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PROJECTIVE AND REEDY MODEL CATEGORY STRUCTURES FOR (INFINITESIMAL)
BIMODULES OVER AN OPERAD

Julien Ducoulombier Benoit Fresse Victor Turchin

Abstract. We construct and study projective and Reedy model category structures for bimodules and infinitesimal
bimodules over topological operads. Both model structures produce the same homotopy categories. For the model
categories in question, we build explicit cofibrant and fibrant replacements. We show that these categories are
right proper and under some conditions left proper. We also study the extension/restriction adjunctions.
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Introduction

In this paper, we set up a homotopy theory for the categories of bimodules and of infinitesimal bimodules
over topological operads. More precisely, we study two model structures, the projective model structure and

J.D. was partially supported by the NCCR SwissMAP funded by the Swiss National Science Foundation and the ERC starting grant
GRAPHCPX and the Max Planck Institute for Mathematics in Bonn. B.F. acknowledges support from the Labex CEMPI (ANR-11-LABX-
0007-01) and from the FNS-ANR project OCHoTop (ANR-18CE93-0002-01). V.T. has benefited from a visiting position of the Labex
CEMPI (ANR-11-LABX-0007-01) at the Université de Lille and a visiting position at the Max Planck Institute for Mathematics in Bonn
for the achievement of this work. He was also partially supported by the Simons Foundation grant, award ID: 519474. J.D. and V.T.
acknowledge the University of Lille for hospitality.

1

ar
X

iv
:1

91
1.

03
89

0v
2 

 [
m

at
h.

A
T

] 
 1

2 
Ja

n 
20

21



the Reedy model structure, which we define for both bimodule categories. The Reedy and the projective
model structures have the same class of weak equivalences and, therefore, produce isomorphic homotopy
categories. Both model categories find important applications in the manifold functor calculus, specifically
in the problems of delooping the functor calculus towers [DT, Duc3, DTW]. It is well known that the arity
zero elements essentially complicate the homotopy theory of such objects. However, in practical examples
the arity zero component of the studied objects is often reduced to a point. Such objects are called reduced.
Motivated by the homotopy theory of the little 2-discs operad, the second author developed the Reedy
model structure for reduced operads [Fre1, Fre2]. We adapt this theory to the setting of bimodules and of
infinitesimal bimodules. One of the advantages of the Reedy model structure in comparison to the projective
one is that the cofibrant resolutions are smaller as they do not take into account the arity zero component.
This makes the constructions of delooping in [DT, Duc3, DTW] simpler. By contrast, while all the objects
are fibrant for the projective model categories, there is no obvious Reedy fibrant coresolution. Consequently,
both model structures have their advantages and it can be convenient to be able to switch from one structure
to another.

The starting idea of the Reedy model structure for reduced operads is to encode the operadic composition
operations with the unique point in arity zero in an extension of the diagram structure which underlies
our objects. In the usual category of symmetric operads, the diagram structure of the objects is governed
by the category Σ =

∐
nΣn which is defined by taking the disjoint union of the symmetric groups Σn. In

what follows, we use the expression ‘Σ-sequence’ for the objects of the category of diagrams over Σ. We use
the notation ΣSeq for this category of diagrams and the notation ΣOperad for the category of symmetric
operads. To formalize the construction of the Reedy model structure, we consider the category Λ, which
has the finite sets [n] = {1, . . . ,n} as objects and all injective maps of finite sets u : {1, . . . ,m} ↪→ {1, . . . ,n} as
morphisms. We use the expression ‘Λ-sequence’ for the objects of the category of contravariant diagrams
over Λ, and we use the notation ΛSeq for the category of Λ-sequences. The composition operations with the
arity zero term P (0) = ∗ in a reduced operad P are equivalent to restriction operators u∗ : P (n)→ P (m), which
can be associated to the injective maps of finite sets u : {1, . . . ,m} ↪→ {1, . . . ,n} and hence to the morphisms in
the category Λ. This observation implies that the category of reduced operads is identified with a category
Λ∗Operad, whose objects are operads shaped on this category of finite sets and injections Λ instead of the
category of permutations Σ.

The category of Λ-sequences inherits a Reedy model structure, in which the fibrations are defined by
using a natural notion of matching object. The Reedy model structure of reduced operads is precisely
defined by transferring this Reedy model structure on the category of Λ-sequences ΛSeq to our category of
operads Λ∗Operad, while the projective model structure of symmetric operads is defined by transferring the
projective model structure on the category of Σ-sequences ΣSeq to ΣOperad.

Throughout this paper, we work in the category of topological spaces, and we therefore deal with operads
in topological spaces. In that context, the projective model category of symmetric operads is known to be
left proper relative to Σ-cofibrant operads (i.e. operads that are cofibrant as Σ-sequences) and right proper
[HRY] making the homotopy colimits and limits easier to identify in this category. Furthermore, all operads
are fibrant in the projective model category of symmetric operads in topological spaces. In the Reedy model
category of reduced operads, the objects are not necessarily fibrant. We use a notion of matching object
to define the class of fibrations (and unfortunately, we have no explicit definition of a fibrant coresolution
functor at the time), but the class of cofibrations is larger. In fact, a morphism of reduced operads is a
cofibration with respect to the Reedy model structure if and only if this morphism defines a projective
cofibration of operads after forgetting the arity zero components [Fre2, Theorem 8.4.12] (thus if and only if
this morphism defines a cofibration in the projective model category of operads with a void component in
arity zero). This result implies that the Reedy model category of reduced operads is also left proper relative
to Σ-cofibrant reduced operads. Together with Willwacher, the second and third authors [FTW] showed that,
for any reduced operads P and Q, there is a weak equivalence of derived mapping spaces

ΣOperadh(P ;Q) 'Λ∗Operadh(P ;Q).

Hence we can use the Reedy model category to compute mapping spaces in the usual category of topological
operads.
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The main purpose of this work is to extend the results of these operadic homotopy theories to the setting
of bimodules and of infinitesimal bimodules. First of all, we define our counterparts of the projective and
Reedy model structures for bimodules and infinitesimal bimodules in topological spaces. We also address
the definition of these model structures for truncated bimodules.

For the definition of the projective model structure, we work out difficulties that occur in the context
of topological spaces, notably regarding the application of the small object argument (see the discussion
of [Hov2]). This question is independent from other works on the projective model categories of modules
over operads carried out in the litterature. In fact, the projective model structure of bimodules was defined
in [Re1] for bimodules in simplicial sets and for bimodules in a category of simplicial bimodules over a ring.
The paper [Ha] gives the definition of an analogous model structure for left modules over non-symmetric
operads and for left modules over symmetric operads when every Σ-sequence is projectively cofibrant in the
base category (for instance, when the base category is a category of chain complexes over a characteristic zero
field). The book [Fre3], by the second author, provides a general study of the homotopy theory of modules
and bimodules over operads, but deals with semi-model structures (with a restriction of the application of
the axioms to maps with a cofibrant source) to get results that are valid in any base monoidal model category.
In the paper, we prove that, when we work in the category of topological spaces, we have a full validity of
the definition of the projective model category of bimodules over a pair of operads, and this result holds
without any assumption on our operads. We get the same result for the definition of the projective model
category of infinitesimal bimodules.

For the definition of the Reedy model categories of bimodules and of infinitesimal bimodules, we rely
on a preliminary definition of a fibrant coresolution functor and we apply a transfer argument, using an
adjunction between (infinitesimal) bimodules and Λ-sequences. We just need a mild assumption on our
operads to ensure the validity of the definition of the Reedy model structures (technically, we just need to
consider well-pointed operads, in which the inclusion of the operadic unit in arity one defines a cofibration
of spaces).

We use the notation ΣBimodP ;Q for the category of bimodules associated to a pair of operads (P ,Q),
while we adopt the notation ΣIbimodO for the category of infinitesimal bimodules over an operad O. To
distinguish the Reedy model structure from the projective model structure, we adopt the convention to keep
these notations ΣBimodP ;Q and ΣIbimodO when we equip these bimodule categories with the projective
model structure, and we pass to the notations ΛBimodP ;Q and ΛIbimodO when we consider the Reedy
model structure. We prove that our model categories have the following features.
I Sections 3.1.1 and 5.1.1: All the objects in ΣBimodP ;Q and ΣIbimodO are fibrant. Furthermore, we give

explicit fibrant coresolutions in the Reedy model categories ΛBimodP ;Q and ΛIbimodO.

I Sections 2.2.1, 3.1.3, 4.2.1 and 5.1.2: The categories ΣBimodP ;Q, ΛBimodP ;Q, ΣIbimodO and ΛIbimodO
are right proper. Moreover, if P is either projectively or Reedy cofibrant, and Q, O are componentwise
cofibrant, then the categories ΣBimodP ;Q and ΛBimodP ;Q are left proper relative to componentwise
cofibrant objects while ΣIbimodO and ΛIbimodO are left proper.

I Sections 3.1.2 and 5.1.2: Let Q>0 and O>0 be the sub-operads obtained from Q and O, respectively, by
removing the arity zero components. Any map in ΛBimodP ;Q and ΛIbimodO is a cofibration if and only
if the corresponding map in ΣBimodP ;Q>0

and ΣIbimodO>0
, respectively, is a cofibration.

I Sections 3.2.1 and 5.2.1: If M and N are (P -Q)-bimodules, while M ′ and N ′ are O infinitesimal bimodules,
then one has weak equivalences between derived mapping spaces

ΣBimodhP ;Q(M ;N ) 'ΛBimodhP ;Q(M ;N ) and ΣIbimodhO(M ′ ;N ′) 'ΛIbimodhO(M ′ ;N ′).

I Sections 2.2.2, 3.1.3, 4.2.2 and 5.1.2: Let φ1 : P → P ′, φ2 :Q→Q′ and φ :O→O′ be weak equivalences
between Σ-cofibrant operads P , P ′ and componentwise cofibrant operads Q, Q′ , O, O′ , then the extension
and restriction functors form Quillen equivalences

φ! : ΣBimodP ;Q� ΣBimodP ′ ;Q′ : φ∗, φ! : ΣIbimodO� ΣIbimodO′ : φ∗,
φ! : ΛBimodP ;Q�ΛBimodP ′ ;Q′ : φ∗, φ! : ΛIbimodO�ΛIbimodO′ : φ∗.

(Also, see Sections 2.2.2 and 3.4.1 for a refinement of this result when we forget about the arity zero
components of bimodules or, respectively, if such components are reduced to a point.)
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Organization of the paper: We review the background of our constructions in the first section of the paper.
We review the definition of the projective model category of Σ-sequences and the definition of the Reedy
model category of Λ-sequences. We also build an explicit fibrant coresolution in the category of Λ-sequences.
Then we recall the definition of the projective model category of operads and the Reedy model category of
reduced operads together with their properties. Most of the new results in this section appear at the very
end in Subsection 1.5, where we study some natural properties of cofibrant operads.

In the second section, we define the projective model category of (P -Q)-bimodules. First, we show that
this category is equivalent to the category of algebras over a colored operad. Then we give combinatorial
descriptions of the free bimodule functor and of pushouts. After that, we define the projective model
category structure for bimodules and we prove that this model structure is relatively left proper and that the
extension/restriction adjunctions along weak equivalences of operads form Quillen equivalences.

In the third section, we study the Reedy model category of bimodules. We check that (almost all) the
constructions introduced in the second section can be extended to the Reedy model category. Furthermore,
we give an explicit Reedy fibrant coresolution as well as a characterization of cofibrations. As a conse-
quence of this characterization, we show that this model category is relatively left proper and that the
extension/restriction adjunctions along weak equivalences of reduced operads form Quillen equivalences.
Both model structures having the same set of weak equivalences, they produce the same homotopy category.
Then we construct a functorial cofibrant resolution for bimodules in both (projective and Reedy) model
structures. As an application, we explain how our Reedy fibrant coresolution can be expressed in terms of
internal hom in the category of Σ-sequences. In the last subsection, assuming that both operads P and Q
are reduced, we study the subcategory Λ∗BimodP ;Q of reduced bimodules equipped with the Reedy model
category structure. This subcategory enjoys slightly better properties as we compare the Reedy model
structures of bimodules and of reduced bimodules.

In the fourth section we adapt the results from the second section to the context of infinitesimal bimodules.
In that case, the proofs are easier since pushouts of infinitesimal bimodules coincide with pushouts taken
componentwise. Similarly, we show that this category is equivalent to the category of algebras over a
colored operad. After that, we introduce the projective model category structure and we prove that the
extension/restriction adjunctions along weak equivalences of operads form Quillen equivalences.

In the fifth section we adapt the results from the third section to the context of infinitesimal bimodules.
In the same way, we build an explicit fibrant coresolution. We give a characterization of cofibrations and,
as a consequence of it, we show that the extension/restriction adjunctions along weak equivalences of
reduced operads form Quillen equivalences. We then compare the projective and Reedy model structures on
infinitesimal bimodules. At the end we exhibit explicit cofibrant resolutions.

The last sixth section is an appendix where several technical lemmas that we use from the equivariant
homotopy theory are formulated and proved.

Notation: In [Fre1, Fre2], the notation Λ∗Operad actually refers to a category of Λ-operads, which is defined
by dropping the arity zero component of reduced operads. But we do not use this convention in this paper.
We therefore forget about the refined structure of a Λ-operad and we use the notation Λ∗Operad for the
category of reduced operads. We keep the letter Λ in order to emphasize the underlying Λ-diagram structure
of our objects, but we forget about further reductions in the definition of our structures. We write Λ∗ instead
of Λ to remind that the operads in this category are reduced.

In the paper we use many different sets of rooted trees. As a general rule, we use letter P for sets of
planar trees and letter T for non-planar trees. Usually the set `(T ) of leaves of a planar tree T is labelled
by a permutation in Σ|T |, where |T | is the number of leaves in the tree. Internal vertices in these trees are
usually allowed to have any arity unless we use the superscript ≥ 1 or ≥ 2, like in P≥1 or T≥2 meaning that
the arities of vertices are ≥ 1 or ≥ 2, respectively. We use different terms to deal with trees in the context of
operads, such as set of leaves `(T ), set of vertices V (T ), set of edges E(T ), the arity |v| of a vertex v, etc from
[BM1, Section 5.8]. Even though we formally do not define these terms, we show them on figures, so that the
reader can easily guess the meaning of those words without referring to loc. cit.

For a subspace of a space X, we sometimes use notation ∂X. By ∂
∏
i∈I Xi we understand a subspace in∏

i∈I Xi consisting of points with at least one coordinate in ∂Xi . A point in the product space
∏
i∈I Xi is

usually denoted by {xi}i∈I or just {xi} if there is no ambiguity about the set I .
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1 Model category structures for operads

In this section, we introduce the categories ΣSeq and ΛSeq as well as their model category structures
called projective and Reedy model category structures. These are categories whose objects are sequences of
topological spaces with some extra structures. We also define the categories of operads ΣOperad and reduced
operads Λ∗Operad. Both categories inherit model category structures from the following adjunctions in
which the functors F Σ and F Λ are the left adjoints to the forgetful functors:

F Σ : ΣSeq� ΣOperad : UΣ and F Λ : Λ>0Seq�Λ∗Operad : UΛ.

Here Λ>0Seq can be interpreted as the full model subcategory of ΛSeq composed of objects whose arity
zero component is the one point topological space (see Section 1.2). Both model categories ΣOperad and
Λ∗Operad have intensively been studied by Berger-Moerdijk [BM1] and the second author [Fre1, Fre2]. We
list their properties in Section 1.4. Usually, in order to define a model category structure from an adjunction,
we use the following statement also called the transfer principle:

Theorem 1.1. [BM1, Section 2.5] Let D be a cofibrantly generated model category with a set of generating
cofibrations Dc and a set of generating acyclic cofibrations Dac. Let L :D� C : R be an adjunction with left adjoint
L and right adjoint R. Assume that C is bicomplete. Define a map f in C to be a weak equivalence (respectively, a
fibration) if R(f ) is a weak equivalence (respectively, a fibration) in D. If the following conditions are satisfied:

(i) both sets L(Dc) and L(Dac) permit the small object argument;
(ii) C has a fibrant replacement functor for objects;

(iii) C has a functorial path object for fibrant objects, i.e. for any fibrant object X there is a functorial
factorization of the diagonal map into a weak equivalence followed by a fibration

X
' // P ath(X) // // X ×X;

then we have a cofibrantly generated model category structure on C in which the set of generating cofibrations
(respectively acyclic cofibrations) is given by L(Dc) (respectively, L(Dac)). Furthermore, this model category
structure makes the adjunction (L;R) into a Quillen adjunction.

As explained in the following subsections, all objects in the category ΣSeq are fibrant and the identity
functor produces a functorial fibrant replacement in the category ΣOperad. So, the transfer principle can
easily be applied to the adjunction (F Σ;UΣ). Unfortunately, the objects in Λ>0Seq are not necessarily fibrant
and the second author proves in [Fre2] the existence of the model category structure for reduced operads
without the transfer principle. In the present work, we build an explicit functorial fibrant replacement in
both categories ΛSeq and Λ>0Seq. This resolution will be enhanced in the next sections in order to define
Reedy model category structures for (infinitesimal) bimodules using the transfer principle.

Both categories ΣSeq and ΛSeq are obtained as categories of functors from Σ and Λ to topological spaces.
So the following model category structures are particular cases of model categories of diagrams. We refer to
[GKR, HKRS, BHK] for a comprehensive study of projective model categories of diagrams over a discrete
category (and of dual injective model categories of diagrams), to [Mo, DRO] for a study of projective model
categories of diagrams in the enriched setting. For Reedy model structures and applications to simplicial
homotopy theory, we refer the reader to [GJ, Ree] and to [Ba, An, BM4, Re2, RV] for generalizations to
enriched categories or extended Reedy categories.

1.1 The projective model categories of G-spaces and of Σ-sequences

• The model category of spaces. In what follows, by spaces we mean compactly generated, but not necessarily
Hausdorff, topological spaces. Such spaces are often called k-spaces [Hov1]. One has a natural kelleyfication
functor from the category of all topological spaces to k-spaces. The topology of mapping spaces, products,
subspaces and more generally limits in this category are defined by taking kellyfication of their usual
compact-open, product and subspace topologies. The coproducts, quotients and more generally any colimits
of k-spaces are automatically k-spaces and kelleyfication is not necessary. The category of k-spaces has the
advantage of being cartesian closed [Lew, Theorem 5.5]. This statement implies that the cartesian products
distribute over colimits, which is a prerequisite for the theory of operads and operadic objects. Moreover,
it implies that the product of two quotient maps (in particular, of a quotient map and an identity one)
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is again a quotient map in the category of k-spaces [Br, Corollary 5.9.10]. We use this observation in our
constructions of free objects and pushouts in the category of operads and in the categories of bimodules over
operads.

The category of spaces, fixed in the previous paragraph (thus, the category of k-spaces), is denoted by
T op and is equipped with the Quillen model category structure (see [Hov1, Theorem 2.4.23]) in which
a continuous map is a weak equivalence (respectively, a fibration) if it is a weak homotopy equivalence
(respectively, a Serre fibration). According to this definition, all spaces are fibrant and the model category T op
is cofibrantly generated. The set of generating cofibrations Sc and the set of generating acyclic cofibrations
Sac are the following ones, where S−1 denotes the empty set:

Sc =
{
Sn−1 ↪→Dn, n ≥ 0

}
and Sac =

{
Dn × {0} ↪→Dn × [0,1], n ≥ 0

}
.

• Projective model category of G-spaces. Let G be a topological monoid. The category G-T op of G-spaces
consists of spaces equipped with a right action of G. There is an adjunction G[−] : T op� G-T op : U , where
U is the forgetful functor and G[−] is the functor sending a space X to the G-space G[X] = X ×G. As a
consequence of Theorem 1.1, the category G-T op inherits a cofibrantly generated model category structure
whose sets of generating cofibrations and acyclic cofibrations are G[Sc] and G[Sac], respectively. Indeed, the
identity functor provides a fibrant replacement functor while, for any G-space X, the functorial path object
is given by the mapping space

P ath(X) =Map( [0 , 1] , X ).

Cofibrations and fibrations in this category will be called G-cofibrations and G-fibrations, respectively. We
will be mostly using spaces with a right action of a monoid (or a group). At few occasions we will need to
deal with spaces endowed with a left action. Such spaces will be called left G-spaces and the category of
such will be denoted by Gop-T op.

• Projective model category of Σ-sequences. Let Σ be the category whose objects are finite sets [n] = {1, . . . ,n},
with n ≥ 0, and morphisms are bijections between them. By a Σ-sequence, we mean a contravariant functor
from Σ to the category of spaces. In practice, a Σ-sequence is given by a family of spaces X(0), X(1), . . .
together with an action of the symmetric group: for each permutation σ ∈ Σn, there is a map

(1)
σ ∗ : X(n) −→ X(n);

x 7−→ x · σ,

satisfying the relations (x · σ ) · τ = x · (στ), with τ ∈ Σn, and x · e = x. A morphism between Σ-sequences is a
family of continuous maps that should preserve the right action of the symmetric groups. We denote by
ΣSeq the category of Σ-sequences and by Σ>0Seq its subcategory composed of Σ-sequences whose arity 0
component is empty.

Given an integer r ≥ 0, we also consider the category of r-truncated Σ-sequences TrΣSeq which we define
as follows. Let TrΣ be the category with objects [n] = {1, . . . ,n}, 0 ≤ n ≤ r, and bijections between them. An
r-truncated Σ-sequence is a contravariant functor from TrΣ to the category of spaces. In practice, an r-
truncated Σ-sequence is given by a family of spacesX(0), . . . ,X(r) together with an action of the corresponding
symmetric group Σn for each n ≤ r.

A (possibly truncated) Σ-sequence is said to be pointed if there is a distinguished element ∗1 ∈ X(1) called
unit. It is said well-pointed if the inclusion ∗1→ X(1) is a cofibration. Recall that we deal with the Quillen
model structure on topological spaces. Thus, we consider the cofibrations of the Quillen model structure in
this definition, not the Hurewicz cofibrations of the usual notion of well-pointed space. Note that a space T
is well-pointed in this sense as soon as it is cofibrant (with respect to the Quillen model structure). Indeed,
in this case, T occurs as a retract of a (generalized) CW-complex and we may just observe that the inclusion
of any choice of base point in a (generalized) CW-complex is a cofibration to conclude that this is the same
for T . From this observation, we deduce that a (truncated) Σ-sequence X is well-pointed in the sense of our
definition if and only if it is pointed and its component X(1) is cofibrant.

There is an obvious functor called truncation functor

Tr (−) : ΣSeq −→ TrΣSeq.
6



One has

ΣSeq =
∏
n≥0

Σn-T op, Σ>0Seq =
∏
n≥1

Σn-T op and TrΣSeq =
∏

0≤n≤r
Σn-T op.

Since Σn-T op is a cofibrantly generated model category for any n ≥ 0, the categories ΣSeq, Σ>0Seq and
TrΣSeq are endowed with a cofibrantly generated model category structure, called the projective model
category structure, in which all objects are fibrant. More precisely, a map between (possibly truncated)
Σ-sequences is a weak equivalence (respectively, a fibration) if the map is degreewise a weak homotopy
equivalence (respectively, a Serre fibration). The sets of generating cofibrations Sc and acyclic cofibrations
Sac of ΣSeq (respectively, Σ>0Seq and TrΣSeq) are given by

Sc =
⋃
n≥0

(resp. n>0 and
0≤n≤r)

Snc ×∏
m,n

1m

 and Sac =
⋃
n≥0

(resp. n>0 and
0≤n≤r)

Snac ×∏
m,n

1m


where Snc and Snac are the sets of generating cofibrations and acyclic cofibrations, respectively, of Σn-T op
while 1m : ∅→ ∅ is the identity map of the initial object of Σm-T op (see [Hir, Proposition 11.1.10]).

• Notation for cofibrations. Let C be a category together with a functor U from C to the category ΣSeq
(respectively the categories Σ>0Seq and TrΣSeq). In the rest of the paper, an object C in the category C
is said to be Σ-cofibrant if the underlying Σ-sequence U (C) is cofibrant in the projective model category
ΣSeq (respectively, Σ>0Seq and TrΣSeq). It is called componentwise cofibrant if every component U (C)(n)
is cofibrant in T op. In case the forgetful functor U factors through the category of pointed (truncated)
Σ-sequences, the object C is called well-pointed if U (C)(1) is cofibrant. In the following the category C will be
the category of operads ΣOperad, of reduced operads Λ∗Operad, of bimodules ΣBimodP ;Q = ΛBimodP ;Q,
of reduced bimodules Λ∗BimodP ;Q, or of infinitesimal bimodules ΣIbimodO = ΛIbimodO.

1.2 The Reedy model categories of Λ- and Λ>0-sequences

• The category of Λ-sequences. We refer the reader to [Fre1, Fre2] for a detailed account on the categories
introduced in this subsection. Let Λ be the category whose objects are finite sets [n] = {1, . . . ,n}, with n ≥ 0,
and morphisms are injective maps between them. (Hence, Σ is the subcategory of isomorphisms of Λ.) By
a Λ-sequence, we understand a contravariant functor from Λ to spaces and we denote the corresponding
category by ΛSeq. In practice, such an object is given by a Σ-sequence X(0), X(1), . . . together with maps
generated by applications of the form

(2) s∗i : X(n) −→ X(n− 1), with 1 ≤ i ≤ n,

associated to the injective maps

si : [n− 1] −→ [n] ; ` 7−→

 ` if ` < i,

` + 1 if ` ≥ i.

Given an integer r ≥ 0, we also consider the full subcategory TrΛ whose objects are families of finite sets
[n] = {1, . . . ,n}, with 0 ≤ n ≤ r. An r-truncated Λ-sequence is a contravariant functor from TrΛ to spaces and
we denote by TrΛSeq the associated category. We will also be using the categories Λ>0 and TrΛ>0 which are
full subcategories of non-empty objects of Λ and TrΛ. The categories Λ>0Seq and TrΛ>0Seq are similarly
defined. There exist obvious truncation functors

Tr (−) : ΛSeq −→ TrΛSeq and Tr (−) : Λ>0Seq −→ TrΛ>0Seq.

• Useful adjunctions. The inclusions of categories Σ ⊂ Λ and TrΣ ⊂ TrΛ induce adjunctions between the
categories of (possibly truncated) Σ-sequences and Λ-sequences

Λ[−] : ΣSeq�ΛSeq : U and Λr [−] : TrΣSeq� TrΛSeq : U
7



where U is the obvious forgetful functor, which forgets about the operations generated by (2). The functor
Λ[−] sends a Σ-sequence X to the Λ-sequence Λ[X] given by

Λ[X](n) :=
∐

Λ+([n];[m])
m≥n

X(m), for all n ≥ 0,

where Λ+ is the subcategory of order preserving injective maps. A point in Λ[X](n) is denoted by (h;x) with
h : [n]→ [m] an order preserving injective map and x ∈ X(m). For any permutation σ ∈ Σn and any order
preserving injective map h : [n]→ [m], we denote by σh ∈ Σm the permutation

σh(i) :=

 h(σ (j)), if h(j) = i,

i, otherwise.

According to this notation, the Λ-structure on Λ[X] is given by the following formulas:

σ ∗ : Λ[X](n) −→ Λ[X](n) ; (h;x) 7−→ (h;x · σh),
s∗i : Λ[X](n) −→ Λ[X](n− 1) ; (h;x) 7−→ (h ◦ si ;x).

• The matching object. For a (possibly truncated) Λ-sequence X, the matching object of X, denoted byM(X),
is the (possibly truncated) Σ-sequence defined as follows:

(3) M(X)(n ) = lim
h∈Λ+([`] ; [n])

`<n

X(`).

Let σ ∈ Σn be a permutation and h : [`]→ [n] be an order preserving inclusion. We denote by h · σ : [`]→ [n]
the unique order preserving inclusion whose image is Im(σ ◦ h) and σ [h] ∈ Σ` is the unique permutation
satisfying σ [h](i) < σ [h](j) if and only if σ (h(i)) < σ (h(j)). According to this notation, the action of the
symmetric group on the matching object is the following one:

σ ∗ :M(X)(n) −→ M(X)(n);
x = {xh}h 7−→ σ ∗(x) = {xh·σ · σ [h]}h.

• The Reedy model category of Λ-sequences. According to [Fre2, Theorem 8.3.19], the categories ΛSeq, Λ>0Seq,
TrΛSeq and TrΛ>0Seq are endowed with cofibrantly generated model category structures in which weak
equivalences are objectwise weak homotopy equivalences. A morphism f : X → Y is a fibration if the
corresponding maps

X(n) −→M(X)(n)×M(Y )(n) Y (n),

whenever defined, are Serre fibrations. The set of generating cofibrations (respectively the set of generating
acyclic cofibrations) consists of maps of the form

(Λ[f ], ι) : Λ[X]
∐
∂Λ[X]

∂Λ[Y ] −→Λ[Y ],

where f : X→ Y is a generating cofibration (respectively a generating acyclic cofibration) in the projective
model category of Σ-sequences. The map ι : ∂Λ[Y ]→Λ[Y ] is the inclusion where ∂Λ[−] is the functor from
Σ-sequences to Λ-sequences left adjoint to the matching object functorM and expressed by the formula

∂Λ[Y ](n) = colim
h∈Λ+([n] ; [`])

`>n

Λ[Y ](`) =
∐

Λ+([n];[`])
`>n

Y (`).

Remark 1.2. The truncation functors

Tr : ΛSeq→ TrΛSeq; Tr : Λ>0Seq→ TrΛ>0Seq; Tr : Tr ′ΛSeq→ TrΛSeq, r
′ > r,

preserve fibrations, cofibrations and weak equivalences.

For fibrations and weak equivalences, the statement follows from definition. For cofibrations we recall
[Fre2, Theorem 8.3.20] that a morphism in the Reedy model structure is a cofibration if and only if it is a
projective cofibration in the corresponding category of (truncated) Σ-sequences.
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1.3 A fibrant replacement functor for Λ- and Λ>0-sequences

As explained previously, in order to apply the transfer principle, described in Theorem 1.1, we need a
functorial fibrant replacement. Unfortunately, the objects in ΛSeq and Λ>0Seq are not necessarily fibrant
and therefore the identity functors can not be regarded as a fibrant replacement one. To solve this problem,
we build explicit and functorial fibrant coresolutions

(−)f : ΛSeq −→ΛSeq and (−)f : Λ>0Seq −→Λ>0Seq.

For this purpose, we need some notation. For any map h ∈Λ+([`]; [n]), we denote by hc ∈Λ+([n− `]; [n])
its complementary map which is the unique order preserving inclusion so that Im(h)∩ Im(hc) = ∅. Then,
for any pair of order preserving inclusions of the form si : [`]→ [` + 1] and h : [` + 1]→ [n], we denote by
εh;i ∈ [n− `] the unique index such that the following diagram commute:

[n− ` − 1]
sεh;i //

hc $$

[n− `]

(h◦si )c||
[n]

Let X be a Λ-sequence. The space Xf (n) is the subspace

Xf (n) ⊂
∏

Λ+([`] , [n])
`≤n

Map
(
[0 , 1]n−` ; X(`)

)
,

consisting of families of maps {fh}h∈Λ+([`] , [n]) such that

(4) [0 , 1]n−`−1

fh

��

τ1[εh;i ] // [0 , 1]n−`

fh◦si

��
X(` + 1)

s∗i // X(`)

where τt[k] : [0 , 1]n−`−1→ [0 , 1]n−`, with t ∈ [0 , 1] and k ∈ [n− ` − 1], inserts t at the k-th position:

τt[k](t1, . . . , tn−`−1) = (t′1, . . . , t
′
n−`) with t′j =


tj if j < k,

t if j = k,

tj−1 if j > k.

• The Λ-structure on Xf . In order to describe the Λ-structure we consider the following notation. For any
order preserving inclusions si : [n− 1]→ [n] and h : [`]→ [n− 1], we denote by ϑh;i the unique index such
that the following diagram commute:

[n− ` − 1]
hc //

sϑh;i

��

[n− 1]

si

��
[n− `]

(si◦h)c
// [n]

According to this notation, the Λ-structure operations are given by

s∗i : Xf (n) −→ Xf (n− 1) ; {fh}h∈Λ+([`] , [n]) 7−→ {(s∗i ◦ f )h}h∈Λ+([`] , [n−1]),

σ ∗ : Xf (n) −→ Xf (n) ; {fh}h∈Λ+([`] , [n]) 7−→ {(f · σ )h}h∈Λ+([`] , [n]),
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where the continuous maps (s∗i ◦ f )h and (f · σ )h are the following ones:

(5)
(s∗i ◦ f )h : [0 , 1]n−`−1 −→ X(`) ; (t1, . . . , tn−`−1) 7−→ fsi◦h(τ0[ϑh;i](t1, . . . , tn−`−1)),

(f · σ )h : [0 , 1]n−` −→ X(`) ; (t1, . . . , tn−`) 7−→ fh·σ (tσ [hc]−1(1), . . . , tσ [hc]−1(n−`)) · σ [h].

• The fibrant replacement functor. The Λ-sequence Xf is obviously functorial along the Λ-sequence X. Further-
more, there is a map ϕ : X→ Xf sending a point x ∈ X(n) to the family of constant maps {ϕ(x)h}h∈Λ+([`] , [n])
obtained using the Λ-structure of X:

ϕ(x)h : [0 , 1]n−` // X(`);

(t1, . . . , tn−`)
� // h∗(x).

The map is well defined and preserves the Λ-structures. Indeed, one has the following equalities:

s∗i (ϕ(x)) = s∗i


 ϕ(x)h : [0 , 1]n−` // X(`);

(t1, . . . , tn−`)
� // h∗(x).


h∈Λ+([`] , [n])


=

 s
∗
i ◦ϕ(x)h : [0 , 1]n−`−1 // X(`);

(t1, . . . , tn−`−1) � // ϕ(x)si◦h(t1, . . . , tϑh;i−1,0, tϑh;i
, . . . , tn−`−1).


h∈Λ+([`] , [n−1])

ϕ(s∗i (x)) =

 ϕ(x)h : [0 , 1]n−`−1 // X(`);

(t1, . . . , tn−`−1) � // h∗(s∗i (x)).


h∈Λ+([`] , [n−1])

Proposition 1.3. The map φ : X→ Xf is a weak equivalence of Λ-sequences.

Proof. More precisely, we show that the map of Λ-sequences ϕn : X(n)→ Xf (n) is a homotopy equivalence
of Σ-sequences. For this purpose, we introduce a map of Σ-sequences (which is not a map of Λ-sequences)
ψ : Xf → X given by

ψn : Xf (n) // X(n);

{fh}h∈Λ+([`] , [n])
� // f[n]→[n](∗),

which makes ϕ into a deformation retract. The homotopy consists in bringing the parameters to 1:

Hn : [0 , 1]×Xf (n) // Xf (n);

t ; {fh}
� // {Hn(t ; fh)},

with Hn(t ; fh)(t1, . . . , tn−`) = fh
(
(1− t)t1 + t, . . . , (1− t)tn−` + t

)
. �

Proposition 1.4. The Λ-sequence Xf is Reedy fibrant.

Lemma 1.5 (Fiber product version of Reedy’s patching lemma, see Lemma 1.3 in [Re1]). For any commutative
diagram of spaces of the form

A
f //

vA ��

B

vB ��

C
goo

vC ��
A′

f ′
// B′ C′

g ′
oo

the induced map between the limits of the horizontal diagrams

v : lim
(
A→ B← C

)
−→ lim

(
A′→ B′← C′

)
is a fibration if the map vC as well as the map

(6) (vA;f ) : A −→ B×B′ A′

are fibrations. Furthermore, the map v is an acyclic fibration if the map vC and (6) are acyclic fibrations.
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Proof of Proposition 1.4. We show that the map from Xf (n) to the matching object M(Xf )(n) is a Serre
fibration. Let us remark that the spaces Xf (n) and M(Xf )(n) can be expressed in terms of pullback diagrams.
More precisely, one has

Xf (n) = lim

A −→ ∏
si :[n−1]→[n]

X(n− 1)←− X(n)

 where A ⊂
∏

Λ+([`] , [n])
`<n

Map
(
[0 , 1]n−` ; X(`)

)
is the subspace satisfying the condition (4). The map from A to the product

∏
si
X(n− 1) sends a family of

maps {fh} to the family of points {fsi (1)} by taking the evaluation at the point 1. Furthermore, one has the
commutative diagram

A //

��

∏
si :[n−1]→[n]

X(n− 1)

��

X(n)oo

��
M(Xf )(n) // ∗ ∗oo

According to Lemma 1.5 and since X(n) is fibrant, we only need to check that the map

(7) A −→ A′ =M(Xf )(n)×
∏

si :[n−1]→[n]

X(n− 1).

is a Serre fibration. In other words, if we denote by ∂′[0 , 1]n−` the subspace of [0 , 1]n−` composed of the
point (1, . . . ,1) and the points having at least one coordinate equal to 0, then A′ is the following subspace
satisfying the relation (4):

A′ ⊂
∏

Λ+([`] , [n])
l<n

Map
(
∂′[0 , 1]n−` ; X(`)

)
.

Let us notice that the inclusion from ∂′[0 , 1]n−` into [0 , 1]n−` is a cofibration as an inclusion of CW-
complexes. Unfortunately, we can not deduce directly the result due to condition (4). To solve this problem,
we introduce a cofiltration of the map (7) according to the dimension of the cubes. Let us consider the
following subspaces:

Ak ⊂
∏

Λ+([`] , [n])
n−k≤`<n

Map
(
[0 , 1]n−` ; X(`)

)
and A′k ⊂

∏
Λ+([`] , [n])
n−k≤`<n

Map
(
∂′[0 , 1]n−` ; X(`)

)
satisfying condition (4). In particular, one has An = A and A′n = A′ . Furthermore, the spaces Ak and A′k can
be obtained from Ak−1 and A′k−1, respectively, using the following pullback diagrams:

Ak //

��

∏
[n−k]→[n]

Map
(
[0 , 1]k ; X(n− k)

)

��
Ak−1

//
∏

[n−k]→[n−k+1]→[n]

Map
(
[0 , 1]k−1 ; X(n− k)

)
A′k

//

��

∏
[n−k]→[n]

Map
(
∂′[0 , 1]k ; X(n− k)

)

��
A′k−1

//
∏

[n−k]→[n−k+1]→[n]

Map
(
∂′[0 , 1]k−1 ; X(n− k)

)
We prove by induction that the maps Ak → A′k are Serre fibrations. First, the map

A1 =
∏

[n−1]→[n]

Map
(
[0 , 1] ; X(n)

)
−→

∏
[n−1]→[n]

Map
(
∂[0 , 1] ; X(n)

)
= A′1

is obviously a Serre fibration since the inclusion from ∂[0 , 1] = {0 , 1} into the interval [0 , 1] is a cofibration.
From now on, we assume that the map Ak−1→ A′k−1 is a Serre fibration. Then we consider the commutative
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diagram ∏
[n−k]→[n]

Map
(
[0 , 1]k ; X(n− k)

)
//

��

∏
[n−k]→[n−k+1]→[n]

Map
(
[0 , 1]k−1 ; X(n− k)

)

��

Ak−1
oo

��∏
[n−k]→[n]

Map
(
∂′[0 , 1]k ; X(n− k)

)
//

∏
[n−k]→[n−k+1]→[n]

Map
(
∂′[0 , 1]k−1 ; X(n− k)

)
A′k−1

oo

According to Lemma 1.5, one has to check that the map from the space∏
[n−k]→[n]

Map
(
[0 , 1]k ; X(n− k)

)
to the limit of the diagram ∏

[n−k]→[n−k+1]→[n]

Map
(
[0 , 1]k−1 ; X(n− k)

)

��∏
[n−k]→[n]

Map
(
∂′[0 , 1]k ; X(n− k)

)
//

∏
[n−k]→[n−k+1]→[n]

Map
(
∂′[0 , 1]k−1 ; X(n− k)

)
is a Serre fibration. The limit corresponds to the space∏

[n−k]→[n]

Map
(
∂[0 , 1]k ; X(n− k)

)
and the map ∏

[n−k]→[n]

Map
(
[0 , 1]k ; X(n− k)

)
−→

∏
[n−k]→[n]

Map
(
∂[0 , 1]k ; X(n− k)

)
is obviously a Serre fibration since the inclusion from ∂[0 , 1]k to [0 , 1]k is a cofibration. �

Remark 1.6. The same strategy can be used in order to get a fibrant replacement functor for r-truncated Λ-
sequences. In that case, we only need to restrict our construction to order preserving inclusions h : [`]→ [n]
with n ≤ r. Similarly, we get fibrant replacement functors for the categories Λ>0Seq and TrΛ>0Seq.

1.4 The projective/Reedy model category of operads

An operad is a pointed Σ-sequence O together with operations called operadic compositions

(8) ◦i :O(n)×O(m) −→O(n+m− 1), with 1 ≤ i ≤ n.

These operations satisfy associativity and unit axioms as well as compatibility relations with the symmetric
group action. More precisely, for any integers i ∈ {1, . . . ,n}, j ∈ {i+1, . . . ,n}, k ∈ {1, . . . ,m} and any permutations
σ ∈ Σn and τ ∈ Σm, one has the following commutative diagrams:

O(n)×O(m)×O(`)
◦i×id //

id×◦k
��

O(n+m− 1)×O(`)

◦i+k−1

��
O(n)×O(m+ ` − 1) ◦i

// O(n+m+ ` − 2)

Linear associativity axiom

O(n)×O(m)×O(`)
◦i×id //

◦j×id
��

O(n+m− 1)×O(`)

◦i+m−1

��
O(n+ ` − 1)×O(m) ◦i

// O(n+m+ ` − 2)

Ramified associativity axiom
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O(n)×O(1)

◦i %%

O(n)
∗1×id //id×∗1oo O(1)×O(n)

◦1yy
O(n)

unit axiom

O(n)×O(m)
◦i //

σ ∗×τ∗
��

O(n+m− 1)

(σ◦σ (i)τ)∗

��
O(n)×O(m) ◦σ (i)

// O(n+m− 1)

compatibility with the symmetric group action

where the permutation σ ◦σ (i) τ is obtained from the well known operadic compositions on the symmetric
groups (see [Fre1, Proposition 1.1.9]).

A map between operads should preserve the operadic compositions. We denote by ΣOperad the category
of topological operads. The category of operads is obviously endowed with a forgetful functor to the category
of Σ-sequences by forgetting the operadic composition (8):

(9) UΣ : ΣOperad −→ ΣSeq.

• The category of reduced operads and their underlying Λ-structures. An operad O is said to be reduced if O(0)
is the one point topological space. This point is denoted by ∗0. We denote by Λ∗Operad the category of
reduced operads. This category is equipped with a forgetful functor to the category of Λ>0-sequences, which
consists in forgetting the arity zero component and the operadic compositions (8) for m ≥ 1:

(10) UΛ : Λ∗Operad −→Λ>0Seq.

(Note also that the category of Λ>0-sequences is equivalent to the category of reduced Λ-sequences, i.e
Λ-sequences X so that X(0) = ∗.) Indeed, if O is a reduced operad, then the Λ>0-structure on UΛ(O) is
generated by the operations of the form

s∗i : UΛ(O)(n) =O(n) −→ UΛ(O)(n− 1) =O(n− 1);

θ 7−→ θ ◦i ∗0.

• The model category of algebras over an operad. An algebra over a (possibly reduced) operad O, or O-algebra,
is a topological space X together with operations of the form

αn :O(n)×X×n −→ X, with n ≥ 0,

compatible with the operadic structure (see [Fre1, Section 1.1.13 and Figure 1.9]). The category ofO-algebras
is denoted by AlgO. It has been proved in [BM3, Theorem 2.1] that the category of algebras over any operadO
in T op inherits a cofibrantly generated model category structure by using the transfer principle applied
to the adjunction FO : T op� AlgO : U where the free algebra functor FO is the left adjoint to the forgetful
functor U .

• The projective and Reedy model categories of operads and reduced operads. Both forgetful functors (9) and (10)
have left adjoints, which we respectively denote by F Σ and F Λ, and which, given a Σ- or a Λ>0-sequence X,
produce the free operad generated by X. Explicitly, elements of F Σ(X) and F Λ(X) are described as rooted
trees (without univalent vertices for reduced operads) with internal vertices labelled by elements of the
sequence. We refer the reader to [Fre1] for a detailed account on these adjunctions:

F Σ : ΣSeq� ΣOperad : UΣ and F Λ : Λ>0Seq�Λ∗Operad : UΛ.

As a consequence of the transfer principle 1.1, the category ΣOperad inherits a cofibrantly generated
model category structure which we call the projective model structure (we refer the reader to [BM1] for
more details). Similarly to the usual category of Λ-sequences, the category Λ>0Seq is also endowed with a
(cofibrantly generated) Reedy model category structure. The second author in [Fre2] proves that Λ∗Operad
has a cofibrantly generated model category structure called the Reedy model structure. In both cases, a map
of (possibly reduced) operads f : P →Q is a weak equivalence (respectively, a fibration) if the map UΣ(f ) or
UΛ(f ) is a weak equivalence (respectively, a fibration) in the appropriate category.

Theorem 1.7. The projective and the Reedy model structures have the following properties:
I [BM1, Section 2.5]: All operads are fibrant in ΣOperad.
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I [HRY, Theorem 3.1.10]: The category of operads (respectively of reduced operads) is left proper (see
Section 2.2.1) relative to the class of Σ-cofibrant operads (respectively of reduced Σ-cofibrant operads).

I [Fre2, Theorem 8.4.12]: A map of reduced operads φ : P → Q is a cofibration in Λ∗Operad if and
only if the corresponding map φ>0 : P>0→ Q>0 is a cofibration in ΣOperad where P>0 and Q>0 are the
sub-operads obtained from P and Q, respectively, by redefining the arity zero components to be empty.

I [FTW, Theorem 1]: If P and Q are reduced operads, then one has a weak equivalence between the derived
mapping spaces

ΣOperadh(P ;Q) 'Λ∗Operadh(P ;Q).
I [BM1, Theorem 4.4], [Fre3, Theorem 15.A]: If φ : P → Q is a weak equivalence between Σ-cofibrant

operads, then the extension φ! and restriction φ∗ functors (see Section 2.2.2) form a Quillen equivalence

φ! : AlgP � AlgQ : φ∗.

1.5 Properties of cofibrant operads

The results of this section are used in Section 2.2.1 in order to prove that the category of bimodules is
relatively left proper.

Proposition 1.8. If P is a cofibrant operad, then its suboperad P>0, obtained by forgetting its arity zero component,
is also cofibrant.

Proof. Since an operad is cofibrant if and only if it is a retract of a cellular one, we can assume that P is
cellular: P = colimα<λPα , where Pα is obtained from P<α := colimβ<αPβ using the pushout

(11) F (∂Xα) //

��

F (Xα)

��
P<α // Pα ,

where F (−) is the free operadic functor (see [BM1] for a combinatorial description of F in terms of trees)
and each ∂Xα → Xα is a generating Σ-cofibration. We need to show that P>0 is also cellular. Note that as
an operad in sets, P is a free operad generated by the Σ-sequence X =

∐
α∈λXα \∂Xα . We claim that P>0 is

also free as an operad in sets being generated by its Σ-subsequence represented by trees, whose vertices are
labelled by X, with the property that only their root vertex can have leaves and in fact must have at least one
leaf attached, see Figure 1.

Figure 1. An element in a free operad and its decomposition in the new positive arity generators.

This set of generating trees splits into cells of P>0, namely by the way from which Xα’s, α ∈ λ, the labels
come from. So the set of cells can be described as the set of trees as above with vertices labelled by elements
α’s from λ. One can define a total ordering of this set that prescribes in which order the new cells are
attached. Given two such trees, we compare first the maximal elements from λ they have as labels (including
their arity zero vertices). If their maximal elements are the same, we compare which one has more such
maximal labels. If the numbers of such labels are the same, we compare their next to maximal labels. And
so on. If they have exactly the same sets of labels, we put any random order between them, or we put them
together in one bigger cell. �
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LetO be an operad. By Σk oO(1), we understand the monoid that acts onO(k) and is given by the following
extension

1 // O(1)×k // Σk oO(1) // Σk // 1.

Proposition 1.9. If O is a cofibrant operad, then each space O(n) is Σn oO(1)-cofibrant.

For each 1 < k < n, we denote by O(n ; k) the subspace of O(n) which consists of points of the form

(θ1 ◦1 θ2) · σ,
with θ2 ∈O(i), 2 ≤ i ≤ k, θ1 ∈O(n− i + 1) while σ preserves the position of k + 1, . . . ,n and shuffles {1, . . . , i}
with {i + 1, . . . , k}. Both spaces O(n) and O(n ; k) inherit an action of the monoid (Σk ×Σn−k) oO(1) := (Σk o
O(1))× (Σn−k oO(1)) and the inclusion from O(n ; k) into O(n) is a (Σk ×Σn−k) oO(1)-equivariant map.

Proposition 1.10. If O is a cofibrant operad, then O(n ; k) is (Σk ×Σn−k) oO(1)-cofibrant and the map

(12) O(n ; k)→O(n)

is a (Σk ×Σn−k) oO(1)-cofibration. As a consequence, O(n ; k) is (Σk oO(1))×Σn−k-cofibrant and the map (12) is a
(Σk oO(1))×Σn−k-cofibration.

These propositions are proved by similar arguments which are both adaptation of Berger-Moerdijk’s proof
of [BM1, Proposition 4.3] stating that cofibrant operads are always Σ-cofibrant. The latter result is obtained
by iteratively using [BM1, Lemma 5.10]. Its slightly stronger version [BM2, Lemma 2.5.3] is Lemma A.1,
both being equivariant pushout-product type statements with respect to a discrete group action. In the
Appendix we formulate and prove their analogue – Lemma A.5 for topological monoids that applies to our
case of action by monoids Σn oO(1), (Σk ×Σn−k) oO(1), (Σk oO(1))×Σn−k or alike.

Proof of Proposition 1.9. Let O be a cofibrant operad. By Proposition 1.8, without loss of generality, we can
assume that O(0) = ∅. Since O is cofibrant, this operad is a retract of a cellular operad P . In what follows, we
denote by P1 the sub-operad of P obtained by taking the restriction to the arity 1:

P1(n) =
{
P (1) if n = 1,
∅ otherwise.

In the absence of arity zero operations, the cellular attachments can be reordered so that first we attach
arity one cells, then arity two cells and so on. In particular, the map of operads P1→ P can also be seen as a
cellular extension:

(13) P1
// P2

// · · · // Pα // Pα+1
// · · · // P ,

where Pα , α > 1, is obtained from P<α := colimβ<α Pβ using a pushout of the form (11), where each ∂Xα→ Xα
is a generating Σ-cofibration concentrated in arity arα ≥ 2.

For n ≥ 2, one has P1(n) = ∅, which is Σn o P (1)-cofibrant. In what follows, we will show that each map
P<α(n) → Pα(n) is a Σn o P (1)-cofibration. For this purpose, we need a combinatorial description of the
pushout (11) using the language of trees. Let P≥1

n be the set of planar rooted trees having exactly n leaves
indexed by an element of the symmetric group Σn with internal vertices of arity ≥ 1. According to this
notation, Pα(n) is obtained from the set of trees P≥1

n by indexing the vertices by points in P<α(n) and Xα .
More precisely, one has

(14) Pα(n) =
∐
T ∈P≥1

n

∏
v∈V (T )

P<α(|v|)
∐

∂Xα(|v|)
Xα(|v|)


/
∼,

where the equivalence relation is generated by the relation contracting two consecutive vertices indexed
by points in P<α(n) using its operadic structure, the compatibility with the symmetric group action and
the removal of vertices indexed by the unit ∗1 ∈ P<α(1) = P (1). Let us remark that the arity one vertices are
necessarily indexed by points in P (1).

We equip Pα(n) with the filtration (17) given by the number of vertices indexed by Xα . Let T≥2
n [m], n ≥ 2

and m ≥ 1, be the set of non-planar rooted trees with internal vertices of arity ≥ 2, having n leaves and two
kinds of vertices called auxiliary and primary, respectively. The corresponding sets of vertices of a tree T are

15



denoted by Vaux(T ) and Vpri(T ). Furthermore, we assume that there are no consecutive primary vertices and
each tree T ∈ T≥2

n [m] has exactly m auxiliary vertices. For any T ∈ T≥2
n [m], we denote by E1(T ) the subset of

the set E(T ) of edges which consists of: the root edge of T if it is adjacent to an auxiliary vertex; the leaf
edges of T connected to auxiliary vertices; the inner edges of T connecting two auxiliary vertices. According
to this notation, we set

(15) Xα(T ) =
∏

v∈Vpri (T )

P<α(n)(|v|)×
∏

v∈Vaux(T )

Xα(|v|)×
∏

e∈E1(T )

P (1).

The subspace ∂Xα(T ) ⊂ Xα(T ) is defined as the one composed of elements having at least one auxiliary
vertex indexed by ∂Xα . The automorphism group Aut(T ) of the tree T acts on these spaces ∂Xα(T ) and
Xα(T ) by permuting the incoming edges of the vertices. We choose a bijection of the set `(T ) of leaves of T
with the set [n]. This allows us to consider the group Aut(T ) as a subgroup of the symmetric group Σn
observing how it permutes the n leaves of T . Denote by Aut(T ) o P (1) the submonoid of Σn o P (1) defined as
the pullback

(16) Aut(T ) o P (1) //

��

Aut(T )

��
Σn o P (1) // Σn.

One has the filtration by the number m of vertices labelled by X:

(17) P<α(n) = Pα(n)0
// · · · // Pα(n)m−1

// Pα(n)m // · · · // Pα(n).

The inclusion Pα(n)m−1→ Pα(n)m fits in the following pushout diagram of Σn o P (1)-spaces:

(18)
∐

T ∈T≥2
n [m]

(
∂Xα(T ) ×

Aut(T )oP (1)
Σn o P (1)

)
//

��

∐
T ∈T≥2

n [m]

(
Xα(T ) ×

Aut(T )oP (1)
Σn o P (1)

)

��
Pα(n)m−1

// Pα(n)m.

The map Pα(n)m−1→ Pα(n)m is a Σn o P (1)-cofibration if the upper horizontal arrow in the above diagram is
one. According to Lemma A.3, the extension functor preserves cofibrations and we are only left to showing
that every inclusion ∂Xα(T )→ Xα(T ) is an Aut(T ) o P (1)-cofibration.

The map ∂Xα(T )→ Xα(T ) is an Aut(T ) o P (1)-cofibration. We induct over the number of vertices in T . The
base of induction is when T has 0 vertices for which the statement is vacuously true. Now assume that T
has ≥ 1 vertices and the statement holds for any other rooted tree with less vertices. We also assume that
for any i, P<α(i) is Σi o P (1)-cofibrant as our argument follows a double induction. Let r denote the root
vertex. Let us assume that its first ` incoming edges are grafted to trees T1, . . . ,T`, for some 1 ≤ ` ≤ |r |, and
the remaining ` − |r | edges connect to leaves. Consider the following short exact sequence of monoids:

1→
∏̀
i=1

(
Aut(Ti) o P (1)

)
→ Aut(T ) o P (1)→ Aut(r)×

(
Σ|r |−` o P (1)

)
→ 1,

where Aut(r) ⊂ Σ` is the subgroup of permutation of the first ` incoming edges of r as a result of Aut(T )-
action. It is easy to see that this sequence is split-surjective (see Definition A.4) and thus Lemma A.5
can be applied. There are two cases to consider: the vertex r is auxiliary or it is primary. In both cases,
G2 = Aut(r)×Σ|r |−` and we explain how to apply Lemma A.5.

In the first case we take A→ B to be P (1)× ∂Xα(|r |)× P (1)×(|r |−`)→ P (1)×Xα(|r |)× P (1)×(|r |−`), where the
first factor P (1) corresponds to the root edge, while the other factors P (1) correspond to the leaf edges
connected to r. It is an Aut(r)× (Σ|r |−` oP (1))-cofibration by restriction (Lemma A.3) and also Lemma A.5. For
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X→ Y we take ∂
∏`
i=1Xα(Ti)→

∏`
i=1Xα(Ti). It is a

∏`
i=1(Aut(Ti) oP (1))-cofibration according to Example A.6.

Denote in this case by P (1)\Xα(T ) the product (15) with one factor P (1) missing, which corresponds to the
root edge. We also denote by P (1)\∂Xα(T ) the image of ∂Xα(T ) under the projection Xα(T )→ P (1)\Xα(T ).
Note that the induction step also allows us to conclude that the inclusion P (1)\∂Xα(T )→ P (1)\Xα(T ) is an
Aut(T ) o P (1)-cofibration.

In the second case, if r is primary, then we take for A→ B the inclusion ∅ → P<α(|r |). It is an Aut(r) ×(
Σ|r |−` o P (1)

)
-cofibration by restricting from Σ|r | o P (1) and applying Lemma A.3. For X→ Y we take the map

∂
∏`
i=1(P (1)\Xα(Ti))→

∏`
i=1(P (1)\Xα(Ti)).

The space O(n) is Σn oO(1)-cofibrant. Since the operad O is a retract of the operad P , the monoid Σn oO(1)
is a retract of the monoid Σn o P (1). Let f : Σn oO(1)→ Σn o P (1) and g : Σn o P (1)→ Σn oO(1) be these maps of
monoids such that g ◦ f = id. These maps give rise to Quillen adjunctions:

Σn oO(1)-T op
i1 //

Σn o P (1)-T op
i2
oo

j1 //
Σn oO(1)-T op

j2
oo

For any A ∈ Σn oO(1)-T op and B ∈ Σn o P (1)-T op, the objects j2(A) and i2(B) are defined by j2(A) = A and
i2(B) = B as spaces, with the structure operations such that:

j2(A)×Σn o P (1) −→
id×g

A×Σn oO(1) −→ A,

i2(B)×Σn oO(1) −→
id×f

B×Σn o P (1) −→ B.

In order to show that O(n) is Σn oO(1)-cofibrant, we consider the lifting problem

(19) ∅ //

��

X

'
����

O(n) // Y ,

where X→ Y is an acyclic fibration in Σn oO(1)-T op. Then we apply the functor j2 to Diagram (19). The map
j2(X)→ j2(Y ) is still an acyclic fibration in Σn o P (1)-T op because the restriction functor j2 creates fibrations
and weak equivalences (in the sense that a map β in Σn oO(1)-T op is a fibration or a weak equivalence
precisely if j2(β) is so in Σn o P (1)-T op). Furthermore, O being a retract of P , the space j2(O(n)) is a retract
of P (n) in Σn o P (1)-T op. Since the latter is a Σn o P (1)-cofibration, the space j2(O(n)) is a Σn o P (1)-cofibrant
object and there is a map h : j2(O(n))→ j2(X) solution of the lifting problem (19) in Σn o P (1)-T op. Finally,
the map i2(h) provides a solution to the lifting problem (1.10) due to the relation g ◦ f = id. �

Proof of Proposition 1.10. In what follows, we overuse the notation introduced in the proof of Proposition 1.9.
By Proposition 1.8, without loss of generality we can assume that O(0) = ∅. Arguing in the same way as at
the end of the proof of Proposition 1.9, we can assume that O is a cellular operad. Indeed, O being a retract
of a cellular operad P , the inclusion O(n ; k)→O(n) is also a retract of P (n ; k)→ P (n). For simplicity and to
agree with the notation Proposition 1.9, we assume that O = P .

Recall filtration (13) in P (n). We consider a similar filtration in P (n ; k) by taking Pα(n ; k) := P (n ; k)∩Pα(n).
Similarly, we filter the inclusion P (n ; k) → P (n) taking P ′α(n) := P (n ; k) ∪ Pα(n). Denote by P<α(n ; k) :=
colimβ<αPβ(n ; k) and P ′<α(n) := colimβ<αP

′
β(n). In order to prove the proposition, one has to show that the

inclusions P<α(n ; k)→ Pα(n ; k) and P ′<α(n)→ P ′α(n) are (Σk ×Σn−k) o P (1)-cofibrations.

This is done by filtering these inclusions similarly to (17). Namely, we define Pα(n ; k)m := P (n ; k)∩ Pα(n)m
and P ′α(n)m := P (n ; k) ∪ Pα(n)m. We are left to showing that the inclusions Pα(n ; k)m−1 → Pα(n ; k)m and
P ′α(n)m−1→ P ′α(n)m are (Σk ×Σn−k) o P (1)-cofibrations.

Let T≥2
n,k[m], 1 < k < n, denote the set of exactly the same trees as in T≥2

n [m] in which in addition k (out of n)

leaves are marked as special. For T ∈ T≥2
n,k[m], we denote by U (T ) ∈ T≥2

n [m] the tree obtained by forgetting

which leaves are special. Let Aut(T ) denote the group of automorphisms of T . For each tree T ∈ T≥2
n,k[m] we
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choose an ordering of its leaves so that we count special leaves first. This ordering gives us an inclusion
Aut(T )→ Σn (as well as an inclusion Aut(U (T ))→ Σn). One obviously has Aut(T ) = Aut(U (T ))∩ (Σk ×Σn−k).
We similarly define

Aut(T ) o P (1) :=
(
Aut(U (T )) o P (1)

)
∩

(
(Σk ×Σn−k) o P (1)

)
.

Consider the subset T≥2
n,k[m]I ⊂ T≥2

n,k[m] composed of trees that contain a vertex whose all incoming edges are

special leaf edges. Its complement is denoted by T≥2
n,k[m]II := T≥2

n,k[m] \T≥2
n,k[m]I .

One has similar to (18) pushout diagrams of
(
Σk o P (1)×Σn−k o P (1)

)
-spaces.

(20)
∐

T ∈T≥2
n,k [m]I

∂Xα(T ) ×
Aut(T )oP (1)

(
(Σk ×Σn−k) o P (1)

)
//

��

∐
T ∈T≥2

n,k [m]I

Xα(T ) ×
Aut(T )oP (1)

(
(Σk ×Σn−k) o P (1)

)

��
Pα(n ; k)m−1

// Pα(n ; k)m.

(21)
∐

T ∈T≥2
n,k [m]II

∂Xα(T ) ×
Aut(T )oP (1)

(
(Σk ×Σn−k) o P (1)

)
//

��

∐
T ∈T≥2

n,k [m]II

Xα(T ) ×
Aut(T )oP (1)

(
(Σk ×Σn−k) o P (1)

)

��
P ′α(n)m−1

// P ′α(n)m.

In the above Xα(T ) is defined by (15).
The upper horizontal arrows in diagrams (20) and (21) are

(
Σk oP (1)×Σn−k oP (1)

)
-cofibrations. Indeed, from

the proof of Proposition 1.9 we know that each inclusion ∂Xα(T )→ Xα(T ) is an Aut(U (T )) o P (1)-cofibration.
Applying Lemma A.3 to the restriction along Aut(T )oP (1)→ Aut(U (T ))oP (1), we get that such inclusion is an
Aut(T ) oP (1)-cofibration. Applying again this lemma to the induction along Aut(T ) oP (1)→ (Σk ×Σn−k) oP (1)
and using the fact that the diagrams (20) and (21) are pushout squares, we conclude that Pα(n ; k)m−1 →
Pα(n ; k)m and P ′α(n)m−1 → P ′α(n)m are (Σk × Σn−k) o P (1)-cofibrations. Applying again Lemma A.3 to the
restriction along (Σk o P (1))×Σn−k → (Σk ×Σn−k) o P (1), these maps are also (Σk o P (1))×Σn−k-cofibrations. �

2 The projective model category of (P -Q)-bimodules

Let P and Q be two operads. A (P -Q)-bimodule is a Σ-sequence M ∈ ΣSeq together with operations

(22)

γr : M(n)×
∏

1≤i≤n
Q(mi) −→M

( ∑
i mi

)
, right operations,

γ` : P (n)×
∏

1≤i≤n
M(mi) −→M

( ∑
i mi

)
, left operations,

satisfying the following relations, with σ ∈ Σn and τi ∈ Σmi :

M(n)×
∏

1≤i≤n
Q(mi)×

∏
1≤i≤n

1≤j≤mi

Q(ki,j ) //

��

M(n)×
∏

1≤i≤n
Q(

∑
j ki,j )

��
M(

∑
i mi)×

∏
1≤i≤n

1≤j≤mi

Q(ki,j ) // M(
∑
i,j ki,j )

Associativity for the right operations

P (n)×
∏

1≤i≤n
P (mi)×

∏
1≤i≤n

1≤j≤mi

M(ki,j ) //

��

P (n)×
∏

1≤i≤n
M(

∑
j ki,j )

��
P (

∑
i mi)×

∏
1≤i≤n

1≤j≤mi

M(ki,j ) // M(
∑
i,j ki,j )

Associativity for the left operations
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P (n)×
∏

1≤i≤n
M(mi)×

∏
1≤i≤n

1≤j≤mi

Q(ki,j ) //

��

P (n)×
∏

1≤i≤n
M(

∑
j ki,j )

��
M(

∑
i mi)×

∏
1≤i≤n

1≤j≤mi

Q(ki,j ) // M(
∑
i,j ki,j )

Compatibility between the left and right operations

M(n)×Q(1)

γ`

!!

M(n) //oo P (1)×M(n)

γr

}}
M(n)

Compatibility with the unit of the operad

M(n)×
∏

1≤i≤n
Q(mi) //

σ ∗×
∏
i (τi )

∗

��

M(m1 + · · ·+mn)

(σ (τ1,...,τn))∗

��
M(n)×

∏
1≤i≤n

Q(mσ (i)) // M(m1 + · · ·+mn)

Right compatibility with the symmetric group action

P (n)×
∏

1≤i≤n
M(mi) //

σ ∗×
∏
i (τi )

∗

��

M(m1 + · · ·+mn)

(σ (τ1,...,τn))∗

��
P (n)×

∏
1≤i≤n

M(mσ (i)) // M(m1 + · · ·+mn)

Left compatibility with the symmetric group action

where the permutation σ (τ1, . . . , τn) is obtained from the well known operadic compositions on the symmetric
groups (see [Fre1, Proposition 1.1.9]).

As part of the left operations, there is a map γ0 : P (0)→M(0) in arity 0. A map between (P -Q)-bimodules
should preserve these operations. We denote by ΣBimodP ;Q the category of (P -Q)-bimodules. Thanks to the
unit in Q(1), the right operations γr can equivalently be defined as a family of continuous maps

◦i :M(n)×Q(m) −→M(n+m− 1), with 1 ≤ i ≤ n.

Given an integer r ≥ 0, we also consider the category of r-truncated bimodules TrΣBimodP ;Q. An object
is an r-truncated Σ-sequence endowed with left and right operations (22) under the conditions n ≤ r and∑
mi ≤ r for γr and the condition

∑
mi ≤ r for γ`. One has an obvious truncation functor

Tr (−) : ΣBimodP ;Q −→ TrΣBimodP ;Q.

In the rest of the paper, we use the notation

x ◦i q = ◦i(x;q), for x ∈M(n) and q ∈Q(m),

p(x1, . . . ,xn) = γ`(p,x1, . . . ,xn), for p ∈ P (n) and xi ∈M(mi).

Example 2.1. If η : P →Q is a map of operads, then η is also a map of P -bimodules. Indeed, any operad is a
bimodule over itself while the P -bimodule structure on Q is given by the following formulas:

◦i :Q(n)× P (m) −→Q(m+n− 1) ; (q;p) 7−→ q ◦i η(p),

γ` : P (n)×Q(m1)× · · · ×Q(mn) −→Q(m1 + · · ·+mn) ; (p,q1, . . . , qn) 7−→ (· · · ((η(p) ◦n qn) ◦n−1 qn−1) · · · ) ◦1 q1.

2.1 Properties of the category of bimodules

In this subsection we introduce some basic properties related to the category of (P -Q)-bimodules where
P and Q are two fixed operads. First, we show that the category of (P -Q)-bimodules is equivalent to the
category of algebras over an explicit colored operad denoted by P+Q. Thereafter, we build the free bimodule
functor using the language of trees. Using this explicit construction of the free functor, we are able to give a
combinatorial description of the pushout for bimodules.

2.1.1 Bimodules as algebras over a colored operad

Given two operads P and Q, we build a colored operad P+Q such that the category of (P -Q)-bimodules is
equivalent to the category of (P+Q)-algebras. By a colored operad C, with set of colors S, we understand
a family of spaces C = {C(s1, . . . , sn;sn+1), n ≥ 0, si ∈ S}, equipped with an action of permutations such that
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σ ∗ : C(s1, . . . , sn;sn+1)→ C(sσ (1), . . . , sσ (n);sn+1), for σ ∈ Σn, with units ∗s ∈ C(s;s) for s ∈ S, and with operadic
compositions

◦i : C(s1, . . . , sn;sn+1)×C(s′1, . . . , s
′
m;si) −→ C(s1, . . . , si−1, s

′
1, . . . , s

′
m, si+1, . . . , sn;sn+1),

that satisfy associativity, unit and equivariance relations which are similar to the ones introduced in
Section 1.4. An algebra over C is a family of spaces {Xs, s ∈ S} together with operations of the form

α[s1, . . . , sn;sn+1] : C(s1, . . . , sn;sn+1)×Xs1 × · · · ×Xsn −→ Xsn+1
,

compatible with the operadic structure.
The operad P + Q has the set of non-negative integers S = N as colors so that an element θ ∈ (P +

Q)(n1, ...,nk ;m) governs an operation of the form θ :M(n1)× · · ·×M(nk)→M(m) on a (P -Q)-bimodule M. We
define this operad P +Q by a presentation by generators and relations. We take two kinds of generating
operations, which respectively encode the left P -action and the right Q-action of a (P -Q)-bimodule structure.
We actually integrate the first kind of generators in a colored operad P1 (encoding the left operations)
and the second kind of generators in another colored operad Q1 (encoding the right operations), which
is concentrated in arity one. We explain the definition of these operads P1 and Q1 and their action on
a (P -Q)-bimodule M in the next paragraph. We shape the composite elements of the operad P +Q on
trees equipped with two sets of vertices, left vertices, represented by diamonds �, which correspond to the
P1-factors, and right vertices, represented by circles •, which correspond to the Q1-factors. We describe the
structure of these trees in a second step and we explain afterwards the definition of the operad P +Q with
elements shaped on such trees, moded out by relations which reflect the structure relations of left and right
actions on bimodules. (We can actually identify P +Q with a coproduct of the colored operads P1 and Q1
moded out by extra relations which reflect the commutation of left and right actions on a bimodule.)

Definition 2.2. The colored operads P1 and Q1

I To any collection of non-negative integers n1, . . . ,nk , we associate the space P1(n1, . . . ,nk ;n1 + · · ·+nk) such
that:

P1(n1, . . . ,nk ;n1 + · · ·+nk) := P (k).
We have an action of permutations σ ∗ : P1(n1, . . . ,nk ;n1 + · · ·+nk)→ P1(nσ (1), . . . ,nσ (k);n1 + · · ·+nk), induced
by the symmetric structure of the operad, unit elements ∗n ∈ P1(n,n), given by the unit of P , and “colored”
composition operations

(23)
◦i : P1(n1, . . . ,nk ;m)× P1(n′1, . . . ,n

′
k′ ;ni) −→ P1(n1, . . . ,ni−1,n

′
1, . . . ,n

′
k′ ,ni+1, . . . ,nk ;m),

p ; p′ 7−→ p ◦i p′ ,
induced by the composition operations of P , for ni = n′1 + · · ·+n′k′ and m = n1 + · · ·+nk . We immediately see
that these structure operations fulfill the unit, associativity and equivariance axioms of colored operads
(as a consequence of the operad axioms in P ). We also see that the left P -action on a (P -Q)-bimodule M
gives an operation

P1(n1, . . . ,nk ;n1 + · · ·+nk)×M(n1)× · · · ×M(nk)→M(n1 + · · ·+nk),
which makes M and algebra over the colored operad P1.
I To any integers n and m, we associate the space Q1(n ;m) such that:

Q1(n ;m) :=
∐

α:[m]→[n]

∏
i∈[n]

Q(|α−1(i)|).

A point in the above space is denoted by (α ; {qi}i∈[n]). We have a unit element ∗n ∈ Q1(n ; n) given by
collection of operadic units 1 ∈Q(1) in the factor of Q1(n ; n) indexed by the identity map id : [n]→ [n].
We have compositions of the form

(24)
µ :Q1(n ;m)×Q1(m ; `) −→ Q1(n ; `);

(α ; {qi}) ; (α′ ; {q′j }) 7−→ (α ◦α′ ; {zi}i∈[n]),

where zi , with i ∈ [n], is obtained using the operadic structure of Q:

zi := σi(α,α)∗
[(
· · ·

((
qi ◦li q

′
b`i

)
◦`i−1 q

′
bli−1

)
· · ·

)
◦1 q

′
b1

]
, with α−1(i) = {b1 < · · · < b`i }.
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Here σi(α,α)∗ is the inverse of the shuffle permutation of the set (α ◦ α′)−1(i), reordering this set as
(α′)−1(b1), . . . , (α′)−1(b`i ). The operadic axioms imply that these operations are associativity and unital,
so that Q1 forms a colored operad (concentrated in arity one). We also see that the right Q-action on a
(P −Q)-bimodule M gives an operation

ζ :Q1(n ;m)×M(n)→M(m)

by
ζ
(
(α ; {qi}),x

)
= σ ∗α

((
· · ·

(
x ◦n qn

)
· · ·

)
◦1 q1

)
,

for any (α ; {qi}) ∈ Q1(n ;m), x ∈M(n), where σα ∈ Σm is the inverse of the corresponding shuffle of the
blocks of size |α−1(1)|, . . . , |α−1(n)| in [m]. We readily deduce from the bimodule axioms that this operation
is unital and associative with respect to the composition operation (24), so that M forms an algebra over
the colored operad Q1.

Definition 2.3. The set of trees P[n1, . . . ,nk ;m]
Let n1, . . . ,nk and m be non-negative integers. An element in P[n1, . . . ,nk ;m] is a tuple T = (T ,V`(T ),Vr (T ), f ),
where T is a planar rooted tree having k leaves indexed by a permutation from Σk and having two kinds of
vertices called left and right vertices, respectively. The sets V`(T ) and Vr (T ) consist of left vertices and right
vertices, respectively. In particular, right vertices are necessarily of arity one and are represented by circles •
in the tree while the left vertices are represented by diamonds �. Left vertices are allowed to be of any arity
≥ 0.

Figure 2. Illustration of an element in P[n1,n2,n3,n4,n5;m].

The assignment f : E(T )→ N labels the edges of the planar tree by integers. In particular, the outgoing
edge of the tree is labelled by m while the k leaves are labelled by n1, . . . ,nk , according to the permutation.
We denote by nv1, . . . ,n

v
|v| the integers labelling the incoming edges of a vertex v and by nv0 its output edge

according to the orientation toward the root. Furthermore, if v is a left vertex, then one has the relation
nv0 = nv1 + · · ·+nv|v|.

Construction 2.4. The colored operad P+Q, with set of colors N (non-negative integers), is obtained from
the sets of trees T[n1, . . . ,nk ;m] by indexing the left vertices by points in P1 and the right vertices by points in
Q1. More precisely, one has

(P+Q)(n1, . . . ,nk ;m) :=
∐

T ∈T[n1,...,nk ;m]

 ∏
v∈Vr (T )

Q1(nv1 ; nv0) ×
∏

v∈V`(T )

P1(nv1, . . . ,n
v
|v| ; n

v
0)


/
∼

where the equivalence relation is generated by the following axioms:
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I If a vertex is indexed by the unit of the operad P1 or Q1, then we remove it:

I If a left vertex is indexed by a point of the form p · σ , with p ∈ P (k) and σ ∈ Σk , then one has the following
identity in which τ = σ (idΣn1

, . . . , idΣnk
) ∈ Σn1+···+nk is the element permuting the blocks {1, . . . ,n1}, . . . , {n1 +

· · ·+nk−1 + 1, . . . ,n1 + · · ·+nk} in [n1 + · · ·+nk]:

I If there are two consecutive left vertices or two consecutive right vertices, then we contract the edge
connecting them using the operation (24) or (23):

I If the incoming edges of a left vertex are connected to right vertices, then we can permute them:
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Let x and y be two points in (P+Q)(n1, . . . ,nk ;m) and (P+Q)(n′1, . . . ,n
′
k ;ni), respectively. The operadic

composition x◦i y consists in grafting the tree indexing y into the i-th leaf of the tree indexing x and keeping
the labels of each tree in order to decorate the new one.

Figure 3. Illustration of the operadic composition ◦2.

Remark 2.5. According to the relations introduced in the previous construction, for any integers n1, . . . ,nk
and m, each point in the component (P+Q)(n1, . . . ,nk ;m) has a representative element having exactly one
left vertex and one right vertex such that the right vertex is the root of the tree, see Figure 4. Thanks to the
second relation of Construction 2.4, one can order the leaves from 1 to k. Therefore, as a space,

(25) (P+Q)(n1, . . . ,nk ;m) = P (k)×

 ∐
α:[m]→[n1+···+nk ]

∏
1≤i≤n1+···+nk

Q(|α−1(i)|)

 .

Figure 4. Illustration of a representative element.

Proposition 2.6. The category of (P -Q)-bimodules is equivalent to the category of (P+Q)-algebras.

Proof. In one direction, we already explained that a (P -Q)-bimodule M inherits an action of the operads
P1 and Q1 that generate P + Q. We just check that these actions are compatible with the relations of
Construction 2.4 when we compose them to get an action of P +Q on M (the compatibility with the first
three relations follows from the unit, associativity and equivariance of the action of the operads P1 and Q1
on M, the compatibility with the fourth relation follows from the commutation of the left and right actions).

In the converse direction, we show that a (P+Q)-algebra M ′ inherits a bimodule structure. First, M ′ is
a Σ-sequence thanks to the action of the left vertices indexed by (σ ; {∗1}), where σ is a permutation from
some Σk and {∗1} is a collection of k identity elements from Q(1). Then we just inverse the constructions of
Definition 2.2 in order to retrieve left and right operations on M ′ . To be explicit, in order to define the left
operations γ`, we consider the inclusion ι` : P (k)→ (P+Q)(n1, . . . ,nk ;n1 + · · ·+nk), for any integers n1, . . . ,nk ,
sending a point p ∈ P (k) to the k-corolla whose root is a left vertex indexed by p. The map γ` is defined as
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the following composite:

P (k)×M ′(n1)× · · · ×M ′(nk)
γ` //

ι`×id×···×id
��

M ′(n1 + · · ·+nk)

(P+Q)(n1, . . . ,nk ;n1 + · · ·+nk)×M ′(n1)× · · · ×M ′(nk)

33

Similarly, for any pair of integers (n ;m) and 1 ≤ i ≤ n, there is a map ιr :Q(m)→ (P+Q)(n ; n+m− 1) sending
a point q ∈Q(m) to the element (α ; {qj }) where α is given by

α : [n+m− 1] −→ [n] ; j 7−→


j if j ≤ i,
i if i < j < i +m,
j −m+ 1 if j ≥ i +m.

One has qi = q and qj = ∗1 for any j , i. The right operation ◦i , with 1 ≤ i ≤ n, is defined as the following
composite map:

M ′(n)×Q(m) ◦i //

id×ιr
��

M ′(n+m− 1)

M ′(n)× (P+Q)(n ; n+m− 1)
�
// (P+Q)(n ; n+m− 1)×M ′(n)

OO

The relations introduced in Construction 2.4 readily imply that these operations satisfy the bimodule
axioms. �

2.1.2 The free bimodule functor

We denote by ΣSeqP and TrΣSeqP the categories of Σ-sequences and r-truncated Σ-sequencesM equipped
with a map γ0 : P (0)→M(0). In other words, if P0 is the Σ-sequence given by P0(0) = P (0) and the empty set
otherwise, then one has the following identities:

(26) ΣSeqP := P0 ↓ ΣSeq and TrΣSeqP := P0 ↓ TrΣSeq.

Furthermore, there is a forgetful functor from the category of (possibly truncated) bimodules to the category
of Σ-sequences endowed with a map from P0:

(27) UΣ : ΣBimodP ;Q −→ ΣSeqP : and UTrΣ : TrΣBimodP ;Q −→ TrΣSeqP .

Their left adjoints denoted F Σ
P ;Q and F TrΣP ;Q , respectively, are some versions of free functors. As usual in

the operadic theory, the free functor can be described as a coproduct indexed by a particular set of trees. In
that case, we use the set of trees with section which are pairs T = (T ; V p(T )), where T is a planar rooted tree
(whose leaves are labelled by some permutation) and V p(T ) is a subset of vertices, called pearls, satisfying
the following condition: each path from a leaf or a univalent vertex to the root passes through a unique
pearl.

Figure 5. Examples of a tree with section T1 ∈ sP5 and a reduced tree with section T2 ∈ rsP6.
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The set of pearls forms a section cutting the tree into two parts. Note that the arity zero vertices can
be either above or on the section, but never below. We denote by V u(T ) (respectively, V d(T )) the vertices
above the section (respectively below the section). A tree with section is said to be reduced if each non-pearl
vertex is connected to a pearl by an inner edge. We denote by sPn and rsPn the sets of trees with section and
reduced trees with section, respectively, having exactly n leaves labelled by a permutation of {1 . . .n}.

Construction 2.7. Let M = {M(n)} be a Σ-sequence equipped with a map γ0 : P (0) → M(0). The space
F Σ
P ;Q(M)(n) is obtained from the set of reduced trees with section by indexing the pearls by points in M

whereas the vertices above the section (respectively below the section) are indexed by points in the operad Q
(respectively the operad P ). More precisely, one has

(28) F Σ
P ;Q(M)(n) =

 ∐
T ∈rsPn

∏
p∈V p(T )

M(|p|)×
∏

v∈V d (T )

P (|v|)×
∏

v∈V u (T )

Q(|v|)


/
∼ .

A point in F Σ
P ;Q(M) is denoted by [T ; {mp} ; {pv} ; {qv}] where T is a reduced tree with section while {mp}p∈V p(T ),

{pv}v∈V d (T ) and {qv}v∈V u (T ) are points in M, P and Q, respectively. The equivalence relation is generated by
the following relations:

i) The unit relation: if a vertex is indexed by the unit of the operad P or Q, then we can remove it:

ii) The compatibility with the symmetric group action: if a vertex is labelled by x ·σ , with x a point in P (n),
Q(n) or M(n) and σ ∈ Σn, then we can remove σ by permuting the incoming edges.

Figure 6. Illustration of the compatibility with the symmetric group.

iii) The γ0-relation: if a pearl is indexed by a point of the form γ0(x), with γ0 : P (0)→M(0) and x ∈ P (0),
then we contract its output edge using the operadic structures of P . In particular, if the vertex below
the section indexed by p ∈ P (n) is connected only to univalent pearls indexed by γ0(p1), . . . ,γ0(pn),
respectively, then we can contract all the incoming edges. The new vertex so obtained is a pearl
indexed by γ0((· · · ((p ◦n pn) ◦n−1 pn−1) · · · ) ◦1 p1).

Figure 7. Illustration of the γ0-relation.
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The right operation ◦i with an element q ∈Q(m) consists in grafting the m-corolla indexed by q into the
i-th leaf of the reduced tree with section T . If the so obtained element contains an inner edge joining two
consecutive vertices other than a pearl, then we contract it using the operadic structure of Q.

The left operation between an element p ∈ P (n) and a family of points [Ti ; {mip} ; {piv} ; {qiv}] ∈ F Σ
P ;Q(M),

with 1 ≤ i ≤ n, is defined as follows: each tree Ti , with 1 ≤ i ≤ n, is grafted from left to right to a leaf of
the n-corolla whose vertex is indexed by p. If the so obtained element contains inner edges joining two
consecutive vertices other than pearls, then we contract them using operadic structure of P .

Figure 8. Illustration of the right operation ◦1 : F Σ
P ;Q(M)(5)×Q(3)→F Σ

P ;Q(M)(7).

Finally, one has the following map sending p ∈ P (0) to the element [T ; {γ0(p)} ; ∅ ; ∅] where T is the pearled
0-corolla whose root is indexed by γ0(p):

γ ′0 : P (0) −→ F Σ
P ;Q(M)(0).

Similarly, the free r-truncated bimodule functor F TrΣP ;Q, is obtained from the formula (28) by taking the
restriction of the coproduct to the reduced trees with section having at most r leaves and such that each
pearl has at most r incoming edges. The equivalence relation, the left and right operations and the map γ ′0
are defined in the same way. Finally, one has two functors:

F Σ
P ;Q : ΣSeqP −→ ΣBimodP ;Q and F TrΣP ;Q : TrΣSeqP −→ TrΣBimodP ;Q.

Theorem 2.8. One has the following adjunctions:

(29) F Σ
P ;Q : ΣSeqP � ΣBimodP ;Q : UΣ and F TrΣP ;Q : TrΣSeqP � TrΣBimodP ;Q : UTrΣ.

Proof. Let M ′ be a (P -Q)-bimodule and f : M → M ′ be a morphism in the category ΣSeqP . One has to
prove that there exists a unique map of (P -Q)-bimodules f̃ : F Σ

P ;Q(M)→M ′ such that the following diagram
commutes:

(30) M
f //

i
��

M ′

F Σ
P ;Q(M)

∃ ! f̃

;;

We build the map f̃ by induction on the number of vertices in the set np(T ) = V (T ) \ V p(T ). Let
[(T ; σ ) ; {mp} ; {pv} ; {qv}] be a point in F Σ

P ;Q(M) such that |nb(T )| = 0 and σ is the permutation indexing the
leaves of T . By construction, T is necessarily a pearl corolla with only one vertex labelled by mr ∈M. Due to
the commutativity of Diagram (30), the following equality has to be satisfied:

f̃ ([(T ; σ ) ; {mp} ; {pv} ; {qv}]) = f (mr ) · σ.

Let [(T ; σ ) ; {mp} ; {pv} ; {qv}] be a point in F Σ
P ;Q(M) where T has only one vertex v which is not a pearl.

There are two cases to consider. If v is the root of the tree T , then the root is labelled by a point pv ∈ P and
[(T ; σ ) ; {mp} ; {pv} ; {qv}] has a decomposition of the form

pv( [(T1 ; id) ; {m1} ; ∅ ; ∅], . . . , [(T|v| ; id) ; {m|v|} ; ∅ ; ∅] ) · σ,
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where Ti is a pearl corolla labelled by mi ∈M. Since f̃ has to be a (P -Q)-bimodule map, one has the equality

f̃ ([(T ; σ ) ; {mp} ; {pv} ; {qv}]) = pv
(
f (m1), . . . , f (m|v|)

)
· σ.

If the root is a pearl, then there exists a unique inner edge e such that s(e) = v and t(e) = r. So, the point
[(T ; σ ) ; {mp} ; {pv} ; {qv}] has a decomposition on the form ([(T1 ; id) ; {mp} ; ∅ ; ∅] ◦i qs(e)) · σ with qs(e) ∈Q and
mt(e) ∈M. Since f̃ has to be an (P -Q)-bimodule map, there is the equality

f̃ ([(T ; σ ) ; {mp} ; {pv} ; {qv}]) =
(
f (mt(e)) ◦i qs(e)

)
· σ.

Assume f̃ has been defined for |np(T )| ≤ n. Let [(T ; σ ) ; {mp} ; {pv} ; {qv}] be a point in F Σ
P ;Q(M) such

that |np(T )| = n + 1. By definition, there is an inner edge e whose target vertex is a pearl. So, the point
[(T ; σ ) ; {mp} ; {pv} ; {qv}] has a decomposition of the form ([(T1 ; id) ; {mp} ; {pv} ; {qv} \ {qs(e)}] ◦i qs(e)) · σ where
T1 is a planar tree with section such that |np(T1)| = n. Since f̃ has to be a (P -Q)-bimodule map, there is the
equality

f̃ ([(T ; σ ) ; {mp} ; {pv} ; {qv}]) =
(
f̃ ([(T1 ; id) ; {mp} ; {pv} ; {qv} \ {qs(e)}]) ◦i qs(e)

)
· σ.

Due to the (P -Q)-bimodule axioms, f̃ does not depend on the choice of the decomposition and f̃ is a (P -Q)-
bimodule map. The uniqueness follows from the construction. Similarly, we can prove that the functor F TrΣP ;Q
is the left adjoint to the forgetful functor. �

2.1.3 Combinatorial description of the pushout

Let P and Q be two topological operads. In the following, we use the notation introduced for the free
bimodule functor in order to give an explicit description of the pushout in the category of (P -Q)-bimodules.
This description will be used in the next subsections. We fix the following diagram in the category of
(P -Q)-bimodules

(31) A
f1 //

f2
��

C

B

Then we consider the Σ-sequence D obtained from A, B, C and the sets sPn of trees with section (see Section
2.1.2) by indexing the pearls of such trees by points in B or C whereas the other vertices below the section
(respectively above the section) are indexed by points in the operad P (respectively the operad Q). More
precisely, one has

(32) D(n) =

 ∐
T ∈sPn

∏
p∈V p(T )

B(|p|)
⊔
A(|p|)

C(|p|)

× ∏
v∈V d (T )

P (|v|)×
∏

v∈V u (T )

Q(|v|)


/
∼ .

By abuse of notation, we denote by [T ; {mp} ; {pv} ; {qv}] a point in D(n). The equivalence relation is generated
by relations (i), (ii), (iii) in Construction 2.7 (unit relation, compatibility with the symmetric group action
and γ0-relation). Furthermore, one has also the following relations:

iv) Pushout relation 1: each inner edge, which is not connected to a pearl, is contracted using the operadic
structures of P and Q.

v) Pushout relation 2: every inner edge above the section connected to a pearl is contracted using the
right Q-module structures of B and C.

vi) Pushout relation 3: if a vertex v below the section is connected to pearls indexed by points in B
(respectively, C), then we contract the incoming edges of v using the P -module structure of B
(respectively, the left P -module structure of C).
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Figure 9. Illustration of the pushout relations (iv) and (vi).

The Σ-sequence D inherits a (P -Q)-bimodule structure from B and C. The right operations are defined
using the right module structures of B and C. Similarly, the left operation between an element p ∈ P (n) and
a family of points [Ti ; {mip} ; {piv} ; {qiv}] ∈D, with 1 ≤ i ≤ n, is defined as follows: each tree Ti , with 1 ≤ i ≤ n,
is grafted from left to right to a leaf of the n-corolla whose vertex is indexed by p. Moreover, there is a map

γ ′0 : P (0) −→D(0)

sending a point p ∈ P (0) to the 0-corolla labelled by γ0(p) ∈ A(0).
The reader can check that the so obtained bimodule is well defined and that this construction works

in the context of truncated bimodules. If Ar , Br , Cr are r-truncated bimodules and f1, f2 are r-truncated
bimodule maps, then the pushout in the category of r-truncated bimodules Dr is obtained from the formula
(32) by taking the restriction of the coproduct to the trees with section having at most r leaves and such that
each pearl has at most r incoming edges. The equivalence relation, the left and right operations and the map
γ ′0 are defined in the same way.

Proposition 2.9. One has the following identities:

D = colim
ΣBimodP ;Q

(
B←− A −→ C

)
and Dr = colim

TrΣBimodP ;Q

(
Br ←− Ar −→ Cr

)
.

Proof. We need to check the universal property of the pushout in the category of (P -Q)-bimodules. Let D ′ be
a (P -Q)-bimodule together with (P -Q)-bimodule maps g1 : B→D ′ and g2 : C→D ′ such that g1 ◦ f1 = g2 ◦ f2.
One has to show that there is a unique (P -Q)-bimodule map δ : D → D ′ such that the following diagram
commutes:

(33) A
f2 //

f1 ��

C

�� g2

��

B //

g1 ))

D
δ

$$
D ′

Let [(T ; σ ) ; {mp} ; {pv} ; {qv}] be a point D where σ is the permutation labelling the leaves. Due to the
pushout relations, we can assume that T is a reduced tree with section without vertices above the section. If
the tree with section T has only one vertex (which is necessarily a pearl) indexed by mr in B or C, then, due
to the commutative diagram (33), δ must be defined as follows:

δ([(T ; σ ) ; {mp} ; {pv} ; {qv}]) =

 g1(mr ) · σ if mr ∈ B,
g2(mr ) · σ if mr ∈ C.

If the tree with section T has more than 2 vertices, then the root of T is indexed by a point pr in the
operad P and the point [(T ; σ ) ; {mp} ; {pv} ; {qv}] has a decomposition of the form

(pr ([(T1 ; id) ; {m1} ; ∅ ; ∅], · · · , [(T|v| ; id) ; {m|v|} ; ∅ ; ∅])) · σ
where T1, . . . ,T|v| are corollas. Since δ is a bimodule map, one has

δ([(T ; σ ) ; {mp} ; {pv} ; {qv}]) =
(
pr (δ([(T1 ; id) ; {m1} ; ∅] ; ∅]), . . . ,δ([(T|v| ; id) ; {m|v|} ; ∅ ; ∅]])

)
· σ.

Thanks to the (P -Q)-bimodule axioms, δ does not depend on the choice of the representative element and δ
is a (P -Q)-bimodule map. The uniqueness follows from the construction. The same arguments work for the
truncated case. �
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Lemma 2.10. Let ∂X→ X be a morphism of ΣSeqP which defines a closed inclusion of topological spaces objectwise.
For every pushout diagram of the form

(34) F Σ
P ;Q(∂X) //

��

F Σ
P ;Q(X)

��
B // D,

the (P -Q)-bimodule map B→D is also a closed inclusion of topological spaces objectwise.

Proof. Let sP′n denote the set of planar trees with section and with n leaves labelled by a permutation from
Σn, whose set V p of pearls is partitioned into two subsets V p = V ppri tV

p
aux of primary and auxiliary pearls,

respectively. One has,

D(n) =

 ∐
T ∈sP′n

X(T )


/
∼, where X(T ) =

∏
p∈V ppri (T )

B(|p|)×
∏

p∈V paux(T )

X(|p|)×
∏

v∈V d (T )

P (|v|)×
∏

v∈V u (T )

Q(|v|).

The relations are (i)-(vi), see above. We denote by πT the map πT : X(T )→D(n).
A closed injective map is always a topological inclusion. We prove first that each map i : B(n)→ D(n),

n ≥ 0, is injective and then that it is closed.
As a set, D(n) does not depend on the topology of X. So, we can choose a topology such that each

X(i) \ ∂X(i) is discrete and open in X(i). In the latter case, one has D = B
∐
F Σ
P ;Q

(
P0 t (X \ ∂X)

)
and the

inclusion of B in this coproduct is obviously injective. Indeed, a tree with a vertex labelled by x ∈ X \∂X in
the coproduct can never loose such vertex by means of relations (i)-(vi) of the coproduct, and therefore can
not produce a relation in B.

Now we check that for any closed C ⊂ B(n), the set i(C) is closed in D(n). Consider

X∂(T ) :=
∏

p∈V ppri (T )

B(|p|)×
∏

p∈V paux(T )

∂X(|p|)×
∏

v∈V d (T )

P (|v|)×
∏

v∈V u (T )

Q(|v|).

Since each composition map π∂T : X∂(T )→ B(n) is continuous, the set (π∂T )−1(C) is closed in X∂(T ). On the
other hand, since each map ∂X(|p|)→ X(|p|) is a closed inclusion, the map X∂(T )→ X(T ) is also one. (Here,
we use the fact that kelleyfication preserves closed inclusions.) Thus (π∂T )−1(C) = (πT )−1(i(C)) is closed in
X(T ) for every T and we conclude that so is i(C) in D(n).

�

2.2 The model category structure

By using the identifications (26), the categories ΣSeqP and TrΣSeqP inherit model category structures
from the categories of Σ-sequences and truncated Σ-sequences, respectively. More precisely, a map is a weak
equivalence, a fibration or a cofibration if the corresponding map is a weak equivalence, a fibration or a
cofibration in the category of (truncated) Σ-sequences. In particular, ΣSeqP and TrΣSeqP are cofibrantly
generated and all their objects are fibrant. Their (acyclic) generating cofibrations are {P0 t ∂X → P0 tX},
where {∂X→ X} is the set of (acyclic) generating cofibrations of ΣSeq or TrΣSeq, respectively. By applying
the transfer principle 1.1 to the adjunctions

(35) F Σ
P ;Q : ΣSeqP � ΣBimodP ;Q : UΣ and F TrΣP ;Q : TrΣSeqP � TrΣBimodP ;Q : UTrΣ,

we get the following statement:

Theorem 2.11. For any pair (P ,Q) of topological operads, the category of (truncated) (P -Q)-bimodules ΣBimodP ;Q
(respectively, TrΣBimodP ;Q, r ≥ 0) inherits a cofibrantly generated model category structure, called the projective
model category structure, in which all objects are fibrant. The model structure in question makes the adjunctions
(35) into Quillen adjunctions. More precisely, a bimodule map f is a weak equivalence (respectively, a fibration) if
and only if the induced map UΣ(f ) or UTrΣ(f ) is a weak equivalence (respectively, a fibration) in the category of
(possibly truncated) Σ-sequences.
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Proof. According to the transfer principle 1.1, we have to check the small object argument as well as the
existence of a functorial fibrant replacement and a functorial factorization of the diagonal map in the
category ΣBimodP ;Q.

We check first the small object argument. Let F Σ
P ;Q(X) be a domain of an element in the set of generating

(acyclic) cofibrations in ΣBimodP ;Q. Let λ = ℵ1 be the first uncountable ordinal. Assume that {Mα}α<λ is a
λ-sequence of (P -Q)-bimodules, such that each map M<α := colimβ<αMβ →Mα fits into a pushout square

(36) F Σ
P ;Q(∂Y ) //

��

F Σ
P ;Q(Y )

��
M<α

// Mα ,

where ∂Y → Y is a possibly infinite coproduct in ΣSeqP of generating (acyclic) cofibrations. Due to the
adjunction (35), one has the identity

ΣBimodP ;Q

(
F Σ
P ;Q(X) ; colimα<λMα

)
� ΣSeqP

(
X ; U (colimα<λMα)

)
.

Since the forgetful functor is monadic, it preserves filtered colimits. So, one has

ΣSeqP
(
X ; U (colimα<λMα)

)
� ΣSeqP

(
X ; colimα<λU (Mα)

)
.

It follows from Lemma 2.10 that M<α → Mα is an objectwise closed inclusion. The sequence X \ P0 is
concentrated in only one arity where it is a finite union of spheres (or discs), thus a separable space.
Therefore, X is ℵ1-small relative to componentwise closed inclusions1 and one has the identities

ΣSeqP
(
X ; colimα<λU (Mα)

)
� colimα<λΣSeqP

(
X ; U (Mα)

)
� colimα<λΣBimodP ;Q

(
F Σ
P ;Q(X) ;Mα

)
.

This proves the small object argument.
Since all objects are fibrant in the category of Σ-sequences, the identity functor provides a functorial

fibrant replacement. For any M ∈ ΣBimodP ;Q, one needs to prove the existence of an element P ath(M) ∈
ΣBimodP ;Q inducing a factorization of the diagonal map

∆ :M '
f1
// P ath(M)

f2
// // M ×M,

where f1 is a weak equivalence and f2 is a Serre fibration. Let us consider

P ath(M)(n) =Map
(
[0 , 1] ;M(n)

)
.

This Σ-sequence inherits a bimodule structure from M. The map from M to P ath(M), sending a point to the
constant path, is clearly a homotopy equivalence. Furthermore, the map

f2 :Map
(
[0 , 1] ;M(n)

)
−→Map

(
∂[0 , 1] ;M(n)

)
= (M ×M)(n)

induced by the inclusion i : ∂[0 , 1]→ [0 , 1] is a Serre fibration since the map i is a cofibration. �

Alternative proof. As explained in Section 2.1.1, the category of (P -Q)-bimodules is equivalent to the category
of algebras over a colored operad P+Q. According to the general result of [BM3, Theorem 2.1], the category
of algebras over any topological operad has a projective model structure. To be precise, let Seq = T opN be
the projective model category of sequences of topological spaces. The adjunction between the forgetful
functor and the free (P+Q)-algebra functor

FP+Q : Seq� AlgP+Q : U ,
induces a cofibrantly generated model category structure on the category of (P+Q)-algebras. In this model
structure, a map of (P+Q)-algebras f is a weak equivalence (respectively, a fibration) if the corresponding
map U (f ) is a weak equivalence (respectively, a fibration) in the category of sequences. This model structure
coincides with the model structure described in the theorem because the projective model structure on ΣSeq
is itself transferred from Seq. �

1In fact X is ℵ0-small relative to componentwise closed inclusions of T1-spaces, as X being compact can not contain a discrete
countable closed subspace. Note, however, that in our category T op non-T1 spaces are allowed.

30



2.2.1 Relative left properness of the projective model category

• Definitions of relative left and right properness. First, we recall the definition in a general setting. Let C be a
model category and let S be a class of objects of C. The model category C is said to be left proper (respectively
right proper) relative to S if for each pushout diagram (respectively pullback diagram) of the form

A
f

'
//� _

g
��

B

j
��

C
i
// D

A
i //

j

��

B

g
����

(respectively, )

C
f

' // D

with g a cofibration (respectively, a fibration) and f a weak equivalence between objects in S , the morphism
i is also a weak equivalence. In particular, the category C is said to be left proper (respectively right proper)
if C is left proper (respectively right proper) relative to all the objects. Furthermore, a model category C is
said to be proper (relative to S) if the category is both left and right proper (relative to S). The advantage of
such a category is that we have a criterion allowing to identify homotopy invariant colimits or/and limits.

Proposition 2.12. [Lur, Proposition A.2.4.4] Let C be a model category which is left proper relative to a class of
objects S . For any commutative diagram in the category C of the form

A

vA
��

B
g //

vB
��

foo C

vC
��

A′ B′
g ′
//

f ′
oo C′

the induced map between the colimits of the horizontal diagrams

colim
(
A← B→ C

)
−→ colim

(
A′← B′→ C′

)
is a weak equivalence if the vertical morphisms are weak equivalences; one of the pairs (f ,C) or (g,A) consists of a
cofibration and an object in S ; one of the pairs (f ′ ,C′) or (g ′ ,A′) consists of a cofibration and an object in S .

Dually, let C be a model category which is right proper relative to a class S . For any commutative diagram in the
category C of the form

A

vA
��

f // B

vB
��

C
goo

vC
��

A′
f ′
// B′ C′

g ′
oo

the induced map between the limits of the horizontal diagrams

lim
(
A→ B← C

)
−→ lim

(
A′→ B′← C′

)
is a weak equivalence if the vertical morphisms are weak equivalences; one of the pairs (f ,C) or (g,A) consists of a
fibration and an object in S ; one of the pairs (f ′ ,C′) or (g ′ ,A′) consists of a fibration and an object in S .

Remark 2.13. Even when the category C is not left or right proper, the statement of Proposition 2.12 still
holds provided one of the pairs (f ; C) or (g ; A) consists of a (co)fibration and a (co)fibrant object whereas
one of the pairs (f ′ ; C′) or (g ′ ; A′) consists of a (co)fibration and a (co)fibrant object.

• Application to the projective model category of bimodules. Let P and Q be two topological operads. From now
on, we focus our attention on the projective model category of (P -Q)-bimodules. More precisely, we show
that this category is right proper relative to all the objects and is relatively left proper.

Theorem 2.14. The projective model category ΣBimodP ;Q is right proper.
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Proof. We consider the following pullback diagram in which f is a weak equivalence and g is a fibration:

A = lim
(
C

f

'
// D B

)
.

goooo

The map i : A→ B is equivalent to the following map between pullback diagrams:

A

i

��

lim
(
C

'

��

' // D B
)

oooo

B lim
(
D D B

)
oooo

According to Remark 2.13 and since all the objects in the projective model category of bimodules are fibrant,
the map i : A→ B is also a weak equivalence. Consequently, the category ΣBimodP ;Q is right proper relative
to all the objects. �

Lemma 2.15. Let C← A→ B be a diagram in a cocomplete category C. If A→ C is a retract of A′→ C′ , then the
morphism C→ colim(C← A→ B) is a retract of C′→ colim(C′← A′→ A→ B).

Proof. Since A→ C is a retract of A′→ C′ , one has a commutative diagram

(37) C
g1 // C′

g2 // C

A
h1 //

OO

��

A′
h2 //

OO

��

A

OO

��
B B B

such that g2 ◦ g1 = id and h2 ◦ h1 = id. By taking the pushout of the vertical diagrams in (37), we get the
commutative diagram

C
g1 //

��

C′

��

g2 // C

��
C
⊔
A
B

k1=g1
⊔
h1

id
// C′

⊔
A′
B

k2=g2
⊔
h2

id
// C

⊔
A
B

in which g2 ◦ g1 = id and k2 ◦ k1 = id. �

Theorem 2.16. If P and Q are operads, such that P (0) ∈ T op is cofibrant, P>0 ∈ ΣOperad is a cofibrant operad,
and Q is a componentwise cofibrant operad, then the projective model category ΣBimodP ;Q is left proper relative
to the class S of componentwise cofibrant bimodules M for which the arity zero left action map γ0 : P (0)→M(0) is
a cofibration.

Corollary 2.17. IfQ is a componentwise cofibrant operad and P is either a Reedy cofibrant or projectively cofibrant
operad, then the projective model category ΣBimodP ;Q is relatively left proper.

Proof. An operad is Reedy cofibrant if and only if it is reduced and its positive arity part is cofibrant. This
proves the first case. The second case follows from Proposition 1.8. �

Proof of Theorem 2.16. We first prove this theorem assuming P (0) = ∅ and at the end we explain how the
argument has to be adjusted to the general case P (0) , ∅.

In order to prove that the category is left proper relative to S , we consider the following pushout diagram
in the category of (P -Q)-bimodules in which the map f is a weak equivalence between componentwise
cofibrant objects and the map g is a cofibration:

D = colim
(
C A? _

goo
'
f // B

)
.
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Since any cofibration is a retract of a cellular extension, we can assume that g is a cellular extension due to
Lemma 2.15. On the other hand, any cellular extension is a possibly transfinite sequence of cell attachments.
By Theorem 2.18a, cofibrations with domain in S are componentwise cofibrations. Thus, without loss of
generality, we can assume that g is a cellular attachment and we restrict our study to diagrams of the form

F Σ
P ;Q(∂X) //

��

A //

��

B

��
F Σ
P ;Q(X) // C // D,

where ∂X → X is a generating cofibration in the category of Σ-sequences and both squares are pushout
diagrams. The strategy is to use the explicit description of the pushout from Section 2.1.3 and to introduce a
filtration in Σ-sequences C and D according to the number of vertices in the trees indexed by X:

(38) A = C0

��

// C1

��

// · · · // Ci−1

��

// Ci

��

// · · · // C

��
B =D0

// D1
// · · · // Di−1

// Di // · · · // D.

We will prove that in (38), each horizontal map is a componentwise cofibration and each vertical map is a
weak equivalence.

Let rsPn[i] denote the set of reduced planar trees with section with n leaves labelled by a permutation
in Σn. In addition we assume that it has two types of pearls: i auxiliary ones and some number of primary
ones, primary ones coming first. Moreover, it is required that all incoming edges of any primary pearl are
leaf edges, while all incoming edges of any auxiliary pearl connects it to an internal vertex.

It follows from Construction 2.7 of a free bimodule and the combinatorial description of a pushout
(Subsection 2.1.3) that any element in C(n) or D(n) can be obtained as a tree T ∈ rsPn[i] (for some i ≥ 0),
whose root, primary pearls, auxiliary pearls, and vertices above the section are labelled by P , A (or B), X,
and Q, respectively. The filtration (38) is by the number i of auxiliary pearls in such elements. To show that
maps Ci−1(n)→ Ci(n) and Di−1(n)→Di(n) are cofibrations, we additionally filter this inclusion by the total
number ` of pearls:

(39) Ci−1(n) =: Ci(n)i−1

��

// Ci(n)i

��

// · · · // Ci(n)`−1

��

// Ci(n)`

��

// · · · // Ci(n)

��
Di−1(n) =:Di(n)i−1

// Di(n)i // · · · // Di(n)`−1
// Di(n)` // · · · // Di(n)

We will show that each horizontal inclusion is a cofibration and each vertical map is an equivalence, which
would prove the theorem.

The maps Ci(n)`−1→ Ci(n)` and Di(n)`−1→Di(n)` are cofibrations. For ` ≥ i, let rsPn[i ; `] ⊂ rsPn[i] be the
subset of planar trees with section with exactly ` pearls. Let rsTn[i ; `] := rsPn[i ; `]/∼ be the set of equivalence
classes, where two trees are equivalent if they are isomorphic as non-planar trees by an isomorphism that
forgets the labels of leaves and that sends primary pearls to primary ones and same with auxiliary ones.

Figure 10. Illustration of a tree in rsP9[4 ; 7] ⊂ rsP9[4] labelled by P , A, X and Q.
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For T ∈ rsTn[i ; `], denote by Aut(T ) the group of automorphisms of T that does not mix the auxiliary
pearls with the primary ones (only arity zero ones can potentially be permuted, but we do not allow it). A
choice of representative of T in rsPn[i ; `] gives a labeling of leaves by the set [n] and therefore induces a
homomorphism Aut(T )→ Σn. Denote by Aut0(T ) the kernel of this homomorphism which is the subgroup
of Aut(T ) permuting the univalent vertices and the auxiliary pearls that have only univalent vertices above
them. Let p1, . . . ,p` be the pearls of the chosen planar representative of T labelled in the planar order they
appear.

Then we consider the spaces

M1(T ) =
∏

`−i+1≤j≤`
X(|pj |)×

∏
v∈V u (T )

Q(|v|),

where V u(T ) is the set of vertices of T above the section, and

M2(T ; A) = P (`) ×P (1)`−i
∏

1≤j≤`−i
A(|pj |) = coeq

P (`)× P (1)`−i ×
∏

1≤j≤`−i
A(|pj |)⇒ P (`)×

∏
1≤j≤`−i

A(|pj |)

 .
The two arrows in the coequalizer correspond respectively to the action of P (1)`−i on the first (`− i) inputs of
P (`) (by operadic composition) and on

∏
1≤j≤`−i

A(|pj |) (by the left P -action on A).

In other words, M1(T ) is the space of indexations of the i last pearls by points in X and the vertices above
the section by points in the operad Q. Similarly, M2(T ; A) is the space of indexations of the other pearls
by points in A and the root by a point in P (`). This presentation is not unique, that is why we take the
coequalizer.

Moreover, we denote by M−1 (T ) the subspace of M1(T ) formed by points having at least one pearl indexed
by a point in ∂X. The space M−2 (T ; A) consists of points in M2(T ; A) for which the root is indexed by a point
p ∈ P (` ; ` − i) ⊂ P (`) (see notation before Proposition 1.10). We define

M(T ; A) :=M1(T )×M2(T ; A) and M−(T ; A) :=M1(T )×M−2 (T ; A)
∐

M−1 (T )×M−2 (T ;A)

M−1 (T )×M2(T ; A).

The spaces M2(T ; B), M−2 (T ; B), M(T ; B), M−(T ; B) are defined similarly.
One has the following pushout squares

(40)
∐

T ∈rsTn[i;`]

M−(T ; A) ×
Aut(T )

Σn
//

��

Ci(n)`−1

��∐
T ∈rsTn[i;`]

M(T ; A) ×
Aut(T )

Σn
// Ci(n)`

∐
T ∈rsTn[i;`]

M−(T ; B) ×
Aut(T )

Σn
//

��

Di(n)`−1

��∐
T ∈rsTn[i;`]

M(T ; B) ×
Aut(T )

Σn
// Di(n)`

To prove that the right vertical maps are cofibrations one needs to show that the left ones are such. Recall
that Aut0(T ) denotes the kernel of Aut(T )→ Σn. Equivalently, for every T ∈ rsTn[i;`] we need to show that
the maps

(41) M−(T ; A)/Aut0(T )→M(T ; A)/Aut0(T ) and M−(T ; B)/Aut0(T )→M(T ; B)/Aut0(T )

are cofibrations. We also need later that the sources of the maps are cofibrant.
Let G1 be the subgroup of Aut0(T ) that fixes all the pearls. It permutes the arity zero vertices above

the section. The subgroup G1 is normal and the quotient group G2 = Aut0(T )/G1 is responsible for the
permutations of the arity zero primary pearls and the auxiliary pearls that have only arity zero vertices
above them (in particular they can be of arity zero themselves). Note that G2 ⊂ Σ`−i ×Σi . By construction,
the spaces M−1 (T ), M1(T ), M−2 (T ; A) and M2(T ; A) are equipped with an action of Aut(T ) and of Aut0(T ) by
taking restriction. Moreover, for the last two, the Aut0(T )-action factors through G2.

The inclusionM−1 (T )→M1(T ) is an Aut0(T )-equivariant G1-cofibration. Indeed, G1 =
∏`
j=`−i+1Σdj , where

dj is the number of univalent vertices above the j-th pearl. Applying iteratively Lemma A.1, we get that the
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map

(42) ∂
∏

`−i+1≤j≤`
X(|pj |)→

∏
`−i+1≤j≤`

X(|pj |)

is a G1-cofibration. On the other hand, since Q is componentwise cofibrant, the space∏
v∈V u (T )

Q(|v|)

is a cofibrant (in T op) G1-space. Applying again Lemma A.1, we get that M−1 (T )→M1(T ) is a G1-cofibration.
The source of the map (42) is also G1-cofibrant as it can be obtained as a sequence of G1-cofibrations

Y1→ Y2→ . . .→ Yi ,

where

Ym = ∂

 ∏
`−i+1≤j≤`−i+m

X(|pj |)

× ∏
`−i+m+1≤j≤`

∂X(|pj |).

Note that Y1 =
∏

`−i+1≤j≤`
∂X(|pj |) is G1-cofibrant being a product of Σdj -cofibrant spaces (see Example A.6).

We finally conclude that M−1 (T ) is Aut0(T )-cofibrant.
Besides, we claim that the inclusion from M−2 (T ; A) into M2(T ; A) is a G2-cofibrant map between G2-

cofibrant spaces. The assignment

R 7→ R×P (1)`−i
∏

1≤j≤`−i
A(|pj |)

can be viewed as a functor from (Σ`−i oP (1))×Σi-T op to G2-T op. This functor preserves cofibrations. Indeed,
it preserves colimits and sends any generating cofibration Sk−1 × (Σ`−i o P (1))×Σi →Dk × (Σ`−i o P (1))×Σi to
a G2-cofibration: Sk−1 ×Σ`−i ×

∏
1≤j≤`−i

A(|pj |)

×Σi →
Dk ×Σ`−i × ∏

1≤j≤`−i
A(|pj |)

×Σi .
The map above is a G2-cofibration by Lemmas A.1 and A.3 (recall that G2 ⊂ Σ`−i × Σi). On the other
hand, since P is a cofibrant operad, by Proposition 1.10, the inclusion P (` ; ` − i)→ P (`) is a (Σ`−i o P (1))×Σi-
cofibration with a (Σ`−i oP (1))×Σi-cofibrant source. We conclude thatM−2 (T ; A)→M2(T ; A) is a G2-cofibrant
map between G2-cofibrant spaces.

Now combining that M−1 (T )→ M1(T ) is an Aut0(T )-equivariant G1-cofibration and that M−2 (T ; A)→
M2(T ; A) is a G2-cofibration and applying Lemma A.1, we get that M−(T ; A)→ M(T ; A) is an Aut0(T )-
cofibration. (We get a similar statement for B as well by replacing A with B in all formulas.)

We can similarly conclude that M−1 (T )×M−2 (T ; A) is Aut0(T )-cofibrant and the inclusions

M−1 (T )×M−2 (T ; A)→M−1 (T )×M2(T ; A)→M−(T ; A)

are Aut0(T )-cofibrations. As a result, M−(T ; A) and (arguing similarly) M−(T ; B) are Aut0(T )-cofibrant.

The map Ci(n)`→Di(n)` is a weak equivalence. By induction we assume that the map Ci(n)`−1→Di(n)`−1
is a weak equivalence of cofibrant spaces. The spaces Ci(n)` and Di(n)` are the colimits of the first and
second lines, respectively, in the following diagram.∐

T ∈rsTn[i;`]

M(T ; A) ×
Aut(T )

Σn

��

∐
T ∈rsTn[i;`]

M−(T ; A) ×
Aut(T )

Σn
oo //

��

Ci(n)`−1

��∐
T ∈rsTn[i;`]

M(T ; B) ×
Aut(T )

Σn

∐
T ∈rsTn[i;`]

M−(T ; B) ×
Aut(T )

Σn
oo // Di(n)`−1
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As it follows from Proposition 2.12, the induced map of colimits is an equivalence provided all vertical maps
are equivalences. We are left to showing that the left two arrows are such. In other words, it only remains to
prove that for every tree T ∈ rsTn[i;`], the maps

M−(T ; A)→M−(T ; B) and M(T ; A)→M(T ; B)

are weak equivalences (as we already proved that all the four spaces above are Aut0(T )-cofibrant). The latter
fact is deduced from the fact that the induced maps

M−2 (T ; A)→M−2 (T ; B) and M2(T ; A)→M2(T ; B)

are equivalences of cofibrant spaces. The latter is proved by Lemma A.7 for which we take Γ = P (1)`−i ,
Z = P (`) or P (` ; ` − i), and the corresponding Γ op-equivariant equivalence between cofibrant (in T op) objects
is the map

∏`−i
j=1A(|pj |)→

∏`−i
j=1B(|pj |).

Proving the case P (0) , ∅. The only difference with the case P (0) = ∅ is that we need to take into account
the γ0-relation contracting the univalent pearls indexed by points coming from the image of P (0). For this
purpose, we change slightly the definition of the spaces M−2 (T ; A) and M−2 (T ; B). Thus one also needs to
check the three statements below.

• M−2 (T ; A) and M−2 (T ; B) are G2-cofibrant.
• M−2 (T ; A)→M2(T ; A) and M−2 (T ; B)→M2(T ; B) are G2-cofibrations.
• M−2 (T ; A)→M−2 (T ; B) is a weak equivalence.

Denote by ~A :=
∏`−i
j=1A(|pj |) and by ∂~A ⊂ ~A the subset consisting of points with at least one coordinate in

γ0(P (0)) ⊂ A(0). One has

M−2 (T ; A) =
(
P (`)×P (1)`−i ∂~A

) ∐
P (` ;`−i)×P (1)`−i ∂

~A

(
P (` ; ` − i)×P (1)`−i

~A
)
.

By the same argument as above, the functor

(−)×P (1)`−i ∂~A : (Σ`−i o P (1))×Σi-T op→ G2-T op

preserves cofibrations. As a consequence P (` ; ` − i) ×P (1)`−i ∂~A is G2-cofibrant and the inclusion P (` ; ` −
i)×P (1)`−i ∂~A→ P (`)×P (1)`−i ∂~A is a G2-cofibration. Moreover, we know that P (` ; `− i)×P (1)`−i

~A is G2-cofibrant.
We conclude that M−2 (T ; A) is so.

The fact that M−2 (T ; A)→M2(T ; A) is a G2-cofibration follows from Lemma A.8 applied to Γ = P (1)`−i ,
K1 = 1, K = K2 = G2, A→ B being P (` ; ` − i)→ P (`), and X→ Y being ∂~A→ ~A.

Finally, to prove that M−2 (T ; A)→M−2 (T ; B) is a weak equivalence, we apply Lemma A.7 again to show
that

P (` ; ` − i)×P (1)`−i ∂~A→ P (` ; ` − i)×P (1)`−i ∂~B,

P (`)×P (1)`−i ∂~A→ P (`)×P (1)`−i ∂~B,

P (` ; ` − i)×P (1)`−i
~A→ P (` ; ` − i)×P (1)`−i

~B,

are all the three weak equivalences. The statement follows. �

Theorem 2.18. (a) Let P , Q and S be as in Theorem 2.16. In the category ΣBimodP ;Q, cofibrations with domain
in S are componentwise cofibrations. In particular, the class S of objects is closed under cofibrations and cofibrant
(P -Q)-bimodules are always componentwise cofibrant.

(b) Assume additionally that Q is Σ-cofibrant. In the category ΣBimodP ;Q, cofibrations with domain in the
subclass SΣ ⊂ S of Σ-cofibrant objects, are Σ-cofibrations. The class SΣ is closed under cofibrations and cofibrant
(P -Q)-bimodules are always Σ-cofibrant.

Proof. Let A be a conponentwise cofibrant (P -Q)-bimodule. It is enough to check that any cellular extension
A→ C is a componentwise cofibration (respectively, Σ-cofibration). In the proof of Theorem 2.16 we define
a filtration (38) in C in which, as we proved, every inclusion Ci−1→ Ci is a componentwise cofibration.
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Additionally assuming that Q and A are Σ-cofibrant, one can show that any such inclusion is a Σ-
cofibration. The strategy is the same to filter this inclusion as in (39) and then to show that the left
vertical map in the first square (40) is a Σn-cofibration. The latter is proved by showing that each inclusion
M−(T ; A)→M(T ; A) is an Aut(T )-cofibration. Let H1 ⊂ Aut(T ) be the subgroup of elements that fix all
the pearls and the leaves above the primary pearls. This group permutes vertices above the section and
their leaves. It is normal and the quotient group H2 = Aut(T )/H1 is responsible for permuting the pearls
and leaves above the primary pearls. By essentially the same argument, the inclusion M−1 (T ) → M1(T )
is an Aut(T )-equivariant H1-cofibration and the inclusion M−2 (T ; A)→M2(T ; A) is an H2-cofibration (by
Lemma A.8 applied for Γ = P (1)`−i , K =H2, K1 ⊂H2 – the subgroup of permutations of leaves above primary
pearls). The proof is completed by revoking Lemma A.1. �

2.2.2 Extension/restriction adjunction for the projective model category of bimodules

Let φ1 : P → P ′ and φ2 : Q → Q′ be maps of operads. Similarly to the category of algebras (see The-
orem 1.7), we show that the projective model categories of (P -Q)-bimodules and of (P ′-Q′)-bimodules
are Quillen equivalent under some conditions on the maps φ1 and φ2. For this purpose, we recall the
constructions of the restriction functor φ∗ and the extension functor φ! in the context of bimodules:

φ! : ΣBimodP ;Q� ΣBimodP ′ ;Q′ : φ∗.

• The restriction functor. The restriction functor φ∗ sends a (P ′-Q′)-bimodule M to the (P -Q)-bimodule
φ∗(M) = {φ∗(M)(n) = M(n), n ≥ 0} in which the (P -Q)-bimodule structure is defined as follows using the
(P ′-Q′)-bimodule structure of M:

◦i : φ∗(M)(n)×Q(m) −→ φ∗(M)(n+m− 1);

x ; q 7−→ x ◦i φ2(q),

γ` : P (n)×φ∗(M)(m1)× · · · ×φ∗(M)(mn) −→ φ∗(M)(m1 + · · ·+mn);

p ; x1, . . . ,xn 7−→ φ1(p)(x1, . . . ,xn).

• The extension functor. The extension functor φ! is obtained as a quotient of the free (P ′-Q′)-bimodule
functor introduced in Section 2.1.2. More precisely, if M is a (P -Q)-bimodule, then the extension functor is
given by the formula

φ!(M)(n) = F Σ
P ′ ;Q′ (U

Σ(M))(n)/ ∼
where the equivalence relation is generated by the axiom which consists in contracting inner edges having a
vertex v below the section (respectively above the section) indexed by a point of the form φ1(p) (respectively
a point of the form φ2(q)) using the left P -module structure (respectively the right Q-module structure) of
M as illustrated in the following picture:

The (P ′-Q′)-bimodule structure on the free object is compatible with the equivalence relation and provides
a (P ′-Q′)-bimodule structure on φ!(M). Let us remark that the (P -Q)-bimodule mapM→ φ∗(φ!(M)), sending
a point x ∈M(n) to the n-corolla indexed by x, is not necessarily injective. For instance, if there are q1 , q2 in
Q(m) and x ∈M(n) such that φ2(q1) = φ2(q2) and x ◦i q1 , x ◦i q2, then x ◦i q1 and x ◦i q2 have the same image
in φ∗(φ!(M)) as illustrated in the following picture:
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Theorem 2.19. Let φ1 : P → P ′ be a weak equivalence between Σ-cofibrant operads and φ2 :Q→Q′ be a weak
equivalence between componentwise cofibrant operads. The extension and restriction functors, as well as their
truncated versions, give rise to Quillen equivalences:

(43) φ! : ΣBimodP ;Q� ΣBimodP ′ ;Q′ : φ
∗,

(44) φ! : TrΣBimodP ;Q� TrΣBimodP ′ ;Q′ : φ
∗.

Lemma 2.20. Any pair of operadic maps (φ1 , φ2), with φ1 : P → P ′ a weak equivalence between Σ-cofibrant
operads and φ2 :Q→Q′ a weak equivalence between componentwise cofibrant operads, induces a weak equivalence
φ+ : P+Q→ P ′+Q′ between Σ-cofibrant colored operads where P+Q and P ′+Q′ are colored operads obtained from
Construction 2.4.

Proof. According to Remark 2.5, for any family of integers n1, . . . ,nk and m, the spaces (P+Q)(n1, . . . ,nk ;m)
and (P ′+Q′)(n1, . . . ,nk ;m) have the following description:

(P+Q)(n1, . . . ,nk ;m) � P (k)×Q1(n1 + . . .+nk ;m) � P (k)×
∐

α:[m]→[n1+···+nk ]

∏
i∈[n1+···+nk ]

Q(|α−1(i)|),

(P ′+Q′)(n1, . . . ,nk ;m) � P ′(k)×Q′1(n1 + . . .+nk ;m) � P ′(k)×
∐

α:[m]→[n1+···+nk ]

∏
i∈[n1+···+nk ]

Q′(|α−1(i)|).

Consequently, the weak equivalences φ1 : P → P ′ and φ2 : Q→ Q′ induce a weak equivalence of colored
operads φ+ : P+Q→ P ′+Q′. Let Σ′ be the subgroup Σk which can send i to j if and only if ni = nj . This
group acts as a subgroup of Σk on the factor P (k) (respectively the factor P ′(k)) and it acts on the factor
Q1(n1 + . . .+nk ;m) (respectively, the factor Q′1(n1 + . . .+nk ;m)) by reordering the summands in the disjoint
union labelled by maps α : [m]→ [n1 + . . .+ nk]. The reordering is induced by permutation of the blocks
{1, . . . ,n1}, . . . , {n1 + · · ·+nk−1 + 1, . . . ,n1 + · · ·+nk} in [n1 + . . .+nk]. Consequently, the colored operads P+Q and
P ′+Q′ are Σ-cofibrant as soon as the operads P and P ′ are Σ-cofibrant and the components of Q and Q′ are
cofibrant. �

Proof of Theorem 2.19. As explained in Section 2.1.1, the projective model category of bimodules over an
operad is equivalent to the projective model category of algebras over a specific colored operad. If we denote
by P+Q and P ′+Q′ the colored operads obtained from Construction 2.4, then one has

φ! : ΣBimodP ;Q = AlgP+Q� AlgP ′+Q′ = ΣBimodP ′ ;Q′ : φ∗,

induced by the extension/restriction adjunction between the categories of algebras. Due to Lemma 2.20, the
induced map φ+ : P+Q→ P ′+Q′ is a weak equivalence between Σ-cofibrant colored operads. Consequently,
according to [BM1, Theorem 4.4] the extension/restriction adjunction between the categories of algebras is a
Quillen equivalence. �

• Bimodules with the empty set in arity zero. Consider the case where the acting operads P and Q are trivial
in arity zero P (0) = Q(0) = ∅ and consider the full subcategory Σ>0BimodP ;Q of (P -Q)-bimodules M also
satisfying M(0) = ∅. One can similarly to Construction 2.4 define a colored operad (P+Q)>0 that governs
this algebraic structure. Its set of colors is the set N>0 of positive integers. Its components can be similarly
described:

(45) (P+Q)>0(n1, . . . ,nk ;m) = P (k)×
∐

α:[m]�[n1+···+nk ]

∏
i∈[n1+···+nk ]

Q(|α−1(i)|).

The crucial difference is that the coproduct is taken over surjective maps α : [m]� [n1 + · · ·+nk].

Proposition 2.21. Let P and Q be componentwise cofibrant operads satisfying P (0) =Q(0) = ∅, then the colored
operad (P+Q)>0 is Σ-cofibrant.
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Proof. Consider the component (45) of (P+Q)>0. Let Σ′ be the subgroup of Σk which can send i to j if and
only if ni = nj . One has that P (k) is a cofibrant Σ′-space, while the second factor∐

α:[m]�[n1+···+nk ]

∏
i∈[n1+···+nk ]

Q(|α−1(i)|)

is Σ′-cofibrant. Indeed, since all α’s are surjective in the coproduct, the group Σ′ acts freely on this disjoint
union. Applying Lemma A.1 for G1 = 1, G = G2 = Σ′ , we get that the component (45) is Σ′-cofibrant. �

Theorem 2.22. Let φ1 : P → P ′ and φ2 :Q→Q′ be weak equivalences between componentwise cofibrant operads
satisfying P (0) = P ′(0) = Q(0) = Q′(0) = ∅. The extension and restriction functors, as well as their truncated
versions, give rise to Quillen equivalences:

(46) φ! : Σ>0BimodP ;Q� Σ>0BimodP ′ ;Q′ : φ
∗,

(47) φ! : TrΣ>0BimodP ;Q� TrΣ>0BimodP ′ ;Q′ : φ
∗.

Proof. The proof is similar to that of Theorem 2.19. We use Proposition 2.21 that the operads (P+Q)>0 and
(P ′+Q′)>0 governing these structures are Σ-cofibrant. �

3 The Reedy model category of (P -Q)-bimodules

Let P be any topological operad and Q be a reduced operad. From now on, we denote by ΛBimodP ;Q and
TrΛBimodP ;Q the categories of (P -Q)-bimodules and r-truncated (P -Q)-bimodules, respectively, equipped
with the Reedy model category structures. This structure is transferred from the categories ΛSeqP := P0 ↓
ΛSeq and TrΛSeqP := P0 ↓ TrΛSeq, respectively, along the adjunctions

(48)
F Λ
P ;Q : ΛSeqP � ΛBimodP ;Q : UΛ,

F TrΛP ;Q : TrΛSeqP � TrΛBimodP ;Q : UΛ,

where both free functors are obtained from the functors F Σ
P ;Q and F TrΣP ;Q by taking the restriction of the

coproduct (28) to the reduced trees with section without univalent vertices other than the pearls. The
(acyclic) generating cofibrations in ΛSeqP and TrΛSeqP are {P0t∂X→ P0tX}, where {∂X→ X} is the set of
(acyclic) generating cofibrations of ΛSeq and TrΛSeq, respectively.

If we denote by Q>0 the operad obtained from Q by changing the arity 0 component to the empty set (i.e.
Q>0(0) = ∅ and Q>0(n) =Q(n) for n ≥ 1), then for any (possibly truncated) Λ-sequence M and n ≥ 0, one has

(49) F Λ
P ;Q(M)(n)B F Σ

P ;Q>0
(M)(n) and F TrΛP ;Q (M)(n)B F TrΣP ;Q>0

(M)(n).

By construction, the above Σ-sequences are equipped with a (possibly truncated) right module structures
over Q>0. We can extend this structure in order to get a (possibly truncated) right Q-module structures
using the operadic structure of Q and the Λ structure of M.

Figure 11. Illustration of the right action by ∗0.

Theorem 3.1. Let P be an operad and Q be a reduced well-pointed operad. The categories ΛBimodP ;Q and
TrΛBimodP ;Q, with r ≥ 0, admit cofibrantly generated model category structures, called Reedy model category
structures, transferred from ΛSeqP and TrΛSeqP , respectively, along the adjunctions (48). In particular, these
model category structures make the pairs of functors (48) into Quillen adjunctions.
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Proof. According to the transfer principle 1.1, we have to check the small object argument as well as the
existence of a functorial fibrant replacement and a functorial factorization of the diagonal map in the
category ΛBimodP ;Q.

For the small object argument, let us remark that the pushout in the category of (P -Q)-bimodules is
defined exactly as in the category of (P -Q>0)-bimodules. More precisely, for any n ≥ 0, one has2:

(50) colim
ΛBimodP ;Q

(
B← A→ C

)
(n) = colim

ΣBimodP ;Q>0

(
B← A→ C

)
(n).

Let F Λ
P ;Q(X) be a domain of an element in the set of generating (acyclic) cofibrations in ΛBimodP ;Q.

Let λ = ℵ1 and assume that {Mα}α<λ is a λ-sequence of (P -Q)-bimodules, such that each map M<α :=
colimβ<αMβ →Mα fits into a pushout square

(51) F Λ
P ;Q(∂Y ) //

��

F Λ
P ;Q(Y )

��
M<α

// Mα ,

where ∂Y → Y is a possibly infinite coproduct in ΛSeqP of generating (acyclic) cofibrations. It follows
from Lemma 2.10 and equations (49) and (50), that each map M<α→Mα is an objectwise closed inclusion.
Moreover,

(∐
n≥0X(n)

)
\ P (0) is a finite union of spheres (or discs), thus separable, and therefore, X is

ℵ1-small relative to componentwise closed inclusions. So, the same argument used for the proof of the small
objects argument in Theorem 2.11 works.

Contrary to the category of ΣBimodP ;Q, the objects in the category ΛBimodP ;Q are not necessarily fibrant
and the identity functor is not a fibrant replacement functor. The aim of Section 3.1.1 is to introduce such
a fibrant replacement functor if Q is well-pointed. This fibrant replacement is different from the fibrant
coresolution functor for Λ-sequences defined in Section 1.3.

From now on, we introduce a functorial path object in the Reedy model category of (P -Q)-bimodules. In
other words, for any M ∈ΛBimodP ;Q which is fibrant in the category of Λ-sequences, we build an element
P ath(M) ∈ΛBimodP ;Q such that there is a factorization of the diagonal map

∆ :M '
f1
// P ath(M)

f2
// // M ×M,

where f1 is a weak equivalence and f2 is a fibration. Let us consider

(52) P ath(M)(n) =Map
(
[0 , 1] ;M(n)

)
.

The object so obtained inherits a bimodule structure from M. The map from M to P ath(M), sending a
point to the constant path, is clearly a homotopy equivalence. Furthermore, let us remark that one has the
following identities:

M(P ath(M))(n) =Map
(
[0 , 1] ;M(M)(n)

)
and M(M ×M)(n) =M(M)(n)×M(M)(n).

So, the map f2 is a fibration if the map between the limits induced by the natural transformation

P ath(M)(n)

��

P ath(M)(n)

��

P ath(M)(n)

��
Map

(
[0 , 1] ;M(M)(n)

)
//M(M)(n)×M(M)(n) M(n)×M(n)oo

is a Serre fibration. The right vertical map is obviously a Serre fibration because the inclusion from ∂[0 , 1]
into [0 , 1] is a cofibration (see the proof of Theorem 2.11). Moreover, since the inclusion ∂[0 , 1]→ [0 , 1]

2The forgetful functor from the category of (P -Q)-bimodules to the category of (P -Q>0)-bimodules preserves colimits as it admits a
right adjoint by Proposition 3.14b for Q1 =Q, Q2 =Q>0, Y =Q.
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is a cofibration and the map M(n)→M(M)(n) is a fibration, an alternative version of the pushout product
lemma (see [Hir, Section 9.1.5]) implies that the map

Map
(
[0 , 1] ;M(n)

)
−→Map

(
[0 , 1] ;M(M)(n)

)
×

Map
(
∂[0 ,1] ;M(M)(n)

)Map(∂[0 , 1] ;M(n)
)

is also a Serre fibration. As a consequence of Lemma 1.5, the map f2 is a Serre fibration. �

3.1 Properties of the Reedy model category of bimodules

This subsection is divided into three parts. The first one is devoted to the construction of an explicit
fibrant coresolution functor for reduced bimodules. In the second part, we characterize (acyclic) cofibrations
in the Reedy model category of bimodules as (acyclic) cofibrations in the usual projective model category of
bimodules. The last part consists in extending the properties introduced in Section 2.2 to the Reedy model
category.

3.1.1 A Reedy fibrant replacement functor for bimodules

Let P be an operad and Q be a reduced operad. The goal of this section is to give an explicit Reedy fibrant
replacement in the category of bimodules if the operad Q is well-pointed. A conceptual description of this
fibrant coresolution in terms of internal hom is given in Section 3.3.

• The set of trees P[n]. Let P[n] be the set of planar trees T whose roots have exactly n incoming edges. We
label their leaves with the identity permutation in Σ|T |, where |T | is the number of leaves in T . We also
label the n incoming edges bijectively by the set [n] in the planar order from left to right. Such a tree T is
equipped with an orientation towards the root and we say that v < v′ if the path joining the vertex v′ with
the root passes through the vertex v. It makes the set of vertices V (T ) into a partially ordered set. Moreover,
we consider the operations

δi,m : P[n+m− 1] −→ P[n], with n,m ∈ N and 1 ≤ i ≤ n,

Γmk : P[n] −→ P[m], with n,m,k ∈ N and m+ k ≤ n,
The operation δi,m(T ) is defined as follows. If m = 0, then δi,m consists in adding an incoming edge to

the root of T at the i-th position. The new incoming edge is connected to a univalent vertex. If m > 0, then
δi,m(T ) is obtained from T by gluing together the incoming edges i, i + 1, . . . , i +m− 1, of the root counted
according to the planar order. In both cases, δi,m(T ) has one additional vertex to those of T . The new vertex
has exactly m incoming edges.

Figure 12. Illustration of the applications δ2,0 and δ2,3.

For any n, m and k such that m+ k ≤ n, the map Γmk : P[n]→ P[m] consists in removing n−m incoming
edges together with the trees attached to them. The removed edges are those labelled by [n]\ {k+1, . . . , k+m}.
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Figure 13. Illustration of the applications Γ 2
1 and Γ 2

0 .

• Construction of the fibrant replacement functor. From now on, we fix a (P -Q)-bimodule M. Let T be an
element in P[n]. We consider the spaces H(T ) of indexing the vertices of T other than the root r by real
numbers and points in the operad Q, respectively. More precisely, one has

D(T ) =
∏

v∈V (T )\{r}
Q(|v|),

H(T ) =
{
{tv} ∈ [0 , 1]|V (T )\{r}|

∣∣∣∀v < v′ , tv ≤ tv′ } .
In other words, H(T ) is the space of order preserving maps

V (T ) \ {r} → [0,1].

Finally, we denote by Mf (n) the subspace

(53) Mf (n) ⊂
∏
T ∈P[n]

Map
(
H(T )×D(T ) ;M(|T |)

)
composed of families of continuous maps {fT }T ∈P[n] satisfying the following conditions:

1. Let T be an element in P[n] having a bivalent vertex v other than the root. Then one has

(54) H(T )×D(T \ {v}) //

��

H(T )×D(T )

fT
��

H(T \ {v})×D(T \ {v})
fT \{v}

// M(|T \ {v}|) =M(|T |)

where T \ {v} is the tree obtained from T by removing the bivalent vertex v (i.e. by replacing the
incoming and outgoing edges of v by a single edge). The upper horizontal map indexes the vertex v
by the unit of the operad Q while the left vertical map is obtained by forgetting the the real number
indexing the bivalent vertex v.

2. For any non-root vertex v of T and any permutation σ of the incoming edges of v, one has

(55) H(T )×D(T ) //

fT
��

H(T · σ )×D(T · σ )

fT ·σ
��

M(|T |)
σL[T ]∗

// M(|T · σ |) =M(|T |)

where T · σ is the tree obtained from T by permuting the incoming edges of v according to the
permutation σ and σL[T ] ∈ Σ|T | is the induced permutation of the leaves of T . The upper horizontal
map sends the decorations of the tree T to the corresponding decorations of T · σ and acts on the
Q-decoration of the vertex v using the Σ-structure of the operad Q.
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3. For any inner edge e, which is not connected to the root, one has

(56) H(T /e)×D(T ) //

��

H(T )×D(T )

fT
��

H(T /e)×D(T /e)
fT /e
// M(|T /e|) =M(|T |)

where T /e is the tree obtained from T by contracting the edge e. The upper horizontal map indexes
the source and the target vertices of e by the real number in H(T /e) corresponding to the vertex
resulting from the contraction of e. The left vertical map is defined using the operadic structure
of Q.

4. Any tree T has a unique decomposition of the form T = Te ◦i(e) T ′e along any edge e. Then one has

(57) H(Te)×D(Te)×
∏

v∈V (T ′e )
Q(|v|) //

fTe×η

��

H(T )×D(T )

fT

��
M(|Te |)×Q(|T ′e |)

◦i(e)
// M(|T |)

The upper horizontal map consists in indexing the vertices associated to the tree T ′e by 1. The map
η :

∏
v∈V (T ′e )Q(|v|)→Q(|T ′e |) is defined using the operadic structure of Q while the lower horizontal

map is obtained using the right Q-module structure of M.

Remark 3.2. Let us notice that, as a special case of the fourth condition, for any univalent vertex v, one has

H(T \ {v})×D(T \ {v}) //

fT \{v}
��

H(T )×D(T )

fT
��

M(|T \ {v}|) =M(|T |+ 1)
◦v∗0

// M(|T |)

where T \ {v} is the tree obtained from T by removing the univalent vertex v (and thus producing one more
leaf). The upper horizontal map consists in indexing the vertex v by the real number 1 and the unique point
∗0 ∈Q(0). The lower horizontal map composes the input of M(|T \ {v}|), corresponding to the vertex v, with
the point ∗0 ∈Q(0) using the right Q-module structure of M.

• The Σ-structure on the fibrant coresolution. The space Mf (n) inherits an action of the permutation group Σn.
More precisely, for any σ ∈ Σn, we denote by Tσ the tree obtained from T ∈ P[n] by permuting the incoming
edges associated to the root of T according to the permutation σ . Such a permutation induces the following
two bijections:

(58)
σV [T ] : V (T \ {r}) −→ V (Tσ \ {r}) ∈ Σ|V (T )\{r}|,

σL[T ] : `(T ) −→ `(Tσ ) ∈ Σ|T |.

Here, `(T ) denotes the set [|T |] of leaves. So, the action of the permutation group σ ∗ :Mf (n)→Mf (n) sends
a family of continuous maps {fT }T ∈P[n] to the family {(f · σ )T }T ∈P[n] given by the formula

(f · σ )T :H(T )×D(T ) −→ M(|T |);

{tv} , {qv} 7−→ fTσ
(
{tσV [T ](v)} , {qσV [T ](v)}

)
· σL[T ].

• The bimodule structure on the fibrant coresolution. Since one has the identity Mf (0) =M(0), one has a map
γ0 : P (0)→Mf (0) and the Σ-sequence Mf inherits a (P -Q)-bimodule structure whose right operations are
given by

(59)
◦i :Mf (n)×Q(m) −→ Mf (n+m− 1);

{fT }T ∈P[n] , q 7−→ {(f ◦i q)T }T ∈P[n+m−1],
43



where (f ◦i q)T is the composite map:

(f ◦i q)T :H(T )×D(T ) // H(δi,m(T ))×D(δi,m(T ))
fδi,m(T )

// M(|δi,m(T )|) =M(|T |).

The left hand side map consists in indexing the new vertex by the real number 0 and the point q ∈ Q(m).
Similarly, the left P -module structure on Mf is given by the operations

γ` : P (k)×Mf (n1)× · · · ×Mf (nk) −→ Mf (n1 + · · ·+nk);

p , {f 1
T }T ∈P[n1], . . . , {f kT }T ∈P[nk ] 7−→ {p(f 1, . . . , f k)T }T ∈P[n1+···+nk ],

where p(f 1, . . . , f k)T is the composite map

H(T )×D(T )

�

��

p(f 1,...,f k )T // M(|T |)

∏
1≤i≤k

H(Γ nin1+···+ni−1(T ))×D(Γ nin1+···+ni−1(T ))
×ifΓnin1+···+ni−1

(T )
// ∏
1≤i≤k

M(|Γ nin1+···+ni−1(T )|).

γ`(p;−,··· ,−)

OO

Finally, there is a map of (P -Q)-bimodules η : M → Mf sending a point m ∈ M(n) to the family of
continuous maps {η(m)T }T ∈P[n] given by the formula

η(m)T :H(T )×D(T ) −→ M(|T |);
{tv} , {qv} 7−→ m ◦ {qv},

using the right Q-bimodule structure of M. It means that m is taken for a root and we compose with {qv}
using the operadic structure of Q and the right module structure of M.

Proposition 3.3. The map η :M→Mf is a weak equivalence.

Proof. The proof is similar to the proof of Proposition 1.3. We show that the map of Λ-sequences ηn :M(n)→
Mf (n) is a homotopy equivalence of Σ-sequences. For this purpose, we introduce a map of Σ-sequences
ψ :Mf →M given by

ψn : Mf (n) // M(n);

{fT }T ∈P[n]
� // fCn(∗),

where Cn is the n-corolla whose corresponding space H(Cn)×D(Cn) is necessarily the one point topological
space. The map ψ so obtained makes η into a deformation retract and the homotopy consists in bringing the
real numbers indexing the vertices other than the root to 1. �

Proposition 3.4. If the operad Q is well-pointed, then the (P -Q)-bimodule Mf is Reedy fibrant.

Proof. The proof is divided into two parts. First, we identify the matching objectM(Mf )(n) with a space
M0(n) defined in the same way as Mf (n) by changing slightly the construction of the space H(T ). Thereafter,
we build a tower of fibrations related to Mf (n) andM0(n) according to the number of vertices of the trees in
P[n]. In the proof we use equivariant homotopy theory techniques from Appendix A.2.

Simplification of the matching object: We say that two trees T1 and T2 from P[n] are equivalent if they
are isomorphic as non-planar trees and moreover the isomorphism between T1 and T2 preserves the order of
the incoming edges of the root r. We denote by T[n] the so obtained set of equivalence classes. For T ∈ T[n]
we denote by Aut(T ) the set of automorphisms of T which preserve the order of the incoming edges to the
root. Let |T | denote the number of leaves of T . For each T ∈ T[n] we choose a planar representative and
we label the leaves of T in the corresponding planar order they appear. This gives us a homomorphism
Aut(T )→ Σ|T |, which is not always injective due to the presence of arity zero vertices.

Because of the relation (55), the space Mf (n) can be equivalently described as the subspace

Mf (n) ⊂
∏
T ∈T[n]

MapAut(T )

(
H(T )×D(T ) ;M(|T |)

)
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composed of families of continuous maps {fT }T ∈T[n] satisfying the conditions (54), (56), (57) properly
understood.

For any tree T ∈ T[n], we denote by H0(T ) the subspace of H(T ) which consists of points having at least
one univalent vertex labelled by 0 and connected to the root of T . LetM0(n) be the subspace

M0(n) ⊂
∏
T ∈T[n]

MapAut(T )

(
H0(T )×D(T ) ;M(|T |)

)
,

satisfying the relations (54), (56) and (57). In order to show that the space M0(n) is homeomorphic to
the matching objectM(Mf )(n), we recall that a point inM(Mf )(n) is a family of maps {φT ,h}, indexed by
h ∈Λ+([`], [n]), T ∈ T[`] and ` < n, satisfying some conditions related to the limit (3) as well as the relations
(54), (56) and (57).

For each pair (T ,h), with h ∈Λ+([`], [n]) and T ∈ T[`], we denote by T [h] the tree in T[n] obtained from T
by adding univalent vertices connected to the root according to the order preserving map h (see Figure 14).
So the map

α :M0(n) −→ M(Mf )(n);

φ = {φT } 7−→ {(α ◦φ)T ,h},
is given by the composite maps

(α ◦φ)T ,h :H(T )×D(T ) // H0(T [h])×D(T [h])
φT [h] // M(|T [h]|) =M(|T |),

where the left hand side map consists in indexing the new univalent vertices by the unique point in Q(0)
and the real number 0.

Figure 14. Illustration of the construction of T [h].

Conversely, for any tree T ∈ T[n] and {tv} ∈ H0(T ), we denote by `{tv } the number of incoming edges
of the root of T which are not connected to univalent vertices indexed by 0. Furthermore, we denote by
h[{tv}] : [`{tv }]→ [n] the order preserving map which keeps in mind the position of the incoming edges of the
root which are not connected to a univalent vertex indexed by 0. Finally, T [{tv}] ∈ T[`{tv }] is the tree obtained
from T by removing the incoming edges of the root which are connected to a univalent vertex indexed by 0.
So, one has the map

β :M(Mf )(n) −→ M0(n);

φ = {φT ,h} 7−→ {(β ◦φ)T },
given by

(β ◦φ)T :H0(T )×D(T ) −→ M(|T |);
{tv} , {qv} 7−→ φT [{tv }],h[{tv }]({t̃v} , {q̃v}),

where the families {t̃v} and {q̃v} are obtained from {tv} and {qv}, respectively, by removing the parameters
corresponding to the univalent vertices indexed by 0 and connected to the root. The map β is well defined
due to the relations induced by the limit and, together with the map α, induces a homeomorphism between
M0(n) and the matching objectM(Mf )(n). Furthermore, the map from Mf (n)→M(Mf )(n) is equivalent to
the restriction map

r :Mf (n) −→M0(n),
induced by the inclusion H0(T )→H(T ) for any tree T ∈ T[n].

45



Construction of the tower of fibrations: We construct a tower of fibrations according to the number of
vertices of the trees in T[n]:

M0(n) = A0 A1
oo · · ·oo Ak−1

oo Akoo · · ·oo Mf (n).oo

For this purpose, we introduce the set T[n,k] of trees in T[n] having exactly k vertices. In particular, T[n,1]
has only one element which is the n-corolla Cn. The space Ak is defined as the subspace

Ak ⊂


∏

T ∈T[n,i]
i≤k

MapAut(T )

(
H(T )×D(T ) ;M(|T |)

)×


∏
T ∈T[n,i]

i>k

MapAut(T )

(
H0(T )×D(T ) ;M(|T |)

)
composed of families of continuous maps {fT }T ∈T[n] satisfying the conditions (54), (56), (57).

The space Ak is defined by induction from Ak−1 using the pullback diagram:

(60) Ak //

��

∏
[T ]∈T[n,k]

MapAut(T )

(
H(T )×D(T ) ;M(|T |)

)

��
Ak−1

//
∏

[T ]∈T[n,k]

MapAut(T )

(
(H ×D)−(T ) ;M(|T |)

)
,

In the diagram above, for any tree T ∈ T[n,k], D−(T ) is the subspace of D(T ) formed by points having at
least one bivalent vertex labelled by the unit of the operad Q. On the other hand, the space H−(T ) ⊂H(T )
consists of points in H0(T ) or having two consecutive vertices indexed by the same real number or having a
vertex indexed by 1. Then we set

(H ×D)−(T ) :=
(
H−(T )×D(T )

) ∐
H−(T )×D−(T )

(
H(T )×D−(T )

)
.

To show that the map Ak → Ak−1 is a Serre fibration, one has to prove that the right vertical map in (60) is
one. Let t be the number of arity one (non-root) vertices of T . Denote by

D1(T ) :=Q(1)×t , D,1(T ) :=
∏

v∈V (T )\{r}
|v|,1

Q(|v|).

One has, D(T ) = D1(T )×D,1(T ). We similarly denote by D−1 (T ) the subset consisting of points having at
least one coordinate equal to the unit ∗1 ∈Q(1) and define

(H ×D1)−(T ) :=
(
H−(T )×D1(T )

) ∐
H−(T )×D−1 (T )

(
H(T )×D−1 (T )

)
.

We have

(61) (H ×D)−(T ) = (H ×D1)−(T )×D,1(T ) and (H ×D)(T ) = (H ×D1)(T )×D,1(T ).

Recall Definition A.9 of a cellularly equivariant cofibration. Let n denote the ordered set {0,1, . . . ,n+ 1}. The
dual to the simplicial indexing category ∆ can be defined as the category having {n, n ∈ N} as the set of
objects with morphisms order preserving maps that also preserve both extrema. The space H(T ) can be
described as the realization of the simplicial set HT (•) with HT (n) being the set of order preserving maps

(62) V (T ) \ {r} → n.

Note that H−(T ) is the realization of a simplicial subset H−T (•) ⊂ HT (•). It consists of order-preserving
maps (62) which are either sending an arity zero vertex of T to 0 or non-injective or sending some vertex of T
to the maximal element. By Lemma A.11, the inclusion H−(T )→ H(T ) is a cellularly Aut(T )-equivariant
cofibration. Using the fact that the operad Q is well-pointed and also applying Lemmas A.12, A.13, A.14, we
get that the inclusion (H ×D1)−(T )→H(T )×D1(T ) is a cellularly Aut(T )-equivariant cofibration.
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Using the fact that the category T op is cartesian closed, for any X ∈ Aut(T )-T op, one has a homeomor-
phism

(63) MapAut(T )

(
X ×D,1(T ) ;M(|T |)

)
=MapAut(T )

(
X ;Map

(
D,1(T ) , M(|T |)

))
,

where the Aut(T )-action on Map
(
D,1(T ) , M(|T |)

)
is defined by (f · g)(x) = f (x · g−1) · g, g ∈ Aut(T ). Applying

this homeomorphism to (61) and then Lemma A.10 to the right vertical map in (60), we get that the latter is
a Serre fibration.

�

Remark 3.5. The same strategy can be used in order to get a fibrant replacement functor for the Reedy
model category of r-truncated (P -Q)-bimodules. The fibrant replacement should be defined as a subspace of
the product (53) with an additional restriction |T | ≤ r. The constraints are the same.

3.1.2 Characterization of Reedy cofibrations for bimodules

It has been shown by the second author [Fre2, Theorem 8.3.20] that a map of Λ-sequences is a Reedy
cofibration if and only if it is a projective Σ-cofibration. In the context of operads, he also proves [Fre2,
Theorem 8.4.12] that a map φ : P →Q between reduced operads is cofibrant in the Reedy model category
Λ∗Operad if and only if the corresponding map φ>0 : P>0 → Q>0 is a cofibration in the projective model
structure of (not necessarily reduced) operads. In what follows, we prove an analogous version in the context
of operadic bimodules.

Theorem 3.6. Let P and Q be as in Theorem 3.1. A morphism φ :M→N in the category of (possibly truncated)
(P -Q)-bimodules is a Reedy cofibration if and only if the corresponding map φ is a cofibration in the projective
model category of (possibly truncated) (P -Q>0)-bimodules.

Proof. First, we show that if the induced map is a cofibration in the projective model category of (P -Q>0)-
bimodules then the map φ : M → N is a Reedy cofibration in the category of (P -Q)-bimodules. For this
purpose, we consider the following lifting problem in the category of (P -Q)-bimodules:

(64) M
i //

φ
��

A

p'
����

N
j
//

∃ϕ?
>>

B

where p : A→ B is an acyclic Reedy fibration. The strategy is to build the map ϕ by induction using an
adjunction between (P -Q)-bimodules

ars : ΛBimodP ;Q�ΛBimodP ;Q : cosks.

The functor ars, called the arity filtration functor, sends a (P -Q)-bimodule M to the bimodule ars(M) defined
as a quotient of the free (P -Q>0)-bimodule generated by the first s components of M where the equivalence
relation is determined by the restriction of the bimodule structure on the first s components of M. In other
words, if Ls denotes the left adjoint to the truncation functor Ts, then the arity filtration functor is given by
ars = Ls ◦ Ts. By construction, ars(M) is a (P -Q)-bimodule and one has the identities

ars−1 ◦ ars = ars−1, colimsars(M) =M and ars(M)(k) =M(k), for k ≤ s.

Let us notice that, even though this functor is called filtration, the natural map ars(M)→M might not be an
inclusion. First, we give an explicit description of the right adjoint of the arity filtration functor.

The Λ-coskeletons associated to a bimodule. According to the notation introduced by the second author
[Fre2], the Σ-sequence cosks(M) = {cosks(M)(n),n ≥ 0}, called the s-th coskeleton associated to the bimodule
M, is given by the formula

(65) cosks(M)(n) = lim
h∈Λ+([i] ; [n])

0≤i≤s

M(i), with n ≥ 0.
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As a matter of fact, the right adjoint Rs, to the s-truncation functor Ts, is defined by the same formula.
Similarly to the arity filtration functor, the functor cosks is also given by

cosks = Rs ◦ Ts.
By construction, a point x ∈ cosks(M)(n) is a family of elements x = {xh ∈M(i),h ∈Λ+([i] ; [n]) and i ≤ s}

satisfying the relation of the limit: for any f ∈ Λ+([i] ; [j]) and g ∈ Λ+([j] ; [n]), one has f ∗(xg ) = xg◦f . In
particular, cosks(M)(0) =M(0) is obviously endowed with a map from P (0). Furthermore, the Σ-sequence
cosks(M) inherits a Λ-structure. For any f ∈Λ+([n1] ; [n2]), one has

(66)
f ∗ : cosks(M)(n2) −→ cosks(M)(n1);

{xu}0≤i≤sh∈Λ+([i] ; [n2]) 7−→ {xf ◦u}0≤i≤su∈Λ+([i] ; [n1]).

The Λ-sequence cosks(M) is also a (P -Q)-bimodule. In order to define the right operations, we introduce
some notation. Let n,m > 0, l ∈ {1, . . . ,n} and h ∈Λ+([i] ; [n+m− 1]). If we denote by `1 ∈Λ+([m] ; [n+m− 1])
and `2 ∈Λ+([n] ; [n+m− 1]) the order preserving maps

`1 : [m] −→ [n+m− 1]; and `2 : [n] −→ [n+m− 1];

α 7−→ α + `, α 7−→
{
α if α ≤ `,
α +m if α > `,

then there exist unique morphisms h1 and h2 making the following diagrams commute:

[i] h // [n+m− 1]

[|Im(`1)∩ Im(h)|]

OO

h1

// [m]

`1

OO [i] h // [n+m− 1]

[|Im(`2 \ {`})∩ Im(h)|]

OO

h2

// [n]

`2

OO

Finally, if we denote by ` = ` − |{α ∈ [i] |h(α) < `}|, then the right operations are defined as follows:

(67)
◦i : cosks(M)(n)×Q(m) −→ cosks(M)(n+m− 1);

{xu}0≤i≤su∈Λ+([i] ; [n]) ; q 7−→ {xh2
◦` h∗1(q)}0≤i≤sh∈Λ+([i] ; [n+m−1])

Let k1, . . . , k` > 0 and h ∈ Λ+([i] ; [k1 + · · · + k`]). In order to define the left operation, we introduce the
morphism `i ∈Λ+([ki] ; [k1 + · · ·+ k`]) sending α to α + k1 + · · ·+ ki−1. Then there exists a unique morphism hi
such that the following diagram commutes:

[i] h // [k1 + · · ·+ k`]

[|Im(h)∩ Im(`i)|] hi
//

OO

[ki]

`i

OO

Finally, the left operation is given by the formula

γ : P (`)× cosks(M)(k1)× · · · × cosks(M)(k`) −→ cosks(M)(k1 + · · ·+ k`);
p ; {x1

u1
} , . . . , {x`u` } 7−→ {p(x1

h1
, . . . ,x`h` )}

0≤i≤s
h∈Λ+([i] ; [k1+···+k`])

.

The arity filtration and the coskeleton functors form an adjunction. For any pair of reduced (P -Q)-
bimodules M and N , we define below a homeomorphism between the mapping spaces of (P -Q)-bimodules:

(68) F : ΛBimodP ;Q(ars(M) ;N )�ΛBimodP ;Q(M ; cosks(N )) : G.

Let f : M → cosks(N ) be a bimodule map. The bimodule map G(f ) is defined by induction. If n ≤ s and
x ∈ ars(M)(n) = M(n), then G(f )(x) = f (x)[n]→[n], the point indexed by the identity order preserving map.
From now on, we assume thatG(f ) is defined for any element ars(M) until the arity n ≥ s. Let x ∈ ars(M)(n+1).
Then one has

G(f )(x) =

 G(f )(x′) ◦i y if x = x′ ◦i y,
y(G(f )(x1), . . . ,G(f )(x`)) if x = y(x1, . . . ,x`).
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Conversely, let g : ars(M)→N be a bimodule map. Then one has

F(g)n :M(n) −→ cosks(N )(n);

x 7−→ {xh = g ◦ h∗(x)}0≤i≤sh∈Λ+([i] ; [n]).

The arity functor ars preserves ΣBimodP ,Q>0
-cofibrations. The functor ars can be defined on the category

ΣBimodP ,Q>0
and it fits into a Quillen adjunction

(69) ars : ΣBimodP ,Q>0
� ΣBimodP ,Q>0

: trs,

where trs is the truncation functor trs(L)(n) =

L(n), n ≤ s;
∗, n > s.

One has a square of functors

ΛBimodP ;Q
ars //

U
��

ΛBimodP ;Q

U
��

ΣBimodP ,Q>0

ars // ΣBimodP ,Q>0
.

The vertical arrows denote the forgetful functor. This square commutes by the same argument as in the case
of operads, see [Fre2, Theorem 8.4.12]. One checks it first for free bimodules: arsF Λ

P ;Q(L) = F Λ
P ;Q(L≤s) and

arsF Σ
P ;Q>0

(L) = F Σ
P ;Q>0

(L≤s). Here, L≤s denotes the sequenceL(n), n ≤ s;
∅, n > s.

It follows from (49) that the square commutes for free bimodules. The forgetful functor U preserves colimits
as it has a right adjoint by Proposition 3.14b for Q1 = Q, Q2 = Q>0, Y = Q. So do the functors ars. On the
other hand, any bimodule can naturally be seen as a coequalizer of free ones. The adjunction (69) is a Quillen
adjunction as trs preserves fibrations and equivalences. As a consequence, ars : ΣBimodP ,Q>0

→ ΣBimodP ,Q>0
preserves cofibrations.

Construction of the lift by induction. We work out our lifting problem (64) by an inductive construction
on arity. By definition, one has ar0(N ) = N0 (that is N (0) in arity 0 and the empty set otherwise) and
ar0(M) =M0. Consequently, the bimodule map ϕ0 : ar0(N )→ A is obtained as a lift of the following diagram
of P -algebras:

M(0)
i0 //

φ0

��

A(0)

p0

��
N (0)

j0
// B(0)

Such a lift exists. Indeed, the left vertical map is a cofibration of P -algebras since the arity functor preserves
cofibrations. Moreover, since p is an acyclic Reedy fibration, the map A(0)→ B(0)×M(B)(0)M(A)(0) = B(0) is
an acyclic Serre fibration.

Then we assume that the bimodule map ϕs−1 : ars−1(N )→ A is well defined. We consider the following
diagram in the category of reduced (P -Q)-bimodules:

(70) ars(M)
∐

ars−1(M)

ars−1(N )
(i◦ι ;ϕs−1) //

(ars(φ) ; ι)
��

A

p'
����

ars(N )
j◦ι

//

∃ϕs?

66

B

where the upper horizontal map is defined using the map i ◦ ι : ars(M)→M→ A on the first summand and
the map ϕs−1 : ars−1(N )→ A on the second summand. By applying the identifications ars−1 ◦ ars = ars−1 and
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ars ◦ ars = ars together with the adjunction (68), we get that the lifting problem (70) becomes equivalent to a
lifting problem of the following form in the category of reduced (P -Q)-bimodules:

(71) ars(M)
F(i◦ι) //

ars(φ)

��

cosks(A)

π×cosks(p)'
��

ars(N )
F(ϕs−1)×F(ars(j))

//

∃ϕ̃s
44

cosks−1(A) ×
cosks−1(B)

cosks(B).

The left vertical map is a cofibration in ΣBimodP ,Q>0
since the arity functor preserves cofibrations. On the

other hand, the right vertical map is an acyclic Serre fibration in both the projective model category of
Σ-sequences and the Reedy model categories of Λ-sequences, see the proof of [Fre2, Theorem 8.3.20]. In
that proof the second author has a similar diagram (loc. cit. equation (6)), but in the category of Λ-sequence.
The coskeleton functors are defined on the category ΛSeq by the same formula (65). Thus, the second author
shows that for any Reedy fibration A→ B of Λ-sequences, the induced map

cosks(A)→ cosks−1(A) ×
cosks−1(B)

cosks(B)

is an acyclic both Reedy and (therefore) Serre fibration. As a consequence the lift ϕ̃s of Diagram (71) exists
in the category of (P -Q>0)-bimodules.

The morphism ϕ is compatible with the Λ-structure. By definition, let us remark that one has the identifi-
cations cosks−1(N )(s) =M(N )(s) and cosks−1(A)(s) =M(A)(s). By construction of the map F from (68) applied
to ϕs−1 : ars−1 ◦ ars(N )(s)→ A(s), on has the factorization

F(ϕs−1) : ars(N )(s) =N (s) //M(N )(s)
M(p) //M(A)(s).

Consequently, the commutativity of diagram (71) implies the commutativity of the square:

ars(N )(s) =N (s) //

��

cosks(A)(s) = A(s)

π
��

M(N )(s) // cosks−1(A)(s) =M(A)(s).

It follows that our morphism ϕ̃s intertwines the action of the restriction operators h : [n1]→ [n2]. This
proves that ϕ̃s and, therefore, ϕs are morphisms of reduced bimodules preserving the Λ-structure. Thus so
is ϕ = limsϕs.

Conversely. The forgetful functor U : ΛBimodP ;Q → ΣBimodP ,Q>0
preserves colimits. Therefore, it is

enough to check the statement for generating cofibrations in ΛBimodP ;Q. The latter are given by applying
the free functor F Λ

P ;Q to the generating cofibrations of ΛSeqP . On the other hand, Λ-cofibrations are always

Σ-cofibrations and the free functor F Λ
P ;Q agrees with F Σ

P ;Q>0
, see (49). �

3.1.3 Left properness and extension/restriction functors for the Reedy model structure

As seen in Section 2.2, under some conditions on the operads, the projective model category of bimodules
is relatively left proper and the extension/restriction adjunctions are Quillen equivalences. In what follows,
we show that the Reedy model category inherits the same properties as a consequence of the characterization
of Reedy cofibrations in the previous section.

Theorem 3.7. Let P be an operad and Q be a reduced and well-pointed operad. The Reedy model category
ΛBimodP ;Q is right proper. If P (0) ∈ T op is a cofibrant space, P>0 ∈ ΣOperad is a cofibrant operad and Q
is componentwise cofibrant, then ΛBimodP ;Q is left proper relative to the class S of componentwise cofibrant
bimodules for which the arity zero left action map γ0 is a cofibration. In the latter case, cofibrations with domain in
S are componentwise cofibrations, implying that the class of objects S is closed under cofibrations. If in addition Q
is Σ-cofibrant, then cofibrations with domain in the subclass SΣ ⊂ S of Σ-cofibrant objects are Σ-cofibrations, and
SΣ is also closed under cofibrations.
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Proof. The first statement is proved in exactly the same way as Theorem 2.14 using the facts that a Reedy
fibration is always a projective (componentwise) fibration and that pullbacks (and more generally limits) in
the category of bimodules are defined componentwise and the fact that the category of spaces is right proper.
For the other statements, we first recall that the forgetful functor U : ΛBimodP ;Q→ ΣBimodP ;Q>0

preserves
colimits3. In particular, pushouts are sent to pushouts. By Theorem 3.6, it also creates cofibrations. The
statements then follow from the analogous statements Theorems 2.16 and 2.18 for ΣBimodP ;Q>0

. �

Let φ1 : P → P ′ be a weak equivalence of operads and φ2 : Q→ Q′ be a weak equivalence of reduced
operads. Similarly to Section 2.2.2, we show that, under some conditions, the Reedy model categories of
(P -Q)-bimodules and (P ′-Q′)-bimodules are Quillen equivalent. By abuse of notation, we denote by φ∗ and
φ! the restriction functor and the extension functor, respectively, between the Reedy model categories:

(72) φ! : ΛBimodP ;Q�ΛBimodP ′ ;Q′ : φ∗.

In the same way as in Section 2.2.2, for any M ∈ΛBimodP ;Q and M ′ ∈ΛBimodP ′ ;Q′ , one has

φ!(M) = {φ!(M)(n) = F Λ
P ′ ;Q′ (U

Λ(M))(n)/ ∼, n ≥ 0},

φ∗(M ′) = {φ∗(M ′)(n) =M ′(n), n ≥ 0}.

Theorem 3.8. Let φ1 : P → P ′ be a weak equivalences of Σ-cofibrant operads and φ2 : Q → Q′ be a weak
equivalence between reduced and componentwise cofibrant operads. Then one has Quillen equivalences

(73) φ! : ΛBimodP ;Q�ΛBimodP ′ ;Q′ : φ
∗,

(74) φ! : TrΛBimodP ;Q� TrΛBimodP ′ ;Q′ : φ
∗.

Proof. Since the restriction functor creates weak equivalences, one has a Quillen equivalence if, for any
Reedy cofibrant object M in ΛBimodP ;Q, the adjunction unit

(75) M −→ φ∗(φ!(M))

is a weak equivalence. To prove it, we consider the adjunction φ̃! : ΣBimodP ;Q>0
� ΣBimodP ′ ;Q′>0

: φ̃∗

induced by the weak equivalences of operads φ1 : P → P ′ and φ>0
2 : Q>0→Q′>0. By construction, one has the

identity

φ∗(φ!(M)) = φ̃∗(φ̃!(M)).

By Theorem 2.19, the extension/restriction adjunction (φ̃!, φ̃
∗) is a Quillen equivalence. Moreover, thanks to

the characterization of Reedy cofibrations, M is also cofibrant in the projective model category ΣBimodP ,Q>0

and the map M −→ φ̃∗(φ̃!(M)) = φ∗(φ!(M)) is a weak equivalence. �

3.2 The connection between the model category structures on bimodules

Similarly to the operadic case in [FTW], we build a Quillen adjunction between the projective model
category of (P -Q)-bimodules and the Reedy model category of (P -Q)-bimodules where P is an operad and
Q is a reduced operad. Furthermore, if M and N are two bimodules, then we show that there is a weak
equivalence between the derived mapping spaces:

ΣBimodhP ;Q(M ;N ) 'ΛBimodhP ;Q(M ;N ).

For completeness of exposition, the last subsection is devoted to adapt the Boardman-Vogt resolution (well
known for operads, see [BM2]) to the context of bimodules. We refer the reader to [Duc2] for a detailed
account of this construction.

3In fact the forgetful functor from the category of (P -Q)-bimodules to left P -modules creates colimits. It preserves colimits as it has
a right adjoint by Proposition 3.14b for Q1 =Q, Q2 = 1, Y =Q. The fact that a cocone in bimodules is a colimit if it is a colimit in the
category of left modules is easily verified.
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3.2.1 Quillen adjunction between the model category structures

Let P be an operad and Q be a well-pointed reduced operad. The projective and the Reedy model
categories of bimodules have the same class of weak equivalences and induce the same homotopy category.
Consequently, one has the following statement about the adjunctions

(76)
id : ΣBimodP ;Q � ΛBimodP ;Q : id,

id : TrΣBimodP ;Q � TrΛBimodP ;Q : id.

Theorem 3.9. For any operad P and any well-pointed reduced operad Q, the pairs of functors (76) form Quillen
equivalences. Furthermore, for any pair M, N ∈ΛBimodP ;Q, one has

(77) ΣBimodhP ;Q(M,N ) 'ΛBimodhP ;Q(M,N ).

Moreover, if M, N ∈ TrΛBimodP ;Q, with r ≥ 0, then one has

(78) TrΣBimodhP ;Q(M,N ) ' TrΛBimodhP ;Q(M,N ).

Proof. In order to prove that the pairs of functors (76) form Quillen adjunctions we check that the right
adjoint functors preserve fibrations and acyclic fibrations. Let f : M → N be an (acyclic) fibration in the
Reedy model category of bimodules. By definition, the map f is a fibration if the corresponding map UΛ(f )
in the category of Λ-sequences is a fibration. In other words, it means that the maps

(79) M(n) −→M(M)(n)×M(N )(n)N (n), with n ∈ N,

are (acyclic) Serre fibrations. On the other hand, the map id(f ) is a fibration in the projective model category
of bimodules if the mapsM(n)→N (n), with n ∈ N, are Serre fibrations. According to the notation introduced
in Section 1.2, the pair of functors

Λ[−] : ΣSeq�ΛSeq : U (−)

forms a Quillen adjunction (see [Fre2, Theorem 8.3.20]). In particular, the forgetful functor U preserves
(acyclic) fibrations. As a consequence, if the maps (79) are (acyclic) Serre fibrations, then the induced maps
M(n)→N (n), with n ∈ N, are (acyclic) Serre fibrations. Furthermore, the Quillen adjunction so obtained is
obviously a Quillen equivalence since we consider identity functors. Finally, the identities (77) and (78) are
induced by taking a projective cofibrant replacement of M and a Reedy fibrant replacement of N and using
the fact that any projectively cofibrant object is Reedy cofibrant and any Reedy fibrant object is projectively
fibrant. �

3.2.2 Boardman-Vogt type resolution in the projective/Reedy model category

From a (P -Q)-bimodule M, we build a (P -Q)-bimodule BP ;Q(M). The points of BP ;Q(M)(n), n ≥ 0,
are equivalence classes [T ; {tv} ; {pv} ; {mv} ; {qv}], where T ∈ sPn (see Section 2.1.2) is a tree with section
while {pv}v∈V d (T ), {mv}v∈V p(T ) and {qv}v∈V u (T ) are families of points labelling the vertices below the section,
on the section and above the section, respectively, by points in P , M and Q, respectively. Furthermore,
{tv}v∈V (T )\V p(T ) is a family of real numbers in the interval [0 , 1] indexing the vertices which are not pearls. If
e is an inner edge above the section, then ts(e) ≥ tt(e). Similarly, if e is an inner edge below the section, then
ts(e) ≤ tt(e). In other words, closer to a pearl is a vertex, smaller is the corresponding number. The space
BP ;Q(M)(n) is a quotient of the subspace of

(80)
∐
T ∈sPn

∏
v∈V p(T )

M(|v|) ×
∏

v∈V d (T )

[
P (|v|)× [0 , 1]

]
×

∏
v∈V u (T )

[
Q(|v|)× [0 , 1]

]
determined by the restrictions on the families {tv}. The equivalence relation is generated by the conditions:

i) If a vertex is labelled by a unit in P (1) or Q(1), then locally one has the identity
52



ii) If a vertex is indexed by a · σ , with σ ∈ Σ, then

iii) If two consecutive vertices, connected by an edge e, are indexed by the same real number t ∈ [0 , 1], then e
is contracted using the operadic structures of P and Q. The vertex so obtained is indexed by the real
number t.

iv) If a vertex above the section is indexed by 0, then its output edge is contracted by using the right module
structure. Similarly, if a vertex below the section is indexed by 0, then all its incoming edges are contracted
by using the left module structure. In both cases the new vertex becomes a pearl.

v) If a univalent pearl is indexed by a point of the form γ0(x), with x ∈ P (0), then we contract its output edge
by using the operadic structure of P . In particular, if all the pearls connected to a vertex v are univalent
and of the form γ0(xv), then the vertex is identified to the pearled corolla with no input.

Let us describe the (P -Q)-bimodule structure. Let q ∈ Q(n) and [T ; {tv} ; {pv} ; {mv} ; {qv}] be a point in
BP ;Q(M)(m). The right operation [T ; {tv} ; {pv} ; {mv} ; {qv}] ◦i q consists in grafting the n-corolla labelled by q
to the i-th incoming edge of T and indexing the new vertex by 1. Similarly, let [Ti ; {tiv} ; {piv} ; {miv} ; {qiv}] be
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a family of points in the spaces BP ;Q(M)(mi). The left module structure over P is defined as follows: each
tree of the family is grafted to a leaf of the n-corolla labelled by p ∈ P (n) from left to right. The new vertex,
coming from the n-corolla, is indexed by 1.

Figure 15. Illustration of the left module structure γ` : P (2)×BP ;Q(M)(3)×BP ;Q(M)(0)→BP ;Q(M)(3).

One has an obvious inclusion of Σ-sequences ι : M→BP ;Q(M), where each element m ∈M(n) is sent to
an n-corolla labelled by m, whose only vertex is a pearl. Furthermore, the map

(81) µ : BP ;Q(M)→M ; [T ; {tv} ; {pv} ; {mv} ; {qv}] 7→ [T ; {0} ; {pv} ; {mv} ; {qv}],
is defined by sending the real numbers indexing the vertices to 0. The obtained element is identified to the
pearled corolla labelled by a point in M. It is easy to see that µ is a (P -Q)-bimodule map.

In order to get resolutions for truncated bimodules, one considers a filtration in BP ;Q(M) according to the
number of geometrical inputs which is the number of leaves plus the number of univalent vertices above the
section. A point in BP ;Q(M) is said to be prime if the real numbers indexing the vertices are strictly smaller
than 1. Otherwise, a point is said to be composite and can be decomposed into prime components as shown in
Figure 16. More precisely, the prime components are obtained by removing the vertices indexed by 1.

Figure 16. A composite point and its prime components.

A prime point is in the r-th filtration layer BP ;Q(M)r if the number of its geometrical inputs is at most r.
Similarly, a composite point is in the r-th filtration layer if its all prime components are in BP ;Q(M)r . For
instance, the composite point in Figure 16 is in the filtration layer BP ;Q(M)6. For each r, BP ;Q(M)r is a
(P -Q)-bimodule and one has the following filtration of BP ;Q(M):

(82) BP ;Q(M)0
// BP ;Q(M)1

// · · · // BP ;Q(M)r−1
// BP ;Q(M)r // · · · // BP ;Q(M).

Theorem 3.10 (Theorem 2.12 in [Duc2]). Assume that P and Q are Σ-cofibrant operads, and M is a Σ-cofibrant
(P -Q)-bimodule for which the arity zero left action map γ0 : P (0)→M(0) is a cofibration. Then the objects BP ;Q(M)
and TrBP ;Q(M)r are cofibrant replacements of M and TrM in the categories ΣBimodP ;Q and TrΣBimodP ;Q,
respectively. In particular, the maps µ and Trµ|TrBP ;Q(M)r are weak equivalences.

Now we change slightly the above construction in order to produce Reedy cofibrant replacements for
(P -Q)-bimodules when Q is a reduced operad. Let M be a (P -Q)-bimodule. We consider the Σ-sequence

BΛP ;Q(M) := BP ;Q>0
(M).
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The superscript Λ is to emphasize that we get a cofibrant replacement in the Reedy model category structure.
The left action and the positive arity right action are defined in the same way as for BP ;Q>0

(M). The right
action by ∗0 ∈Q(0) is defined in the obvious way as the right action by ∗0 on a in the vertex (a, t) connected
to the leaf labelled by i as illustrated in the Figure 17.

Figure 17. Illustration of the right action by ∗0.

Note that since the arity zero component of Q>0 is empty, in the union (80) we can consider only trees
whose all non-pearl vertices have arities ≥ 1. We denote this set by sP≥1

n . In other words, the space BΛP ;Q(M)
can be obtained as the restriction of the coproduct (80) to this set.

Proposition 3.11. Assume that P and Q are Σ-cofibrant topological operads with Q(0) = ∗, and M is a Σ-
cofibrant (P -Q)-bimodule for which the arity zero left action map γ0 : P (0)→M(0) is a cofibration. Then the
objects BΛP ;Q(M) and TrBΛP ;Q(M) are cofibrant replacements of M and TrM in the categories ΛBimodP ;Q and
TrΛBimodP ;Q, respectively. In particular, the maps µ and Trµ are weak equivalences.

Proof. The map µ : BΛP ;Q(M) = BP ;Q>0
(M)→M, which sends the real numbers indexing the vertices to 0, is a

homotopy equivalence as shown by Theorem 3.10. Furthermore, by the same theorem, BΛP ;Q(M) = BP ;Q>0
(M)

is cofibrant in the projective model category of (P -Q>0)-bimodules. Due to Theorem 3.6, BΛP ;Q(M) is also
Reedy cofibrant and it gives rise to a cofibrant resolution of M in the Reedy model category ΛBimodP ;Q. The
same arguments work for the truncated case. Note that TrBΛP ;Q(M)r = TrBΛP ;Q(M) since arity zero vertices
above the section are not permitted. �

3.2.3 A functorial cofibrant replacement in the projective/Reedy model category

In the previous subsection we described a construction of projective and Reedy cofibrant replacements
provided the bimodule and the acting operads are Σ-cofibrant. In this subsection we explain how that
construction can be used to functorially define a cofibrant replacement without any assumption on the
bimodule, while assuming that the right-acting operad Q has cofibrant components and the left-acting
operad P is Σ-cofibrant.

Given a (P -Q)-bimodule M, we first replace it by the Σ-sequence M ′ := |S•M |, whose n-th space is the
realization of the simplicial set of singular simplices in M(n). The obtained object is a (P ′-Q′)-bimodule,
where the operads P ′ and Q′ are similarly defined as P ′ := |S•P |, Q′ := |S•Q|. Let E∞ as usual denote a
reduced Σ-cofibrant model of the commutative operad. Define Σ-sequences M ′∞, P ′∞, Q′∞ as objectwise
product

M ′∞(n) :=M ′(n)×E∞(n), P ′∞(n) := P ′(n)×E∞(n), Q′∞(n) :=Q′(n)×E∞(n).

We get that M ′∞ is a Σ-cofibrant bimodule over a pair (P ′∞,Q
′
∞) of Σ-cofibrant operads. We can therefore

apply the construction from the previous subsection.
For the following theorem denote by

φ1 : P ′∞
'−→ P ′

'−→ P , φ2 : Q′∞
'−→Q′

'−→Q

the natural induced equivalences of operads. Note that

φ0 : M ′∞
'−→M ′

'−→M

is an equivalence of (P ′∞-Q′∞)-bimodules.
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Proposition 3.12. (a) Assume that P is a Σ-cofibrant operad and Q is a componentwise cofibrant operad. Let
M be any (P -Q)-bimodule for which the arity zero left action map γ0 : P (0) → M(0) is injective. Then the
objects φ!

(
BP ′∞ ;Q′∞(M ′∞)

)
and φ!

(
TrBP ′∞ ;Q′∞(M ′∞)r

)
are cofibrant replacements of M and TrM in the categories

ΣBimodP ;Q and TrΣBimodP ;Q, respectively.
(b) Assume in addition that Q is reduced. Then the objects φ!

(
BΛP ′∞ ;Q′∞

(M ′∞)
)

and φ!

(
TrBΛP ′∞ ;Q′∞

(M ′∞)
)

are
cofibrant replacements of M and TrM in the categories ΛBimodP ;Q and TrΛBimodP ;Q, respectively.

Proof. The result is an immediate consequence of Theorems 2.19, 3.8, 3.10 and Proposition 3.11. �

3.3 The Reedy fibrant replacement as an internal hom

In this subsection, we provide a more conceptual understanding of the Reedy fibrant replacement
described in Subsection 3.1.1. More precisely we explain this construction in terms of internal hom in the
category of Σ-sequences, see Proposition 3.15.

3.3.1 The right closed monoidal category of symmetric sequences

It is well known and appears in almost any textbook on the theory of operads that the category ΣSeq of
Σ-sequences has a monoidal structure (ΣSeq,◦,1) with the unit

1(k) =

∗, k = 1;
∅, k , 1;

and the composition product

(X ◦Y )(k) =
∐
n≥0

X(n)×Σn
∐

β : [k]→[n]

n∏
i=1

Y (|β−1(i)|).

Monoids in (ΣSeq,◦,1) are usual topological operads.
It is less known that ΣSeq is closed with respect to this monoidal structure. This fact is true for the category

of Σ-sequences in any bicomplete closed symmetric monoidal category and was noticed by G. M. Kelly back
in the 1970s [Kel]. More recently this also appeared in [Re1, Section 2.2] and in [Ha, Section 3]4. This means
that ΣSeq is endowed with an internal hom functor

[−,−] : ΣSeqop ×ΣSeq→ ΣSeq,

such that for any X ∈ ΣSeq, the functor (−)◦X is left adjoint to [X,−]. Sometimes this structure on a category
is called right closed monoidal instead of just closed monoidal as a monoidal product with an object on the
right has an adjoint. Explicitly,

(83) [X,Y ](k) =
∏
n≥0

 ∏
α : [n]→[k]

Map

 k∏
i=1

X(|α−1(i)|),Y (n)



Σn

.

3.3.2 The tensor-hom adjunction

For concreteness all the statements in this subsection are made for the category ΣSeq. One should mention,
however, that they hold true for any bicomplete right closed monoidal category. (One only needs to replace
the word “operad” by “monoid”.)

Lemma 3.13. Let P ,Q ∈ ΣOperad and X,Y ∈ ΣSeq. Consider the internal hom object [X,Y ] ∈ ΣSeq.

(a) If X is a left Q-module, then [X,Y ] is a right Q-module.
(b) If Y is a left P -module, then [X,Y ] is a left P -module.
(c) If X is a left Q-module and Y is a left P -module, then [X,Y ] is a (P -Q)-bimodule.

4We also refer to [AC, Definition 1.20], where this structure appears implicitly and from where our formula (83) is borrowed.
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Sketch of the proof. For (a), the right action map [X,Y ] ◦Q→ [X,Y ] is the adjoint to the composition

[X,Y ] ◦Q ◦X
id[X,Y ]◦µX
−−−−−−−−−→ [X,Y ] ◦X

evX,Y−−−−−→ Y .

Here µX : Q ◦X→ X is the left Q-action on X, and evX,Y is the adjoint to the identity map id[X,Y ].
For (b), the left action map P ◦ [X,Y ]→ [X,Y ] is adjoint to the composition

P ◦ [X,Y ] ◦X
idP ◦evX,Y−−−−−−−−→ P ◦Y

µY−−→ Y .

Here µY is the left P -action on Y .
The facts that these formulae correctly define P and Q actions are easily checked as well as the fact that

these actions commute in case of (c). �

If X is a right module over an operad Q and Y is a left Q-module, one defines X ◦Q Y ∈ ΣSeq as the
coequalizer

X ◦Q Y = coeq(X ◦Q ◦Y ⇒ X ◦Y ) ,
where both arrows are µx ◦ idY and idX ◦µY .

In case X and Y are both right modules over an operad Q, one defines [X,Y ]Q ∈ ΣSeq as the equalizer

[X,Y ]Q = eq([X,Y ]⇒ [X ◦Q,Y ]) ,

where the upper map is induced by the right Q-action µX : X ◦Q→ X, and the lower map is the adjoint to
the composition

[X,Y ] ◦X ◦Q
evX,Y ◦idQ−−−−−−−−−→ Y ◦Q

µY−−→ Y .

Proposition 3.14. ([Ha, Proposition 5.22]) Let Q1,Q2, P ∈ ΣOperad and Y ∈ ΣBimodQ1;Q2
.

(a) One has an adjunction between the categories of right Q1 and Q2 modules

(84) (−) ◦Q1
Y : ΣRModQ1

� ΣRModQ2
: [Y ,−]Q2

.

(b) One has an adjunction between the categories of (P -Q1) and (P -Q2) bimodules

(85) (−) ◦Q1
Y : ΣBimodP ;Q1

� ΣBimodP ;Q2
: [Y ,−]Q2

.

Sketch of the proof. The statements are general and hold in any bicomplete (right) closed monoidal category.
The proof is essentially a categorification of the tensor-hom adjunction between the categories of (bi)modules
over rings. �

3.3.3 The Reedy fibrant replacement

Let N be a Σ-cofibrant right module over a Σ-cofibrant operad Q. Viewed as a (1-Q)-bimodule, we
consider its resolution B1;Q(N ), see Subsection 3.2.2, which is its cofibrant replacement as a right Q-module.
It is easy to see that in caseN is a (P -Q)-bimodule for some operad P , the sequence B1;Q(N ) has also a natural
structure of a (P -Q)-bimodule. Denote by Qc := B1;Q(Q). One can show that Qc is a cofibrant replacement of
Q as a Q-bimodule. Roughly speaking it is because even before taking its resolution, Q is cofibrant as a left
module over itself.

We leave the following proposition as an exercise to the reader. For this proposition we do not assume
that Q is Σ-cofibrant.

Proposition 3.15. Let M ∈ΛBimodP ;Q, let Mf be its Reedy fibrant replacement as defined in Subsection 3.1.1,
and let Qc := B1;Q(Q), see Subsection 3.2.2. One has an isomorphism of (P -Q)-bimodules:

Mf = [Qc,M]Q.

Moreover, the fibrant replacement map M→Mf is induced by the (cofibrant, in case Q is Σ-cofibrant) replacement
map Qc→Q:

M = [Q,M]Q→ [Qc,M]Q.

As an interesting consequence we have the following.

Corollary 3.16. For any M ∈ΛBimodP ;Q, one has a homeomorphism (Mf )f �Mf of fibrant replacements.
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Proof. It follows from Proposition 3.15 and adjunction (85) that

(Mf )f = [Qc, [Qc,M]Q]Q � [Qc ◦QQc,M]Q.

On the other hand, it is easy to see that Qc ◦QQc �Qc. To define an explicit homeomorphism Qc
�−→Qc ◦QQc,

for each tree in Qc we draw a horizontal line t = 1/2 and then replace all the real parameters in the vertices
below the horizontal section t ∈ [0,1/2] by 2t and all the real parameters of the vertices above the section
t ∈ (1/2,1] by 2t − 1.5 �

3.4 The subcategory of reduced bimodules

3.4.1 Main properties

Let P and Q be two reduced operads. We can then consider the category Λ∗BimodP ;Q of reduced (P -Q)-
bimodules. This category has been used by the first and third authors [DT] in order to get delooping theorems
for the Taylor tower approximations of mapping spaces avoiding multi-singularities, i.e. singularities
depending on several points.

The present section is devoted to adapt the constructions and theorems introduced in the previous sections
to the category Λ∗BimodP ;Q. By considering only reduced bimodules, we can simplify some constructions.
Since the proofs are almost the same, we list altogether the main statements. Note that the statements are
slightly improved for the functorial cofibrant resolution and for the extension/restriction adjunction.

Theorem 3.17. Let P and Q be reduced operads and, moreover, assume that Q is well-pointed.
(i) Reedy model structure. The category Λ∗BimodP ;Q admits a cofibrantly generated model category structure,

called the Reedy model category structure, transferred from the Reedy model category Λ>0Seq along the
adjunction

F Λ∗
P ;Q : Λ>0Seq � Λ∗BimodP ;Q : UΛ,

where the free functor is given by

(86) F Λ∗
P ;Q(M)(n)B

 F Σ
P>0 ;Q>0

(M)(n), n ≥ 1,

∗, n = 0,

The model category so obtained makes the adjunction (F Λ∗
P ;Q,U

Λ) into a Quillen adjunction. Moreover,
the fibrant coresolution functor introduced in Section 3.1.1 restricts to the category Λ∗BimodP ;Q giving
rise to a functorial fibrant replacement. In case P and Q are componentwise cofibrant, the functor M 7→
φ!

(
BΛP ′∞ ;Q′∞

(M ′∞)
)

of Proposition 3.12 gives rise to a functorial cofibrant resolution in Λ∗BimodP ;Q.

(ii) Characterization of Reedy cofibrations. A morphism φ :M→N in the category Λ∗BimodP ;Q is a Reedy
cofibration if and only if the corresponding map φ>0 : M>0 → N>0 is a cofibration in the projective model
category of (P>0-Q>0)-bimodules.

(iii) Left and Right properness. The Reedy model category Λ∗BimodP ;Q is right proper. If P is Reedy cofibrant
and Q is componentwise cofibrant, then Λ∗BimodP ;Q is left proper relative to the class of componentwise
cofibrant bimodules. In the latter case, the class of componentwise cofibrant bimodules is closed under
cofibrations. In particular, cofibrant bimodules are componentwise cofibrant. If in addition Q is Σ-cofibrant,
the class of Σ-cofibrant bimodules is also closed under cofibrations and cofibrant bimodules are Σ-cofibrant.

(iv) Extension/restriction adjunctions. Let φ1 : P → P ′ and φ2 : Q→Q′ be weak equivalences between compo-
nentwise cofibrant reduced operads. One has a Quillen equivalence

φ! : Λ∗BimodP ;Q�Λ∗BimodP ′ ;Q′ : φ
∗,

All the above statements admit truncated versions for the categories TrΛ∗BimodP ;Q with r ≥ 0.

5In fact for any right Q-module N , one has B1;Q(N ) =N ◦Q Qc and it is always true that B1;Q(B1;Q(N )) � B1;Q(N ).
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Proof. The proof of (i) is exactly the same as for the construction of the usual Reedy model category of
(P -Q)-bimodules and the construction of the fibrant coresolution. Note that for the cofibrant replacement
functor we do not require P to be Σ-cofibrant, but only that it is componentwise cofibrant. The reason is that
the argument of Proposition 3.12 uses the extension/restriction adjunction. The latter has also the same
improved requirement that P and P ′ are componentwise cofibrant, see statement (iv) above.

Statement (ii) follows from the fact that the forgetful functor ι : Λ∗BimodP ;Q → ΛBimodP ;Q creates
cofibrations, see Proposition 3.18. Applying the characterization of Reedy cofibrations for bimodules
Theorem 3.6, a map M→N in Λ∗BimodP ;Q is a cofibration if and only if it is a cofibration in ΣBimodP ,Q>0

.
Since P (0) =M(0) =N (0) = ∗, the arity zero component can be naturally ignored, and the map in question is
a cofibration if and only if M>0→N>0 is one in ΣBimodP>0 ,Q>0

(or, equivalently, in Σ>0BimodP>0 ,Q>0
).

Statement (iii) follows from Theorem 3.7 and the fact that the inclusion functor ι creates weak equiva-
lences, fibrations, pullbacks, and also cofibrations and pushouts, see Proposition 3.18.

We now prove (iv). Since the restriction functor creates weak equivalences, one has to check that, for any
Reedy cofibrant object M in Λ∗BimodP ;Q, the adjunction unit

M −→ φ∗(φ!(M))

is a weak equivalence. Due to the characterization of Reedy cofibrations, M>0 is also cofibrant in the
projective model category Σ>0BimodP>0,Q>0

. Since (φ1)>0 : P>0 → P ′>0 and (φ2)>0 : Q>0 → Q′>0 are still
weak equivalences between componentwise cofibrant operads, by Theorem 2.22, the pair of functors
((φ>0)! ; (φ>0)∗) gives rise to a Quillen equivalence

(φ>0)! : Σ>0BimodP ;Q� Σ>0BimodP ′ ;Q′ : (φ>0)∗.

Therefore, the map M>0→ (φ>0)∗
(
(φ>0)!(M>0)

)
(n) is a weak equivalence. The statement is a consequence of

the identity

φ∗(φ!(M))>0 = (φ>0)∗
(
(φ>0)!(M>0)

)
.

�

3.4.2 Quillen adjunction between the Reedy model categories

Let P and Q be two reduced operads with Q well-pointed. The inclusion functor ι from the category of
(possibly truncated) reduced bimodules into the category of (possibly truncated) bimodules has a left adjoint
τ called the unitarization functor. This latter one consists in collapsing the arity zero component to a point
and adjusting the other components according to the equivalence relation induced by this collapse:

(87)
τ : ΛBimodP ;Q � Λ∗BimodP ;Q : ι,

τ : TrΛBimodP ;Q � TrΛ∗BimodP ;Q : ι.

Proposition 3.18. The pairs of functors (87) form Quillen adjunctions. Moreover, the inclusion functor ι creates
weak equivalences, fibrations, cofibrations, limits, and colimits.

Proof. By construction, ι creates equivalences and fibrations. As a consequence, the adjunction (87) is a
Quillen one. Since the limits are taken objectwise, and the limit of any point-constant diagram is a point, ι
creates limits. Note that τ , as a left adjoint, preserves colimits and cofibrations, and τ ◦ ι = id. Therefore, one
only needs to check that ι preserves colimits and cofibrations.

For colimits, we again have to show that the colimit of any diagram in ΛBimodP ;Q with values in reduced
bimodules is a reduced bimodule. The truncation functor Tr : ΛBimodP ;Q → TrΛBimodP ;Q preserves
colimits as it admits a right adjoint, see Section 3.1.2. In the case r = 0, the category T0ΛBimodP ;Q is
equivalent to the category of P -algebras in T op. The one-point space is a free P -algebra generated by the
empty set FP (∅). On the other hand, the free P -algebra functor FP : T op→ AlgP preserves colimits and the
colimit of any empty set constant diagram is the empty set. The statement follows.

Finally, for cofibrations, since ι creates colimits, it is enough to check that the generating cofibrations in
Λ∗BimodP ;Q are cofibrations in ΛBimodP ;Q. The generating cofibrations in the former are the maps

(88) F Λ∗
P ;Q(∂X)→F Λ∗

P ;Q(X),
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where ∂X→ X is one of the generating cofibrations of Λ>0Seq. For a Λ>0-sequence Y , denote by Y+ the Λ-
sequence that agrees with Y in positive arities and has one point in arity zero. From the formulas (86) and (49),
it follows that F Λ∗

P ;Q(Y ) = F Λ
P ;Q(Y+). The inclusion (∂X)+→ X+ is a Σ-cofibration and, as a consequence, is a

ΛSeqP -cofibration. Together with the fact that the functor F Λ
P ;Q preserves cofibrations, we conclude that the

inclusion (88), or equivalently F Λ
P ;Q((∂X)+)→F Λ

P ;Q(X+), is a cofibration in ΛBimodP ;Q.
�

Theorem 3.19. Let P and Q be as in Theorem 3.17. The inclusion functors ι from (87) induce fully faithful
inclusions of homotopy categories. Moreover, for any pair M, N ∈Λ∗BimodP ;Q, one has

(89) Λ∗BimodhP ;Q(M,N ) 'ΛBimodhP ;Q(ιM, ιN ) ' ΣBimodhP ;Q(ιM, ιN ).

Furthermore, if M, N ∈ TrΛ∗BimodP ;Q, with r ≥ 0, then one has

(90) TrΛ∗BimodhP ;Q(M,N ) ' TrΛBimodhP ;Q(ιM, ιN ) ' TrΣBimodhP ;Q(ιM, ιN ).

Proof. The first statement follows from the fact that the functors ι themselves are fully faithful inclusions of
model categories preserving equivalences, fibrations, and cofibrations, see Proposition 3.18. The equiva-
lences (89) and (90) follow from Theorem 3.9 and the fact that ι preserve cofibrant and fibrant replacements
and are fully faithful.

�

4 The projective model category of O infinitesimal bimodules

Let O be an operad. An O infinitesimal bimodule, or just an O-Ibimodule, is a Σ-sequence M ∈ ΣSeq
together with operations

(91)
◦i : M(n)×O(m) −→M(n+m− 1), right infinitesimal operations with i ∈ {1, . . . ,n},

◦i : O(n)×M(m) −→M(n+m− 1), left infinitesimal operations with i ∈ {1, . . . ,n},

satisfying compatibility relations with the symmetric group action as well as associativity and unit axioms.
More precisely, for any integers i ∈ {1, . . . ,n}, j ∈ {i + 1, . . . ,n}, k ∈ {1, . . . ,m} and any permutation σ ∈ Σn and
τ ∈ Σm, one has the following commutative diagrams:

M(n)×O(m)×O(`)
◦k //

◦i
��

M(n)×O(m+ ` − 1)

◦i
��

M(n+m− 1)×O(`)
◦k+i−1

// M(n+m+ ` − 2)

Linear associativity for the right infinitesimal operations

M(n)×O(m)×O(`) ◦i //

◦j
��

M(n+m− 1)×O(`)

◦j+m−1

��
M(n+ ` − 1)×O(m)

◦i
// M(n+m+ ` − 2)

Ramified associativity for the right infinitesimal operations

O(n)×M(m)×O(`)
◦i //

◦j
��

M(n+m− 1)×O(`)

◦j+m−1

��
O(n+ ` − 1)×M(m) ◦i

// M(n+m+ ` − 2)

Ramified compatibility between the left and right operations 1

O(n)×O(m)×M(`)
◦i //

◦j
��

O(n+m− 1)×M(`)

◦j+m−1

��
M(n+ ` − 1)×O(m)

◦i
// M(n+m+ ` − 2)

Ramified compatibility between the left and right operations 2

O(n)×M(m)×O(`)
◦i //

◦k
��

M(n+m− 1)×O(`)

◦k+i−1

��
O(n)×M(m+ ` − 1) ◦i

// M(n+m+ ` − 2)

Linear compatibility between the left and right operations

O(n)×O(m)×M(`)
◦k //

◦i
��

O(n)×M(m+ ` − 1)

◦i
��

O(n+m− 1)×M(`) ◦k+i−1
// M(n+m+ ` − 2)

Linear associativity for the left infinitesimal operations
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O(n)×M(m)
◦i //

σ ∗×τ∗
��

M(n+m− 1)

(σ◦σ (i)τ)∗)
��

O(n)×M(m) ◦σ (i)
// M(n+m− 1)

Compatibility with the symmetric group action 1

M(n)×O(m) ◦i //

σ∗×τ∗
��

M(n+m− 1)

(σ◦σ (i)τ)∗

��
M(n)×O(m)

◦σ (i)
// M(n+m− 1)

Compatibility with the symmetric group action 2

M(n)×O(1)

◦i &&

M(n) //oo O(1)×M(n)

◦1xx
M(n)

Compatibility with the unit of the operad

Note that the ramified compatibility between the left and right operations 2 follows from the ramified compatibility
between the left and right operations 1 and the compatibility with the symmetric group action and was given for
clarity.

A map between O-Ibimodules should preserve these operations. We denote by ΣIbimodO the category of
O-Ibimodules. Given an integer r ≥ 0, we also consider the category of r-truncated Ibimodules TrΣIbimodO.
An object of this category is an r-truncated Σ-sequence endowed with left and right operations (91) which
are defined under the conditions n ≤ r and n+m− 1 ≤ r. One has an obvious truncation functor

Tr (−) : ΣIbimodO −→ TrΣIbimodO.

In the rest of the paper, we use the notation

x ◦i θ = ◦i(x;θ), for x ∈M(n) and θ ∈O(m),

θ ◦i x = ◦i(θ;x), for θ ∈O(n) and x ∈M(m),

Example 4.1. If η : O → M is a map of O-bimodules, then η is also a map of O-Ibimodules. Indeed,
any operad is an infinitesimal bimodule over itself. Since the right operations and the right infinitesimal
operations are the same, the O-Ibimodule structure on M is given by the following left infinitesimal
operations:

◦i :O(n)×M(m) −→ M(n+m− 1);

(θ,x) 7−→ γ`(θ;η(∗1), · · · ,η(∗1),x,η(∗1), · · · ,η(∗1)).

4.1 Properties of the category of infinitesimal bimodules

In this subsection we introduce some basic properties related to the category of O-Ibimodules where O is
a fixed operad. First, we show that the category of O-Ibimodules is equivalent to the category of algebras
over an explicit colored operad denoted by O+. Thereafter, we build the free bimodule functor using the
language of trees. Finally, we give a combinatorial description of the pushout for infinitesimal bimodules.

4.1.1 Infinitesimal bimodules as algebras over a colored operad

From an operad O, we build a colored operad O+ such that the category of O-Ibimodules is equivalent to
the category of O+-algebras. More precisely, the colored operad O+, with set of colors S = N, is concentrated
in arity 1 and it is given by the formula

(92) O+(n ;m) :=
∐

α+:[m]+→[n]+

∏
i∈[n]+

O(|α−1
+ (i)|),

where [n]+ is the set obtained from [n] by adding a basepoint denoted by 0. The map α+ is a map of sets
preserving the basepoint. In order to define operadic compositions

◦1 :O+(n ;m)×O+(k ; n) −→O+(k ;m),
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we fix two pointed maps α+ : [m]+→ [n]+ and β+ : [n]+→ [k]+ and we build a map of the form∏
i∈[n]+

O( |α−1
+ (i)| )×

∏
j∈[k]+

O( |β−1
+ (j)| ) −→

∏
j∈[k]+

O( |(β+ ◦α+)−1(j)| ).

For this purpose, we rewrite the left hand side term as follows:

O( |α−1
+ (0)| )×O( |β−1

+ (0)| )×
∏

i∈β−1
+ (0)\{0}

O( |α−1
+ (i)| )

︸                                                        ︷︷                                                        ︸
Part 1

×
∏
j∈[k]

O( |β−1
+ (j)| )×

∏
i∈β−1

+ (j)

O( |α−1
+ (i)| )

︸                                    ︷︷                                    ︸
Part 2

.

In Part 2, as in formula (24), we use the operadic structure ofO in order to get an element inO( |(β+◦α+)−1(j)| )
with j , 0. For Part 1, let β−1

+ (0)\ {0} = {i1, . . . , ip}, a0 ∈O( |α−1
+ (0)| ), b0 ∈O( |β−1

+ (0)| ), ar ∈O( |α−1
+ (ir )| ), 1 ≤ r ≤ p.

Then the element (a0,b0, a1, . . . , ap) in the Part 1 product is sent to a0 ◦1 b0(id,a1, . . . , ap).

Proposition 4.2 (Proposition 4.9 in [AT]). The category of O-Ibimodules is equivalent to the category of O+-
algebras.

Note that since the operad O+ has only unary operations, it can be viewed as an enriched in T op category.
One has that an O+-algebra is the same thing as an O+-shaped diagram in T op:

AlgO+
= T opO+ .

4.1.2 The free Ibimodule functor

In what follows, we introduce the left adjoints of the forgetful functors

UΣ : ΣIbimodO −→ ΣSeq and UTrΣ : TrΣIbimodO −→ TrΣSeq,

denoted by IF Σ
O and IF TrΣO , respectively. As usual in the operadic theory, the free functor can be described

as a coproduct indexed by a particular set of trees. In that case, we use the set of pearled trees which are pairs
T = (T ; p) where T is a planar rooted tree, with leaves labelled by a permutation, and p is a particular vertex,
called the pearl. A pearled tree is said to be reduced if each vertex is connected to the pearl by an inner edge.
We denote by pPn and rpPn the sets of pearled trees and reduced pearled trees, respectively, having exactly
n leaves.

Figure 18. Examples of a pearled tree T1 ∈ pP5 and a reduced pearled tree T2 ∈ rpP5.

Construction 4.3. Let M = {M(n)} be a Σ-sequence. The space IF Σ
O(M)(n) is obtained from the set of

reduced pearled trees by indexing the pearl by a point in M whereas the other vertices are indexed by points
in the operad O. More precisely, one has

(93) IF Σ
O(M)(n) =

 ∐
T ∈rpPn

M(|p|)×
∏

v∈V (T )\{p}
O(|v|)


/
∼ .

A point in IF Σ
O(M) is denoted by [T ; xp ; {θv}] where T is a reduced pearled tree, xp is a point in M and

{θv}v∈V (T )\{p} is a family of points in O. The equivalence relation is generated by the following relations:
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i) The unit relation: if a vertex is indexed by the unit of the operad O, then we can remove it.

Figure 19. Illustration of the unit relation.

ii) The compatibility with the symmetric group action: if a vertex is labelled by x ·σ , with x a point in O(n)
or M(n) and σ ∈ Σn, then we can remove σ by permuting the incoming edges.

Figure 20. Illustration of the compatibility with the symmetric group.

The right infinitesimal operation ◦i (respectively the left infinitesimal operation ◦i) of a point [T ; xp ; {θv}]
with an element θ ∈O(m) consists in grafting the m-corolla indexed by θ (respectively the reduced pearled
tree T ) into the i-th leaf of the reduced tree with section T (respectively the m-corolla indexed by θ). If
the obtained element contains an inner edge joining two consecutive vertices other than a pearl, then we
contract it using the operadic structure of O.

Figure 21. Illustration of the right infinitesimal operation ◦3 : IF Σ
O(M)(5)×O(3)→IF Σ

O(M)(7).

Similarly, the free r-truncated bimodule functor IF TrΣO is obtained from the formula (28) by taking the
restriction of the coproduct to the reduced pearled trees having at most r leaves and such that the pearl has
at most r incoming edges. The equivalence relation, the left and right infinitesimal operations are defined in
the same way. Finally, one has two functors:

IF Σ
O : ΣSeq −→ ΣIbimodO and IF TrΣO : TrΣSeq −→ TrΣIbimodO.

Theorem 4.4. One has the following adjunctions:

(94) IF Σ
O : ΣSeq� ΣIbimodO : UΣ and IF TrΣO : TrΣSeq� TrΣIbimodO : UTrΣ.

Proof. The proof is similar to the proof of Theorem 2.8. For any O-Ibimodule M ′ and for any morphism of
Σ-sequences f :M→M ′, we can build a unique map of O-Ibimodules f̃ : IF Σ

O(M)→M ′ by induction on
the number of vertices, such that f = f̃ ◦ i. We refer the refer to [Duc1, Proposition 2.3] for more details. �
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4.1.3 Combinatorial description of the pushout

Let O be a topological operad. Contrary to the bimodule case, the left infinitesimal operations are unary.
As a consequence, the pushout in the category of O-Ibimodules coincides with the pushout in the underlying
category of sequences. More precisely, for any pushout diagrams

(95) A
f1 //

f2
��

C

B

Ar
f1 //

f2
��

Cr

(respectively )

Br

in the category of O-Ibimodules (respectively, r-truncated O-Ibimodules) we introduce the Σ-sequences

(96) D(n) =

B(n)
⊔
A(n)

C(n)

 and Dr (n) =

Br (n)
⊔
Ar (n)

Cr (n)

 .
The above sequences inherit a (possibly truncated) infinitesimal bimodule structure over O and one has the
following statement:

Proposition 4.5. One has the following identities in the category of (possibly truncated) O-Ibimodules:

D = colim
ΣIbimodO

(
B←− A −→ C

)
and Dr = colim

TrΣIbimodO

(
Br ←− Ar −→ Cr

)
.

Proof. Let h1 : C→D ′ and h2 : B→D ′ be two maps of O-Ibimodules such that h1 ◦ f1 = h2 ◦ f2. Then there
exists a unique map of O-Ibimodule δ :D→D ′ given by

δ(x) =

 h1(x) if x ∈ C,
h2(x) if x ∈ B.

This map is well defined and proves that D satisfies the universal property of the pushout. �

4.2 Model category structure

By applying the transfer principle 1.1 to the adjunctions introduced in Section 4.1.2

(97) IF Σ
O : ΣSeq� ΣIbimodO : UΣ and IF TrΣO : TrΣSeq� TrΣIbimodO : UTrΣ,

we get the following statement:

Theorem 4.6. Let O be any topological operad. The category of (truncated) infinitesimal bimodules ΣIbimodO
(respectively, TrΣIbimodO, r ≥ 0) inherits a cofibrantly generated model category structure, called the projective
model category structure, in which all objects are fibrant. The model structure in question makes the adjunctions
(97) into Quillen adjunctions. More precisely, a (possibly truncated) Ibimodule map f is a weak equivalence
(respectively, a fibration) if and only if the induced map UΣ(f ) is a weak equivalence (respectively, a fibration) in
the category of (possibly truncated) Σ-sequences.

Proof. Similar to the proof of Theorem 2.11. �

4.2.1 Relative left properness of the projective model category

Theorem 4.7. For any topological operad O, the projective model category ΣIbimodO is right proper. It is left
proper provided O is componentwise cofibrant.

Proof. Since all the objects in ΣIbimodO are fibrant, this category is right proper (we refer the reader to
the proof of Theorem 2.2.1 for more details). Furthermore, as explained in Section 4.1.3, the pushout in
the category of O-Ibimodules coincides with the pushout in the category of (non-Σ) sequences, which is
obviously left proper as the category T op is such. By part (a) of the next theorem, cofibrations in ΣIbimodO
are componentwise cofibrations provided O is componentwise cofibrant. We conclude that in this case,
ΣIbimodO is also left proper. �
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Theorem 4.8. (a) If O is a componentwise cofibrant operad, then cofibrations in the category ΣIbimodO are
cofibrations componentwise. In particular, the class of componentwise cofibrant objects is closed under cofibrations
and cofibrant objects have cofibrant components.

(b) If O is a Σ-cofibrant operad, then cofibrations in the category ΣIbimodO are Σ-cofibrant. In particular, the
class of Σ-cofibrant objects is closed under cofibrations and cofibrant objects are Σ-cofibrant.

Proof. It is enough to check that the generating cofibrations in ΣIbimodO are cofibrations in T op component-
wise, in the case (a), and are Σ-cofibrations, in the case (b). The first is a consequence of the pushout-product
axiom, while the second is proved in exactly the same way as the similar statement for operads [BM1,
Corollary 5.2]. �

4.2.2 Extension/restriction adjunction for the projective model category of infinitesimal bi-
modules

Let φ :O→O′ be a map of operads. Similarly to the category of algebras (see Theorem 1.7) and bimodules
(see Section 2.2.2), we show that the projective model categories of O-Ibimodules and O′-Ibimodules are
Quillen equivalent under some conditions on the operads. For this purpose, we recall the construction of
the restriction functor φ∗ and of the extension functor φ! in the context of infinitesimal bimodules:

φ! : ΣIbimodO� ΣIbimodO′ : φ∗.

• The restriction functor. The restriction functor φ∗ sends an O′-Ibimodule M to the O-Ibimodule φ∗(M) =
{φ∗(M)(n) =M(n), n ≥ 0} in which the O-bimodule structure is defined using the O′-bimodule structure of
M as follows:

◦i : φ∗(M)(n)×O(m) −→ φ∗(M)(n+m− 1);

x ; θ 7−→ x ◦i φ(θ),

◦i :O(n)×φ∗(M)(m) −→ φ∗(M)(n+m− 1);

θ ; x 7−→ φ(θ) ◦i x.
• The extension functor. The extension functor φ! is obtained as a quotient of the free O′-Ibimodule functor
introduced in Section 4.1.2. More precisely, if M is an O-Ibimodule, then the extension functor is given by
the formula

φ!(M)(n) = IF Σ
O′ (U

Σ(M))(n)/ ∼
where the equivalence relation is generated by the axiom which consists in contracting inner edges having a
vertex v indexed by a point of the form φ1(θ) using theO infinitesimal bimodule structure ofM as illustrated
in the following picture:

The O′-infinitesimal bimodule structure on the free object is compatible with the equivalence relation
and provides an O′-Ibimodule structure on φ!(M). Let us remark that, similarly to the bimodule case, the
O-Ibimodule map M→ φ∗(φ!(M)), sending a point x ∈M(n) to the n-corolla indexed by x, is not necessarily
injective.

Theorem 4.9. Let φ :O→O′ be a weak equivalence between operads with cofibrant components. The extension
and restriction functors, as well as their truncated versions, give rise to Quillen equivalences:

(98) φ! : ΣIbimodO� ΣIbimodO′ : φ
∗,

(99) φ! : TrΣIbimodO� TrΣIbimodO′ : φ
∗.
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Proof. As explained in Section 4.1.1, the projective model category of infinitesimal bimodules over an
operad is equivalent to the projective model category of algebras over a specific colored operad. We denote
by O+ and O′+ the corresponding colored operads associated to O and O′, respectively. One has that the
adjunction (98) is induced by the extension/restriction adjunction between the categories of algebras:

φ! : ΣIbimodO = AlgO+
� AlgO′+ = ΣIbimodO′ : φ∗.

From the fact thatO andO′ have cofibrant components and from the explicit formula (92) for the components
of O+ and O′+, we obtain that the colored operads O+ and O′+ have cofibrant components. Since they are
concentrated in arity one, they are Σ-cofibrant. Applying [BM1, Theorem 4.4], we conclude that the
extension/restriction adjunction between the categories of algebras is a Quillen equivalence.

The truncated case is done similarly by restricting the operads O+ and O′+ to their subsets of colors. �

5 The Reedy model category of O infinitesimal bimodules

Let O be a reduced operad. From now on, we denote by ΛIbimodO and TrΛIbimodO the categories of
O-Ibimodules and truncatedO-Ibimodules, respectively, equipped with the Reedy model category structures.
Note that as categories, ΛIbimodO = ΣIbimodO. Only the model structure is different. Similarly to the case
of reduced operads and bimodules, this structure is transferred from the categories ΛSeq and TrΛSeq along
the adjunctions

(100)
IF Λ

O : ΛSeq � ΛIbimodO : UΛ,

IF TrΛO : TrΛSeq � TrΛIbimodO : UΛ,

where both free functors are obtained from the functors IF Σ
O and IF TrΣO by taking the restriction of the

coproduct (93) to the reduced pearled trees without univalent vertices other than the pearl. In other words,
one has

IF Λ
O(M)B IF Σ

O>0
(M), and IF TrΛO (M)B IF TrΣO>0

(M).

By construction, the above Σ-sequences are equipped with a (truncated) infinitesimal bimodule structure
over O>0. We can extend this structure in order to get a (truncated) O infinitesimal bimodule structure using
the operadic structure of O and the Λ structure of M.

Figure 22. Illustration of the right action by ∗0.

Theorem 5.1. Let O be a reduced well-pointed operad. The categories ΛIbimodO and TrΛIbimodO, with r ≥ 0,
admit cofibrantly generated model category structures, called Reedy model category structures, transferred from
ΛSeq and TrΛSeq, respectively, along the adjunctions (100). In particular, these model category structures make
the pairs of functors (100) into Quillen adjunctions.

Proof. The proof is similar to the proof of Theorem 3.1. The path object is given by the same formula (52)
and the functorial fibrant coresolution (for which we need the assumption Q is well-pointed) is defined in
Subsection 5.1.1. �

5.1 Properties of the Reedy model category of infinitesimal bimodules

This subsection is divided into two parts. The first one is devoted to the construction of an explicit fibrant
coresolution functor for infinitesimal bimodules. In the second part, we characterize (acyclic) cofibrations
in the Reedy model category of Ibimodules, we prove properness and we study extension/restriction
adjunctions.
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5.1.1 Fibrant replacement functor for infinitesimal bimodules

Let O be a reduced operad. In this subsection we produce a construction of a Reedy fibrant coresolution
for infinitesimal bimodules if the operad O is well-pointed. More precisely, we show that the coresolution
introduced in Section 3.1.1 gives rise to a coresolution for infinitesimal bimodules too. In other words, in
both cases, bimodules and infinitesimal bimodules, we only need the right module part of the structures in
order to get Reedy fibrant replacements. In the following, we overuse the notation introduced in Section 3.1.1.
Given an infinitesimal bimodule M over O, we consider the space Mf (n) from (53) taking Q =O. The family
Mf = {Mf (n), n ≥ 0} admits a Σ-structure and a right module structure from operations (59).

In order to introduce the left infinitesimal operations, we need the following notation. For a tree T ∈ P[n],
we denote by T1, . . . ,Tn the sub-trees grafting to the root of T according to the planar order. In particular,
one has the identity T = cn(T1, . . . ,Tn) where cn is the n-corolla. The number of leaves of each tree Tj , with
1 ≤ j ≤ n, is denoted by nj [T ]. For any tree T ∈ P[n] and 1 ≤ j ≤ n, we also consider the operations

βj : D(T ) −→ O(nj [T ]);

{θv}v∈V (T )\{r} 7−→ η({θv}v∈V (Tj )),

given by composing the points of O indexing the vertices of the sub-tree Tj .

Finally, by using the operation Γmk introduced in Section 3.1.1, one can define the left infinitesimal action

◦i :O(n)×Mf (m) −→ Mf (n+m− 1);

θ , {fT }T ∈P[n] 7−→ {(θ ◦i f )T }T ∈P[n+m−1],

where (θ ◦i f )T is the composite map:

H(T )×D(T )
(θ◦if )T //

��

M(|T |)


∏

1≤j≤n+m−1
j<{i,...,i+m−1}

O(nj [T ])

×
(
H(Γmi−1(T ))×D(Γmi−1(T ))

)
// O


∑

1≤j≤n+m−1
j<{i,...,i+m−1}

nj [T ]

×M(|Γmi−1(T )|)

OO

If we denote by I the set {1, . . . , i − 1} ∪ {i +m,. . .n+m− 1}, then the left vertical map is given by the product∏
j∈I βj to get the first factor and the operation induced by Γmi−1, removing the incoming edges of the root of

T corresponding to the set I , in order to get the second factor. The lower horizontal map is given by the map
fΓmi−1(T ) on the second factor and the following map

θ(−, · · · , id, · · · ,−) :

 ∏
j∈{1,...,i−1}

O(nj [T ])

×
 ∏
j∈{i+m,...n+m−1}

O(nj [T ])

 −→ O


∑

1≤j≤n+m−1
j<{i,...,i+m−1}

nj [T ]

 ;

(θ1, . . . ,θi−1); (θ′1, . . . ,θ
′
n−i−1) 7−→ θ(θ1, . . . ,θi−1, id,θ

′
1, . . . ,θ

′
n−i−1),

using the operadic structure of O, on the first factor. Finally, the right vertical map is obtained using
the left infinitesimal operation ◦`, with ` =

∑
1≤j≤i−1nj [T ] + 1. The fact that the compatibility relations

between the left and the right infinitesimal operations (defined at the beginning of Section 4) are satisfied is
a consequence of the following observations:

I Ramified compatibility between the left and right operations: for T ∈ P[n +m + ` − 2], i ∈ {1, . . . ,n − 1} and
j ∈ {i + 1, . . . ,n}, one has

Γmi−1(T ) = Γmi−1

(
δj+m−1;`(T )

)
.
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I Linear compatibility between the left and right operations: for T ∈ P[n+m+`−2], i ∈ {1, . . . ,n} and k ∈ {1, . . . ,m},
one has

Γmi−1

(
δk+i−1;`(T )

)
= δk;`

(
Γm+`−1
i−1 (T )

)
.

Proposition 5.2. The map η :M→Mf is a weak equivalence of O-Ibimodules. Furthermore, if the operad O is
well-pointed, then the O-Ibimodule Mf is Reedy fibrant.

Proof. The reader can easily check that η is a map of O infinitesimal bimodules. The other statements are
consequences Propositions 3.3 and 3.4. �

Remark 5.3. The same strategy can be used in order to get a fibrant replacement functor for r-truncated
reduced O-Ibimodules. The fibrant replacement should be defined as a subspace of the product with an
additional restriction |T | ≤ r. The constraints are the same.

5.1.2 Characterization of cofibrations / left properness / extension-restriction adjunction

In this section, we show that the properties related to the Reedy model category of reduced bimodules
introduced in Section 3.1 admit counterparts in the context of infinitesimal bimodules. It means that we
are able to give a characterization of Reedy cofibrations and we prove that ΛIbimodO is left proper relative
to componentwise cofibrant objects. We also prove that the extension/restriction adjunction gives rise to a
Quillen equivalence between Reedy model categories of Ibimodules under some conditions on the operads.

Theorem 5.4. Let O be a reduced well-pointed operad. A morphism φ : M → N in the category of (possibly
truncated) O-Ibimodules is a Reedy cofibration if and only if φ is a cofibration in the projective model category of
(possibly truncated) O>0-Ibimodules.

Idea of the proof. The strategy used for the proof of Theorem 3.6 works with no change in the context of
infinitesimal bimodules. Again, we introduce an adjunction ars : ΛIbimodO�ΛIbimodO : cosks where ars
and cosks are the arity filtration and the coskeleton functors, respectively. More precisely, if Ls and Rs denote
the left adjoint and the right adjoint, respectively, to the truncation functor Ts : ΛIbimodO→ TsΛIbimodO,
then one has the following identities:

ars = Ls ◦ Ts and cosks = Rs ◦ Ts.

In particular, the coskeleton functor is given by the formula (65) and inherits an infinitesimal bimodule
structure over O. The Λ-structure and the right infinitesimal operations are given by (66) and (67), respec-
tively. In order to define the left infinitesimal operations, we recall the following notation. Let n,m > 0,
` ∈ {1, . . . ,n} and h ∈Λ+([i] ; [n+m− 1]). If we denote by `1 ∈Λ+([m] ; [n+m− 1]) and `2 ∈Λ+([n] ; [n+m− 1])
the morphisms

`1 : [m] −→ [n+m− 1]; and `2 : [n] −→ [n+m− 1];

α 7−→ α + `, α 7−→
{
α if α ≤ `,
α +m if α > `,

then there exist unique morphisms h1 and h2 making the following diagrams commute:

[i] h // [n+m− 1]

[|Im(`1)∩ Im(h)|]

OO

h1

// [m]

l1

OO [i] h // [n+m− 1]

[|Im(`2 \ {`})∩ Im(h)|]

OO

h2

// [n]

l2

OO

Finally, if we denote by ` = ` − |{α ∈ [i] |h(α) < `}|, then the left infinitesimal operations are given by

◦i :O(n)× cosks(M)(m) −→ cosks(M)(n+m− 1);

θ ; {xu}0≤i≤su∈Λ+([i] ; [m]) 7−→ {h∗2(θ) ◦` xh1
}0≤i≤sh∈Λ+([i] ; [n+m−1]).

The rest of the proof is the same as the proof of Theorem 3.6. It consists in using the adjunction (ars, cosks)
in order to define by induction a solution to the lifting problem. �
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Theorem 5.5. For any reduced well-pointed operad O, the Reedy model category ΛIbimodO is right proper. It is
left proper provided O is componentwise cofibrant. In the latter case, cofibrations are componentwise cofibrations,
and, as a consequence, the class of componentwise cofibrant objects is closed under cofibrations and cofibrant
Ibimodules are componentwise cofibrant. If O is Σ-cofibrant, then the cofibrations are Σ-cofibrations, the class of
Σ-cofibrant objects is closed under cofibrations, and cofibrant objects are Σ-cofibrant.

Proof. Right properness immediately follows from Theorem 4.7. Indeed, ΛIbimodO = ΣIbimodO as cate-
gories. Therefore, they have the same pullbacks. Moreover, a Reedy fibration is always a projective fibration.
For left properness and the properties of cofibrations, we use the characterization of cofibrations Theorem 5.4
together with the analogous properties of ΣIbimodO>0

established in Theorems 4.7 and 4.8. �

Let φ :O→O′ be a weak equivalence of reduced operads. Similarly to Section 4.2.2, we show that the
Reedy model categories of O-Ibimodules and O′-Ibimodules are Quillen equivalent. By abuse of notation,
we denote by φ∗ and φ! the restriction functor and the extension functor, respectively, between the Reedy
model categories:

φ! : ΛIbimodO�ΛIbimodO′ : φ∗.

In the same way as in Section 4.2.2, for any M ∈ΛIbimodO and M ′ ∈ΛIbimodO′ , one has

φ!(M) = {φ!(M)(n) = F Λ
O (UΛ(M))(n)/ ∼, n ≥ 0},

φ∗(M ′) = {φ∗(M ′)(n) =M ′(n), n ≥ 0}.

Theorem 5.6. Let φ : O→O′ be a weak equivalence between reduced componentwise cofibtant operads. One has
Quillen equivalences

(101) φ! : ΛIbimodO�ΛIbimodO′ : φ
∗,

(102) φ! : TrΛIbimodO� TrΛIbimodO′ : φ
∗.

Proof. Since the restriction functor creates weak equivalences, one has to check that, for any Reedy cofibrant
object M in ΛIbimodO, the adjunction unit

M −→ φ∗(φ!(M))

is a weak equivalence. Due to the characterization of Reedy cofibrations, M is also cofibrant in the projective
model category of O>0-Ibimodules. Since φ>0 : O>0 → O′>0 is still a weak equivalence between compo-
nentwise cofibrant operads, by Theorem 2.19, the pair of functors ((φ>0)! ; (φ>0)∗) gives rise to a Quillen
equivalence and the mapM(n)→ (φ>0)∗

(
(φ>0)!(M)

)
(n) is a weak equivalence. The statement is a consequence

of the identity

φ∗(φ!(M)) = (φ>0)∗
(
(φ>0)!(M)

)
.

�

5.2 The connection between the model category structures on infinitesimal bimodules

Similarly to the operadic case in [FTW], we build a Quillen adjunction between the projective and the
Reedy model categories of infinitesimal bimodules over a reduced operad O. Furthermore, if M and N are
two infinitesimal bimodules, then we show that there is a weak equivalence between the derived mapping
spaces:

ΣIbimodhO(M ;N ) 'ΛIbimodhO(M ;N ).

For completeness of exposition, at the end of the subsection, we explain how to adapt the Boardman-Vogt
resolution (well known for operads, see [BM2]) to the context of infinitesimal bimodules. We refer the reader
to [DT] where this construction was defined by the first and third authors. Using this construction we define
a functorial cofibrant replacement in the categories ΣIbimodO and ΛIbimodO provided O is componentwise
cofibrant.
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5.2.1 Quillen adjunction between the model category structures

Let O be a reduced operad. The projective and the Reedy model categories of infinitesimal bimodules
over O have the same set of weak equivalence and induce the same homotopy category. Consequently, one
has the following statement about the adjunctions

(103)
id : ΣIbimodO � ΛIbimodO : id,

id : TrΣIbimodO � TrΛIbimodO : id.

Theorem 5.7. For any well-pointed reduced operad O, the pairs of functors (103) form Quillen equivalences.
Furthermore, for any pair M, N ∈ΛIbimodO, one has

(104) ΣIbimodhO(M,N ) 'ΛIbimodhO(M,N ).

Moreover, if M, N ∈ TrΛIbimodO, with r ≥ 0, then one has

(105) TrΣIbimodhO(M,N ) ' TrΛIbimodhO(M,N ).

Proof. The proof is similar to that of Theorem 3.9. �

5.2.2 Cofibrant resolution in the projective/Reedy model category

Let O be an operad not necessarily reduced. From an O-Ibimodule M, we build an O-Ibimodule IbO(M).
The points of IbO(M)(n), n ≥ 0, are equivalence classes [T ; {tv} ; xp ; {θv}], where T ∈ pPn (see Section 4.1.2) is
a pearled tree, xp is a point in M labelling the pearl and {θv}v∈V (T )\{p} is a family of points in O labelling the
vertices other than the pearl. Furthermore, {tv}v∈V (T )\V p(T ) is a family of real numbers in the interval [0 , 1]
indexing the vertices which are not pearls. According to the orientation toward the pearl, if e is an inner
edge, then ts(e) ≥ tt(e). In other words, the closer to the pearl is a vertex, the smaller is the corresponding
number. The space IbO(M)(n) is a quotient of the subspace of

(106)
∐
T ∈pPn

M(|p|) ×
∏

v∈V (T )\{p}

[
O(|v|)× [0 , 1]

]
determined by the restrictions on the families {tv}. The equivalence relation is generated by the unit
condition (i) and the compatibility with the symmetric group relation (ii) of Construction 4.3 as well as the
following conditions:

iii) If two consecutive vertices, connected by an edge e, are indexed by the same real number t ∈ [0 , 1],
then e is contracted using the operadic structure of O. The vertex produced by this edge contraction
is indexed by the real number t.

iv) If a vertex connected to the pearl is indexed by 0, then we contract the inner edge connecting them
using the infinitesimal bimodule structure of M. In that case the new vertex, produced by the
contraction, becomes the pearl.
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Let us describe the O-Ibimodule structure. Let θ ∈O(n) and [T ; {tv} ; xp ; {θv}] be a point in IbO(M)(m).
The right infinitesimal operation [T ; {tv} ; xp ; {θv}] ◦i θ consists in grafting the n-corolla labelled by θ to
the i-th incoming edge of T and indexing the new vertex by 1. Similarly, the left infinitesimal operation
θ ◦i [T ; {tv} ; xp ; {θv}] consists in grafting the pearled tree T to the i-th incoming edge of n-corolla labelled
by θ and indexing the new vertex by 1.

Figure 23. Illustration of the right infinitesimal operation.

One has an obvious inclusion of Σ-sequences ι : M→IbO(M), where each element x ∈M(n) is sent to an
n-corolla labelled by x, whose only vertex is a pearl. Furthermore, the following map:

(107) µ : IbO(M)→M ; [T ; {tv} ; xp ; {θv}] 7→ [T ; {0} ; xp ; {θv}],
is defined by sending the real numbers indexing the vertices other than the pearl to 0. The so obtained
element is identified to the pearled corolla labelled by a point in M. It is easy to see that µ is an O-Ibimodule
map.

In order to get resolutions for truncated infinitesimal bimodules, one considers a filtration in IbO(M)
according to the number of geometrical inputs which is the number of leaves plus the number of univalent
vertices other than the pearl. A point in IbO(M) is said to be prime if the real numbers indexing the vertices
are strictly smaller than 1. Otherwise, a point is said to be composite and can be associated to a prime
component as shown in Figure 24. More precisely, the prime component is obtained by removing the vertices
indexed by 1.

Figure 24. A composite point and its prime components.

A prime point is in the r-th filtration layer IbO(M)r if the number of its geometrical inputs is at most r.
Similarly, a composite point is in the r-th filtration layer if its prime component is in IbO(M)r . For instance,
the composite point in Figure 24 is in the filtration layer IbO(M)6. For each r, IbO(M)r is an O-Ibimodule
and one has the following filtration of IbO(M):

(108) IbO(M)0
// IbO(M)1

// · · · // IbO(M)r−1
// IbO(M)r // · · · // IbO(M).

Theorem 5.8 (Theorem 3.10 in [DT]). Assume that O is a Σ-cofibrant operad, and M is a Σ-cofibrant O-
Ibimodule. Then the objects IbO(M) and TrIbO(M)r are cofibrant replacements of M and TrM in the categories
ΣIbimodO and TrΣIbimodO, respectively. In particular, the maps µ and Trµ|TrIbO(M)r are weak equivalences.
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Now we slightly change the above construction in order to produce Reedy cofibrant replacements for
O-Ibimodules when O is a reduced operad. Let M be an infinitesimal bimodule over O. As a Σ-sequence, we
set

IbΛO(M) := IbO>0
(M)

The superscript Λ is to emphasize that we get a cofibrant replacement in the Reedy model category structure.
The right and left action by the positive arity components is defined as it is on IbO>0

(M). The right action by
∗0 ∈O(0) is defined in the obvious way as the right action by ∗0 on a in the vertex (a, t) connected to the leaf
labelled by i as illustrated in the Figure 17.

Note that since the arity zero component of O>0 is empty, in the union (106) we can consider only trees
whose all non-pearl vertices have arities ≥ 1. We denote this set by pP≥1

n . In other words, the space IbΛO(M)
can be obtained as the restriction of the coproduct (106) to this set.

Proposition 5.9. [DT, Proposition 3.12] Assume that O is a reduced Σ-cofibrant operad, and M is a Σ-cofibrant
O-Ibimodule. Then the objects IbΛO(M) and TrIbΛO(M) are cofibrant replacements of M and TrM in the categories
ΛIbimodO and TrΛIbimodO, respectively. In particular, the maps µ and Trµ are weak equivalences.

Proof. The map µ : IbΛO(M)→M, which changes the assignment of the real numbers indexing the vertices
to 0, is a homotopy equivalence. More precisely, it is a deformation retract in the category of Σ-sequences in
which the homotopy consists in bringing the real numbers to 0. Furthermore, as a consequence of Theorem
5.8, IbΛO(M) = IbO>0

(M) is cofibrant in the projective model category ofO>0-Ibimodules. Due to Theorem 5.4,
IbΛO(M) is also Reedy cofibrant and it gives rise to a cofibrant resolution of M in the Reedy model category
ΛIbimodO. The same arguments work for the truncated case. Note that TrIbΛO(M)r = TrIbΛO(M), since arity
zero non-pearl vertices are not permitted. �

By means of Theorem 5.8 and Proposition 5.9, we construct a functorial cofibrant replacement in
ΣIbimodO and ΛIbimodO assuming that O is componentwise cofibrant. We adapt notation from Subsec-
tion 3.2.3. Given an O-Ibimodule M, we define M ′∞ := |S•M | ×E∞, O′∞ := |S•| ×E∞. One has that both M ′∞
and O′∞ are Σ-cofibrant and M ′∞ is an O′∞-bimodule. Let

φ : O′∞
'−→O, and φ0 : M ′∞

'−→M

be the natural projections. Note that φ0 can be viewed as a map of O′∞-Ibimodules.

Proposition 5.10. (a) Assume that O is a componentwise cofibrant operad. Let M be any O-Ibimodule. Then
the objects φ!

(
IbO′∞(M ′∞)

)
and φ!

(
TrIbO′∞(M ′∞)r

)
are cofibrant replacements of M and TrM in the categories

ΣIbimodO and TrΣIbimodO, respectively.
(b) Assume in addition that the operad O is reduced. Then the objects φ!

(
IbΛO′∞(M ′∞)

)
and φ!

(
TrIbΛO′∞(M ′∞)

)
are cofibrant replacements of M and TrM in the categories ΛIbimodO and TrΛIbimodO, respectively.

Proof. The result is an immediate consequence of Theorems 4.9, 5.6, 5.8 and Proposition 5.9. �

A Equivariant homotopy theory

A.1 Projective cofibrations for monoidal action

In what follows, for any topological monoid G, we consider the projective model structure on the category
of G-spaces denoted G-T op. We refer the reader to Subsection 1.1 for more details. We start by recalling the
statement of Berger-Moerdijk concerning the pushout product axiom.

Lemma A.1. [BM2, Lemma 2.5.3] Let 1→ G1 → G → G2 → 1 be a short exact sequence of discrete groups.
Let A→ B be a G2-cofibration and X → Y be a G-equivariant G1-cofibration. Then the pushout product map
(A×Y )∪A×X (B×X)→ B×Y is a G-cofibration. Moreover, the latter is acyclic if A→ B or X→ Y is.

We use an analogue of this result (namely, Lemmas A.5 and A.8 below) that can be applied to Σn oO(1) and
to (Σk ×Σn−k) oO(1), which are not groups, but monoids, and also are not discrete. In fact non-discreteness
is not a big problem. It is not hard to see that Berger-Moerdijk’s proof of [BM2, Lemma 2.5.3] works for
topological groups as well. On the contrary, for their proof it is critical that the action is by groups. In fact
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the statement of Lemma A.1 in general does not hold when G, G1, and G2 are monoids. Indeed, consider
G1 = 1 and G2 = G = N the monoid of non-negative natural numbers with the natural addition operation.
Then for A→ B being Sk−1 ×N→ Dk ×N, and X → Y being N→ N, i 7→ i + 1, the pushout product map
(A×Y )∪A×X (B×X)→ B×Y is not an N-cofibration.

Lemma A.2. Let Γ be a topological monoid, A→ B be a Γ -cofibration, X → Y be a cofibration (in T op), then
the pushout-product map (A×Y )∪A×X (B×X)→ B×Y is a Γ -cofibration, where X and Y are regarded as spaces
endowed with a trivial action of Γ . Moreover, the latter is acyclic if A→ B or X→ Y is.

The proof of this lemma is identical to that of [BM2, Lemma 2.5.2] in which Γ is not a topological monoid
but a discrete group. For the convenience of the reader the argument is given below.

Proof. Let Z→W be a trivial Γ -fibration. One has to show that any square

(109) (A×Y )∪A×X (B×X) //

��

Z

��
B×Y // W

has a Γ -equivariant lift. Since T op is cartesian closed, the existence of such lift is equivalent to the existence
of a Γ -equivariant lift of the square

(110) A //

��

Map(Y ,Z)

��
B // Map(Y ,W )×Map(X,W )Map(X,Z).

Here the Γ -action on the mapping spaces Map(Y ,Z), Map(Y ,W ), etc. is defined through the action on the
target: (f ·γ)(y) := f (y) ·γ . Since the left vertical arrow is a Γ -cofibration, it is enough to show that the right
arrow is a trivial Γ -fibration. On the other hand, since the forgetful functor Γ -T op→ T op creates fibrations
and weak equivalences, it suffices to verify that the right arrow is a trivial fibration in T op, in other words
that any square

Sk−1 //

��

Map(Y ,Z)

��
Dk // Map(Y ,W )×Map(X,W )Map(X,Z)

has a lift in T op. The latter is equivalent to the pushout-product property that the map (Sk−1 ×Y )∪Sk−1×X
(Dk ×X)→Dk ×Y is a cofibration.

The acyclicity statement is proved similarly by starting with any not-necessarily trivial Γ -fibration
Z→W . �

Given a homomorphism of monoids j : Γ → Γ ′ , one gets an extension-restriction adjunction

(111) j! : Γ -T op� Γ ′-T op : j∗.

Lemma A.3. For any morphism of topological monoids j : Γ → Γ ′, the extension-restriction adjunction (111) is
a Quillen adjunction. In particular, the extension functor j! preserves cofibrations and acyclic cofibrations. The
restriction functor j∗ preserves fibrations and weak equivalences. Moreover, if Γ ′ is cofibrant as a right Γ -module,
then j∗ also preserves cofibrations.

Proof. All the statements follow from definition except the last one, which is implied by the fact that the
restriction functor preserves colimits and sends the generating cofibrations Sk−1×Γ ′→Dk×Γ ′ to cofibrations.
The latter assertion is a consequence of Lemma A.2 applied to A → B being ∅ → Γ ′, and X → Y being
Sk−1→Dk . �
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Definition A.4. (a) A sequence of morphisms of topological monoids

(112) 1→ Γ1
i−→ Γ

p
−→ Γ2→ 1

is called short exact sequence if Γ2 is a quotient of Γ as a topological space (p is a quotient map), and i
is a homeomorphism onto p−1(1).

(b) A short exact sequence (112) of topological monoids is called split-surjective, if p admits a continuous
section s : Γ2→ Γ which is a morphism of monoids, and the map Γ2 × Γ1→ Γ , (γ2,γ1) 7→ s(γ2) · i(γ1),
is surjective.

For a split-surjective short exact sequence (112), thanks to the inclusions i and s, the monoids Γ1 and
Γ2 can be viewed as subobjects of Γ . For this reason in the sequel, we will be omitting i and s considering
Γ1,Γ2 ⊂ Γ . Note also that if Γ2 is a group, the map Γ2 × Γ1→ Γ , (γ2,γ1) 7→ γ2 ·γ1, is always surjective (and, in
fact, bijective).

Lemma A.5. Let (112) be a split-surjective short exact sequence of monoids. Let also Γ2 fit into a split-surjective
short exact sequence

(113) 1→ Γ 0
2 → Γ2

p2−−→ G2→ 1

with G2 being a group. Also assume that all elements of Γ 0
2 commute with those from Γ1 inside Γ . Let A→ B be a

Γ2-cofibration and X→ Y be a Γ -equivariant Γ1-cofibration with both X and Y having trivial action of Γ 0
2 . Then

the pushout product map (A×Y )∪A×X (B×X)→ B×Y is a Γ -cofibration. Moreover, the latter is acyclic if A→ B
or X→ Y is.

Example A.6. If A→ B is a Γ2-cofibration and X → Y is a Γ1-cofibration, then the pushout product map
(A×Y )∪A×X (B×X)→ B×Y is a Γ1 × Γ2-cofibration. (Take Γ = Γ1 × Γ2 and G2 = 1.)

Proof of Lemma A.5. Let Z → W be a trivial Γ -fibration. One has to show that the square (109) has a Γ -
equivariant lift. By adjunction such lift defines a lift in the square (110). If Γ were a group then the mapping
spaces Map(Y ,Z), Map(Y ,W ), etc., would be endowed with a natural right Γ -action: (f ·γ)(y) := f (y ·γ−1) ·γ .
The lift in question would arise from a lift in (109) if and only if it were Γ -equivariant. However, in our
more general situation the mapping spaces do not get a natural Γ -action and the condition on the induced
lift of (110) is less obvious. Denote by MapΓ1

(Y ,Z) (MapΓ1
(Y ,W ), etc.) the subspace of Map(Y ,Z) of Γ1-

equivariant maps. Since the action of Γ1 is trivial on A and on B, the induced lift of (110) must factor through
a lift in the square

(114) A //

��

MapΓ1
(Y ,Z)

��
B // MapΓ1

(Y ,W )×MapΓ1 (X,W )MapΓ1
(X,Y ).

On the other hand, the spaces MapΓ1
(Y ,Z), MapΓ1

(Y ,W ), etc., have a natural Γ2-action defined as follows:

(f ·γ2)(y) := f (y · p2(γ2)−1) ·γ2,

where γ2 ∈ Γ2. One checks that if f ∈MapΓ1
(Y ,Z), then so is f ·γ2:

(f ·γ2)(y ·γ1) = f (y ·γ1 · p2(γ2)−1) ·γ2

= f (y · p2(γ2)−1 · p2(γ2) ·γ1 · p2(γ2)−1) ·γ2

= f (y · p2(γ2)−1) · p2(γ2) ·γ1 · p2(γ2)−1 ·γ2

= f (y · p2(γ2)−1) · p2(γ2) · p2(γ2)−1 ·γ2 ·γ1

= f (y · p2(γ2)−1) ·γ2 ·γ1 = (f ·γ2)(y) ·γ1.

The third equation is obtained using the fact that p2(γ2) ·γ1 · p2(γ2)−1 ∈ Γ1 and f ∈MapΓ1
(Y ,Z). The fourth

equation uses that p2(γ2)−1 ·γ2 ∈ Γ 0
2 and that Γ1 commutes with Γ 0

2 .
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We claim that a map B→ Map(Y ,Z) is adjoint to a Γ -equivariant map F : B × Y → Z if and only if it
factors through MapΓ1

(Y ,Z) and the map B→MapΓ1
(Y ,Z) is Γ2-equivariant. (The same holds for the maps

A→Map(Y ,Z), B→Map(Y ,W ), etc.)
Indeed, let F : B×Y → Z be a Γ -equivariant map. Since Γ1 acts trivially on B,

F(b,y) ·γ1 = F(b ·γ1, y ·γ1) = F(b,y ·γ1).

Thus, F(b,−) ∈MapΓ1
(Y ,Z). To check that the induced map B→MapΓ1

(Y ,Z) is Γ2-equivariant, we need to
make sure that F(b ·γ2, y) = F(b,y · p2(γ2)−1) ·γ2. One has

F(b,y · p2(γ2)−1) ·γ2 = F(b ·γ2, y · p2(γ2)−1 ·γ2) = F(b ·γ2, y).

The last equation uses the fact that p2(γ2)−1 ·γ2 ∈ Γ 0
2 and that Γ 0

2 acts trivially on Y .
In the other direction, let F : B × Y → Z be the adjoint of a Γ2-equivariant map B → MapΓ1

(Y ,Z) →
Map(Y ,Z). One has to check that F is Γ -equivariant. Since the product map Γ2 × Γ1→ Γ is surjective, each
γ ∈ Γ can be written as γ = γ2 ·γ1, γ1 ∈ Γ1, γ2 ∈ Γ2. We need to check that F(b ·γ2 ·γ1, y ·γ2 ·γ1) = F(b,y) ·γ2 ·γ1.
One has

F(b ·γ2 ·γ1, y ·γ2 ·γ1) = F(b ·γ2, y ·γ2 ·γ1) since Γ1 acts trivially on B,

= F(b ·γ2, y ·γ2) ·γ1 since F(b ·γ2,−) ∈MapΓ1
(Y ,Z),

= F(b,y ·γ2 · p2(γ2)−1) ·γ2 ·γ1 since F is Γ2-equivariant,

= F(b,y) ·γ2 ·γ1 since Γ 0
2 acts trivially on Y .

As a consequence of the above, the square (109) has a Γ -equivariant lift if and only if the square (114) has
a Γ2-equivariant lift. On the other hand, the left vertical map in (114) is a Γ2-cofibration. Therefore a lift
exists provided the right vertical map in (114) is a trivial Γ2-fibration. The latter holds provided that the
map is a trivial fibration in T op, which follows from the fact that (Sk−1 ×Y )∪Sk−1×X (Dk ×X)→Dk ×Y is a
Γ1-cofibration, see Lemma A.2. �

Lemma A.7. Let Γ be a topological monoid and Z be a Γ -cofibrant space. Then the functor

Z ×Γ − : Γ op-T op→ T op

from left Γ -modules to spaces, sends left Γ -spaces that are cofibrant in T op to cofibrant spaces, and preserves the
weak equivalences between such objects.

Proof. Since a retract of a cofibrant space is a cofibrant space and retract of a weak equivalence is a weak
equivalence, we can assume that Z is Γ -cellular: Z = colimα<λZα , where each map Z<α := colimβ<αZβ → Zα
is a pushout of a generating Γ -cofibration. One has to check two statements.

• If the statement of the lemma holds for Z<α , then it does for Zα .
• If the statement of the lemma holds for each Zβ , β < α, then it does for Z<α .

For any generating Γ -cofibration Sk−1 × Γ →Dk × Γ and any cofibrant in T op left Γ -space A, the induced
map

(115) (Sk−1 × Γ )×Γ A→ (Dk × Γ )×Γ A
is Sk−1 × A → Dk × A. Since A is cofibrant, this map (115) is a cofibration. On the other hand, for any
weak equivalence of Γ -spaces A→ B, the induced maps Sk−1 ×A→ Sk−1 ×B and Dk ×A→Dk ×B are weak
equivalences. The first statement above follows by applying Proposition 2.12 and recalling that T op is left
proper.

To prove the second statement, we notice that the sequence Zα ×Γ A, α < λ, is a sequence of cofibrations,
being pushouts of cofibrations of the form (115). Therefore,

colimα<λ(Zα ×Γ A) ' hocolimα<λ(Zα ×Γ A).

One has the same weak equivalence of spaces for B. Since Zα×Γ A→ Zα×Γ B, α < λ, are all weak equivalences,

hocolimα<λ(Zα ×Γ A) ' hocolimα<λ(Zα ×Γ B).

On the other hand, the functors (−)×Γ A and (−)×Γ B preserve colimits. We conclude

Z ×Γ A = colimα<λ(Zα ×Γ A) ' colimα<λ(Zα ×Γ B) = Z ×Γ B.
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Compatible action of a monoid and a group: We say that a topological monoid Γ is endowed with a right
action of a group K if one is given a map Γ ×K → Γ , (γ,k) 7→ γk , which is a right K-action on the set Γ and
for every k ∈ K , the map (−)k : Γ → Γ is a monoid homomorphism. Given such an action, one defines the
semi-direct product monoid Γ oK . Its underlying set is Γ ×K , while multiplication is as follows

(γ1, k1) · (γ2, k2) = (γ1 ·γ
k−1

1
2 , k1 · k2).

A right Γ oK-space A can equivalently be seen as a right Γ -module with a right K-action compatible in the
sense

(a ·γ) · k = (a · k) ·γk , for any a ∈ A, γ ∈ Γ , k ∈ K .
Note that the same map Γ × K → Γ , defines a right K-action on Γ op – the monoid with the reversed

multiplication. A right Γ op oK-space X can equivalently be seen as a left Γ -module with a right K-action
compatible in the sense

(γ · x) · k = γk · (x · k), for any x ∈ X, γ ∈ Γ , k ∈ K .

Lemma A.8. Let 1→ K1→ K → K2→ 1 be a short exact sequence of topological groups. Let Γ be a topological
monoid endowed with a right K2-action. If A→ B is a Γ oK2-cofibration and X → Y is a Γ op oK-equivariant
K1-cofibration, then the pushout-product map (A×Γ Y )∪A×ΓX (B×Γ X)→ B×Γ Y is a K-cofibration. Moreover, the
latter is acyclic if A→ B or X→ Y is.

Proof. Let Z→W be a trivial K-fibration. One has to show that any square

(116) (A×Γ Y )∪A×ΓX (B×Γ X) //

��

Z

��
B×Γ Y // W

has a K-equivariant lift. One has a homeomorphism of mapping spaces.

MapK (B×Γ Y ,Z) =MapΓoK2

(
B,MapK1

(Y ,Z)
)
.

(One has similar homeomorphisms for MapK (A×Γ Y ,Z), etc.) The K-action on B×Γ Y is the diagonal one:
(b,y) · k = (b · k,y · k). The action of Γ oK2 on MapK1

(Y ,W ) is defined as follows:

(f · (γ,k2))(y) = f (γ · (y · k−1)) · k,
where k ∈ K is any point in the preimage of k2 ∈ K2.

Using this, the existence of a lift in (116) is equivalent to the existence of a Γ oK2-equivariant lift of the
square

(117) A //

��

MapK1
(Y ,Z)

��
B // MapK1

(Y ,W )×MapK1 (X,W )MapK1
(X,Z).

Since A→ B is a Γ oK2-cofibration, one has to check that the right vertical arrow is a trivial Γ oK2-fibration,
or, equivalently a fibration in T op. In other words, one has to check that any square below

Sk−1 //

��

MapK1
(Y ,Z)

��
Dk // MapK1

(Y ,W )×MapK1 (X,W )MapK1
(X,Z)

has a lift in T op. The latter is equivalent to the pushout-product property that the map (Sk−1 ×Y )∪Sk−1×X
(Dk ×X)→Dk ×Y is a K1-cofibration, true by Lemmas A.1 or A.2.

�
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A.2 Cellularly equivariant cofibrations

Definition A.9. Let G be a discrete group.

(a) A G-equivariant map X0 → X1 is called a G-equivariant cell attachment if it fits into a pushout
diagram

(118) Sk−1 × (H\G) //

��

Dk × (H\G)

��
X0

// X1,

where H ⊂ G is a subgroup of G.
(b) A G-equivariant map X0→ X is called a cellularly G-equivariant cofibration if it is a G-equivariant

retract of a possibly transfinite sequence of G-equivariant cell attachments.

In fact there exists a model structure on G-T op for which cofibrations are exactly the cellularly G-
equivariant cofibrations [Far]. This model structure produces a different (from projective) homotopy
category as it has a smaller class of equivalences for which one has to take into account all orbit subspaces.
Any G-space is still fibrant in this model structure. We do not use this more subtle model structure on
G-T op. We just need a few technical lemmas below.

Lemma A.10. For any cellularly G-equivariant cofibration X0→ X and any G-space Y , the induced map

MapG(X,Y )→MapG(X0,Y )

is a Serre fibration.

Proof. A retract of a Serre fibration is a Serre fibration as well as is the limit of a tower of Serre fibrations.
Therefore it is enough to consider the case of a G-equivariant cell attachment X0→ X1 as in (118). One has a
pullback square

MapG(X1,Y ) //

��

MapG(Dk × (H\G),Y )

��
MapG(X0,Y ) // MapG(Sk−1 × (H\G),Y ).

The left vertical map is a Serre fibration provided the right vertical map is one. One has

MapG(Dk × (H\G),Y ) =MapH (Dk ,Y ) =Map(Dk ,YH );

MapG(Sk−1 × (H\G),Y ) =MapH (Sk−1,Y ) =Map(Sk−1,YH ).

Therefore, the right vertical map in the square above is the map Map(Dk ,YH )→Map(Sk−1,YH ), which is a
Serre fibration. This follows from the fact that the invariant space YH is fibrant (like any topological space)
and the map from Sk−1 to Dk is a cofibration.

�

Lemmas A.11-A.14 below help to recognize cellularly equivariant cofibrations.

Lemma A.11. The realization of any G-equivariant inclusion of simplicial G-sets is a cellularly G-equivariant
cofibration.

Proof. Obvious. �

Lemma A.12. For any homomorphism φ : G1→ G2 of discrete groups, both the restriction and extension functors

φ! : G1-T op� G2-T op : φ∗

preserve cellularly equivariant cofibrations.

Proof. Obvious. �
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Lemma A.13. If

(119) X0→ X and Y0→ Y

are cellularly G-equivariant cofibrations, then so is the pushout-product map

(120) (X ×Y0)∪X0×Y0
(X0 ×Y )→ X ×Y .

Proof. For generating G-equivariant cell attachments Sk1−1 × (H1\G)→Dk1 × (H1\G) and Sk2−1 × (H2\G)→
Dk2 × (H2\G), the map (120) becomes

Sk1+k2−1 × (H1\G)× (H2\G)→Dk1+k2 × (H1\G)× (H2\G).

The G-set (H1\G)× (H2\G) is isomorphic to a disjoint union of identical G-sets (H1 ∩H2)\G. Thus, the
statement of the lemma holds in this case. Similarly it is true for an arbitrary pair of G-equivariant cell
attachments.

In case X = colimα<λ1
Xα and Y = colimα<λ2

Yα are (possibly transfinite) sequences of G-equivariant cell
attachments, then the inclusion (120) is also a (transfinite) sequence of G-equivariant cell attachments

colim
(α1,α2)<(λ1,λ2)

Zα1,α2
,

where the set λ1 ×λ2 is given the lexicographical order and therefore is also an ordinal. The spaces Zα1,α2
are defined recursively:

Zα1,α2
=

(
colim

(β1,β2)<(α1,α2)
Zβ1,β2

)
∪ (Xα1

×Yα2
),

with Z0,0 being the left-hand side of (120).
Finally, if (119) are retracts of (transfinite) sequences of cell attachments then so is the pushout-product.

�

Lemma A.14. Let ∂X→ X be a cofibration in T op. Then ∂(X×n)→ X×n is a cellularly Σn-equivariant cofibration.

Proof. One needs to check it first for the inclusion Sk−1 → Dk , which is done by stratifying (Dk)×n into
Σn-orbits and then decomposing the orbits into cells. Applying previous Lemmas A.12 and A.13 we can
conclude that the inclusion

∂
∏̀
i=1

(Dki )×ni →
∏̀
i=1

(Dki )×ni

is a cellularly (
∏`
i=1Σni )-equivariant cofibration. The rest of the argument is similar to the proof of the

previous lemma. Assuming that ∂X→ X is a possibly transfinite sequence of cell attachments colimα<λXα ,
we decompose X×nα extending the cellular structure of colimβ<αX

×n
β . �
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