
HAL Id: hal-02382925
https://hal.science/hal-02382925v1

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satisfiability of Downward XPath with Data Equality
Tests

Diego Figueira

To cite this version:
Diego Figueira. Satisfiability of Downward XPath with Data Equality Tests. Symposium on Principles
of Database Systems (PODS), Jun 2009, Providence (RI), United States. �hal-02382925�

https://hal.science/hal-02382925v1
https://hal.archives-ouvertes.fr

Satisfiability of Downward XPath with Data Equality Tests ∗

Diego Figueira
LSV, ENS Cachan,

CNRS, INRIA Saclay, France

ABSTRACT

In this work we investigate the satisfiability problem for the
logic XPath(↓∗, ↓,=), that includes all downward axes as
well as equality and inequality tests. We address this problem
in the absence of DTDs and the sibling axis. We prove that
this fragment is decidable, and we nail down its complex-
ity, showing the problem to be ExpTime-complete. The
result also holds when path expressions allow closure un-
der the Kleene star operator. To obtain these results, we
introduce a new automaton model over data trees that cap-
tures XPath(↓∗, ↓,=) and has an ExpTime emptiness prob-
lem. Furthermore, we give the exact complexity of several
downward-looking fragments.

Categories and Subject Descriptors. I.7.2 [Document
Preparation]: Markup Languages; H.2.3 [Database
Management]: Languages; H.2.3 [Languages]: Query
Languages

General Terms. Algorithms, Languages

Keywords. XML, XPath, unranked unordered tree, data-
tree, infinite alphabet, data values, BIP automaton

1. Introduction

XPath is arguably the most widely used xml query lan-
guage. It is implemented in XSLT and XQuery and it is

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599.

used as a constituent part of several specification and up-
date languages. XPath is fundamentally a general purpose
language for addressing, searching, and matching pieces of
an xml document. It is an open standard and constitutes a
World Wide Web Consortium (W3C) Recommendation [4],
implemented in most languages and xml packages.

Arguably the most important static analysis problem of
a query language is that of optimization, which studies the
problem of query containment and query equivalence. In
logics closed by boolean operators, these problems reduce
to satisfiability checking: does a given query express some
property? I.e., is there a document where this query has a
non-empty result? By answering this question we can decide
at compile time whether the query contains a contradiction,
and thus whether the computation of the query on the docu-
ment can be avoided, or if one query can be safely replaced
by another one. Moreover, this problem becomes crucial
for many applications on security, type checking transforma-
tions, and consistency of xml specifications.

Core-XPath (introduced in [6]) is the fragment of XPath
that captures all the navigational behavior of XPath. It has
been well studied and its satisfiability problem is known to be
decidable even in the presence of DTDs. We consider an ex-
tension of this language with the possibility to make equality
and inequality tests between attributes of elements in thexml
document. This logic is named Core-Data-XPath in [2], and
as shown in [5], its satisfiability problem is undecidable. It
is then reasonable to study the interaction between differ-
ent navigational fragments of XPath with equality tests to
be able to find decidable and computationally well-behaved
fragments. In the present work, we focus on the downward-
looking fragments of XPath, where navigation between ele-
ments can only be done in the downward direction.

Our main contribution is that the satisfiability problem for
XPath(↓∗, ↓,=) is decidable. This is the fragment with data
equality and inequality tests, with the ↓∗ axis that can ac-
cess descendant nodes at any depth and the ↓ axis to access
child elements. We prove a stronger result, showing the
decidability of the satisfiability of regXPath(↓,=), which
is the extension of XPath(↓∗, ↓,=) with the Kleene star op-
erator to take reflexive-transitive closures of arbitrary path
expressions. Moreover, we nail down the precise complex-
ity showing an ExpTime decision procedure (recall that
XPath(↓, ↓∗) is already ExpTime-hard [1]). In order to

1

do this, we introduce a new class of automata that cap-
tures all the expressivity of regXPath(↓,=). On the other
hand, we prove that the fragment XPath(↓∗,=) without the
↓ axis is ExpTime-hard, even for a restricted fragment
of XPath(↓∗,=) without unions of path expressions. This
reduction can only be done by using data equality tests,
as the corresponding fragment XPath(↓∗) without unions
is shown to be PSpace-complete. We thus prove that
the satisfiability problem for XPath(↓∗,=), XPath(↓∗, ↓,=)
and regXPath(↓,=) are all ExpTime-complete. Addition-
ally, we present a natural fragment of XPath(↓∗,=) that is
PSpace-complete. We complete the picture showing that
satisfiability for XPath(↓,=) is also PSpace-complete. Al-
together, we establish the precise complexity for all down-
ward fragments of XPath with and without data tests (cf.
Figure 4 in Section 6).

Related work

In [1] there is a study of the satisfiability problem for many
XPath logics, mostly fragments without negation or without
data equality tests. Also, the fragmentXPath(↓,=) is proved
to be in NExpTime. We improve this result by providing an
optimalPSpace upper bound. It is also known thatXPath(↓
) is already PSpace-hard, and in this work we match the
upper bound showing PSpace-completeness. Furthermore,
in [1] XPath(↓, ↓∗) is proved ExpTime-complete. In this
work we prove that this complexity is preserved in the pres-
ence of data values and even under closure with Kleene star.
We also consider a fragment that is not mentioned in [1]:
XPath(↓∗,=) and show that XPath(↓∗) is PSpace-complete
whileXPath(↓∗,=) isExpTime-complete. In this case, data
tests make a real difference in complexity.

First-order logic with two variables and data equality tests
is investigated in [2]. Although in the absence of data values
FO2 is expressive-equivalent to Core-XPath (cf. [8]), FO2

with data equality tests becomes incomparable with respect
to all the data aware fragments treated here. [2] also shows
the decidability of a fragment of XPath(↑, ↓,←,→,=) with
sibling and upward axes but restricted to local elements ac-
cessible by a ‘one step’ relation, and to data formulæ of the
kind ε = p (or 6=). However, most of the fragments we
treat here disallow upward and sibling axes but allow the
descendant ↓∗axis and arbitrary p = p′ data test expressions.

In [7] a fragment of XPath(↓, ↓∗,→,→∗,=) is treated,
denominated ‘forward XPath’. In the cited work, the full
set of downward and rightward axes are allowed, while the
fragments treated here only allow the downward axis. As
in [2], the language is restricted to data test formulæ of the
form ε = p contrary to the ones studied here, and hence
no decidability results can be inferred. It is shown that its
satisfiability problem is decidable, but with a non-primitive
recursive algorithm, while in our work all the fragments
considered are in ExpTime. The question of whether the
forward fragment with arbitrary tests is decidable is still open.

2. Statement of the problem and main result

2.1 Data trees

The structure of an xml document can be seen as an un-
ranked tree with attributes and data values in its nodes. We
work with an abstraction that we call data tree, that is, an un-
ranked finite tree where every node contains a symbol from
a finite alphabet Σ and a data value from some infinite do-
main ∆. Below we show an example of a data tree with
Σ = {a, b} and ∆ = N.

Example 1. It is important to mention that this
model has only one data value on
each node, whilst an xml document
element may typically have several
(0 or more) attributes, each with a
data value associated. We address
this issue by coding each attribute
element by a child as shown next.

<library>
<book ID="5"
title="Ficciones">

<author
lastname="Borges"/>

</book>
</library>

In the above example the data values of the nodes tagged
with non-attribute elements (library, book, author) may have
any data value. For every fragment of XPath with the child
axis (↓) we can enforce that attributes are leaves and we can
translate any XPath expression on xml to an equivalent one
on data trees. For the fragments with the single descendant
axis ↓∗, this is not true anymore, but a more careful analy-
sis shows that all complexity results still hold in this case.
Indeed, any XPath(↓∗,=) formula on data trees can be seen
as an XPath(↓∗,=) formula on xmls that makes use of only
one fixed attribute, and we can thus transfer the lower bound
(the upper bound follows from the more expressive frag-
ment XPath(↓∗, ↓,=)). Summing up, all our forthcoming
results also hold on arbitrary xml documents with multiple
attributes per element. This implies, for example, that the
results hold for the satisfiability problem for data trees that
may have some nodes with no data values.

We use the standard representation of unranked trees by
a nonempty, prefix-closed set T of elements from N∗ such
that whenever x(i + 1) ∈ T then xi ∈ T ; together with
a labeling function σ : T → Σ and a data value function
δ : T → ∆. A data tree model T is then a tuple 〈T, σ, δ〉,
and we call Pos(T) = T the set of positions of T . We
denote by T |x the subtree of T with root x, and δ(T) =
{δ(x) | x ∈ Pos(T)}. In the Example 1 presented before,
T = {ε, 1, 2, 11, 12, 121, 122, 123, 22}.

2.2 The logic XPath

We work with a simplification of XPath, stripped of its
syntactic sugar. Actually, we consider fragments of XPath
that correspond to the navigational part of XPath 1.0 with
data equality and inequality. Let us give the formal defi-
nition of this logic. XPath is a two-sorted language, with

2

path expressions (α, β, . . .) and node expressions (ϕ,ψ, . . .).
The fragment XPath(O,=), with O ⊆ {↓, ↓∗} is defined by
mutual recursion as follows:

α ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β o ∈ O ∪ {ε}

ϕ ::= a | ¬ϕ | ϕ ∧ ψ | 〈α〉 | α~ β ~ ∈ {=, 6=}, a ∈ Σ

A formula of XPath(O,=) is either a node expression
or a path expression of the logic. XPath(O) is the fragment
XPath(O,=) without the node expressions of the formα~β.

There have been efforts to extend this navigational core of
XPath in order to have the full expressivity of MSO, e.g. by
adding a least fix-point operator (cf. [9, Sect. 4.2]), but these
logics generally lack clarity and simplicity. However, a form
of recursion can be added by means of the Kleene star, which
allows to take the transitive closure of any path expression.
Although in general this is not enough to already have MSO
–as shown in [10]–, it does give an intuitive language with
counting ability. By regXPath(↓,=) we refer to the language
where path expressions are extended

α ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ {↓, ε}

by allowing the Kleene star on any path expression. In terms
of expressivity, we see that XPath(↓∗,=) ⊂ XPath(↓∗, ↓,=
) ⊂ regXPath(↓,=) = regXPath(↓∗, ↓,=).

Let T = 〈T, σ, δ〉, we define the semantics of XPath:

[[↓]]T = {(x, xi) | xi ∈ T}
[[α∗]]T = the reflexive transitive closure of [[α]]T

[[ε]]T = {(x, x) | x ∈ T}
[[αβ]]T = {(x, z) | ∃y.(x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[α[ϕ]]]T = {(x, y) ∈ [[α]]T | y ∈ [[ϕ]]T }
[[[ϕ]α]]T = {(x, y) ∈ [[α]]T | x ∈ [[ϕ]]T }

[[a]]T = {x ∈ T | σ(x) = a}
[[〈α〉]]T = {x ∈ T | ∃y.(x, y) ∈ [[α]]T }
[[¬ϕ]]T = T \ [[ϕ]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[α = β]]T = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]T ,

(x, z) ∈ [[β]]T , δ(y) = δ(z)}
[[α 6= β]]T = {x ∈ T | ∃y, z.(x, y) ∈ [[α]]T ,

(x, z) ∈ [[β]]T , δ(y) 6= δ(z)}

For instance, in the model of Example 1,

[[〈↓∗[b∧ ↓ [b] 6=↓ [b]]〉]]T = {ε, 1, 12}.

We now state the problem we will address.

Definition 1. The satisfiability problem SAT-L consists
in, given an L-formula η, to decide whether there exists a
data tree T such that [[η]]T 6= ∅.

It turns out that –as we are working with downward-looking
fragments of XPath– this is equivalent to asking if there is a
model where the formula η is satisfied at its root. Moreover,
for this problem we can restrict ourselves to the case where η
is a node expression. We remind the reader that although we
state the problem in terms of data trees, all our results hold
on the class of all xml documents with multiple attributes.

2.3 Main contribution

Our main results are the following.

Theorem 1. SAT-regXPath(↓,=) is decidable, with com-
plexity in ExpTime.

Theorem 2. SAT-XPath(↓∗,=) is hard for ExpTime.

Consequently, for a logic L ∈ {XPath(↓∗,=), XPath(↓∗, ↓
,=), regXPath(↓,=)}, SAT-L is ExpTime-complete.

The strategy of the proof can be outlined as follows.

1. We introduce a model of automata that captures all
the expressivity of regXPath(↓,=). Automata of this
new class are called Bottom-up Interleaved Path au-
tomata (bip). The automaton relies on an interaction
between the runs of two kinds of automata, which cor-
responds to the two sorts of formulæ of XPath.

2. We show that the translation from regXPath(↓,=) to
bip automata can be done in PTime.

3. The main result is that the emptiness problem for the
class of bip automata is in ExpTime. We show this
by a reduction to the non-emptiness problem of clas-
sical bottom-up tree automata over trees with bounded
branching width. Given a bip automaton M , we con-
struct a bottom-up tree automaton A whose states de-
scribe the behavior of M for certain data values. We
show it is sufficient to consider both the branching
width and the number of data values to be polynomi-
ally bounded by the bip automaton M . We show that
M is non-empty iff A is non-empty.

4. Finally, we prove that XPath(↓∗,=) is ExpTime-hard
by a reduction from the two-player corridor tiling game.
Here, the challenge is to be able to move from one
square of the game board to the next one, without count-
ing with the ‘↓’ operator in the language.

3. A new class of automata

We introduce a new automaton that we call Bottom-up In-
terleaved Path automata (bip for short) that in its transition
function uses another automaton, the Pathfinder automaton
that runs over the already executed bip run. This interleaving
mechanism of running one automaton as a condition of the
transition function of the other one corresponds exactly to
the two sorts of formulæ of XPath. Thanks to this duality,
we obtain an automaton that captures the whole expressivity
of regXPath(↓,=). It is worth noting that although the bip
automaton does not contain ‘registers’ per se, it can do an

3

unbounded number of equality and inequality tests between
any pair of nodes of the tree. However strong this automaton
may appear to be, we prove that the emptiness problem is
only in ExpTime.

3.1 Definitions

A Pathfinder automaton is a bottom-up non determinis-
tic automaton that basically can only recognize a path from
some node to the root and retrieve one data value from it.
The automaton retrieves a data value d with state k if there
is a run that starts in a node with data value d and ends at
the root with state k. Its definition is very weak as it can
only retrieve a data value, but it cannot test it against any
other. It runs over a data tree over the alphabet Σ = 2Q (i.e.,
where the labeling function σ : T → 2Q tags each node with
a subset of Q), where Q is a finite set of symbols that –as we
will see shortly– consists of the states of another automaton
(the bip). It is defined as the tuple P = 〈K, kI , Q, ν〉 where
K is a finite set of states, kI ∈ K is a distinguished initial
state, and ν is the transition function. At each transition, the
automaton can either (1) check the presence of some element
of Q in the label of the node (we call this a ‘non-moving’
transition), or (2) move up in the tree (we call this a ‘moving’
transition).

ν : (Q ∪ {up})×K → 2K

For example, the non-moving transition ν(q1, k1) = {k2, k3}
indicates that if we are in state k1 at some node labeled
with a set S ⊆ Q such that q1 ∈ S, then we can label it
with one of the states among k2, k3. On the other hand, if
ν(up, k1) = {k4} and if we are in state k1, then the father
of this node can be labeled with state k4.

Observe that, although this automaton runs on models la-
beled with subsets of Q, the transition function takes only
one state of Q at a time, its intended meaning being that
it applies to any set that contains the specified state. We
do so in order to obtain a polynomial time translation from
XPath(↓∗, ↓,=) to a pathfinder automaton and to prove the
precise upper-bound of ExpTime. Otherwise, we would
have a translation on models with an exponential number of
states. This will become clear in the following.

A run ρ of a pathfinder P = 〈K, kI , Q, ν〉 on a data
tree T = 〈T, σ, δ〉 is a non-empty list of states with positions
ρ ∈ (K×Pos(T))+. We denote by ρ(i) the ith element of the
run, starting from 0. The run must be such that ρ(0) = (k, p)
with k = kI , and ρ(N) = (k′, p) with p = ε forN = |ρ|−1.
For any two positions ρ(i) = (k′, x′), ρ(i+1) = (k, x) either
(1) x = x′ and a ‘non-moving’ transition applies between k
and k′ for x, or (2) xn = x′ for some n ∈ N and a ‘moving’
transition applies between k and k′ for xn. We define that
a ‘non moving’ transition applies between k and k′ for x
iff k ∈ ν(k′, q) for some q ∈ σ(x), and that a ‘moving’
transition applies iff k ∈ ν(k′, up).

Runs of pathfinder automata are noted by the symbol ρ.
The output of a run ρ, denoted by o(ρ), is defined as the
pair (k, d), where ρ(N) = (k, ε), and d = δ(p) with ρ(0) =
(kI , p),N = |ρ|−1. We also define the non-moving closure

of a pathfinder P w.r.t. a state k and label S ⊆ Q (noted
cl(k, S)) as the set of states k′ that can be reached by ‘non-
moving’ transitions on a node labeledS starting with the state
k. Formally, cl(k, S) :=

⋃
n≥0

(
fnS ({k})

)
, with fS(K) :=

{k1 | k1 ∈ ν(q, k2), q ∈ S, k2 ∈ K}. Observe that this
set can be built in time polynomial in the set S and the
automaton P . We do not give accepting conditions because
this automaton is used by the bip automaton as we shall see.

Example 2. ConsiderP=〈{kI , k1, k↓1, k2, k↓2, k3}, kI , {q1,
q2, qf}, ν〉 that recognizes (q1q2)+, that is, where ν(kI , q2) =
{k2}, ν(k2, up) = {k↓2}, ν(k↓2, q1) = {k1}, ν(k1, up) =
{k↓1}, ν(k↓1, q2) = {k2}, ν(kI , q1) = {k3}, ν(k3, up) =
{k3}. Any run of P that ends in k1 retrieves a data value that
can be accessed by a ‘path’ like Q1

1Q
2
2 . . . Q

t−1
1 Qt2 where

for any i, q1 ∈ Qi1 and q2 ∈ Qi2. Any run that ends in k3

retrieves a data value from a node that is labeled by q1.

As we show next, the runs of the pathfinder are the basic
means for the bip automaton to test for data (in)equalities.

A bottom-up Interleaved Path automaton (bip) M is
a tuple 〈Σ, Q, µ, F,P〉, where Σ is a finite set of symbols,
Q is a finite set of states, F ⊆ Q is the set of final states,
P = 〈K, kI , 2Q, ν〉 is a Pathfinder automaton, and µ : Q→
FormM is the transition function, where FormM is defined:

ϕ ::= a | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∃(k1, k2)~

where ϕ,ψ ∈ FormM , a ∈ Σ,~ ∈ {=, 6=}, k1, k2 ∈ K.

Intuitively, ∃(k1, k2)~ tests for the values retrieved by
pathfinder runs (quantified existentially).

A run of the bip automaton over a data tree T is a labeling
function λ : Pos(T) → 2Q. In general if T = 〈T, σ, δ〉 we
define as λ(T) the data tree 〈T, λ, δ〉. Remember that T |n
is the subtree that has n as a root, and let λ|n(i) = λ(ni).
A run λ must fulfill, for every position n, that q ∈ λ(n) iff
T |n, λ|n |= µ(q), where |= is defined as follows

• T , λ |= a iff σ(ε) = a, that is, the root’s symbol is a,
• T , λ |= ¬ϕ iff T , λ 6|= ϕ, and all boolean connectors

are defined in the standard way, and
• T , λ |= ∃(k1, k2)~ with ~ ∈ {=, 6=} iff there exist

two runs ρ1, ρ2 of P over the run-labeled tree λ(T)
such that o(ρ1) = (k1, d), o(ρ2) = (k2, d

′) and d~ d′.

Note that the run λ ofM on T is unique by definition. The
run is accepting if λ(ε) ∩ F 6= ∅.

Example 3. Consider the bip automaton 〈Σ, {q1, q2, qf},
µ, {qf}, P〉, where Σ = {a, b}, and P is the one defined in
Example 2. We can define µ to accept the trees that contain
two elements accessible by a (ab)+ path from the root, with
different data values: µ(qf) = ∃(k↓1, k↓1)6= ∧ ¬∃(kI , k3) 6=,
µ(q1) = a, µ(q2) = b. Note that it corresponds to the XPath
formula (↓ [a] ↓ [b])+ 6= (↓ [a] ↓ [b])+ ∧ ¬ε 6=↓∗ [a], and
that it accepts the tree of Example 1.

3.2 From regXPath to BIP automata

4

Theorem 3. Given a node expression η∈ regXPath(↓,=),
there is a bip automaton M such that for any model T ,
ε ∈ [[η]]T iff M accepts T . Moreover, this automaton
can be obtained in PTime.

Proof. Let η be a formula of regXPath(↓,=). We build
the bip automaton M = 〈Σ, Q, µ, F,P〉 where Σ = {a | a
a label in η} ∪ {a⊥}, Q = {qψ | ψ is a node expression
in sub(η)} ∪ {q>} where sub(η) is the set of subformulæ
of η, and F = {qη}. Intuitively, for every state qψ where
ψ is a node expression, µ associates it to a formula that is
–exactly as ψ– a boolean combination of symbol and data
equality tests. For formulæ whose principal operator is a
boolean connector, the transition is straightforward. E.g.,
µ(qψ1∧ψ2

) = µ(qψ1
)∧µ(qψ2

). Ifψ is of the formα~α′, then
µ(qψ) = ∃(kα, kα′)~, and if ψ = 〈α〉, µ(qψ) = ∃(kα, kα)=.

On the other hand, any path expression α ∈ sub(η) can be
seen as a regular expression over the alphabet Ση = {e | e
is a node expression of η} ∪ {↓}. Then, for any path α we
can make the standard PTime translation of αr into a NFA
over Σ, where αr stands for the reverse of α (it is enough to
exactly reverse the symbols, as path expressions are closed
under reversal). This is necessary because although XPath
path expressions name the path from the root to the leaves, the
pathfinder automaton reads the branch from the leaves to the
root. We thus obtain a NFA Aα = 〈Kα,Ση, k

0
α, Fα, δα〉 for

each path expression α ∈ sub(η) where we name the states
Kα = {k0

α, k
1
α, . . .}. We then define P = 〈K, kI , Q, ν〉 the

pathfinder where K = {kI} ∪
⋃
α({kα} ∪Kα), and

ν(kI , qϕ) = {k0
α | k0

α ∈ K},
ν(kiα, qϕ) = δα(ϕ, kiα) ∪ {kα | δα(ϕ, kiα) ∩ Fα 6= ∅},
ν(kiα, up) = δα(↓, kiα) ∪ {kα | δα(ϕ, kiα) ∩ Fα 6= ∅}.

We can check that all the runs that end in kα –for α some
path subformula of η– retrieve a data value of a path accessed
via α, and conversely that it can retrieve all of them.

It is not surprising that the translation is so direct, as the
bip automaton mimicks closely XPath semantics.

bip automata are more expressive than regXPath(↓,=),
but if we restrict the definition of bip to have a bounded
number of mutual recursions between the bip and the path-
finder, we precisely characterize regXPath(↓,=): for each
bip there is an equivalent regXPath(↓,=) formula, and vice-
versa. In a sense, the restriction disallows the existence of
two states q, k (the former of bip, the latter of pathfinder) in
mutual recursion, where k is named in µ(q) and q in ν(k, ·).

4. Main result

We devote this section to prove that emptiness of bip au-
tomata is in ExpTime and that the satisfiability problem for
XPath(↓∗,=) is ExpTime-hard. In this way we obtain that
the satisfiability problem for XPath(↓∗,=), XPath(↓∗, ↓,=)
and regXPath(↓,=) are all ExpTime-complete.

4.1 Upper bound

Theorem 4. Emptiness of bip automata is in ExpTime.

Proof. The proof consists in a reduction from the bip
emptiness problem into the emptiness of a classical bottom-
up non deterministic tree automaton over trees with bounded
branching width. Moreover, the tree automaton has at most
an exponential number of states, and therefore its emptiness
problem can be solved in ExpTime. A state of this automa-
ton (that we call extended state to avoid confusion with
states of bip automata) contains the description of the be-
havior of the bip automaton w.r.t. some data values. More
precisely, each data value d is described by the set of states of
the pathfinder by which d can be reached (cf. Ex. 4 below).

We guarantee that for each extended state reachable by the
tree automaton, there is a witnessing data tree that consists
in any tree that reaches this state at the root, together with
an assignment for data values. For the extended states that
correspond to the leaves, the witnessing data tree is the leaf
with an arbitrary data value. For an extended state of an
inner node, the witnessing tree is constructed bottom-up, by
identifying the data values that are described in the states of
the witnessing subtrees inductively obtained, and ‘merging’
them according to an equivalence relation associated to the
transition.

In Proposition 1, we show that given an accepting run of
the tree automaton, we can easily build a run of the bip
automaton on a witnessing data tree, and in Proposition 2 we
show that if there is an accepting run on the bip automaton,
there must be a model with an accepting run in the tree
automaton. As a byproduct of this reduction, we obtain a
small model property. We establish that if a bip automaton
accepts at least one data tree, then it accepts in particular
a model with polynomial branching width and exponential
height, such that for any pair of disjoint subtrees there are
only a polynomial number of data values in common.

Example 4. We give the main idea for checking empti-
ness of bip automata by abstracting runs. Let M be the bip
that accepts the models satisfying ϕ = 〈↓ [a]〉 ∧ ¬[a] 6=↓ [a]
∧ ↓∗ [b] 6=↓∗ [b], and consider the model below that verifies
ϕ.

Below, we give an intuition about the nature
of the extended states of the tree automaton
AM built from M , and what would be an
accepting run for this particular data tree.

To each subtree, we associate an extended state that con-
tains the description of some data values. Each data value d
(here represented by a balloon like 1) is described by a set
of states of the pathfinder automaton. Here, for simplicity’s
sake, such states are represented by (sub)path expressions
that can reach d. Additionally, the extended state specifies,
for each path expression, whether it can retrieve (a) only one
data value, (b) more than one, or (c) no data values. In the
case (a), we specify which is the only data value retrieved.

5

1

1

1

1

1

1

Both leaves have the same extended state. We read the state
as follows: there is only one data value reachable by the path
↓∗ [b], and this data value is denoted by 1 . There is also
only one data value reached by [b], which is also denoted
by 1 (hence, they are the same). There are no data values
reachable by a path ↓ [a] (as it is a leaf) or [a] (as it is labeled
‘b’). Finally, we describe the data value denoted by 1 with
the set of path expressions that may reach it: {[b], ↓∗ [b]}.
Intuitively, 1 makes reference to the current node’s data
value, that is why 1 and the datum are surrounded by the
same area, to denote that they are equal.

In the next step, we apply a transition, which specifies how
the data values between the balloons are merged. In this case
we demand that the balloon of the left leaf and that of the
right must be different, otherwise they would be surrounded
in the same grey area. Consequently, we will have that
there are more than one data value reached by ↓∗ [b], which
is reflected in the extended state.

2

3

1

11

3

1

1

1

1

In this transition, we define balloons that describe the same
data values as the ones of the leaves (the case of 1 and 2),
and we define 3 as denoting the data value of the current
element 〈a, 2〉. Observe that the extended state of the root
depends only on (1) the root’s symbol, (2) the descriptions of
the data values of its children, and (3) the way of ‘merging’
these data values.

3

2

3

1

2

1

3

3

3

Here, we show how the last
transition leads to a final state.
Once this transition is per-
formed we can see that it im-
plies that the formula ϕ is sat-
isfied. In the following, we
show how to build this tree au-
tomaton systematically.

LetM be a bip automatonM = 〈Σ, Q, µ, F,P〉withP =
〈K, kI , Q, ν〉. In the development below we make use of two
parameters t0 (related to the number of data values described
in each extended state) and u0 (the maximum branching
width of the witnessing tree) which we assume to be bounded
by two polynomials on |K|. As usual, we write ‘~’ to denote
any element of {=, 6=}. We define a tree automaton AM =
〈Σ, QA, τ, FA〉 where QA is the set of extended states, and
FA is the set of final states. Finally, τ ⊆ 2QA≤u0

× Σ × QA
(where 2QA≤u0

stands for the set of subsets of QA with at most
u0 elements) is the transition function that, given the root’s

symbol and the set of states of its children, labels the root
with a state.

Abstracting runs.

An extended state is the building block to abstract the
runs of M . It is a pair c = 〈v,D〉 where

• v is a valuation, i.e., a function v : atFormM → {0, 1}
that specifies which of the formulæ of M hold at the
abstracted node. Here, atFormM is the (finite) subset
of atomic formulæ (i.e., with no boolean connectors)
of FormM .
• D = 〈D�, D=〉 consists in two descriptions of a poly-

nomial number of data values. D= ∈ (2K)|K| de-
scribes at most |K| data values, and D� ∈ (2K)t0 at
most t0. We will later detail exactly what this repre-
sents.

It is easy to check that |QA| is exponential in |M |. In Ex-
ample 4, D= is represented by the path expressions α s.t.
#α = 1 and the data descriptions associated to them, and
D� by the remaining data descriptions. Each extended state
represents a class of models. Before presenting the abstrac-
tion, let us fix some notation.

Let T = 〈T, σ, δ〉 be a data tree and λ be the unique run of
M on T . We denote by λ(T) the data tree labeled with the
run 〈T, λ, δ〉. Given a valuation v : atFormM → {0, 1}, we
define C(v) = {q | q ∈ Q with µ(q) true under the valuation
v}. If d ∈ ∆, let Reach(d) = {k | there is ρ run of P on
λ(T), such that o(ρ) = (k, d)}. We fix χ to be any bijection
χ : K → [1..|K|], and χ(k) = i stands just as a correlation
between k ∈ K and the element described in position i of
the tuple D= (we note this as D=(i)). We then say that an
extended state c = 〈v,D〉 abstracts the run λ of M on T
(notation: T � c) iff λ(ε) = C(v) and the following two
conditions are met.

• For every k ∈ K, either D=(χ(k)) = Reach(d0) for
d0 ∈ ∆ such that for every run ρ of P on λ(T), if
o(ρ) = (k, d) then d = d0; or D=(χ(k)) = ∅ if there
is no such d0.
• We only state that D� describes some data values,

with the possibility of even have ‘empty’ descriptions
as well if D�(i) = ∅. More formally, there are at most
t0 data values d1, . . . , dt0 ∈ ∆ where the ith compo-
nent D�(i) is the empty set, or D�(i) = Reach(di),
provided that di is not already described in D=. I.e.,
we must ensure that (

⋃
iD
�(i)) ∩ {k | D=(χ(k)) 6=

∅} = ∅.

The setQA consists of all the exponentially many possible
extended states, and FA = {〈v,D〉 ∈ QA | C(v) ∩ F 6= ∅}.
We next describe the transition function τ .

We start with the transitions that correspond to the leaves.
Let t = 〈∅, a, c〉with c an extended state and a a symbol. We
define that t ∈ τ iff (a, 1) � c, where (a, 1) is the singleton
tree with symbol a and datum 1 (it could be any).

6

2

1

3 2

1

4 3

2

1

Figure 1: An example of merging, where D= may be
assumed to be empty.

Now we show how to obtain the recursive transitions. We
explain how, from u ≤ u0 extended states, we can construct
the state that is supposed to represent the root of the tree.

For convenience of notation, by ci we refer to the extended
state 〈vi, Di〉. Suppose we have a tuple t = 〈{c1 . . . cu}, a, c0〉
with u > 0. We now show how to check if t ∈ τ . Remember
thatA is non-deterministic and the different possibilities for
c0 depend on the way the data values in c1 . . . cu are merged.
We must then describe how these descriptions are merged
together, and ensure that transitions are consistent with the
merging. For example, if c0 describes a datum that can be
reached in two steps with label a, or in at least one step with
label b (e.g. because we want to check ‘↓↓ [a] =↓↓∗[b]’) then
some ci must describe a datum accessible through ‘↓ [a]’,
some cj must describe a datum accessible through ‘↓∗ [b]’,
and these two descriptions must be of the same data value.

We define that t ∈ τ iff there exists a merging ≡E such
that c0 is coherent w.r.t. ≡E and {c1 . . . cu}. We next define
what is a ‘merging’ and which are the ‘coherence’ conditions.

Merging data values.

We describe the ways of merging the u(t0 + |K|) data
values described by the (non-empty) elements of D1 . . . Du.
For this purpose, we consider an equivalence relation ‘≡E’
on {(�, i, j) | D�i (j) 6= ∅} ∪ {(=, i, j) | D=

i (j) 6= ∅} ∪
{root} that describes exactly how these data values are go-
ing to be collapsed between them and w.r.t. the root’s data
value. However we check one condition in ≡E . If k1 ∈
D=
i (χ(k2)) then eitherD=

i (χ(k1)) = ∅ or (=, i, χ(k1)) ≡E
(=, i, χ(k2)), as they make reference to the exact same data
value (by definition of D=). An example of merging is
shown in Fig. 1.

We consider that the only data values that can be merged
among the trees represented by the u extended states are
those described in ≡E . In other words, we can consider that
the witnessing data tree for c0 is composed of the witnessing
trees for each ci with the following property. For every ci
we associate a data value to each description, and two data
values from two different subtrees i, j are equal if and only
if (1) they are described in ci, cj respectively, and (2) both
descriptions are in same equivalence class of ≡E . Observe
that this is a strong restriction, the emptiness algorithm of
bip relies on at most u0(t0 + |K|) data values at every point
of a branch. However, we remark that the automaton M can
make at any step, any number of comparisons between any
number of data values that can be found in the subtree.

Checking coherence of c0 with respect to ≡E .

4.1. 3.2.

Figure 2: The 4 cases for making ∃(k1, k2)= true.

We require that 〈{c1 . . . cu}, a, c0〉 ∈ τ exactly when there
exists a merging ≡E such that the conditions below hold
true. We first define the following relation: step-up(k′, k)
iff k′′ ∈ ν(k′, up) and k ∈ cl(k′′, C(v0)).

To start with, we must verify that v0 is correct. For a′ ∈ Σ,
v0(a′) = 1 iff a′ = a. And v0(∃(k1, k2)=) = 1 iff any of
the 4 conditions below holds (they are depicted in Fig. 2).

1. There are some k′1, k
′
2 states that retrieve equal data

in some subtree, and moving one step up with P we
obtain k1 and k2. I.e., for some i, vi(∃(k′1, k′2)=) = 1,
step-up(k′1, k1), and step-up(k′2, k2).

2. Both k1, k2 can be obtained as runs that start and end
at the root (and hence both carry root’s data value)
k1, k2 ∈ cl(kI , C(v0)).

3. k2 is like in the preceding case, and k1 retrieves a data
value declared in ≡E to be equal to the root. For some
i, k2 ∈ cl(kI , C(v0)), ∃`, α (α, i, `) ≡E root, k′1 ∈
Dα
i (`), step-up(k′1, k1) (or the converse, swapping k1

and k2).
4. k1 and k2 retrieve data values from different subtrees

that are equal according to the merging ≡E . For
some i, j, there exist m, `, α, β s.t. k′1 ∈ Dα

i (m),

k′2 ∈ Dβ
j (`), (α, i,m) ≡E (β, j, `), step-up(k′1, k1),

step-up(k′2, k2).

And v0(∃(k1, k2)6=) = 1 iff any of the similar conditions
previously described in 1, 3, 4 holds (changing = by 6=), or

4. One of the states is not described in D=, and hence it
retrieves at least 2 different data values, which means
that the 6= constraint can be met: D=

0 (χ(k1)) = ∅ and
v0(∃(k2, k2)=) = 1 (or the converse).

We must check now the coherence of D=
0 and D�0 . We

concentrate on the former as it is the most involved. Let
Bk be the set of all the descriptions of data values that can
be reached at the root with state k, Bk = {(α, i, j) | k′ ∈
Dα
i (j), step-up(k′, k)}. We require that D=

0 (χ(k)) 6= ∅ iff:

• There is no 〈�, i, j〉 ∈ Bk, as this would mean that k
retrieves at least two data values. Note that any state k′
inD�i (j) retrieves more than one data value (otherwise
the datum would be described in D=

i (χ(k′))).
• Any pair of data values that may be reached with state
k at the root must be equal: for all a, b ∈ Bk, a ≡E b.
• D=

0 (χ(k)) consists of every state from the descriptions
of Bk, or from any other description that is declared to
be equal in ≡E . D=

0 (χ(k)) = {k′ | a ∈ Bk, a ≡E
〈α, i, j〉, k′′ ∈ Dα

i (j), step-up(k′′, k′)}.

With respect to D�0 we simply need to state that it cannot
contain elements already in D=

0 . This completes the defini-
tion of τ . It is easy to see that checking all the preceding

7

conditions consumes at most an exponential amount of time
and hence that AM can be built in ExpTime.

We have completely described the tree automaton AM .
As it contains an exponential amount of extended states, the
emptiness problem for this automaton can be computed in
ExpTime. We have that M is empty iff AM is empty.

Proposition 1. (Soundness) For every accepting run of
AM on T there is an accepting run of M on some T ′.

Proof. It is easy to show by induction that for any run
ofAM on T we can define data values for all the nodes of T
such that the data tree defined corresponds to an abstraction
of the extended states in the run. The way of merging the
data values in the inductive step is completely described by
the relation ≡E .

Proposition 2. (Completeness) For every accepting run
of M on T there is an accepting run of AM on some
T ′.

Proof. The proof can be sketched as follows. We first
show that bip automata are closed under subtree duplication.
More concretely, the data tree 〈a, d〉(t1, t2) (where 〈a, d〉 is
the root and t1, t2 its two immediate subtrees) is accepted by
a bipM iff 〈a, d〉(t1, t2, t2) is accepted by M .

We then show a bounded-branching model property:

1. For each atomic formula∃(k1, k2) 6= that holds at a node
z, we mark (at most) two of their immediate subtrees
that ‘witness’ this fact. It could be that we only need to
mark one or none, if one of the two components k1 or
k2 is directly witnessed at z. Each marking consists in
a label that indicates a state and data value necessary to
witness the formula, for example ‘(k′, d′)’. We proceed
similarly for ∃(k1, k2)=.

2. Moreover, this can be done in such a way that we don’t
mark twice the same subtree. We can ensure this by
duplicating sibling subtrees if necessary.

3. In this way, we have that each node marks at most
some bounded number of subtrees (say N), and at the
same time it may be marked by its father. It is easy to
see that N is polynomially bounded by the number of
states |K|. Given a marking of a node z (coming from
its father) it could be that (1) the marking is ‘witnessed’
at z, or (2) that it actually needs a subtree. In the case
of (2) we add the marking to the corresponding subtree,
always making sure that no subtree is marked twice.

4. We then have that each node has marked (at most)N+1
immediate subtrees. The rest of the subtrees that are
not marked can be safely removed from the tree. This
can be done with a top-down algorithm, where the root
is the only node to mark at most N nodes (as it has no
father).

Finally, we associate an extended state ofAM to each node.
Consider the marking just explained. For each node z we
build the extended state, whereD= is completely determined
by the tree T |z , and we use D� to ensure that for each of

the markings (k′, d′) generated by z, d′ is described. There
are at most N + 1 such markings, and we especially choose
a sufficiently large size of D� (i.e., of t0) to be able to
accommodate all of them. We can then check that this is
indeed a correct accepting run of AM .

Corollary 1. SAT-regXPath(↓,=) is in ExpTime.

Proof. A direct consequence of Theorems 3 and 4.

In the presence of document type definitions.

The bip automaton can be extended to have transitions
that may demand conditions on the states of the child nodes
stating, for example, that a node can be labeled by state q1

if it has a child tagged with state q2. It is actually easy to
see that this can be simulated using the pathfinder automa-
ton. Furthermore, consider the extension of its formulæ by
positive occurrences of #q ≥ n where n ∈ N is a constant,
with the intended meaning that it is verified whenever there
are at least n child nodes labeled with state q. Similarly,
#q = 0 states that there are no children with state q, but
formulæ #q ≤ n are not allowed.

It can be checked that a similar emptiness algorithm can be
applied, the only difference being that the maximum branch-
ing width of the algorithm depends on the greatest constant
n0 used in the definition of the automaton. We obtain then
an algorithm of time exponential in n0.

So, in the case wheren0 is fixed, or where we consider con-
straints #q ≥ n with n encoded with a unary representation,
we still have an ExpTime algorithm for emptiness.

Consider the document types definable with a tree automa-
ton on unranked trees with this ‘zero/many’ counting ability,
where at each transition we can check either that there is
no child with a certain state, that there are at least n with
a certain state for some n, or conjunctions and disjunctions
of these kind of conditions. It is possible thus to check the
satisfiability of any regXPath(↓,=) under these document
types in ExpTime.

To verify this, we should mention that intersection of two
bip automata M1 and M2 can be simply obtained by a
bip with the QM1

× QM1
an defining µM1∩M2

(q1, q2) =
µM1

(q1) ∧ µM2
(q2). Observe that all positive occurrences

of the #q ≥ n formulæ remain positive.

Inclusion and equivalence problems.

We can finally mention that as regXPath(↓,=) is closed
under negation and boolean operations, we also get a decision
procedure for the equivalence and the inclusion problems for
node expressions (ϕ ⊂ ψ iff ϕ ∧ ¬ψ is not satisfiable).
However, we cannot solve the problems of path expressions
inclusion or equivalence with this kind of automata.

4.2 Lower bound

8

In this section we prove ExpTime-hardness of satisfiabi-
lity of XPath(↓∗,=). Remarkably, this logic cannot express
a one step down in the tree as it does not possess the ↓ axis,
and this will be the major obstacle in the coding.

Theorem 5. SAT-XPath(↓∗,=) is ExpTime-hard.

Proof. The proof is by reduction from the two-player
corridor tiling game. An instance of this game consists
in a size of the corridor n (encoded in unary), a set of tiles
T = {T1, . . . , Ts}, a special winning tile Ts, the set of
initial tiles {T 0

1 . . . T
0
n}, and the horizontal and vertical tiling

relations H,V ⊆ T × T . The game is played in an n × N
board where the initial configuration of the first row is given
by T 0

1 . . . T
0
n . At any moment during the game any pair of

horizontal consecutive tiles must be in the relation H and
every pair of vertical consecutive tiles in the relation V . The
game is played by two players: Abelard and Eloise. Each
player takes turn in placing a tile of his choice, filling the
board from left to right, from bottom to top, always respecting
the horizontal and vertical constraintsH and V . Eloise is the
first to play, and she wins iff during the game the winning
tile Ts is placed on the board. If the game ends without this
configuration being reached, or if it runs infinitely, the game
is won by Abelard. It is known that deciding whether Eloise
has a winning strategy is ExpTime-complete. For more
details on this game we refer the reader to [3].

Representation of a winning strategy.

It is easy to see that in this game Eloise has a winning
strategy iff she has a strategy to win before the row sn of
the board is reached (where s is the number of tiles). Then
each game between Eloise and Abelard can be coded as a
succession of at most sn rows of n tiles each. Wlog we
assume that n is an even number, and hence all odd positions
are played by Eloise, while even ones by Abelard. We can
then represent a winning strategy as a tree, where at each
even position there exists one branch for every possible play
of Abelard and where all branches of the tree contain the
winning tile Ts.

We must now come up with a way to encode all possible
games for all possible choices of Abelard in XPath(↓∗,=),
and verify that all of them are won by Eloise and hence that
they consist in a winning strategy for Eloise.

Our alphabet consists in the symbols I1 . . . In that indicate
the current column of the corridor, the symbols b0 . . . bm
where m = d(n + 1).log(s)e that act as bits to count from
0 to sn (it is enough that they count at least up to sn), and
the symbols T1 . . . Ts to code the tile placed at each move.
The coding makes use of a symbol # to separate rows, and
an extra symbol $ whose role will be explained later.

Each block of nodes between two consecutive # codes
the evolution of the game for a particular row. Each node
labeled Ii has a tile associated, coded as a descendant node
Tj with the same data value. In Fig. 3 the first column I1 of
the current row is associated to the tile T3, because 〈T3, 1〉 is
a descendant of 〈I1, 1〉 with the same data value. Similarly,
each occurrence of # is associated to a number, coded by the

Figure 3: Part of the model coding all the plays of row
5, which is between the #-element associated to 5 (101
in binary), and the element # with number 6 (110).

bi elements. In the example, 〈#, 0〉 is associated to the bits
b0 and b2 that give the binary number 101.

Finally, the symbol $ is used to delimit the region where
the next element of the coding must appear, this will be our
way of thinking the next step of the coding. Intuitively,
between Ii and the $ with the same data value, only a Ii+1

may appear. This mechanism of coding a very relaxed ‘one
step’ is the building block of our coding. As the logic lacks
the ↓ axis, we need to restrict the appearance of the next move
of the game to a limited fragment of the model. By means
of this element $, we can state, for example, that whenever
we are in a I2 element, then in this restricted portion I3 must
be true by stating ε =↓∗ [I3] ↓∗ [$]. In a similar way we can
demand that all elements verify I3 (except, perhaps, a prefix
of I2 elements).

However, we cannot avoid having more than one
element before the $ as shown in the figure. We
may have ‘repeated’ elements or extra branches,
but this does not spoil the coding.

We are actually able to force properties for all branches
and all possible extra elements that the tree may contain.
Intuitively, any extra element or branching induces more
copies of winning strategies for Eloise.

In Fig. 3 we show an example of a possible extract of the
tree between the # associated to the counting of 5 until the
next # of counting 6. The coding forces a branching as it
contains all possible answers of Abelard at even positions.

Building up the coding.

Let us define some useful predicates. skσ(ϕ) evaluates
ϕ at a node at k-steps (with our way of coding a step as
we have seen before) from the current point of evaluation,
given that the current symbol is σ. For this purpose we first
define next(Ii) := Ii+1 (if i < n), next(In) := # and
next(#) := I1. Hence, for a ∈ {#, I1, . . . , In},

s0a(ϕ) := a ∧ ϕ sk+1
a (ϕ) := a ∧ ε =↓∗ [sknext(a)(ϕ)] ↓∗ [$]

Similarly, tj checks that the tile of the current node I corre-

9

sponds to Tj , biti checks that the i-bit of the counter’s binary
encoding of a #-node is one (1), and G forces a property to
hold at all nodes of the tree.

ti := ε =↓∗ [Ti] G(ϕ) := ¬〈↓∗ [¬ϕ]〉 biti := ε =↓∗ [bi]

We now describe all the conditions to force the afore-
mentioned encoding. We also exhibit the XPath formula
counterparts of the non-trivial conditions.

1. Every Ii, Ti, and # along the tree has different data
value. As we have only the transitive closure axis, we actually
express that whenever there are two elements with the same
symbol a such that there is a third element in the middle
with another symbol different from a (and then they can
be effectively distinguished), they must have different data
value. Actually, the fact that there could be a sequence of
elements with equal label does not cause any problem. Let
us see the case for Ii: ¬ ↓∗ [Ii ∧ ε =↓∗ [¬Ii] ↓∗ [Ii]].

2. Every Ii has a next element, unless it contains the
winning tile, G(Ii ∧ ¬ts → s1Ii(>)) ∧ G(#→ s1#(>)).

3. $ are leaves, in the sense that no other symbol may
appear as descendant: ¬〈↓∗ [$ ∧ 〈↓∗ [¬$]〉]〉.

4. Every Ii has its corresponding $: G(Ii → ε =↓∗ [$]).

5. Each Ii has a unique tile: G(¬(t` ∧ tj)) for ` 6= j.

6. All Ii+1 inside a step along a branch must have the same
tile. (And a similar condition for I1.) That is, for every i < n
and j 6= k, G(Ii → ¬ε =↓∗ [Ii+1 ∧ tj] ↓∗ [Ii+1 ∧ tk] ↓∗ [$]).

7. Between Ii, i < n and its corresponding $ only Ii+1

may appear. (And also for In and #, and for # and I1.) That
is, for any i < n and j 6∈ {i, i + 1}, G(Ii → ¬ε =↓∗ [Ij] ↓∗
[$]), and G(Ii → ¬ε =↓∗ [Ii+1] ↓∗ [Ii] ↓∗ [$]).

8. The tiles match horizontally: for every k and Ti, Tj
such that ¬H(Ti, Tj), ¬〈↓∗ [Ik ∧ ti ∧ s1Ik(tj)]〉. Moreover,
the tiles match vertically, for every k and Ti, Tj such that
¬V (Ti, Tj), ¬〈↓∗ [Ik ∧ ti ∧ sn+1

Ik
(tj)]〉.

9. All the elements corresponding to the first row match
with T 0

1 . . . T
0
n . That is, for all i ∈ [1..n] and tile Tj such

that ¬V (T 0
i , Tj), then ¬si#(tj) must hold at the root.

10. All possible moves of Abe-
lard are taken into account. For
every triple of tiles Ti, Tj , Tk such
that H(Tj , Tk), V (Ti, Tk), each time
Abelard can play Tk, he must play it.

¬
〈
↓∗
[
I2` ∧ ti ∧ snI2`

(
I2`−1 ∧ tj ∧ ¬s1I2`−1

(tk)
)〉

11. There is no # element that has all the bi bits in 1.
Because that would mean that Eloise was not able to put a
Ts tile in less than sn rounds.

12. The data value of a # element is associated to a counter.
It is easy to code that the first # is all-zero. The increment
of the counter between two # is coded as G(# ∧ flip(i)→
zero<i ∧ turni ∧ copy>i), where

flip(i) = ¬biti ∧
∧
j<i

bitj

zero<i =
∧
j<i

¬sn+1
(bitj)

turni = ¬sn+1
(¬biti)

copy>i =
∧
j>i

(bitj ∧ ¬sn+1
(¬bitj)) ∨

(¬bitj ∧ ¬sn+1
(bitj))

This completes the coding. It is easy to see that each one
of the formulæ described has a polynomial length on s and
n. It can be shown then that Eloise has a winning strategy in
the two-player corridor tiling game iff the conjunction of the
formulæ just described is satisfiable.

5. PSpace fragments

We now turn to some other downward fragments of XPath.
We complete the picture of the complexity for all possible
combinations of downward axis in the presence and in the
absence of data values. We first need to introduce a basic
definition that we use throughout the section.

Definition 2. We say that the logic L has the poly-depth
model property if there exists a polynomial f such that for
every formula ϕ ∈ L, ϕ is satisfiable iff ϕ is satisfiable in a
data tree model of depth at most f(|ϕ|).

We can now prove the following statement that we will use
to show PSpace-completeness for XPath(↓,=).

Theorem 6. Every fragment L of regXPath(↓,=) with
the poly-depth model property is in PSpace.

Proof. Suppose that if a formula η ∈ L is satisfiable
in a model, then it is satisfiable in a model of height h with
h ≤ f(|η|) where f is a polynomial.

We can then translate η into a bip automaton M . We
show next how to modify the emptiness algorithm to make
it work in non-deterministic polynomial space by means of
f . We define an algorithm by recursion on the height of
the tree h. The algorithm receives three parameters: (1) a
bip automaton M , (2) an extended state c0, and (3) h, the
maximum height of the tree to reach the extended state. The
algorithm must verify that c0 can be reached in a tree of
height at most h in non-deterministic polynomial space in h.
Now the emptiness algorithm for AM must be done on the
fly, that is, we do not build the set of all possible extended
states. The base case is when h = 1. In this case we can
easily check the existence of a singleton tree that satisfies c0
in polynomial space.

Suppose now the height is h = n + 1. The algorithm
guesses c1 . . . cu extended states corresponding to the im-
mediate subtrees and verifies that c0 and c1 . . . cu are in a
transition of AM . To do this, we guess a relation ≡E and
test that all the conditions described in the construction of

10

AM seen before are satisfied. Finally, by inductive hypoth-
esis we can check that each one of c1 . . . cu extended states
are satisfied in a model of depth at most n, and this test
can be done in space polynomial in n. In terms of space
complexity this algorithm uses (a) the space to store c1 . . . cu
where u is a polynomial in M and the space required to
store each ci is polynomial in M , (b) the space to store the
relation ≡E to check their correctness, that can be bounded
by 2.u.(2|K|2 + 3|K| + 2) and also remains polynomial in
M , and (c) some polynomially bounded space on n (call it
S(n)) to do the u recursive calls. Then the space required is
S(n+ 1) = (a) + (b) + S(n). It is then immediate that the
algorithm is in NPSpace.

The main algorithm can be sketched as follows. Given η,
we compile η into M in PTime, we guess an extended state
c0 that contains a final state ofM and we check the guessing
is correct by calling the algorithm just described. Thus, as
NPSpace = PSpace the theorem follows.

Proposition 3. SAT-XPath(↓,=) is PSpace-complete.

Proof. XPath(↓) is shown to be PSpace-hard in [1].
For the upper bound, we show the poly-depth model property.
It is easy to show that if η is satisfiable in T , then it is
satisfiable in T � n where n is the maximum quantity of
nested ↓ of the formula, and T � n is the submodel of T
consisting of all the nodes that are at distance at most n from
the root. Hence, by Theorem 6, XPath(↓) is in PSpace.

So far we have that, in the presence of data values, the
ability to have the descendant axis (↓∗) produces an increase
in the complexity from PSpace to ExpTime1. However,
we argue that it is not the ability to test for data equality of
distant elements what produces this raise in complexity. It
is, as a matter of fact, in the ability to test data values against
that of the root in formulæ like ε =↓∗ [a]. We show that if we
actually eliminate this kind of data tests, we can prove the
resulting logic to be only in PSpace.

Definition 3. We denote by XPath(↓∗,=)\ε the fragment
of XPath(↓∗,=) where the ε path formulæ are forbidden,
and in general where there are no ε-testing in a path (like in
[ϕ] ↓∗), α ::=↓∗| α[ϕ] | αβ | α ∪ β.

Proposition 4. SAT-XPath(↓∗,=)\ε is PSpace-complete.

Proof (sketch). The proof is done by proving the
poly-depth model property. The key observation is that any
XPath(↓∗,=)\ε path expression that is satisfied at a node n
of a tree, is also satisfied in any ancestor of n, this is basically
because all path expressions start with a ↓∗ axis. This means
that for any pair of nodes n, n′ such that n is an ancestor of
n′, the set of formulæ of the type 〈p〉, p = p′ or p 6= p′ (with
p, p′ path expressions) that are satisfied in n′ is a subset of
those that are satisfied in n. Thus, if ϕ is a formula satisfied
in T , for a given branch there is only a polynomial number
of configurations of the (sub)paths in ϕ verified in each of its
nodes. Long branches with a repeated description can actu-
ally be pruned into a shorter branch, preserving satisfiability
of ϕ in T .
1In the case PSpace 6= ExpTime.

↓ ↓∗ = Complexity Details

+ PSpace-complete Prop 3
+ PSpace-complete Prop 5

+ + ExpTime-complete [1]
+ + PSpace-complete Prop 3 and [1]

+ + ExpTime-complete Cor 1, Th 5
+ + + ExpTime-complete Cor 1, Th 5
regXPath(↓,=) ExpTime-complete Cor 1, Th 5
XPath(↓∗,=) \ ε PSpace-complete Prop 4

All the results hold also in the absence of path
unions.

Figure 4: Summary of results.

Proposition 5. SAT-XPath(↓∗) is PSpace-complete.

Proof (sketch). The lower bound is shown by coding
the QBF problem. The upper bound is shown via the poly-
depth model property. It is slightly involved and requires to
show a normal form of the model with the following property.
If for some node both 〈α〉 and 〈β〉 hold, then α and β are
witnessed by two disjoint branches of polynomial depth.

6. Concluding remarks

We have shown the complexity of various downward frag-
ments of XPath. The highest complexity class we obtained
is ExpTime. In the presence of data equality tests, this is a
well behaved fragment considering that in the presence of all
the axesXPath is undecidable. One important reason for this,
is the absence of sibling axis. Actually, in the presence of
arbitrary DTDs we can show that the satisfiability problem of
the downward fragment is either undecidable, or decidable
with a non-primitive recursive algorithm. We have shown
however that we can evaluate some restricted fragment of
DTDs that cannot express sibling order nor limit the quantity
of occurrences of nodes of a certain type, but that can de-
mand, for example, that any a has at least five b children and
no c child. By solving the satisfiability problem we are also
able to solve the inclusion and equivalence problems of node
expressions for free. We leave open the question of whether
the inclusion of path expressions (as binary relations) is also
decidable in ExpTime.

We introduced the new class of bip automata that capture
all the expressivity of regXPath(↓,=). By the proof of de-
cidability, we conclude that there is a very strong normal form
of the model for this logic. If a formula η ∈ regXPath(↓,=)
is satisfiable, then it is satisfiable in a model of exponential
height and polynomial branching width, whose data values
are such that only a polynomial number of data values can be
shared between any two disjoint subtrees. This small model
property is reflected by the fact that the emptiness of the au-
tomaton only depends on a polynomial number of data values
at every point of a branch. However, there is no syntactic
restriction in the automaton, it can retrieve and compare any
number of data values between them and the root’s data value
at each step of the execution of M .

11

Acknowledgments. I am grateful to Luc Segoufin and Sté-
phane Demri for helpful discussions and for critically reading
this manuscript.

7. References

[1] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. J.ACM, 55(2),
2008.

[2] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick,
and L. Segoufin. Two-variable logic on data trees and
XML reasoning. In PODS, pages 10–19. ACM, 2006.

[3] B. S. Chlebus. Domino-tiling games. J. Comput.
Syst. Sci., 32(3):374–392, 1986.

[4] J. Clark and S. DeRose. XML path language (XPath).
Website, November 1999. W3C Recommendation.
http://www.w3.org/TR/xpath.

[5] F. Geerts and W. Fan. Satisfiability of XPath queries
with sibling axes. In DBPL, volume 3774, pages
122–137. Springer, 2005.

[6] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing XPath queries. ACM
Trans. Database Syst., 30(2):444–491, 2005.

[7] M. Jurdziński and R. Lazić. Alternating automata on
data trees and XPath satisfiability. CoRR,
abs/0805.0330, 2008.

[8] M. Marx. First order paths in ordered trees. In ICDT,
volume 3363, pages 114–128. Springer, 2005.

[9] B. ten Cate. The expressivity of XPath with transitive
closure. In PODS, pages 328–337. ACM Press, 2006.

[10] B. ten Cate and L. Segoufin. XPath, transitive closure
logic, and nested tree walking automata. In PODS,
pages 251–260. ACM Press, 2008.

APPENDIX

A. From XML to data tree

As outlined before, xml documents may have multiple
attributes with data values on each element, while data trees
can only have one. Let us consider now that our finite set of
symbols Σ = Σattr ∪ Σelem is divided between the names
for attributes and the symbols of the xml elements. We can
now have the models as 〈T, σ, δ〉 where δ ⊆ T ×Σattr ×∆
is a relation that may have a data value for for some attribute
symbols on any node. Let us consider then the extension of
the languages where different attributes may be compared,
where node expressions are defined

ϕ :: a | ¬ϕ | ϕ ∧ ψ | 〈α〉 | α@attr1~ β@attr2

where ~ ∈ {=, 6=}, a ∈ Σ and attr1, attr2 ∈ Σattr. Let us
call this logic attrXPath. It is easy to see that this language
with the expected semantics can well encode any XPath
request on an xml document.

However, as already mentioned, each xml document can
be coded in a data tree by adding one child for each attribute
with its corresponding value. We can force this kind of
model using XPath(↓∗, ↓,=) by stating that all the nodes
with a symbol from Σattr are leaves.

ϕstruct = ¬〈↓∗ [
∨

s∈Σattr

∧ ↓]〉

In addition we can transform any XPath formula with at-
tributes like ‘↓∗ [a] ↓ @attr1 =↓ [b]@attr2’ into a formula
‘↓∗ [a] ↓↓ [attr1] =↓ [b] ↓ [attr2]’, let us call this translation
tr.

We can then decide the satisfiability of a formula ψ of
attrXPath on trees with multiple attributes by transforming
it to an equivalent one on data trees by ‘tr(ψ)∧ϕstruct’. We
have then an ExpTime decidability procedure for the full
downward fragment of attrXPath even with the Kleene star
operator (as the translation is clearly in PTime).

On the other hand any XPath formula on data trees can
be thought of a attrXPath formula that uses at most one
attribute. We can then deduce the ExpTime-hardness result
of attrXPath(↓∗,=) from that of XPath(↓∗,=).

For the case of attrXPath(↓,=) we can do the same trans-
lation the only difference being that for a formula ψ ∈
attrXPath(↓,=) the structure can be forced by

ϕstruct =
∧

0≤n≤d+1

¬〈↓n [
∨

s∈Σattr

∧ ↓]〉

where d is the maximum quantity of nested ↓ of ψ. It is
easy to see that this forces the requested property for all the
portion of the data tree that we are interested in. That is, for
the whole region where tr(ψ) can access. This is associated
with the poly-depth model property of the logic. We then
have that attrXPath(↓,=) is PSpace-complete.

Finally, for the case of attrXPath(↓∗,=)\ε we are not able

12

http://www.w3.org/TR/xpath

to force the wanted structure of the data tree. However it
can be shown that if a formula ϕ ∈ attrXPath(↓∗,=)\ε is
satisfiable, then it is satisfiable in a model where each node
has at most one attribute.

The basic idea is that any node with multiple attribute can
be ‘split’ into several nodes each one of them with only one
attribute.

It can be checked that this transformation preserves the sat-
isfaction of all attrXPath(↓∗,=)\ε formulæ. We then have
a trivial transformation into data trees and the same result of
PSpace-completeness of attrXPath(↓∗,=)\ε.

B. Characterizing regXPath(↓,=)

We now show that we can easily identify the class of bip
automata that correspond to the logic of regXPath(↓,=).
Intuitively, we need to make certain that there are no mutual
unbounded recursion between the main bip automaton and
its pathfinder.

Definition 4. We say that a bip automaton M = 〈Σ, Q,
µ, F,P〉 with P = 〈K, kI , Q, µP〉 has the bounded inter-
leaving property if there is a partition Q = Q1 ∪ . . . ∪ Qn
where ∀i 6= j : Qi ∩ Qj = ∅ and K = K1 ∪ . . . ∪ Km

where ∀i 6= j : Ki ∩Kj = ∅, such that for every i ∈ [1..n],
if q ∈ Qi then µ(q) ∈ Form(

⋃
j≤iKj), and on the other

hand for every i ∈ [1..m] if k ∈ Ki then ν(k, q) = ∅
∀q ∈

⋃
j≥iQj .

That is, if we do not have mutual recursion between a state
q from the bip automaton and a state k of the pathfinder
automaton it contains.

Proposition 6. For every bip automaton M with the
bounded interleaving property there exists a regXPath(↓
,=)-formula η such that for every model T , M accepts
T iff [[η]]T 6= ∅.

Proof. It is easy to see that the set of runs leading to a
state k ∈ Ki from the pathfinder automaton can be coded into
a regular expression over the alphabet Q1 . . . Qi−1. Con-
versely, every state q ∈ Qi of the bip automaton can be
straightforwardly coded into a node expression where, in-
stead of data-expressions like ↓ [a] ↓ [b] = (↓ [c])∗, we have
states from the pathfinder of the form ↓ k5 =↓ k7.

It is then just a matter of replacing states of bip automaton
by node expressions in the path expressions, and vice-versa
replacing states of the pathfinder automaton by path expres-
sions in the node expressions. The bounded interleaving
property forces that we only need n+m replacement steps.
The formula η then consists in the disjunction of all node
expressions associated to final bip states.

Remark. Note that the expressivity of the
bip automaton is indeed very close to that of
regXPath(↓,=). The essence of what bip
can express that regXPath(↓,=) cannot do
is the recursiveness between node and path
expressions, that would correspond to a ‘star’

operator on the nesting of the formula. More concretely,
bip automata can express, for instance, the disjunction of all
the formulæ defined by the grammar A :: ε =↓ [A] | b.
That is, the property of having a ‘chain’ of equal data until a
b, which is not something expressible in regXPath(↓,=).

13

C. Completeness of emptiness of BIP

Proof of Proposition 2. We show that whenever
there is a model T accepted by M , there is another one
T ′ such that it is both accepted by M and byAM . Note that
AM can run on data trees by simply ignoring the values of the
nodes. We will show that not only there is an accepting run
of AM on T ′, but there is an accepting run with some extra
information, where we can associate a concrete data value of
the tree T ′ to each of the descriptions of the extended state.
We will call this a ‘data run’ of AM .

We first need to introduce the following definition of equiv-
alence between trees.

Definition 5. [Strong S-equivalence] A context C is a
data tree with a hole, we denote by C[T] the substitution of
the hole by T in C. We say that two models T and T ′ are
strongly S-equivalent for some S ⊆ ∆ if and only if for
every context C such that δ(C) ∩ S = ∅ and for every bip
automaton M , M accepts C[T] iff M accepts C[T ′].

We now consider a special kind of run of AM on a tree
for that run, that we call ‘data run’. Together with the run
we maintain a witness tree that is a representation of the
extended states indicated in the run. The proof then consists
in giving an accepting data run α and a witness tree T for
every time the automaton M is non-empty (i.e., every time
there is a tree T ′ that is accepted by M).

We will make use of the two parameters u0 and t0 which
are bounds, polynomial in the bip: t0 = 2|K|2 + 2 and
u0 = (2|K|2 + |K|+2)|K|. u0 is a bound for the maximum
branching width of AM , and t0 is the maximum number of
data descriptions that D� may have at any extended state.

Definition 6. A data run on T is a labeling function
α such that for every p ∈ Pos(T), α(p) = (cp, cd

=
p , cd

�
p)

where cp is an extended state, cd�p : [1..t0]→ ∆ is a partial
mapping from theD� elements of cp to the represented data
values in the model T and cd=

p : [1..|K|] → ∆ a partial
mapping for the D=. And:

• T |p � cp,
• for all i, j ∈ N s.t. i 6= j, pi, pj ∈ Pos(T), if d ∈
δ(T |pi) ∩ δ(T |pj), then d ∈ (Im(cd=

pi) ∪ Im(cd�pi)) ∩
(Im(cd=

pj)∪Im(cd�pj)), where Im stands for the image
of the function.
• for every i ∈ N, pi ∈ Pos(T), if δ(p) ∈ δ(T |pi), then
δ(p) ∈ Im(cd=

pi) ∪ Im(cd�pi),

• (Im(cd=
p)∪Im(cd�p))⊆

⋃
pi∈Pos(T)(Im(cd=

pi)∪ Im(cd�pi)

∪ {δ(p)})
• for each atomic formula ∃(k1, k2)~ ∈ atFormM such

that vp(∃(k1, k2)~) = 1, there exist at most two data
values in Im(cd=

p) ∪ Im(cd�p) that witness the for-
mula. That is, for example, if ∃(k1, k2)6=, then there
are two data values d, d′ ∈ Im(cd=

p) ∪ Im(cd�p) and

two runs ρ, ρ′ of the pathfinder automaton such that
o(ρ) = (k1, d), o(ρ′) = (k2, d

′) and d 6= d′.

If we also have that T has its rank bounded by the polynomial
used by AM (2|K|2 + |K| + 2)|K|, it is then easy to see
that for every internal node p ∈ Pos(T) the extended state
corresponds to a transition of AM . We say that an extended
state c is incomplete if D�ε (i) = ∅ for some i ∈ [1..t0]
(or complete otherwise). We say that (c, cd=, cd�) is a d-
completion of (c′, cd′=, cd′�) for d ∈ ∆ if either (i) all
the components are equal (c = c′, cdi = cd′i) and d ∈
Im(cd=) ∪ Im(cd�), or (ii) cd= = cd′=, cd� = cd′�[r 7→
d] for some r such that cd′�(r) is undefined, and c and c′
differ only in that D�(r) 6= ∅ in c′.

We now show that given an accepting run of M for T , we
can find a model T ′ that is also accepted byM together with
a data run on it. Moreover we show that we can assume
that M ′ is ranked. In this way we explicitly present the
steps that AM needs to perform to reach the desired final
extended state. We can see that having a data run on a ranked
tree implies having a run in AM and then in the emptiness
algorithm, as the ≡E-relation needed at each step can be
deduced from the cd functions of the involved nodes.

Let λ be the run of the automaton M on a model T . We
show that there exists a model T ′ and data run α such that
for every p ∈ Pos(T ′), α(p) = (cp, cd

=
p , cd

�
p) and

1. T ′ is S-strongly equivalent to T for some S,
2. C(vε) = λ(ε) for vε the valuation of cε,
3. for every p, δ(p) ∈ Im(cd=

p) ∪ Im(cd�p),

4. α(ε) is incomplete,
5. T and T ′ have the same height,
6. S ∩ δ(T) = ∅.

We proceed by induction on the height of the tree T . The
general strategy is first to apply inductive hypothesis on all
the immediate subtrees of the root. Then, we select the data
values necessary to validate all the formulæ at the root. For
example, if in the root of T the formula ∃(k1, k2)6= is true,
then we select two data values that ‘witness’ this formula in
T ′. Equivalently, if for a certain state k all the runs ending
in k retrieve the same data value d, then the component
D=(χ(k)) of the extended state at the root must describe the
datum d. In this case, we also select the data value (d) to
witness this. For each subtree that contains one of these data
values, we make sure that it is described by the extended
state by a ‘Completion Lemma’ we will later prove.

The base case is immediate by definition. So let us suppose
we are in a model T such that the root has u immediate
descendants 1 . . . u for any u ∈ N. Suppose by inductive
hypothesis that we have data runs α1 . . . αu for some models
T1 . . . Tu such that they are all incomplete in the root and Ti
is Xi-strongly equivalent to T |i for some Xi ⊂ ∆. Wlog
we can assume that

⋃
iXi ∩ δ(T) = ∅ and that ∀i 6= j :

Xi ∩ Xj = ∅ (it is an easy exercise using condition 6 to
see that otherwise we can do a data transformation via a
bijection).

14

Let vε : Form → {0, 1} be the valuation witnessed in the
root of T . In the following construction we use a setGwhich
initially is {d}, with d the data value of the root. The idea
is that depending on the valuation vε we collect in G all the
data values of T necessary to witness all existential formulæ
and place them all in theD-component of c0. Here, using the
strong S-equivalence property of T1 . . . Tu wrt T |1 . . . T |u,
we know that if d ∈ δ(T |i) is a witness in T |i, then d ∈ δ(Ti)
and it is also a witness.

If vε(∃(k1, k2)~) = 1, then there are two (or one) data
values d1, d2 involved in the satisfaction of this formula. We
pick any two, and add them to G. For every immediate
subtree Ti and data run that contains d1 we can apply the
Completion Lemma we will see next, extending this model
into a Sd1i -strongly equivalent one T d1i (for some Sd1i) such
that there exists a data runα′i where ifα′i(ε) = (ci, cd

=
i , cd

�
i)

then d1 ∈ Im(cd=
i) ∪ Im(cd�i). We repeat the process for

d2 and for all formulæ ∃(k1, k2)~ that hold in the root. We
do this for all the existential formulæ whose valuation is 1.

It is easy to see that we can assume that all the Sdi are
disjoint, and that they are also disjoint from δ(T). This is
due to the fact that Sdi ∩ (Im(cd=

i) ∪ Im(cd�i)) = ∅ by the
Completion Lemma.

We then build the model T ′ as 〈s, d〉(T1 . . . Tz) where
T1 . . . Tz are all the models T di obtained before, and 〈s, d〉 is
the root of T . We can verify then that the height between T
and T ′ remains unchanged (condition 5). Wlog we assume
that for any of the data values ‘d’ that were considered before
(i.e., the ones in G), d ∈ δ(T d′j) iff d = d′. We can always
apply a data bijection to the subtrees to be sure that this is
the case.

We define α as follows: α(ε) = (cε, cd
=
ε , cd

�
ε) where

cε = (v, 〈D=, D�〉) and v,D= and cd=
ε are the ones inferred

from the model T ′ (that is, the only ones such that T ′ �
cε). In order to obtain D�ε and cd�ε , we use the set G that
contains the data values that witness the existential formulæ.
If G = {d1, . . . dr}, define D�(i) = Reach(di) if i ≤ r
and di 6∈ Im(cd=

ε) and also define cd�ε (i) = di. Otherwise,
D�(i) = ∅ and cd�ε (i) is undefined. It is easy to see that as
|G| ≤ 2|K|2 + 2|K| + 1 < t0, α(ε) is clearly incomplete
(condition 4). Finally, define S =

⋃
iXi ∪

⋃
i Si. By this

definition of S condition 6 is valid.

We can see that condition 2 holds and that α is a well-
defined data run. All existential formulæ ∃(k1, k2)~ with
true valuation in vε at the root of T are witnessed by the
D-components of the immediate subtrees of the root and
hence continue to be true. On the other hand, the formulæ
such that ∃(k1, k2)6= with false valuation in T are taken care
of by the D=-component. Finally, the formulæ ∃(k1, k2)=

with false valuation obviously continue to be false because
we are collapsing only data values of the D-component.
Note that the difference is that now we are exactly under the
hypothesis of the algorithm, where only the data values of
the D-component are merged, according to the cd functions.
We can then check that α is a well defined data run.

We have then showed the existence of a data run and a

witnessing tree for every model accepted by M . In order
to finally show that there is a run of algorithm that reaches
the extended state of the root of the data run, we must show
that all this can be done with a tree with bounded rank.
Moreover, with the rank used in the emptiness algorithm
(2|K|2 + |K|+2)|K|. This is shown with a simple argument
by the Bounded Rank Lemma. This concludes the proof of
correctness of the emptiness algorithm.

Lemma 1. [Incompletion Lemma] For any data run α
on T there is another one α′ on the same model T such that
the extended state of the root is incomplete.

Proof. If α(ε) is complete, it means that all 2|K|2 + 2
registers of D� are defined, where we use ‘register’ to refer
to each of the components of the D� tuple. It is easy to see
that in order to witness all the existential formulæ that hold
in vε we need only –at most– 2|K|2. If the data value of the
root is also preserved, we need not more than 2|K|2 + 1 data
values. Then there must be an elementD(i) that is either the
empty set, or that is not necessary to verify all the existential
formulæ of vε. We can then replace D′ = D[i 7→ ∅],
cd′ = cd[i 7→ ⊥].

Lemma 2. [Completion Lemma] For any data run α on
T with an incomplete extended state in the root, and for any
d ∈ δ(T) there is another run α′ on T ′ and a set S ⊆ ∆ such
that

1. T and T ′ are strongly S-equivalent,
2. T and T ′ have the same height,
3. δ(T) ∩ S = ∅, d 6∈ S,
4. α′(ε) is a d-completion of α(ε),

Proof. Suppose that r is such that D�(r) = ∅ in the
root and that α is the data run on T such that α(p) =
(cp, cd

=
p , cd

�
p) for every p ∈ Pos(T). If d was already

in Im(cd=
ε) ∪ Im(cd�ε), there is nothing to be done. If d is

in some Im(cdai) a ∈ {=,�}, i ∈ N, then we only need to
define cd�ε (r) = d, D�ε (r) = Reach(d) and S = ∅.

Otherwise, d is included in one (and only one) subtree i
among the u immediate subtrees of the root. The uniqueness
is due to the fact that we are working with a data run, under
the hypothesis that data values that can be shared among the
subtrees are those declared in the cd functions (which is the
case we have already ruled out).

If α(i) is complete, applying the Incompletion Lemma we
obtain βi an incomplete data run on T |i, and in this way
we ‘make room’ for d. We now apply inductive hypothesis
on T |i, βi with the datum d. We obtain a data run γi, the
model T ′i and a data set Si. We can assume wlog that Si is
different from δ(T) and that T ′i has a data set different from
T except perhaps in the data values of the cd functions of γi.
So, δ(T ′i) ∩ δ(T) ⊆ Im(cd=

i) ∪ Im(cd�i), where cdai are
the ones defined in γi(ε).

Let d′ be a fresh data value not in δ(T) nor in Si and define
the data transformation f = id[d 7→ d′], and T bi = f(T |i).

15

Then the final model is,

T ′ = 〈sε, dε〉(T |1 . . . T |i−1, T bi , T |i+1 . . . T |u, T ′i)

and S = Si ∪ {d′} ∪ (δ(T ′i) \G), where G = (Im(cd=
γ) ∪

Im(cd�γ)) ∩ δ(T) with the maps cd=
γ and cd�γ defined in

γ(ε); and (sε, dε) is the root symbol and datum of T .

 1 2 2 1'

By this definition, S is different from all the data values of
T and from d, and then condition 3 is then satisfied. The data
runα′ for this model is defined byα′(ε) = (c′ε, cd

=
ε , cd

�
ε [r 7→

d]) where c′ε is equal to cε except that D′�ε has an extra def-
inition D′�ε (r) = Reach(d); α′(ip) = (cip, f ◦ cd=

ip, f ◦
cd�ip) where α(ip) = (cip, cd

=
ip, cd

�
ip); and the other subtrees

j ∈ [1..u] \ {i} are preserved, α′(jp) = α(jp). Finally,
α′((u+ 1)p) = γi(p).

It is immediate thatα′ is a completion ofα (condition 4). It
can be verified that by construction α′ is a well-defined data
run on T ′, and that T and T ′ are equivalent for contexts with
no data values in S. This is mainly because when the copy
of the tree is made, we are careful enough not to change the
data values contained in the cd functions (especially cd=). It
is evident that the height was preserved (condition 2).

Lemma 3. (Bounded rank) Given a data runα on T , there
is another one α′ on T ′ such that

• α(ε) = α′(ε),
• the rank of T ′ is bounded by (2|K|2 + |K|+ 2)|K|,
• T ′ is a subtree of T .

Proof. Inα(ε) we have the description of at most 2|K|2+
|K| + 2 data values, each one with its description in D= or
D�. Let d be one of the data values of Im(cd=

ε)∪Im(cd�ε),
and let S ⊆ K be the description of it. It is easy to see
that in order to preserve the description we need to keep at
most |S| immediate subtrees, as in the worst case each one
of them would contribute with one state of S. Doing this
for all data values we obtain that we just need to select at
most (2|K|2 + |K|+ 2)|K| immediate subtrees to preserve
D=
ε , D

�
ε . As all the data values to satisfy vε are included in

Im(cd=
ε) ∪ Im(cd�ε) (by definition of a data run), we only

need to keep these subtrees. This can be clearly done for any
inner node of the tree. As a result T ′ has a branching width
bounded by (2|K|2 + |K|+ 2)|K|.

D. PSpace of XPath(↓∗,=)\ε

Proposition 7. XPath(↓∗,=)\ε has the poly-depth model
property.

Proof. For any formula η and data tree we show that
we can describe each element of a given branch using only

a polynomial number of descriptions. As a result, we prove
that there is a polynomial bound on the height of the tree.
Otherwise, we show show long branches can be ‘shortened’
preserving satisfiability of η.

For any two positions p1, p2 ∈ Pos(T), let us call p1 ≺ p2

iff p1 is a prefix of p2, which means that p2 is a descendant
of p1. The key observation for this proof is that

• If a formula of the type ↓∗ p1~ ↓∗ p2, ~ ∈ {=, 6=} is
true at a certain position ν ∈ Pos(T), then it is true
at all positions µ ≺ ν. That is, at all nodes that occur
before ν (i.e., closer to the root).

• If a formula of the type ¬(↓∗ p1~ ↓∗ p2), ~ ∈ {=, 6=}
is true at a certain position ν ∈ Pos(T), then it is true
at all positions µ ∈ Pos(T) such that µ � ν. That is, at
all the nodes that are in the subtree generated by ν.

We can see that this fact also extends to unions and then to
any path formula of the fragment, as any of the basic bricks
of the path start always with ↓∗.

Let η be a formula that is satisfied in a model T . Let
B = ν1 . . . νk be a maximal branch of this model where
ν1 is the root and νk is a leaf. We show that this branch
can be bounded by a polynomial on |η|. We order all the
path subformulæ of η in a sequence E whose elements we
denote by ei and are of the from p or p~ p′ (with p, p′ path
expressions). Each one of these formulæ has associated a
position in the branch, posB(e) = i iff νi satisfies e and
there is no νj with j < i that satisfies it. We assume then that
E = (e1 . . . et) is ordered according to this notion of first or
last appearance given by posB . Here, t is clearly bounded
by the number of subformulæ of η, bounded by 2|η|. We can
then label each node ν of the branch by an index i (0 ≤ i ≤ t)
meaning that {e1 . . . ei} is the set of path subformulæ of η
that are verified in ν.

On the other hand, for every ei ∈ E, we must consider the
succession of nodes necessary for witnessing this formula in
this model. For instance, the formula ↓∗ [ϕ] ↓∗ [ψ] may need
two nodes to be satisfied. In general, a path expression p that
contains n appearances of ↓∗needs at most n ‘witness’ nodes
to be satisfied, and as in our case p is a subformula of η we
can safely bound n by |η|. The strategy is to preserve all
the nodes necessary to witness ei in the node νposB(ei). The
idea is that by preserving all the nodes necessary to satisfy
the formula at this node, we are actually making sure that all
precedent nodes also satisfy the formula. Some of them will
be in the (sub-)branch νposB(ei) . . . νk, some not. For those
that are on the branch we label each element with the tag
‘wit : ei’, for those that are not on the branch, we tag their
projection on the branch (i.e., the closest ancestor onB) with
‘wit : ei’. Summing up, for each 1 ≤ i ≤ e we have at most
|η| elements ofB tagged by ‘wit : ei’, and then at most 2|η|2
number of witnesses of any formula along the branch.

We then have as tag of each element of B a triple of (1) an
index i of path subformulæ that are satisfied, (2) the symbol
of the node a ∈ Σ, and (3) perhaps the label wit : e if it is
witness of a path formula.

16

We call that a sub-branch ofB νi . . . νj is a ‘safe zone’ iff it
is a maximal subbranch such that it does not contain elements
with label ‘wit : e’ for some e. As a direct consequence of
the bound on the number of witness elements, there are at
most 2|η|2 + 1 safe zones in B.

If two elements νi, νj , i < j inside the
same safe zone are tagged with the same
label, we claim that the branch can be
shortened preserving the satisfaction of
all the subformulæ of η at the nodes
ν1 . . . νi. The operation consists in re-
placing in T the subtree of νi by that of
νj .

It is easy to see that the satisfaction of ei-formulæ is pre-
served as all its witness are maintained. It is easy to see that
there will not be new elements that satisfy a path subformula,
because we only erased nodes from the tree, preserving the
descendant relation. This is due to the fact that any path
expression that is true in the modified model, was true in the
previous one.

We can conclude that we can assume that in a safe zone
there are no more than |η|3 different tags, and different ele-
ments (otherwise we can shorten the branch). Thus, we have
that a branch has at most 2|η|2 witnesses and 2|η|2 + 1 safe
zones of |η|3 elements each. Then we can bound the length
of any branch by 2|η|2 + (2|η|2 + 1).|η|3 and thereby the
height of the tree is polynomially bounded.

Corollary 2. XPath(↓∗,=)\ε is PSpace-complete

Proof. The membership in PSpace is an immediate
consequence of Theorem 6 and Proposition 7. We can prove
that XPath(↓∗) is hard for PSpace by a reduction from the
QBF-validity problem that can be found in Appendix E.

E. Complexity of XPath(↓∗)

Proposition 8. XPath(↓∗) is hard for PSpace.

Proof. The proof consists in coding an instance of the
QBF validity problem in satisfiability of XPath(↓∗).

Letϕ = Q1p1 . . . Qnpn.ψ where pi are propositional vari-
ables (pairwise distinct), Qi ∈ {∀,∃} and ψ is a formula of
the propositional calculus in CNF.

The idea is to force a model in which every branch contains
a full valuation for the variables p1, . . . , pn where we force
that all valuations present in the tree are contained in those
specified by the quantifiers. The alphabet of this tree is
Σ = {p1, . . . , pn, p̄1, . . . , p̄n, X}, and every branch lists a
valuation in order, that is, first there is a node with a label in
{p1, p̄1}, then another in {p2, p̄2}, etc. The label X simply
marks the ending of a valuation in a branch. Although there
could be more valuations on p1 . . . pn after an X , these are
redundant, as there has been defined beforeX as well. After
this marking we build the tree that satisfies ψ and finally
we check that there are no inconsistencies with respect to its
valuation.

Let vi be the formula that specifies that the node is a
valuation for the propositional variable pi: vi = pi ∨ p̄i.

• If Q1 = ∀, then f1 = 〈↓∗ [p1]〉 ∧ 〈↓∗ [p̄1]〉.
If Q1 = ∃, then f1 = 〈↓∗ [p1]〉 ∨ 〈↓∗ [p̄1]〉.
• (i > 1) If Qi = ∀, then fi = ¬〈↓∗ [vi−1 ∧ ¬(〈↓∗

[pi]〉 ∧ 〈↓∗ [p̄i〉])]〉.
IfQi = ∃, then fi = ¬〈↓∗ [vi−1 ∧¬(〈↓∗ pi〉 ∨ 〈↓∗ p̄i〉)]〉.
• ϕX forces that the label X always appears once the

valuation for all propositions has been defined.
ϕX = ¬〈↓∗ [v1] ↓∗ [v2] · · · ↓∗ [vn−1] ↓∗ [vn∧¬〈↓∗ [X]〉]〉
• For all X we build the formula for ψ = C1 ∧ . . . ∧ Ct

where Ci = t1 ∨ . . . ∨ tji and each t is a valuation for
some pi. That is:

τ =
∧
Ci

∨
t∈Ci

〈↓∗ [t]〉

where t is pj or p̄j for some j. And this must hold for
all X-valued node:

ϕψ = ¬〈↓∗ [X ∧ ¬τ]〉

• Finally, we must check that no inconsistencies are to be
found between the pi.

ϕinc =

n∧
i=1

¬〈↓∗ [pi] ↓∗ [p̄i]〉 ∧ ¬〈↓∗ [p̄i] ↓∗ [pi]〉

The final formula is then

ϕF =

n∧
i=1

fi ∧ ϕX ∧ ϕψ ∧ ϕinc

Lemma 4. ϕ is QBF-valid iffϕF isXPath(↓∗)-satisfiable.

Proof. The proof is straightforward and is left to the
reader.

Proposition 9. XPath(↓∗) is in PSpace

Proof. For any path formula p ∈ XPath(↓∗) satisfied in
T , by k witnesses of a branch ν1 ≺ ν2 ≺ . . . ≺ νk. By
induction on k using Lemma 5 we can easily show that it is
then satisfiable in a model T ′ where the witness νi is at depth
i for all 1 ≤ i ≤ k. This can be done for all path formulæ
that hold at the root.

On the other hand, by Lemma 6 below we can also assume
that every internal node is the witness of –at most– one path
subformula of an ancestor node. The normal form for a
model T consists in:

1. For all nodes ν, ν′, ν′′ ∈ Pos(T) and path formulæ
p, p′ ∈ XPath(↓∗), if ν ∈ witT (ν′, p), ν ∈ witT (ν′′, p′),
then ν′ = ν′′.

2. For every node ν ∈ Pos(T) and path p, if witT (ν, p) =
. . . νi, νi+1 . . ., then νi+1 = νin with n ∈ N.

17

Let us define the set of subformulæ sub as follows

sub(↓∗ p) = {↓∗ p} ∪ sub(p)

sub([ϕ]p) = {[ϕ]p} ∪ sub(p) ∪ sub(ϕ)

sub(εp) = sub(p)

sub((p1 ∪ p2)p3) = {(p1 ∪ p2)p3} ∪ sub(p1) · p3

∪ sub(p2) · p3 ∪ sub(p3)

Given a formula ϕ ∈ sub(η) satisfied in a node ν ∈
Pos(T), it can either be

• completely satisfied in ν in the case [[ϕ]]T 3 (ν, ν)

• partially satisfied in ν and witnessed in another node
ν′ � ν such that ν′ satisfies a formula of the next step
of ϕ, ns(ϕ).

ns((p1 ∪ p2)p3) = ns(p1) · p3 ∪ ns(p2 · p3 ∪ ns(p3)

ns(p1p2) = ns(p1) · p2 ∪ ns(p2)

ns(εp) = ns(p)

ns([ψ]p) = ns(p)

ns(↓∗ p) = {p}

It is easy to see that ns(p) ⊆ sub(p). We can then assume
that there exists a function witT (ν) ⊆ Pos(T)× sub(η) that
describes for each node ν, a finite set of witnesses. For
example, if (↓∗ [a] ∪ ε) ↓∗ [b] holds in ν, then it could be that
(ν′, [a] ↓∗ [b]) ∈ witT (ν), or (ν′, ↓∗ [b]) ∈ witT (ν) for some
node ν′ � ν.

By the normal form we have that there will not be a repeated
node in witT (ν), and that all nodes will be of the form νi,
with i ∈ N.

Suppose now that we have a branch B = ν1 . . . νz such
that there exists a path formula pwhere (νi, p) ∈ witT (νi−1),
(νj , p) ∈ witT (νj−1), that is, the path p is witnessed at two
nodes νi ≺ νj along the branch B. Then we can safely
replace T |i by T |j .

Lemma 5. (Subtree copy.) XPath(↓∗) is closed under
subtree copy. That is, for every pair of contexts C1, C2,
tree T and η ∈ XPath(↓∗),

C1[C2[T]] |= η iff C1[T , C2[T]] |= η

where C[T1, T2] is the operation of replacing the hole by a
forest, in this case of two trees.

Proof. It is easy to see that all path formulæ that hold
at the root of C1[C2[T]], hold also in C1[T , C2[T]] |= η as
it is an extension of the tree. On the other hand, any path
formula that is satisfied by a succession of nodes in a branch
in C1[T , C2[T]] |= η, can also be found in C1[C2[T]].

In other words, the logic XPath(↓∗) is closed under subtree
copy.

Corollary 3. XPath(↓∗) is closed under replication of sub-
trees.

Lemma 6. (Demand splitting) If η is satisfiable, then it is
satisfiable in a model such that all the path subformulæ p ∈
sub(η) are satisfied in incomparable subtrees. More formally,
if p, p′ ∈ sub(η) such that p, p′ |= T with witT (p) = ν1 . . .,
witT (p′) = ν′1 . . ., then ν1 6≺ ν′1 and ν′1 6≺ ν1.

Proof. It can easily seen by using Corollary 3.

18

	Introduction
	Statement of the problem and main result
	Data trees
	The logic XPath
	Main contribution

	A new class of automata
	Definitions
	From regXPath to BIP automata

	Main result
	Upper bound
	Lower bound

	PSpace fragments
	Concluding remarks
	References
	From XML to data tree
	Characterizing regXPath("3223379 ,=)
	Completeness of emptiness of BIP
	PSpace of XPath("3223379 *,=)
	Complexity of XPath ("3223379 *)

