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Laser beam shaping for enhanced Zero-Group Velocity Lamb modes generation

François Bruno, Jérôme Laurent, Paul Jehanno, Daniel Royer, and Claire Prada∗

Institut Langevin, ESPCI Paris, CNRS (UMR 7587), PSL Research University, Paris, France
(Dated: 15 september 2016)

Optimization of Lamb modes induced by laser can be achieved by adjusting the spatial source dis-
tribution to the mode wavelength (λ). The excitability of Zero-Group Velocity (ZGV) resonances in
isotropic plates is investigated both theoretically and experimentally for axially symmetric sources.
Optimal parameters and amplitude gains are derived analytically for spot and annular sources of
either Gaussian or rectangular energy profiles. For a Gaussian spot source, the optimal radius is
found to be λZGV /π. Annular sources increase the amplitude by at least a factor of 3 compared to
the optimal Gaussian source. Rectangular energy profiles provide higher gain than Gaussian ones.
These predictions are confirmed by semi-analytical simulation of the thermoelastic generation of
Lamb waves, including the effect of material attenuation. Experimentally, Gaussian ring sources of
controlled width and radius are produced with an axicon-lens system. Measured optimal geomet-
ric parameters obtained for Gaussian and annular beams are in good agreement with theoretical
predictions. A ZGV resonance amplification factor of 2.1 is obtained with the Gaussian ring. Such
source should facilitate the inspection of highly attenuating plates made of low ablation threshold
materials like composites.

I. INTRODUCTION

Ultrasonic techniques are widespread for the charac-
terization of mechanical properties of materials. Guided
Lamb modes are often used to determine the elastic prop-
erties of plate-like structures. It is well known that for
some Lamb modes, the group velocity vanishes at fi-
nite wavelength.1 It was demonstrated that these specific
Zero-Group Velocity (ZGV) modes are very well gener-
ated and detected in metallic plates by laser-based ul-
trasonic techniques2–4. The energy deposited by either
continuous laser source2 or pulsed laser impact3 remains
trapped under the source, resulting in local and narrow
ZGV resonances. The frequencies of these resonances
depend on plate thickness and bulk acoustic wave ve-
locities in such a way that broadband and local measure-
ments of ZGV resonances in an isotropic material provide
Poisson’s ratio.4 ZGV modes also exist in multi-layered
plates where they are useful to characterize the bonding
between the layers.5–7 For these various applications, it is
important to optimize the laser source geometry in order
to increase the ZGV mode amplitude and to obtain high
signal-to-noise ratio. In general, the Lamb mode ampli-
tude increases with the total amount of deposited energy.
However, for most applications, ultrasonic generation has
to remain non-destructive. This constraint limits the de-
posited energy density to the ablation threshold, which
is, for example, about 10 MW/cm2 in Duralumin.

Different solutions have been considered to overcome
this limitation. Several studies proposed to used mul-
tiple laser sources synchronized with appropriate time
delays to mimic phased array systems and to focus bulk
waves.8,9 However, these systems are cumbersome and
expensive. With a single thermoelastic source, it is nec-
essary to shape the laser beam in order to generate a
particular guided mode.

In the past, surface acoustic waves (SAWs) have
been efficiently generated by using laser interference pat-

terns10 or by splitting a laser beam into regularly spaced
line sources with an optical diffraction grating.11 Re-
cently, Grunsteildl et al. used an intensity modulated
laser combined with spatial light modulator (SLM) to ad-
just the excitation both spatially and temporally. With
the laser intensity being spread on parallel, equidistant
lines, this technique allows an efficient and selective gen-
eration of a specific mode with low peak power densities
on the sample.12

A solution to enhance SAW amplitude at a particular
point is to use an annular beam. This was achieved by
Cielo et al. with an axicon-lens system.13 A pulsed laser
beam was focused to a sharp ring on an aluminium sam-
ple to generate a convergent Rayleigh wave. The wave
amplitude at the center of convergence was increased by
a factor of 20 with respect to a line-source produced
wave with equal surface heating. Focused bulk ultrasonic
waves generated by ring-shaped laser beam were also
applied to flaw detection.14 This solution was explored
on thick samples and the measurement of Rayleigh and
bulk acoustic waves were compared to numerical results
obtained by thermoelastic finite element modelling.15

Recently, ring laser sources were also obtained with a
SLM.16

Optimization of the laser source to enhance ZGV
Lamb modes was first discussed by Balogun et al. in
a study of the generation of the S1S2-ZGV resonance
by an amplitude modulated laser source.17 Using a
semi-analytical model,18 the S1S2-ZGV resonance
amplitude was calculated as a function of the radius
w of the Gaussian beam: f(r) = exp(−r2/w2). They
showed numerically that, for an aluminum plate, the
optimal radius is about 1.3 times the plate thickness
and about 0.3 times the mode’s wavelength λS1S2

. This
question was then addressed by Grunsteidl et al. exper-
imentally and numerically using a time domain finite
difference technique.19 They found, for tungsten, an opti-
mal radius between 1.0 and 1.1 times the plate thickness.
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In the present work, the generations of ZGV modes
using different axi-symmetric beam profiles are studied.
A theoretical analysis is proposed to find the optimal pa-
rameters of different source shapes. Then, experiments
achieved for Gaussian and annular sources are presented.
Quasi-Gaussian annular beams of controlled width and
diameter are shaped with an axicon-lens system. Unlike
previous studies using thin rings of radii that are large
compared to SAW wavelength,13,14 thick rings with radii
on the order of ZGV mode wavelength are produced. In
Sec. II, the model of thermoelastic generation in a plate
with an axi-symmetric source is recalled. In Sec. III,
the theoretical approach allows us to establish an ana-
lytical formulation of the optimal width and radii versus
the mode wavelength for a Gaussian source, an annular
beam of Gaussian profile, a top-hat beam, and an annular
beam of square profile. The semi-analytical simulation
developed by Balogun et al.17 was adapted to the differ-
ent source shapes and used to calculate the displacement
amplitudes at ZGV resonance frequencies as a function
of the source geometric parameters. Numerical results
are then compared with the analytical ones. Finally, in
Sec. IV, experimental measurements achieved on a 1-mm
thick Duralumin plate are described and compared with
theoretical results. The generation of S1S2-ZGV Lamb
mode is optimized by adjusting the axicon-lens system.

II. LAMB MODE GENERATION WITH AN
AXI-SYMMETRIC THERMOELASTIC SOURCE

In order to calculate the amplitude of ZGV resonances
excited by an axi-symmetric laser source, we use the
semi-analytical model introduced in Ref.18 to describe
thermoelastic conversion and the coupling with Lamb
modes as in Balogun et al. .17 It is assumed that the tem-
perature field is independent of the elastic field. Thus,
the heat equation is solved and the temperature field is
considered as a source term in the elastodynamic equa-
tions. Assuming that the optical penetration depth γ is
smaller than the plate thickness 2h, the absorbed power
density Pa for a laser source at the surface z = −h can
be written in cylindrical coordinates (r, z)

Pa(r, z, t) = Etotf(r)

(
e−

z+h
γ

γ

)
g(t), (1)

where Etot is the total energy absorbed by the plate, f(r)
is the spatial distribution of the laser intensity normal-

ized to unity: 2π
∞

0
f(r)rdr = 1 and g(t) is the nor-

malized laser pulse profile:
∞

0
g(t)dt = 1. Then the

spatial energy density distribution on the plate surface is
E(r) = Etotf(r). In practice, in order to avoid abblation
phenomena the maximum surface energy density, equal
to

I = Etot max(f(r)), (2)

is limited by the abblation threshold of the material Ia.
The temperature rise is linked to the absorbed power
density through the heat equation:

∇2T − 1

κ

∂T

∂t
= −Pa

K
,

where K is the thermal conductivity, κ = K/ρC the
thermal diffusivity, ρ is the material density, and C is
the specific heat. As the problem is axi-symmetric, it
can be solved using the Fourier-Hankel transforms of

the power density Pa
H0

(k, z, ω) and the temperature rise

T
H0

(k, z, ω) where k is the wave number and ω is the
angular frequency. This transformation leads to the fol-
lowing differential equation:

∂2T
H0

∂z2
− χ2T

H0
= −P

H0

a

K
, with χ2 = k2 + i

ω

κ
, (3)

where

P
H0

a (k, z, ω) =

(
e−

z+h
γ

γ

)
EH0(k)g(ω). (4)

Considering that in our experiments, the laser pulse is
very short (a few nanoseconds) compared with the period
of the studied Lamb modes, we omit the function g(ω) in
the following. The term EH0(k) exp(−h/γ) is factorized
in Eq. (3) so that the solution can be expressed as

TH0 =

[
T1e

χz + T2e
−χz −

(
γ

1− γ2χ2

)
e−z/γ

]
EH0(k)

e−h/γ

K
.

(5)

The constants T1 and T2 are determined from boundary
conditions. Neglecting heat diffusion into the air, the
absence of any thermal flux on each plate surface z = ±h
implies

∂T

∂z

∣∣∣∣
z=±h

= 0⇔ ∂T
H0

∂z

∣∣∣∣∣
z=±h

= 0. (6)

Inserting Eq. (5) into Eq. (6) provides the expressions of
T1 et T2

T1,2 =
1

χ(1− γ2χ2)

[
e−( 1

γ∓χ)h − e(
1
γ∓χ)h

e2χh − e−2χh

]
. (7)

The temperature field is then considered as a source term
in the elastic wave equation. The displacement field u
is derived from scalar φ and vector Ψ potentials using
Helmoltz decomposition. As the problem is cylindrical
symmetric, the potentials φ, and Ψ = (0, 0, ψ) can be
used to write

u = ∇φ+∇×∇×Ψ. (8)

This comes from the fact that in cylindrical coordinates
(r, θ, z), the rotational is ∇×Ψ = (0,−∂ψ/∂r, 0). Then,
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the wave equation results in two uncoupled equations for
scalar and vector potentials

{
(λ+ 2µ)∇2φ− ρ∂

2φ
∂t2 = αT (3λ+ 2µ)T,

µ∇2ψ − ρ∂
2ψ
∂t2 = 0,

(9)

where λ and µ are the Lamé constants, and αT is the
coefficient of linear thermal expansion. Introducing η =
αT (3λ+2µ)/(λ+2µ) and the bulk elastic velocities cL and

cT , the following system is obtained by Fourier-Hankel
transform

∂2φ
H0

∂z2 − p
2φ
H0

= ηT
H0

with p2 = k2 − ω2

c2L
,

∂2ψ
H0

∂z2 − q
2ψ

H0
= 0 with q2 = k2 − ω2

c2T
.

(10)

The potentials φ
H0

and ψ
H0

are the sum of a particu-
lar solution and a solution of the homogeneous equation.
They can be written in the form

{
φH0

=
[
Aepz + Be−pz +

(
1

χ2−p2

)
(T1e

χz + T2e
−χz)−

(
γ2

1−γ2p2

)(
γ

1−γ2χ2

)
e−

z
γ

]
η
KE

H0(k)e−
h
γ ,

ψH0
= [Ceqz +De−qz] ηKE

H0(k)e−
h
γ ,

(11)

where the constants A, B, C and D are determined from
boundary conditions as explained in the Appendix A. For
each mode, the displacement components of u(k, z, ω) are
simply expressed as a linear combination of the potentials
[Eq. (A2)]. Consequently, the normal displacement at a
given (ω0, k0) is proportional to the Hankel transform of
the source spatial distribution EH0(k0). In particular, a
ZGV mode can be enhanced by optimization of the source
Hankel transform at spatial frequency k0. Furthermore,
as explained in the Appendix [Eq. (A5)], the mechanical
displacement u(r, z, ω) can be calculated numerically by
inverse Hankel transform.

III. DERIVATION AND SIMULATION OF THE
OPTIMAL BEAM PARAMETERS

We now consider different source geometries and de-
rive the optimal parameters for the generation of a Lamb
mode. As previously discussed and demonstrated in the
Appendix, the displacement components can be written
as {

uH1
r = UrE

H0(k),
uH0
z = UzE

H0(k),
(12)

where the functions Ur and Uz are independent of the
source geometry. Considering a spatial distribution de-
pending on a parameter a, if the amplitude of the mode
at fixed (ω, k) undergoes maximum, then

∂EH0

∂a

∣∣∣∣
k

= 0. (13)

Additionally, the maximal surface energy I is supposed
to remain below the ablation threshold Ia.

These two conditions are now applied to different beam
geometries.

A. Optimization of a Gaussian beam

The conditions equations (13) and I < Ia are first ap-
plied for a Gaussian source of radius w. The absorbed
energy distribution is written as E(r) = I exp(−r2/w2).
The total absorbed energy is Etot = πw2I and the re-
sulting Hankel transform is given by

EH0(k) =
Iw2

2
e
−
(

w2k2

4

)
.

The amplitude of the mode at (ω, k) reaches a maximum
for an optimal beam radius equal to

wopt = 2/k = λ/π. (14)

This very simple formula shows that the optimal waist
only depends on the mode wavelength, which is propor-
tional to the plate thickness and function of the elastic
parameters. The wavelength of ZGV modes have been
calculated as a function of the Poisson’s ratio and are
displayed in Fig. 1. For the S1S2-ZGV mode, the wave-
length varies from about three times the plate thickness
for hard materials (ν ≈ 0) to four times the plates thick-
ness for usual metals (ν ≈ 0.3) and increases to infinity
for the value ν = 0.451 where the ZGV point reaches the
shear thickness resonance.

To illustrate the result given by Eq. 14, we consider the
case of 1-mm thick Duralumin and fused silica plates.
For Duralumin of bulk velocities cL = 6398 m/s and
cT = 3122 m/s, the S1S2-ZGV mode wavelength is
λS1S2

= 3.99 mm, while for fused silica (cL = 5961 m/s,
cT = 3727 m/s) it is 3.33 mm. The theoretical optimal
waists are then wdural = 1.27 mm and wsilica = 1.06 mm.
For both plates, the normal surface displacements at the
ZGV frequency for r = 0 are calculated as a function of
the laser beam radius w [Fig. 2]. The maxima of these
curves are in good agreement with theoretical calcula-
tions.
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FIG. 1. ZGV modes wavelength versus the Poisson’s ratio.

w (mm)

FIG. 2. Amplitude of the normal surface displacement as a
function of the radius at 1/e of a Gaussian beam for 1-mm
thick Duralumin (solid line) and fused silica (dashed line)
plates. Theoretical optimal radii wdural = 1.27 mm and
wSilica = 1.06 mm are in good agreement with the curves.

These results are coherent with the approximation
(w ≈ 0.3λS1S2

) given for an aluminium plate by Balo-
gun et al. 17 Other results were obtained by Grnsteidl et
al. in a 250-µm thick tungsten plate19 of Poisson’s ratio
ν = 0.284 and shear velocity cs = 2668 m/s. With these
parameters, the wavelength is λS1S2 = 3.7 × 2h mm, so
that the optimal beam radius to plate thickness ratio is

w

2h
=

λ

2πh
= 1.17. (15)

To compare with their simulation D/h ≈ 1.5 and mea-
surement D/h ≈ 1.4, one has to figure out, despite sev-
eral inconsistencies in the paper, that D was defined as
the beam radius at 1/e2 : D = w

√
2 and that h is the

plate thickness. With our notations, these ratio corre-
spond to w/(2h) = 1.06 and 0.99 respectively, which is
in reasonable agreement with equation (15).

B. Optimization of an annular beam

We now consider a ring with a Gaussian profile. Such
spatial distribution depends on the radius R and the half-

width w as follows:

E(r) = Ie−( r−Rw )
2

.

In order to derive analytical expressions, E(r) is approx-
imated by the convolution of a Gaussian function and a
circular Dirac by using the normalized spatial distribu-
tion

f(r) =
1

πw2
e−( rw )

2

∗ 1

2πR0
δ(r −R0).

A good approximation of E(r) is obtained when the pa-
rameter R0 is given by

R0 = R

(
1 +

w2

4R2

)
,

and when the radius is larger than the annular width,
i.e., for R > 2w. It can be shown that the total absorbed
energy is approximatively given by

Etot ≈ 2π3/2wR0I. (16)

The resulting Hankel transform of f(r) is

fH0(k) =
1

2π
e
−
(

w2k2

4

)
J0(kR0). (17)

This function is separable so that the optimization can
be performed independently on w and R0,

∂
∂w

(
Etotf

H0(k)
)∣∣∣
k,R0

= 0 ⇒ w = λ/(π
√

2),

∂
∂R0

(
Etotf

H0(k)
)∣∣∣
k,w

= 0 ⇒ ∂
∂R0

(
R0J0(kR0)

)
= 0.

(18)
As R0 > 2w, the asymptotic expansion of J0(kR0) valid

for kR0 =
√

2R0/w > 1/4 can be used,

R
(n)
0 = λ

(4n+ 1)

16

(
1 +

√
1 +

43

(4n+ 1)2π2

)
, (19)

where n ≥ 1 is the order of the ring. Finally, taking into

account Eq. (18), the previous assumption R
(n)
0 > 2w is

always fulfilled for all orders n. In a 1-mm thick Du-
ralumin plate of Poisson’s ratio 0.344, the wavelength is
λS1S2 = 3.99 mm. For the first ring, n = 1, the optimized
parameters are w = 0.90 mm, and R0 = 2.57 mm. The
result of simulations, shown (Fig. 3), provide optimal pa-
rameters that are in good agreement with the theoretical
parameters.

The amplitude gain G is defined as the ratio between
the normal displacement uH0

z obtained with the nth annu-
lar source [Eq. (12)] and that obtained with the optimized
Gaussian beam

G =
∣∣∣EH0

ring/E
H0
gaussian

∣∣∣ ≈ (e/2)
√

4n+ 1. (20)

It turns out that the amplification factor expected for the
first-order optimized ring (n = 1) is about 3. The use of
optimized ring of greater order will raise the amplification
factor proportionally to the square root of the ring order.
This is reasonable as the Bessel function J0(kr) decreases
as
√
r while the total of deposited energy increases pro-

portionally to the ring radius as shown in Eq. (16).
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w (mm)

R
0
<2w

FIG. 3. Amplitude of the normal displacement as a function
of radius R0 and width w of a Gaussian ring in a 1-mm thick
Duralumin plate at constant peak energy. The maximum is
reached for w = 0.88 mm and R0 = 2.57 mm which is in good
agreement with the predicted values.

C. Optimization of a top-hat source and a
rectangular annular source

The profile distribution for a top-hat source and the
resulting Hankel transform are

E(r) = Π
( r

w

)
I ⇒ EH0(k) =

Iw

k
J1(wk), (21)

where Π(r) is the top-hat function defined as

Π(r) =

{
1, if r 6 1,
0, elsewhere.

(22)

The optimal w is such that

dEH0

dw

∣∣∣∣
k

=
w

k
J0(wk) = 0. (23)

It appears that for a rectangular profile, the amplitude
maxima occur for several radii w,

w(n) ≈ λ

2

(
n+

3

4

)
, (24)

and the corresponding amplification factors compared to
the optimized Gaussian spot are approximated as

G =
∣∣∣EH0

Π /EH0
gaussian

∣∣∣ ≈ (e/2)
√
n+ (3/4). (25)

For n = 0, this amplification factor is about 1.7. It
is remarkable that, unlike the Gaussian beam, the
amplitude maxima increase with the spot radius.

The intensity profile for a rectangular ring is written

E(r) = I

[
Π

(
r

R0 + w

)
−Π

(
r

R0 − w

)]
.

The associated total energy is Etot = 4πwR0I and the
resulting Hankel transform of E(r) is equal to

EH0(k) =
I

k2

(
(R0 + w)kJ1[(R0 + w)k]

− (R0 − w)kJ1[(R0 − w)k]
)
. (26)

The derivative with respect to w vanishes for{
R0 − w = λ

2

(
n+ 3

4

)
, n ∈ N∗,

R0 + w = λ
2

(
m+ 3

4

)
, m > n ∈ N∗.

Consecutive solutions with m = n+ 1 lead to{
R

(n)
0 = λ

8 (4n+ 1) , n ∈ N∗,
w = λ/4.

(27)

The amplitude gain obtained with the nth rectangular
ring compared to the optimal Gaussian spot is provided
by

G =
∣∣∣EH0

rect ring/E
H0
gaussian

∣∣∣
≈ e
√
n/2

(√
1 + 3/(4n) +

√
1− 1/(4n)

)
. (28)

For the first-order optimized ring (n = 1), the amplifica-
tion factor is about 4.2 which is significantly higher than
the Gaussian ring. The optimal parameters, associated
with total deposited energies and the amplitudes for
the different source shapes (n = 1 for the rings) are
gathered in Table I. It appears that the amplitude gain
G for top-hat beam is higher than the gain in the total

energy given by Ẽtot. Similar observation arises from
the comparison of Gaussian and rectangular rings. This
can be ascribed to the strong temperature gradients that
induce high in-plane constrains at the beam edge and
reinforces the idea that it would be advantageous to use
rectangular energy profiles.

TABLE I. Theoretical optimized geometric parameters w and

R
(1)
0 , total absorbed energy normalized to the Gaussian case

(Ẽtot) and gain G calculated for the S1S2-ZGV mode in a
1-mm thick Duralumin plate and different source shapes.

Source shape w (mm) R
(1)
0 (mm) Ẽtot G

Gaussian beam 1.27 NA 1 1
Top-hat 1.50 NA 1.39 1.66
Gaussian ring 0.90 2.57 5.08 3.27
Rectangular ring 1.00 2.49 6.17 4.21

From Eq. (28), it appears that the factor G is propor-
tional to the square-root of the ring order. The amplitude
calculated with the semi-analytical simulation as a func-
tion of the ring radius R0 is plotted in Fig. 4. These
theoretical results suggest that high order annular beam
should be used to obtain maximal amplitude. However,
they are correct only for low attenuating material. In
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general, the larger is the ring, the more important is the
effect of attenuation. This can been observed on the dis-
placement amplitude, simulated for Gaussian rings of op-
timal width and different damping parameters (Fig. 5).
A damping factor of 6 × 10−4 dB/µs corresponds to a
lossless material, the second one to weakly attenuating
materials like Duralumin, the third one to steel or cop-
per and the value 6 × 10−1 dB/µs to highly attenuat-
ing materials like composite plates. For a damping fac-
tor of 6× 10−2 dB/µs, attenuation cannot be neglected,
the gain between the Gaussian beam and the first ring
is around three but it increases slowly for higher orders
rings. Whatever the attenuation, the first annular ring
provides a significant gain.
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1-mm thick Duralumin plate for top-hat profile as a function
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IV. EXPERIMENTAL RESULTS

The experimental set-up is shown in Fig. 6(a). The
excitation is achieved with a Nd:YAG laser at 1064 nm
(Centurion Quantel, pulse duration 8 ns and fire rate
100 Hz) and an optical system. Normal surface displace-
ments are measured with a heterodyne interferometer
(BMI probe, SH-140, calibration factor 120 mV/nm).20

The signals detected by the optical probe were fed into
a digital sampling board (PicoScope, PicoTech, 6404D)
with 5 ns resolution and then stored in a computer
for further analysis. Two kinds of optical systems are
used to produce either a Gaussian or a ring-shaped
source. The first one consists in a beam expander with a
100-mm convergent lens. The beam radius is controlled
by varying the distance from the lens to the sample.
The second system is composed of a beam expander,
an axicon (i.e., a conical lens) of apex angle θ = 160◦,
and a 35-mm convergent lens. Radius and width of the
annular source are controlled by varying the distances
z1, z2 between the axicon, the lens, and the sample.

As shown in Fig. 6(a), the laser source is characterized
with a camera (uEye, IDS, UI-3370CP, with 2048× 2048
pixels of size 5.5 µm2). A neutral density filter is placed
just before the camera in order to avoid saturation on
the CMOS sensor. Integration time is about 47 ms and
pulse rate is 100 Hz. Sixty-four images are consecutively
recorded and averaged. Under these conditions, the num-
ber of photo-electrons (counts) measured is proportional
to the pulse energy of the laser source [Fig. 6(b)]. The
normal displacement generated with an annular beam
and the associated spectrum, displayed in Figs. 6(c) and
6(d), show that the S1S2 resonance is favourably excited.

Examples of raw images are shown in Fig. 7(a)
for a Gaussian beam and in Fig. 7(c) for an annular
source. These images display linear fringes that are
attributed to a glass plate in front of the CMOS sensor.
In order to compare with theory, these interferences
are suppressed by low pass filtering [Fig. 7(b) and
7(d)]. The energy distribution is not exactly circular
because of the imperfections of the laser source. Mean
profiles are calculated by averaging 16 profiles, then

they are fitted by functions e−r
2/w2

(for the Gaussian

beam) and e−(r−R)2/w2

(for the annular beam). Once
geometrical source parameters estimated, the maximum
surface energy density I is deduced from the normalized
function f(r) and measured total energy Etot by using
Eq.2.

Gaussian beam — In order to validate the simulation
and the experimental procedure, a first optimization is
performed on a Gaussian laser source. All measurements
are performed on a 1-mm thick Duralumin plate. The
beam radius is varied from 0.3 mm to 2.5 mm, and
is measured systematically with the camera. The
amplitude of the displacement at the S1S2-ZGV fre-
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FIG. 6. (a) Experimental set-up. (b) Total energy measured on the camera as a function of the laser beam energy. (c) Typical
measured normal displacement, and (d) associated spectrum.

quency f = 2.87 MHz is normalized by the estimated
maximum surface energy density. It is represented
against the beam radius in Fig. 9. The agreement with
the simulated displacement is noticeable. The relative
root-mean-square error was found to be 6% and the
optimal radius coincides perfectly with the predicted
value wopt = λ/π = 1.27 mm.

Annular beam — In practice, the width and the radius
of the annular source cannot be changed independently.
Axicon to lens distance is held constant while the
lens to sample distance is incremented by 1-mm steps.
Simultaneously, the geometric parameters of the source
are measured and the displacement at the S1S2-ZGV
resonance frequency is recorded. This procedure was

repeated for a dozen axicon-lens distances covering
the range from 2.0 to 2.9 mm for R0 and from 0.65
to 1.20 mm for w. These ranges are centered around
the predicted optimal parameters given in Table I.
Displacement amplitudes normalized by the estimated
maximum surface energy density are plotted in Fig. 10.
Experimental values are compared with simulations in
Fig. 11. In Fig. 11(a), R0 varies from 2.1 to 2.9 mm
for ring width limited to ±0.05 mm around the optimal
value 0.90 mm. Similarly in Fig. 11(b), w varies
from 0.65 to 1.20 mm while the ring radius is limited
to ±0.05 mm around the optimal value 2.57 mm. A
reasonable agreement between the whole experimental
data set and the simulation is observed with a relative
root-mean-square error equal to 5%.
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FIG. 7. Snapshots of sources. (a) Raw Gaussian beam, and
(b) after 2-D Fourier transform filtering. (c) Raw Gaussian
ring, and (d) after 2-D Fourier transform filtering.
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Gaussian beam versus Gaussian ring — Displace-
ments measured experimentally are compared between
the two sources in Fig. 12. The observed amplification
factor (2.1) is significantly lower than the predicted one
(3.27, Table I). This can be ascribed to various defaults:
(i) the spatial distribution of the Gaussian laser is not
axially symmetric, (ii) the energy profile of the annular

Half width w (mm)

1
.2

7
 m

m

FIG. 9. Gaussian beam: Amplitude of S1S2-ZGV mode gen-
erated in the 1-mm thick Duralumin plate against the beam
radius. Comparison between experiments (dots) and simula-
tion (solid line).

w
 (m

m
)

R
0
 (mm)

FIG. 10. Gaussian ring: Amplitude of the S1S2-ZGV mode
generated in the 1-mm thick Duralumin plate against the
ring width w and radius R0. The crosses represent the set
of (w, R0) geometric parameters.

source is not exactly Gaussian, (iii) the estimation of the
geometric parameters of the annular source is difficult.

V. CONCLUSION

We have presented a theoretical study on Lamb
modes generated by axi-symmetrical laser source. The
objective was to improve the excitation of ZGV reso-
nances in an isotropic plate by adjusting the geometric
parameters of a Gaussian beam or an annular source.
The first and simple result is that the optimal radius of
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FIG. 11. Gaussian ring: Experimental ZGV amplitudes (dots) and simulation (solid line): (a) Simulation is performed at fixed
width wopt while experimental dots are chosen so that |w−wopt| < 0.05 mm. (b) Simulation is performed at fixed radius R0opt ,
while experimental dots are chosen so that |R0 −R0opt | < 0.05 mm.

w (mm)

FIG. 12. Comparison of the displacement amplitude mea-
sured with Gaussian ring (blue dot) and Gaussian beam
(green diamond).

a Gaussian beam is directly proportional to the ZGV
wavelength and equal to λZGV /π. Analytical formulas
giving optimal parameters have also been established
for Gaussian and rectangular rings. These theoretical
results were confirmed by semi-analytical simulations.
Annular Gaussian beams of controlled width and radii
were achieved with an axicon-lens system. Amplitude of
the S1S2 ZGV mode, measured for Gaussian spot and
ring source in a Duralumin plates are in good agreement
with theoretical predictions. These results obtained for
ZGV modes, are also valid for the generation of any
Lamb mode in a cylindrical geometry. Further works
will consider the use of SLMs to shape optimal beams
with a great flexibility. For non-destructive testing
applications, tunable acoustic gradient (TAG) index lens
could be a cheap and efficient alternative.
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Appendix A: Determination of the elastic potential
and mechanical displacements

Stress free surface conditions are applied in order to
determine the constant A, B, C, and D of the poten-
tials in equation (11). Using u = ∇φ + ∇ × ∇ × ψ the
displacement components are{

ur = ∂φ
∂r + ∂2ψ

∂r∂z ,

uz = ∂φ
∂z + ∂2ψ

∂z2 −
1
c2T

∂2ψ
∂t2 ,

(A1)

and the elastic stress components can be written as σrz = µ ∂
∂r

(
2∂φ∂z + 2∂

2ψ
∂z2 −

1
c2T

∂2ψ
∂t2

)
,

σzz = λ∇2φ+ 2µ ∂
∂z

(
∂φ
∂z + ∂2ψ

∂z2 −
1
c2L

∂2ψ
∂t2

)
− η(λ+ 2µ)T.

From Eq. (A1), the Hankel transforms of the displace-
ment components can be expressed in terms of the po-

tentials φ
H0

and ψ
H0

as:{
uH1
r = −kφH0 − k ∂ψ

H0

∂z ,

uH0
z = ∂φ

H0

∂z + k2ψ
H0
,

(A2)

where “H1” denotes the Hankel transform of the first or-
der. Then using the potential equations (10) the stress
components can be written as σH1

rz = −µk
(

2∂φ
H0

∂z + (k2 + q2)ψ
H0
)
,

σH0
zz = (−λk2 + (λ+ 2µ)p2)φ

H0
+ 2µk2 ∂ψ

H0

∂z .
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The elastic boundary conditions result from the absence
of normal stress on both surfaces z = ±h{

σrz|z=±h = 0
σzz|z=±h = 0

⇔

{
σH1
rz

∣∣
z=±h = 0,

σH0
zz

∣∣
z=±h = 0.

Inserting Potential solutions Eq. (11) into these equations
provides the following linear equation for the constants
A, B, C, and D:

M

 ABC
D

 =


−2χ

(
1

χ2−p2

) (
T1e

χh − T2e
−χh)− 2η

(
γ

1−γ2χ2

)(
γ2

1−γ2p2

)
e−phe−h/γ

−2χ
(

1
χ2−p2

) (
T1e
−χh − T2e

χh
)
− 2

(
γ

1−γ2χ2

)(
γ2

1−γ2p2

)
e−pheh/γ

−(k2 + q2)e−ph
[

1
χ2−p2

(
T1e

χh − T2e
−χh)− e−h/γ]

−(k2 + q2)e−ph
[

1
χ2−p2

(
T1e
−χh − T2e

χh
)
− eh/γ

]

, (A3)

where the constants T1 and T2 are given by Eq. (7) and

M =


−2pe−2ph 2p −(k2 + q2)e−(p+q)h −(k2 + q2)e−(p−q)h

−2p 2pe−2ph −(k2 + q2)e−(p−q)h −(k2 + q2)e−(p+q)h

(k2 + q2)e−2ph (k2 + q2) 2k2qe−(p+q)h −2k2qe−(p−q)h

(k2 + q2) (k2 + q2)e−2ph 2k2qe−(p−q)h −2k2qe−(p+q)h

 . (A4)

The determinant of the matrix M vanishes for Lamb
waves, leading to singularities. To avoid this problem, a
small damping factor is added to the angular frequency
ω. When not specified, it is taken equal to 6 × 10−4

dB/µs. Once the constants determined, the displacement
amplitude at frequency ω is recovered by inverse Hankel
transform Eq. (A2).

ur(r, z, ω) =

∫ ∞
0

uH1
r (k, z, ω)J1(kr)kdk,

uz(r, z, ω) =

∫ ∞
0

uH0
z (k, z, ω)J0(kr)kdk.
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