real leading-edge camber angle (Fig. 10a
and Fig. 10b). Note that the higher stagger angle in the camber-angle vane model does not have any significant effect on
the transmitted sound field at this frequency (Fig. 10c).
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Fig. 8 Approximated vane profiles used in the mode-matching technique compared to the real geometry used
in the numerical simulation.

(a) (b) (c)

Fig. 9 Instantaneous pressure maps computed with FEM (a), Mode-Matching with the same leading-edge
camber angle (b) and Mode-Matching with the same stagger angle (c) for j = 6 and f = 5726 Hz.
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Fig. 10 Comparison of instantaneous pressure profiles between FEM andMode-Matching technique for j = 6
and f = 5726 Hz at x = −0.04 m (a), y = 0.013 m (b) and x = 0.08 m (c).

At the frequency f = 11452 Hz, with an incident mode order j = −18, discrepancies between the analytical solution
and the numerical solution are more significant (Fig. 11 and Fig. 12). These deficiencies are expected since high
frequency waves are more sensitive to small details of the vane geometry. Note that the pressure field computed with the
camber-angle vane model is in better agreement with the numerical solution in this case, especially upstream the OGV
row where the stagger-angle model seems to miss a cut-on reflected mode.

Up to the frequency f = 11452 Hz, the modified circle arc geometry is able to generate a pressure field in fairly
good agreement with the FEM results. The model using the same leading-edge camber angle should be preferred as it
reproduces more precisely the reflected scattered waves.
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(a) (b) (c)

Fig. 11 Instantaneous pressure maps computed with FEM (a), Mode-Matching with the same leading-edge
camber angle (b) and Mode-Matching with the same stagger angle (c) for j = −18 and f = 11452 Hz.
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Fig. 12 Comparison of instantaneous pressure profiles between FEM and Mode-Matching technique for
j = −18 and f = 11452 Hz at x = −0.04 m (a), y = 0.013 m (b) and x = 0.08 m (c).

IV. Inter-Vane Channel Mode Transitions

A. Mode Transition in Ducts of Varying Cross-Section
An important fact when dealing with mode transmission through channels of varying cross-section is the possibility

for a cut-on mode to turn cut-off, or vice versa. This phenomenon was highlighted by Rienstra [15]. In the case of
a converging duct, an incident cut-on mode undergoing transition would be totally reflected back, leaving only an
evanescent mode beyond. Those phenomenons can occur in OGV inter-vane channels showing cross-section variation.
In case of such a transition, the wave behavior in the inter-vane channels of an OGV row is changed and there could be a
significant influence on the acoustic power balance between the reflected and transmitted powers. Both cut-on/cut-off
and cut-off/cut-on transitions and their possible effects on modal energy distribution are highlighted below using a
solution derived from Ovenden’s work [8] explained in Appendix B. One important underlying hypothesis is the energy
conservation of a mode when undergoing transition, avoiding transfer of energy to neighboring modes. Finally, even if
the curvature is not accounted for in this preliminary discussion, the transition mechanisms a priori remain the same.
The implementation of the transitions in Brambley & Peake’s [10] solution is presently in progress.

B. Energy Pumping by Acoustic Tunnel Effect
A cut-off mode generated at the leading-edge interface which undergoes transition expectedly has a higher amplitude

at the trailing-edge interface than if was simply cut-off, especially if the transition occurs sufficiently close to the leading
edge as shown in Fig. 13. Hence, a possibly significant quantity of energy could propagate into the inter-vane channel
via this mode, generating what is called acoustic energy pumping. This mechanism allows energy transmission from
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upstream to downstream that would not occur without cut-off/cut-on transition. It is then expected that acoustic tunnel
effect increases the relative part of transmitted power through the OGV. In Fig. 13b, the amplitude variation for a given

(a) (b)

Fig. 13 (a) Pressure amplitude map of an evanescent mode generated at the leading-edge interface and under-
going cut-off/cut-on transition at 14.6 % of the channel length. (b) Amplitude decay along the red dashed line
in Fig. 13a.

curvilinear abscissa plotted in dashed red line in Fig. 13a shows the difference between a cut-off mode which undergoes
transition and the equivalent fully cut-off mode computed with a constant cross-height taken at the inlet. The difference
before the transition is partially due to the reflection of the cut-off mode where the transition occurs and the variation of
the cross-section. Note that the amplitude of the cut-off/cut-on solution is still decaying after the transition but only
because the channel cross-section is increasing.

C. Standing Wave Pattern
An upstream propagating mode, generated at the trailing-edge interface, which undergoes transition in the channel

will be reflected at the transition location. The upstream propagating mode added to its reflection forms a standing wave
pattern. A typical pressure amplitude map can be seen in Fig. 14. The pressure amplitude at the trailing edge location is
therefore highly affected by transition. On the other side of the transition, only an evanescent wave is transmitted, which

(a) (b)

Fig. 14 (a) Pressure amplitude map of an upstream propagating mode generated at the trailing-edge interface
and undergoing cut-on/cut-off transition at 8.8 % of the channel length. (b) Amplitude decay along the red
dashed line in Fig. 14a.
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substantially reduces the energy transferred upstream of the OGV, especially if the transition occurs far enough from the
leading edge.

V. Conclusion
An improved mode-matching model including vane camber for OGV aeroacoustics studies has been developed in

this paper. In particular, comparisons with numerical simulations have shown the importance of accounting explicitly
for vane camber when modeling sound transmission through vanes row at high frequencies. The improved model still
shows residual discrepancies with numerical simulations in the transmitted field. This is under investigation to further
improve the current model, looking at possible curvature-gradient effects. Only a reasonably higher computation time
is needed to account for vane camber with a non optimized MATLAB code, which makes the model attractive for
broadband-noise predictions. However, the simplified model without camber should be preferred for predictions at low
frequencies since it has proved accuracy in this range.

Encouraging results have been obtained with the mode-matching model compared to numerical simulations using a
more realistic vane geometry. Even if more discrepancies can be expected at higher frequencies than presented in this
paper, the model proves to give accurate results hence a more refined vane geometry description is not necessary in
this range. Results with a mean potential flow have also been performed in Moreau et al. [16], using the simplified
mode-matching model, and give a reasonably good match with numerical simulations carried out using the Simcenter
3D Acoustics software.

The formalism used in the mode-matching technique is also well suited to implement cut-off/cut-on and cut-on/cut-off
transitions in the inter-vane channels. These transitions have already been implemented in the mode-matching technique
without camber, with a uniformly valid solution derived from Rienstra [15] and Ovenden’s work [8]. Ongoing derivations
will allow the addition of transitions when also accounting for curvature [10]. It could be argued that the effect of
those transitions on broadband noise could be negligible at low and medium frequencies since only few and relatively
small frequency ranges would be significantly affected. At high frequencies though, these frequency ranges become
wider and several modes can undergo transition at the same frequency. A greater effect may be expected then but this
needs to be confirmed quantitatively. Furthermore, the selective modal content of tonal noise in turbomachines could
be more sensitive to the occurrence of transitions. One limitation in the present solutions [8, 10, 15] could be that
the energy conservation of a cut-on mode prevents it from transferring energy to neighboring modes at a transition.
Ovenden et al. [17] have presented FEM results showing examples of modes transferring a significant amount of energy
to neighboring modes when undergoing transition. They found that such modal scattering may be expected when both
the radial mode order and the frequency are high enough in slowly-varying cylindrical ducts. Smith et al. [18] then
studied flow and geometry induced scattering when a transition occurs at such high frequencies. Their work could be
implemented in the current mode-matching technique if deemed necessary. Otherwise, the multimodal approach of
Felix & Pagneux [19] could also be used but it would substantially increase the computation time.

Other developments presently in progress include the implementation of a Kutta condition in the mode-matching
formulation with vane camber. Then the next objective is to model sound generation from impinging wakes at the
leading edge.

A. Matching Constant and Slowly Varying Velocity Potential Formulations

A. Potentials without Curvature
The potential φd(s,n) of the wave propagating downstream from the leading edge is expressed from Rienstra [9, 15]

as

φd(s,n) =
+∞∑
q=0

Qq,dψ
∗
q(s,n)Υ

+
q (s).

In the constant cross-section part of the channel, from the leading-edge interface AA’ to the interface BA’, the same
mode is given by

φd(ξ, η) =

+∞∑
q=0

Dqψq(η)eik
+
qξ .
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At the BA’ interface, the systems of coordinates are{
s = 0,
n = η − h0/2

and

{
ξ = hM sinΨ,
η ∈ [0, h0].

Hence ψ∗q(s = 0,n) = ψq(η) and matching the two solutions gives

Qq,d = Dq
eik

+
qhM sinΨ

Υ+q (0)
,

so that the velocity potential in the slowly-varying part is recast to

φd(s,n) =
+∞∑
q=0

Dqψ
∗
q(s,n)

Υ+q (s)

Υ+q (0)
eik

+
qhM sinΨ . (8)

Scattering at the trailing-edge interface generates reflected modes φu(s,n) in the slowly varying part of the inter-vane
channels. The solution is expressed from Rienstra [9, 15] as

φu(s,n) =
+∞∑
q=0

Q̃q,uψ
∗
q(s,n)Υ

−
q (s).

For easier integration in the mode-matching technique, a modification is needed to match cosine modes generated at the
trailing-edge interface

φu(x̃, ỹ) =
+∞∑
q=0

Uqψq(ỹ)eik
−
q x̃ .

At the trailing-edge interface, the systems of coordinates are{
s = Lc,

n = ỹ − hM/2
and

{
x̃ = 0,
ỹ ∈ [0, hM ].

Hence ψ∗q(s = Lc,n) = ψq(ỹ) and matching the two solutions gives

Q̃q,u = Uq
1

Υ−q (Lc)
.

Then, in the constant part of the channel, the reflected modes are given by

φu(ξ, η) =

+∞∑
q=0

Qq,uψq(η)eik
−
q (ξ−hM sinΨ),

and matching at the BA’ interface yields

Qq,u = Uq

Υ−q (0)
Υ−q (Lc)

.

Finally, the reflected modes in the constant part of the inter-vane channels are written as

φu(ξ, η) =

+∞∑
q=0

Uqψq(η)
Υ−q (0)
Υ−q (Lc)

eik
−
q (ξ−hM sinΨ). (9)
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B. Potentials with Curvature
In the case of Brambley & Peake’s solution [10] including curvature, a projection has to be made at the BA’ interface

to change from the straight modal basis
(
ψ∗q

)
q∈N∗

to the curved modal basis
(
ψ̃q

)
q∈N∗ . The projection coefficients are

defined as

ψ̃q(s,n) =
+∞∑
µ=0

Aq
µ(s)ψ

∗
µ(s,n) and ψ∗q(s,n) =

+∞∑
ν=0

Bq
ν (s)ψ̃ν(s,n),

where ψ∗q is a generalized form of ψq accounting for slow variations of the cross-section. Hence a cosine mode φd,q of
order q propagating downstream from the leading-edge interface is expressed in the slowly varying curved passage as a
sum of curved modes

φd,q(s,n) = Dqeik
+
qhM sinΨ

+∞∑
ν=0

Bq
ν (0)ψ̃ν(s,n)

Υ+ν (s)
Υ+ν (0)

.

In order to simplify the implementation in the mode-matching technique, a solution in the form of a sum of cosine
modal functions is sought. This, and summing on all modes q, yields

φd(s,n) =
+∞∑
q=0

Dqeik
+
qhM sinΨ

+∞∑
ν=0

Bq
ν (0)
Υ+ν (s)
Υ+ν (0)

+∞∑
µ=0

Aνµ(s)ψ
∗
µ(s,n). (10)

It is possible to describe the reflected waves following the same methodology. A given cosine mode of order q
propagating upstream is then expressed in the slowly varying curved passage as a sum of curved modes

φu,q(s,n) = Uq

+∞∑
ν=0

Bq
ν (Lc)ψ̃ν(s,n)

Υ−ν (s)
Υ−ν (Lc)

.

The expression in the constant part of the inter-vane channels is then, summing on all modes q

φu(ξ, η) =

+∞∑
q=0

Uq

+∞∑
ν=0

Bq
ν (Lc)

Υ−ν (0)
Υ−ν (Lc)

+∞∑
µ=0

Aνµ(s)ψµ(η)eik
−
µ (ξ−hM sinΨ). (11)

As mentioned in the core text, the formalism for curved ducts of Brambley & Peake [10] is an extension of
the straight-duct formalism of Rienstra [9] given that the modal shape functions and axial wavenumbers computed
numerically converge to the straight-duct analytical solution when the curvature tends to zero in the Chebyshev collocation
solver. In this case the projection coefficients become Aq

µ(s) = δµ,q and Bq
ν (s) = δν,q , ∀s, and the formulations (10)

and (11) become exactly equivalent to (8) and (9).

B. Uniformly Valid Solution with Transition
As shown by Rienstra [15], a transition is a singularity in the linearized slowly varying solution. Since transitions

can occur close to a matching interface, a regularized solution as proposed by Ovenden [8, 17] is needed to avoid wrong
values of potentials at matching interfaces that would lead to erroneous modal coefficients. For sound propagation
inside inter-vane channels, both cut-on/cut-off and cut-off/cut-on transitions are possible. A solution for the velocity
potential of a given mode of order q is then proposed that can be used for both transition phenomena. In the inter-vane
channel reference frame (S,n), where S = εs is the slow variable, the expression reads

φ̂ =Q
2
√
πeiπ/4√
ρ0k

ψ∗q(n; S)

(
3
2ε

1
σ3
q

∫ S

St

kσq

β2 dS′
)1/6

exp
(

i
ε

∫ S

St

kM
β2 dS′

)
×

[
(Iu −

i
2

Id)Ai

{(
−

3i
2ε

∫ S

St

kσq

β2 dS′
)2/3}

+
1
2

IdBi

{(
−

3i
2ε

∫ S

St

kσq

β2 dS′
)2/3}]

, (12)

where
Q = constant to be set with a known value of the potential at some point,
σ = propagated part of the axial wavenumber,
M = Mach number,
β =
√

1 − M2, Prandtl-Glauert factor,
St = transition location.
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Ai and Bi are the Airy functions of the first and second kinds. Id and Iu represent the relative initial amplitudes of
the downstream cut-off mode and of the upstream cut-on mode respectively. To use this solution in the leading-edge
problem of section IV.B, so for a cut-off mode coming from the left-side of the transition, Id is set to 1 and Iu to 0 since
there is no reflected upstream mode coming from the right-side. This yields

φ̂of f /on = Q
√
πeiπ/4√
ρ0k

ψ∗q(n; S)

(
3
2ε

1
σ3
q

∫ S

St

kσq

β2 dS′
)1/6

exp
(

i
ε

∫ S

St

kM
β2 dS′

)
FBA {χ(S)} ,

where FBA ≡ Bi − iAi . In the case of section IV.C, for a cut-on mode traveling upward from the trailing-edge interface,
Iu is set to 1 and Id to 0. The solution then reads

φ̂on/of f = Q
2
√
πeiπ/4√
ρ0k

ψ∗q(n; S)

(
3
2ε

1
σ3
q

∫ S

St

kσq

β2 dS′
)1/6

exp
(

i
ε

∫ S

St

kM
β2 dS′

)
Ai {χ(S)} ,

with

χ(S) =
(
−

3i
2ε

∫ S

St

kσq

β2 dS′
)2/3

.

Note that the particular case of a cut-on/cut-off solution is exactly Ovenden’s result [8] with a change of coordinate
S̃ → −S.
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