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Abstract

In this article, we derive a Langevin probability density function (PDF) model in order to predict turbulent mixing zone
evolutions when generated by the Richtmyer–Meshkov instability. The aim of the model is to account for the permanence
of large eddies which is observed in these flows when the density contrast, as measured by the Atwood number, is small.
To this end, a two-scale decomposition of the velocity field is proposed and used to adapt existing Langevin models.
In addition, the role played by pressure fluctuations on the transport of kinetic energy is also discussed. A closure for
this turbulent process is added to the two-scale Langevin model. Finally, large-eddy simulations of Richtmyer–Meshkov
turbulent flows are performed and used to validate the different closures proposed in this work.

Keywords: turbulence, probability density function (PDF), Langevin model, Richtmyer-Meshkov instability,
permanence of large-eddies, pressure-velocity correlation

1. Introduction

The Richtmyer–Meshkov instability occurs when a
shock wave crosses an interface separating two fluids of dif-
ferent densities [1–5]. Following the shock impact, pertur-
bations initially distorting the interface grow until a mix-
ing zone is formed and reaches a turbulent state. Mean-
while, provided the initial contrast of density is small,
compressibility effects due to the shock passage decrease
until the Boussinesq approximation applies and the flow
becomes divergence-free [6, 7]. At large times, this in-
compressible turbulent mixing zone is expected to become
self-similar [3–5], with the growth of the mixing zone width
obeying a power law. The exponent of this law is a key
parameter of Richtmyer–Meshkov turbulence [3–5].

Among the main features of small Atwood Richtmyer–
Meshkov turbulence is the existence of large scale invari-
ants of the velocity field [8–13]. The principle of perma-
nence of large eddies applies to the flow as it does for
decaying homogeneous anisotropic turbulence (HAT) [14–
25]. As a result, the self-similar state of small Atwood
Richtmyer–Meshkov turbulence depends on large scale ini-
tial conditions. In particular, the growth exponent of the
mixing zone width can be expressed as a function of the
power law exponent of the velocity spectrum at small wave
numbers, called infrared exponent and denoted by s0. An-
other important aspect linked to the permanence of large
eddies is that the return to isotropy of the flow is only
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partial: large scales indeed keep their initial anisotropy.
The overall anisotropy of the Reynolds stress tensor also
depends on s0.

These properties explain why applying a probability
density function (PDF) model to Richtmyer–Meshkov tur-
bulence is a challenging task. PDF models are engineering
turbulence model attempting to capture the whole one-
point statistical information of the velocity field and of
other quantities governing the flow [26, 27]. One of the
most widely used model is the Langevin PDF model, ei-
ther in its simplified form (SLM) or in one of its general-
ized expression (GLM) [28]. The Langevin model allows
to capture the statistics of a wide variety of turbulent
flows, while keeping a simple and computationally efficient
form. However, if applied straightforwardly to Richtmyer–
Meshkov turbulent mixing zones, the Langevin model will
face several issues. Indeed, it does not include any de-
pendency on large scale initial conditions and will not be
able to reproduce the different self-similar states stemming
from different initial conditions. Besides, most of the ex-
isting variants of the Langevin model predict a full re-
turn to isotropy while only a partial one is expected for
Richtmyer–Meshkov turbulence.

Another aspect of Richtmyer–Meshkov turbulence im-
pedes a proper and direct application of existing Langevin
models. When looking at the evolution of the turbulent ki-
netic energy, only three processes are active in Richtmyer–
Meshkov turbulence: dissipation, turbulent advection and
turbulent transport by the pressure flux. The first two are
accounted for in Langevin models, with the second one be-
ing treated exactly. However, the last one, transport by
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the pressure flux is almost always neglected. In all the
work devoted to PDF modeling, only Ref. [29] detailed a
model for the pressure flux, in order to simulate a free
shear layer. In their approach, the pressure flux is mod-
eled as an added force displacing particles along the kinetic
energy gradient. While physically sound, this model does
not yield a transport term in the form of the divergence of
a flux. The conservation of energy on the domain cannot
be ensured, which limits the applicability of this model.
Setting this model aside, the neglect of the pressure flux
might be appropriate in some cases [30], but it cannot be
justified for Richtmyer–Meshkov turbulent flows. Indeed,
dissipation and turbulent transport have orders of magni-
tude comparable to the pressure flux term. Therefore, in
their current formulation, Langevin models do not account
for an important aspect of the kinetic energy evolution in
Richtmyer–Meshkov turbulence.

Thus, the purpose of this work is to derive a Langevin
PDF model accounting for large scale initial conditions,
partial return to isotropy and transport by the pressure
flux within the framework of Richtmyer–Meshkov turbu-
lence. To this end, we will introduce a two-scale decompo-
sition of the PDF Langevin model, in the spirit of two-scale
turbulence models such as those proposed in Refs. [31, 32].
Other multiscale PDF models already exist [33]. However,
they require an additional layer of complexity we would
like to avoid in the final expression of our model. Besides,
they do not deal with the idea of permanence of large
scales and its implications, but rather on the properties
of small inertial scales. The proposed two-scale decom-
position will allow to differentiate the evolutions of large
permanent scales from smaller ones. As for transport by
the pressure flux, we will consider the correspondence ex-
isting between Langevin PDF models and Reynolds stress
models (RSM). Since explicit closures for transport by the
pressure flux exist for RSM, we will propose a way to adapt
them to the PDF context.

The remaining of this text is organized as follows. First,
in Sec. 2, we will recall several aspects of the Richtmyer–
Meshkov phenomenology. Second, in Sec. 3, we will
present existing Langevin models and indicate why their
formulation is insufficient for reproducing Richtmyer–
Meshkov phenomenology. In Sec. 4, we will introduce
a modified version of the Langevin model based on a two-
scale decomposition. The adaptation of the model to ac-
count for transport by the pressure flux will be discussed in
Sec. 5. Finally, the proposed model will compared against
simulations in Sec. 6.

2. Phenomenology of Richtmyer–Meshkov turbu-
lent mixing zones

Before discussing the application of a Langevin PDF
model to Richtmyer–Meshkov turbulent mixing zones, we
would like to recall some aspects of their phenomenology.
In particular, we would like to insist on the role played

by large scales on the self-similarity of the flow and on its
anisotropy.

2.1. Governing equations

L
x3

x1
x2

Figure 1: Schematic representation of the mixing zone.

As shown in Fig. 1, we consider a Richtmyer–Meshkov
turbulent mixing zone of size L extending in the inhomoge-
neous direction x3. The flow has a small Atwood number:
At = (ρh − ρl)/(ρh + ρl) � 1, with ρh and ρl the respec-
tive densities of the “heavy” and “light” fluids which are
being mixed. We assume that the shock which created
the mixing zone is sufficiently far in order for the flow to
obey the Boussinesq approximation [6, 7]. A consequence
of this approximation is that the flow is defined by an in-
compressible velocity field u and by the concentration c of
one of the fluids being mixed. What is more, since there
is no mean acceleration, the evolution of the velocity field
u is independent from the concentration field c. For the
sake of simplicity, we will focus in this study on the sole
velocity field and on its statistics, while we will leave aside
all questions regarding the concentration.

With these clarifications, and if for any given quantity
q, q refers to its ensemble mean and q′ to its fluctuation,
the evolution of the velocity field u in Richtmyer–Meshkov
turbulence is given by:

∂tu
′
i + u′j∂ju

′
i = −∂ip′ + ν∂2

jju
′
i + ∂3u′23 δi3 , (1a)

∂ju
′
j = 0 , ui = 0 , (1b)

where p is the reduced pressure and ν a molecular trans-
port coefficient. The condition u = 0 comes from the
axisymmetry of the flow and the incompressibility of the
mean velocity which sets ∂3u3 = 0. Because u = 0, one
has u = u′. We will hereafter use the notation u keep-
ing in mind that it is really a fluctuation which we are
investigating.

2.2. Self-similar turbulent state

At large times and for high Reynolds numbers,
Richtmyer–Meshkov turbulent mixing zones governed by
Eq. (1) reach a self-similar state. This state is usually
observed and described for the mixing zone width L and
for the Reynolds stress tensor R. The latter quantity is
defined as:

Rij(x3, t) = uiuj(x3, t) .

The trace of R yields the turbulent kinetic energy:

k(x3, t) =
1

2
Rii(x3, t) .
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In the self-similar turbulent regime, L and R evolve as
power laws of time [3–5]:

L ∝ tΘ and
〈
R
〉
∝ t−2(1−Θ) , (2)

with Θ the growth rate exponent of the mixing zone width,
and

〈
·
〉

the averaged value over the inhomogeneous direc-
tion: 〈

·
〉

=
1

L

∫
· dx3 .

In simulations and experiments, the value of Θ has been
found to vary between 0.23 to almost 2/3. As will be
explained below, this value is tied to initial conditions
through the principle of permanence of large scales.

Another aspect of self-similarity concerns anisotropy.
Since all the components of

〈
R
〉

have the same time evo-

lution, the anisotropy tensor based on
〈
R
〉

tends to a con-
stant. This global anisotropy tensor is denoted by bG and
is usually different from the local anisotropy tensor b based
on R or its integrated value. Both tensors bG and b are
defined as:

bGij(t) =

〈
Rij
〉

2
〈
k
〉 (t)− 1

3
δij

and bij(x3, t) =
Rij

2k
(x3, t)−

1

3
δij .

(3)

Usually, bG 6=
〈
b
〉
. Since the flow is axisymmetric, bG

is diagonal and has only one independent component.
We will focus on bG33, knowing that: bG11(t) = bG22(t) =
−bG33(t)/2. A similar relation holds for b. Self-similarity
implies that:

bG33(t) ≡ Cst .

The constant value of bG33 is again linked to initial condi-
tions and in particular to the value of s0. But, in order to
explain this link, we must first give some details about the
permanence of large eddies.

2.3. On the permanence of large scales

The permanence of large scales plays an important role
in small Atwood Richtmyer–Meshkov turbulence. This
role has been discussed in several studies [8–13] and has
been verified using large-eddy simulations in [13]. The
permanence of large eddies can be expressed by introduc-
ing the turbulent angular spectrum of the velocity field
Eij(κ, t) at wave vector κ:

Eij(κ, t)δ(κ
′
1 − κ1)δ(κ′2 − κ2)

=
1

2

(
ûi(κ, t)û∗j (κ

′, t) + ûj(κ, t)û∗i (κ
′, t)
)

with κ′ = (κ′1, κ
′
2, κ3)

and ûi(κ, t) =
1

(2π)3

∫
e−ıκ·xui(x, t)dx .

(4)

This spectrum is connected to the Reynolds stress tensor
by the relation:〈

Rij
〉
(t) =

2π

L

∫
Eij(κ, t)dκ . (5)

Now, for the sake of simplicity, let us assume that the
velocity spectrum generated just after the shock passage,
at t = 0, obeys a power law:

Eij(κ, t = 0) = E
(0)
ij (κ) ∝ κs0−2 for κ� κ`0 ,

with κ =
√
κiκi the modulus of the wavevector κ and κ`0

the wave number associated with the initial value `0 of
the integral scale `(t). Then, the principle of permanence
of large eddies states that for scales much larger than the
integral scale of turbulence `(t) and for s0 < 4, Eij remains
constant:

For κ� κ`(t) = 2π/`(t) and s0 < 4 ,

Eij(κ, t) = E
(0)
ij (κ) ∝ κs0−2 ,

(6)

The integral scale of turbulence ` is representative of en-
ergy containing eddies and is usually on the order of L/3 to
L/2. Note that the spectrum E is proportional to ks0−2

and not ks0 because it is an angular spectrum and not
a modulus spectrum. Note also that the limit exponent
s0 = 4 arises because non-linear effects become predomi-
nant when s0 > 4 and impede the preservation of initial
conditions [13].

Because initial conditions are preserved at large scales,
they constrain the self-similar behavior of the flow. In-
deed, if the spectrum is to be self-similar and permanent
at large scales, then a large scale invariant must exist. This
invariant can be expressed as [13]:〈

k
〉
Ls0+2 = Cst . (7)

From this relation, one can show that the characteristic
exponent of the self-similar state of Richtmyer–Meshkov
turbulence is directly linked to the infrared exponent s0:

Θ =
2

s0 + 4
. (8)

The smaller s0 is, the larger the contribution of large scales
is and the faster the growth of the mixing zone width is.
The value of Θ varies from 0.25 for s0 = 4 to 0.5 for s0 = 0.
Note that Θ cannot exceed 2/3 as discussed in [34, 35].

The invariant (Eq. (7)) also constrains, in the self-
similar regime, the value of the turbulent dissipation rate
defined as :

ε = ν∂jui∂jui .

Indeed, knowing that the evolution of
〈
k
〉

is ∂t(L
〈
k
〉
) =

−L
〈
ε
〉
, and that the differentiation of Eq. (7) implies that

∂t(L
〈
k
〉
) = −dtL(s0 + 1)

〈
k
〉
, one deduces that:

ωG =

〈
ε
〉〈
k
〉 = −(s0 + 1)

dtL

L
. (9)

Note that this relation is satisfied as soon as the regime is
self-similar and Θ is given by Eq. (8).

Another consequence of the permanence of large eddies
expressed by Eq. (6) concerns anisotropy. Indeed, large
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eddies being permanent, they keep their initial anisotropy.
Thus, even if the remaining scales of the spectrum return
to isotropy, large scales will not. Therefore, the integral of
the turbulent spectrum Eij over κ will yield a Reynolds
stress tensor which is anisotropic at all times. In [13],
an estimate of this residual anisotropy was proposed for
initial conditions representative of the passage of a shock
on a linearly perturbed interface. This estimate allows to
express as a function of s0 the global anisotropy tensor bGij .
Within the framework proposed in [13], one has:

bG33 ≈
2

3

s0 + 3/2

s0 + 3 + 3(s0 + 1)(s0 + 2)a
with a ≈ 0.3 .

(10)

The smaller s0 is, the larger the contribution of large scales
is and the stronger the anisotropy is. The value of bG33

varies approximately from bG33 = 0.1 for s0 = 4 to bG33 = 0.2
for s0 = 0.

The values of Θ and of bG33 predicted in Eq. (8) and (10)
are basic properties, characteristic of the self-similar state
of Richtmyer–Meshkov turbulence. A statistical model,
such as the generalized Langevin model, should be able to
reproduce these properties.

3. The generalized Langevin model and its behav-
ior in Richtmyer–Meshkov turbulence

The purpose of this section is to introduce the general-
ized Langevin model (GLM) and to show how this model
behaves in Richtmyer–Meshkov turbulence. In particu-
lar, we would like to compare the predictions of the GLM
against the expected properties of the self-similar states
of Richtmyer–Meshkov turbulence described in Sec. 2 and
more precisely to Eqs. (8) and (10).

3.1. Exact PDF equation and its modeling by a Langevin
model

We introduce f the PDF of u:

f(v;x3, t) = δ(v − u(x, t)) .

Its evolution equation is deduced from equation (1) using
standard techniques [26, 36, 37]:

∂tf + v3∂3f = ν∂jjf − ∂vi

[
∂3u2

3δi3f −
(
∂ip′

∣∣v)f]
−∂2

vjvk

[(
εik
∣∣v)f] ,

(11)

where
(
·
∣∣v) is the mean conditioned on v and where

εik = ν∂jui∂juk. In this equation, the fluctuating ac-

celeration
(
∂ip′

∣∣v) and the conditional dissipation
(
εik
∣∣v)

are not known explicitly in terms of the one point PDF f .
These quantities involve two-point statistical information
and need to be closed. One of the most popular model for

closing
(
∂ip′

∣∣v) and
(
εik
∣∣v) is the generalized Langevin

model (GLM). This closure leads to the following modeled
transport equation for f :

∂tf + v3∂3f = −∂vi

[
∂3u2

3δi3f +Gijvjf
]

+
C0ε

2
∂2

vjvj
f ,

(12a)

with Gij and C0 model coefficients respecting the con-
straint: (

1 +
3

2
C0

)
ε+Gijuiuj = 0 . (12b)

Equation (12) must be supplemented by an evolution equa-
tion for the turbulent dissipation rate ε. In this work, we
will settle for the ε equation of a k − ε model, with a tur-
bulent transport term proportional to that of k:

∂tε+ ∂3

(
Cεωu3k

)
= −Cε2ω ε , (12c)

with Cε and Cε2 model constants, u3k = 1
2u3uiui the ad-

vection flux of the kinetic energy and ω the turbulent fre-
quency, defined as:

ω =
ε

k
.

In the GLM setting, it is assumed that Gij is a function
of the anisotropy b and of whatever production term is
involved. Since Richtmyer–Meshkov turbulence is devoid
of any form of production, the tensor Gij of the GLM
can be expressed, in our particular case, as a function of
anisotropy only:

Gij = −1

2
C1ωδij + C2ω bij + C3ω b

2
ij .

Different values of C1, C2 and C3 lead to different versions
of the GLM. For instance, setting C1 = Cst and C2 =
C3 = 0 corresponds to the simplified Langevin model, and
also, since there is no production to differentiate them, to
the LRR-IP model. Setting C1 = (1 + 3

2C0) − 6C2ωb
3
ii,

C0 = 2.1, C2 = 3.5, C3 = −3C2 yields the LIPM model.
Other variants of the GLM can be found in [27, 28].

3.2. Corresponding evolution for the Reynolds stress ten-
sor and its 0D reduction

By integrating Eq. (12) over v after multiplying it by
vivj , one obtains the evolution of the Reynolds stress ten-
sor Rij associated with the GLM.

∂tRij + ∂kukuiuj = −2

3
εδij

− 2ε

(
(C1 − C3b

2
kk)bij − 2(C2 +

C3

3
)

(
b2ij −

b2kk
3
δij

))
.

(13)

In order to facilitate the analysis of this equation, we now
assume that the dissipation ε and all the components of
uiuj have similar spatial profiles. As a consequence, the

4



turbulent frequency ω and bij are independent from space
and depend only on time:

0D assumption : ω ≡ ω(t) , bij ≡ bij(t) = bGij(t) .

Then, integrating the GLM equation for Rij and that for
ε (Eq. (12c)), we obtain that:.

dt
(
L
〈
Rij
〉)

=− 2

3
ωL
〈
k
〉
δij − 2ωL

〈
k
〉[

(C1 − C3b
2
kk)bij

− 2(C2 +
C3

3
)

(
b2ij −

b2kk
3
δij

)]
(14a)

dt
(
L
〈
ε
〉)

=− Cε2ω L
〈
ε
〉
. (14b)

This system forms the 0D reduction of the GLM second
order moment evolution. It offers insights into how the
model behaves in the self-similar regime, as will be detailed
in the next subsection. Note that the 0D reduction of
turbulence models is a methodology that has already been
extensively and successfully used to analyze Richtmyer–
Meshkov and Rayleigh–Taylor turbulence. In particular,
the 0D equations for the k-ε model can be found in [38]
and have proven useful in determining the properties of
this model for turbulent mixing zones.

3.3. Self-similar solution to the 0D reduced model and
main shortcomings of the GLM

The 0D reduction of the GLM admits a self-similar so-
lution which is such that:

L ∝ tΘ ,
〈
R
〉
∝ t2Θ−2 with Θ =

2Cε2 − 3

3Cε2 − 3
(15)

This self-similar solution is comparable to the one obtained
from the theoretical predictions in Eq. (2). The value of
the self-similar exponent Θ is however different: it depends
on s0 in the theoretical case (Eq. (8)) and on the constant
Cε2 in the GLM case. This difference is not per se a short-
coming of the GLM. Indeed, it can be resolved by simply
setting the value of Cε2 to reproduce the correct decay ex-
ponent of k and ε, as will be discussed in the next section.

However, a stronger discrepancy arises in the way the
GLM treats anisotropy. Indeed, from the 0D equations
Eq. (14), one can show that the anisotropy tensor in the
self-similar regime is solution to:

bG33

(
C1 − 1− (C2 + C3/3)bG33 −

3

2
C3(bG33)2

)
= 0

This equation has at least one solution bG33 = 0 and possi-
bly multiple ones, depending on which model is considered.
For instance, the LRR-IP and SLM have only the solution
bG33 = 0, while the LIPM has an additional one. When
multiple solutions exist, bG33 may go to one or another de-
pending on initial conditions of

〈
k
〉
,
〈
ε
〉

and bG33. Note
that bG33 = 0 corresponds to a full return to isotropy.

By contrast, Richtmyer–Meshkov turbulence exhibits
a partial return to isotropy described by Eq. (10) de-
pending on the initial infrared exponent s0. The full re-
turn to isotropy predicted by some versions of the GLM
(SLM,LRR-IP,...) is consequently not satisfactory. The
additional anisotropic state predicted by other versions of
the GLM is not sufficient either, even if it is parametrized
to match the Richtmyer–Meshkov behavior. Indeed, de-
pending on the initial conditions of the GLM, this addi-
tional solution may be reached or not. In the latter case,
a full return to isotropy occurs again.

Therefore, one cannot reproduce satisfactorily the par-
tial return to isotropy of Richtmyer–Meshkov turbulence
with the existing versions of the GLM, where Gij depends
only on bij .

3.4. About the transport of turbulent kinetic energy

The evolution of k deduced from the Boussinesq equa-
tions (1) is:

Exact evolution : ∂tk + ∂3

(
u3k + u3p′ − ν∂3k

)
= −ε ,

(16)

with ε = ν∂juk∂juk the turbulent dissipation and u3k =
1
2u3uiui the turbulent advection flux. Notwithstanding

the viscous term, the evolution of k is governed by three
physical processes: dissipation, turbulent advection and
turbulent transport by the pressure flux. However, the
GLM predicts another evolution. Taking the trace of Eq.
(13) for Rij , one obtains that:

GLM evolution : ∂tk + ∂3

(
u3k
)

= −ε . (17)

Comparing the evolution for k deduced from the GLM in
Eq. (17) to its exact evolution in Eq. (16), we see that the
GLM neglects the turbulent transport due to the pressure
flux:

u3p′
∣∣GLM

= 0 .

Discarding the pressure flux is relevant for particular sit-
uations [30], but there is no argument for doing so in
Richtmyer–Meshkov turbulent flows. Hence, in its current
formulation, it is likely that the GLM misses an important
aspect of the evolution of the turbulent kinetic energy.

4. A Langevin model with partial return to
isotropy

In the previous section, we identified two shortcomings
of the GLM: its inability to reproduce correctly a partial
return to isotropy and its absence of modeling for the tur-
bulent pressure flux. In this section, we aim to address the
first one of these shortcomings by introducing a two scale
decomposition of the velocity field.

5



4.1. Two-scale decomposition of the velocity field

As explained in the introduction and in Sec. 2.3, the
partial return to isotropy observed in Richtmyer–Meshkov
turbulence is due to the permanence of large scales. The
anisotropy of these scales remains constant throughout
time and prevents the flow from becoming fully isotropic.
In order to account for the behavior of large scales, we aim
to isolate their contribution to the velocity field.

To this end, we consider the Fourier transform û(κ, t)
of the velocity field taken at time t and wavevector κ, as
defined in Eq. (4) By definition, we can write the value of
the velocity as:

ui(x, t) =

∫
eıκ·xûi(κ, t)dκ .

As a second step, we introduce a wave number κL which
separates large permanent scales from smaller scales. We
then split the definition of ui into two contributions, a
large and small scale one:

ui = uLi + uSi (18)

with uLi =

∫
κ≤κL

eıκ·xûi(κ, t)dκ

and uSi =

∫
κ≥κL

eıκ·xûi(κ, t)dκ .

4.2. Two-scale Langevin model

With this decomposition, we can now propose a simple
adaption of the GLM accounting for the separate effects
of large and small scales. In this respect, we note that the
return to the mean term of the Langevin model, the one
that controls the return to isotropy, can be written as:

Gijvj = Gij
(
uj
∣∣v) = Gij

(
uLj
∣∣v)f +Gij

(
uSj
∣∣v) .

The idea is then simply to differentiate the coefficients ap-
pearing before each of the conditional means. The model
we propose takes the form:

∂tf + v3∂3f =

− ∂vi

[
∂3u2

3δi3f +GLij
(
uLj
∣∣v)f +GSij

(
uSj
∣∣v)f]

+
C0ε

2
∂2

vjvj
f , (19a)

with a condition similar to Eq. (12b):(
1 +

3

2
C0

)
ε+GLijuiu

L
j +GSijuiu

S
j = 0 . (19b)

Thus, with this formulation, we can control independently
the return to isotropy of large and small scales while keep-
ing the simple structure of the GLM.

Of course, this model is not yet closed: the conditional

means
(
uLj
∣∣v) and

(
uSj
∣∣v) need to be precised, as well as

the coefficients GLij and GSij .

4.3. Linear closure for the conditional means

The two conditional means
(
uLi
∣∣v) and

(
uSi
∣∣v) are re-

lated to one another through their definition (Eq. (18)),
so that we only have to concentrate on one of them:(

uLi
∣∣v)+

(
uSi
∣∣v) = vi . (20)

Focusing on
(
uLi
∣∣v), we propose a linear closure of the

form: (
uLi
∣∣v) = ML

ijvj . (21)

In order to estimate ML
ij , we start from the exact definition

of uLi (Eq. (18)) and derive that:

Exact relation :
〈
uiuLj

〉
= RLij (22)

with RLij(t) =
2π

L

∫
κ≤κL

Eij(κ, t)dκ .

Comparing this equation to the relation between spectrum
and integrated Reynolds stresses (Eq. (5)), we see that〈
uiuLj

〉
is the large scale contribution of

〈
Rij
〉
. Besides, if

we now use the linear model to express uLi , we also have:

Modeled relation :
〈
uiuLj

〉
=
〈
ML
ikRkj

〉
(23)

Comparing the modeled and exact expressions for
〈
uiuLj

〉
allows to set a constraint on ML

ij . In order to fully exploit

this constraint, we first propose an approximation for RLij .
To do so, we write RLij as:

RLij = 2KL
(
bLij +

1

3
δij

)
,

with KL = RLpp/2 and bLij the anisotropy tensor of RLij .
Then, we assume that all the components of the initial

spectrum E
(0)
ij have the same infrared exponent s0. As

a result, bLij is independent from time, with a value set
by initial conditions. More precisely, for a mixing zone
initiated by a shock crossing a linearly perturbed interface,
one has, according to Ref. [13]:

bL33 =
2

3

s0 + 3/2

s0 + 3
. (24)

To estimate the large scale energy KL, we assume that the
limit wave number κL separates a large scale range from a
Kolmogorov inertial range, as proposed in [13]. Integrating
this idealized spectrum, we obtain, as detailed in [13], that:

KL = xL
〈
k
〉

with xL =
1

1 + 3a (s0+1)(s0+2)
(s0+3)

, a ≈ 0.3 .

(25)

Equating the two right-hand sides of Eqs. (22) and (23),
with the proposed closure for RLij , we derive that:

〈
ML
ikRkj

〉
= RLij = 2xL

〈
k
〉(

bLij +
1

3
δij

)
.
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This relation is verified in particular when:

ML
ikRkj = 2xLk

(
bLij +

1

3
δij

)
Multiplying this relation by the inverse of Rkj , we deduce
that:

ML
ij = 2xLk

(
bLik +

1

3
δik

)
R
−1

kj . (26)

Along with Eqs. (24) and (25), this expression provides

a closure for ML
ij and therefore for

(
uLj
∣∣v). This closure

introduces an explicit dependency on the initial state of
the flow, as required by the phenomenology of Richtmyer–
Meshkov turbulence.

Note that through Eq. (20), the modeled expression for(
uSi
∣∣v) is: (

uSi
∣∣v) = MS

ijvj (27)

with MS
ij = δij −ML

ij = 2xSk

(
bSik +

1

3
δik

)
R
−1

kj

and xS = 1− xL =
3a(s0 + 1)(s0 + 2)

s0 + 3 + 3a(s0 + 1)(s0 + 2)

bSij =
bij − xLbLij

1− xL
.

4.4. Model coefficients

As a last step in the derivation of our model, we need to
precise the values of GLij and GSij . The value of GLij is tied
to the evolution of large scales and should yield a correct
evolution for RLij when xL = 1. The exact evolution can be
deduced using the principle of permanence of large scales.
Indeed, given its definition (Eq. (22)), RLij involves only
scales which are permanent. It can be rewritten using the
initial spectrum

RLij(t) =
2π

L

∫
κ≤κL

E
(0)
ij (κ)dκ.

Then, differentiating this equation with respect to time,

knowing that E
(0)
ij (κ) ∝ κs0−2 and assuming self-similarity

so that κL ∝ 1/L, we deduce that:

∂t

(
LRLij

)
= −(s0 + 1) dtL RLij .

Finally, knowing the relation between ωG and dtL given
in Eq. (9), we deduce that:

For permanent eddies : ∂t

(
LRLij

)
= −LωGRLij . (28)

This equation is valid for RLij whatever the value of xL.

Now, when xL = 1, one also has by definition
〈
Rij
〉

=
RLij . As a result, in that particular case, one can also

compute the modeled evolution of RLij by multiplying the
PDF equation (19) by vivj and by integrating it over v and

x3. Taking into account that
(
uSi
∣∣v) = 0 and identifying〈

Rij
〉

and RLij , this procedure yields :

PDF model for xL = 1 :

∂t

(
LRLij

)
= L

(
GLikRLkj +GLjkRLki

)
−2

3
L
(
ωGKL +GLklRLkl

)
δij

(29)

For equations (28) and (29) to be equivalent, GLij must
verify:

GLij = −1

2
CL1 ωδij with CL1 = 1 .

As for GSij , we note that the closures used in the standard
GLM are usually proposed for describing processes occur-
ring at small inertial scales. Therefore, we propose to use
the same closures as those used for standard GLM to set
GSij . More precisely, we will use the simplified Langevin
model. At this point, there is indeed no reason to look for
more complex closures. We thus set :

GSij = −1

2
CS1 ωδij ,

In the literature, the value of CS1 varies widely in the
literature, from C0 ≈ 1.8 to CS1 ≈ 10 [39]. The high-
est values are usually obtained when connecting CS1 to
the Kolmogorov constant defining the Lagrangian two-
time spectrum in the inertial range. On the other hand,
the lowest values are obtained by identification of CS1 to
the return to isotropy constant appearing in several RSM,
such as the LRR model [40]. In this work, we are not
interested in predicting the two-time statistics of homoge-
neous isotropic turbulence. We would rather obtain a cor-
rect prediction of the return to isotropy of the Reynolds
stresses. Thus, we will use a value of CS1 coming from
a RSM model called GSG [41] and which has been thor-
oughly validated against experiments and simulations for
Richtmyer–Meshkov and Rayleigh–Taylor turbulence. In
agreement with this model, we will set:

CS1 = 1.8 .

Note that the value of C0 is related to CS1 by Eq. (19b).
With the prescribed expressions of GSij and GLij , we derive
from this relation that:

C0 =
2

3
xS(CS1 − 1) . (30)

In addition to GSij and GLij , we must also specify the
coefficients for the ε equation. Note that this equation
is not modified and remains given by Eq. (12c). In this
equation, we set Cε to 1, assuming that the transport of
ε is on par with that of k. As for Cε2 , we aim ensure
that the correct growth rate exponent of the mixing zone
is obtained. Thus, we set the value of Cε2 so that Eqs.
(15) and (8) agree. This yields:

Cε2 =
1−Θ
2
3 −Θ

=
3

2

s0 + 2

s0 + 1
. (31)

Note that this expression was first derived in [12].
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4.5. Final expression of the model and its 0D reduction

With these different specifications, the modified two-
scale GLM can be written as:

∂tf + v3∂3f =

− ∂vi

[
∂3u2

3δi3f −
1

2
ω
(
CL1 M

L
ij + CS1 M

S
ij

)
vjf

]
+
C0ε

2
∂2

vjvj
f , (32)

with CL1 = 1, CS1 = 1.8, C0 given by Eq. (30), ML
ij given

by Eq. (26) and MS
ij given by Eq. (27). The value of ε

is obtained from Eq. (12c) with Cε = 1 and Cε2 given by
Eq. (31).

In order to compare this modified two-scale model with
the original GLM formulation, we integrate Eq. (32) over
v after multiplying it by vivj . We thus obtain the evolu-
tion of the Reynolds stress tensor Rij associated with the
modified GLM:

∂tRij + ∂kukuiuj = −2ε
(
CS1 bij − (CS1 − 1)xLbLij

)
−2

3
εδij .

(33)

Compared to Eq. (13), we see that, instead of letting
b33 tend to 0, the modified GLM lets b33 relax toward
a value which is set by initial conditions at large scales.
This aspect is better illustrated when looking at the 0D
reduced equation of the proposed model. With the same
assumptions as the one we used to derive Eqs. (14) for the
initial model, we obtain that:

dtb
G
ij = −(CS − 1)ωG

(
bGij − xLbLij

)
.

Thus, instead of letting bGij tend to 0, the modified GLM

predicts that it tends to xLbLij . One can verify that

xLbL33 = 2
3

s0+3/2
s0+3+3(s0+1)(s0+2)a , which is the desired value

predicted in [13]. The modified GLM consequently meets
its assigned objective of correctly predicting the anisotropy
of a Richtmyer–Meshkov mixing zone. As for the growth
rate of the mixing zone, the formula (15) still apply to the
modified GLM. Hence, with Cε2 specified by Eq. (31), the
modified GLM predicts the correct value of Θ.

5. Transport by the pressure flux

The second weakness of the GLM we identified con-
cerned the fact that it does not account for the effects
of the velocity pressure correlation u′ip

′ on the transport
of kinetic energy. More precisely, among the different vari-
ants of the GLM which have been proposed in the litera-
ture, only Ref. [29] proposes a closure for this term. But
even this closure is not entirely satisfying since it is not
conservative.

By contrast, u′ip
′ is taken into account in other types of

models and in particular in Reynolds stress models (RSM)

which are deeply connected to PDF closures [28]. There-
fore, the idea we pursue in this section is the following.
First, we aim to identify how u′ip

′ is dealt with in RSM for-
mulations. Then, we propose a simple method for integrat-
ing some existing RSM closures of u′ip

′ into the Langevin
PDF model (32).

5.1. On transport by the pressure flux in RSM

In the evolution of the Reynolds stress tensor, turbu-
lent transport arises from the velocity/pressure gradient
correlation:

Πij = −
[
ui∂jp′ + uj∂ip′

]
.

This correlation can be split into a pressure flux term T pij
and a trace-free redistribution term φij representing inter-
component energy transfer:

Πij = T pij + φij with φii = 0 and T pii = ∂iuip′ .

As noted by [42] and [43], this decomposition is not unique.
The most frequently used decomposition is

φij = p′ (∂jui + ∂iuj) and T pij =−∂k
(
uip′δjk+ujp′δik

)
.

(34a)

Another one proposed in [42] is:

φ∗ij =

[
Πij +

2

3
∂kukp′ δij

]
and T p∗ij = −2

3
∂kukp′ δij .

(34b)

Finally, in Ref. [43], the following was suggested:

φ†ij =

[
Πij +

Rij

k
∂kukp′

]
and T p†ij = −Rij

k
∂kukp′

(34c)

In homogeneous turbulence, all decompositions are equiv-
alent: the pressure flux term vanishes and one is left with
Πij = φij = φ∗ij = φ†ij . This equivalence leads to an im-
portant issue. Indeed, all closures for Πij are derived for
the case of homogeneous turbulence and can equally be
viewed as closures for φij , φ

∗
ij or φ†ij . For inhomogeneous

flows, this ambiguity has to be solved. However, there
is no clear theoretical argument that would allow to dis-
criminate which of φij , φ

∗
ij or φ†ij is closed. Some lines of

argument have been proposed by [44], [45] or [46], each
favoring one of the three different possible interpretations.
But they are somewhat subjective and cannot be received
as definitive.

Given this confusion, we adopt a pragmatic point of
view. Among the three listed decomposition, only the one
proposed by [43] can be easily translated in terms of a
GLM model. [29] already noted the difficulty in using the
first decomposition in GLM. Similar arguments also apply
to the second decomposition. We note that the decompo-
sition of [43] is also the one retained by [47] and [48], also
for practical reasons.
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5.2. Expression of the PDF model for transport by the
pressure flux

With the decomposition (34c), it is easy to adapt the
GLM in its original or modified form (Eqs. (12) and (32)).
Indeed, we only need to add a term to the GLM so that its
corresponding Reynolds stress evolution accounts for the
presence of T p†ij . Starting from Eq. (32), this can be done
in the following way:

∂tf + v3∂3f =

− ∂vi

[
∂3u2

3δi3f −
1

2
ω
(
CL1 M

L
ij + CS1 M

S
ij

)
vjf −

ΩP
2

vi

]
+
C0ε

2
∂2

vjvj
f , (35)

with ΩP =
1

k
∂kukp′ .

The additional term is the one proportional to the fre-
quency ΩP . The value of ΩP depends on the gradient of
ukp′ and can be positive or negative. In order to evaluate
this frequency, we must provide a closure for ukp′

In the RSM approaches, several closures have been pro-
posed for ukp′ [30, 47, 49, 50]. Most of these closures
differ in the way they treat the rapid part of the pressure
field, i.e. the part generated by mean flow distortions. In
Richtmyer–Meshkov turbulence, there is no distortion and
most of these models revert to the one originally proposed
by Lumley [49], namely:

Lumley : uip′ = −2

5
uik (36)

While not shown here, this formula turns out to be an
accurate prediction for the pressure flux in Richtmyer–
Meshkov turbulence.

6. Validation

In order to validate the two-scale Langevin model de-
rived in the previous sections, we compare it against sev-
eral large eddy simulations (LES) of Richtmyer–Meshkov
turbulent mixing zones. The Langevin model itself (Eq.
(35) is solved numerically using a Lagrangian Monte Carlo
(LMC) method. The LES, LMC simulations and their
comparisons are detailed in the remaining of this section.

6.1. Description of the large eddy simulations

For our validation purposes, we consider the same LES
of Richtmyer–Meshkov turbulence as those used in Ref.
[13]. For the sake of completeness, the details of these
simulations are repeated hereafter. First of all, these LES
are implicit (ILES) and are performed with the code Tri-
clade, a massively parallel code intended to solve turbu-
lent mixing of perfect gases in a variable density context
[51]. A shock capturing scheme provides just enough nu-
merical viscosity and diffusivity to ensure stability. More

precisely, for this work, we use a conservative finite dif-
ference scheme based on the wave propagation algorithm
of LeVeque [52], with high accuracy provided by the cor-
rections due to Daru and Tenaud [53]. Directional split-
ting is used, and uniform time–space accuracy for one-
dimensional problems is reached thanks to the kind of
Cauchy–Kovalevsky procedure of [53]. Time–space accu-
racy of fifth-order is used here, and a monotonicity pre-
serving limitation is applied, as described by [53].

Table 1 summarizes the main parameters of the simula-
tions. The domain is of size Ldom × Ldom × 1.5Ldom and
is discretized by a regular grid with N × N × 1.5N cells.
The Atwood is chosen small and the shock Mach number
is set to MS = 2.8.

Atwood number At = 0.05
Shock Mach number MS = 2.8

Grid resolution N = 1024
Domain size Ldom = 1

Table 1: Main simulation parameters

In [11], comparisons were made between two types of
initialization. The first one consists in looking at the evo-
lution of a Richtmyer–Meshkov turbulent mixing zone by
simulating a shock crossing a perturbed interface. In the
second one, the shock is not accounted for. Instead, the
simulation is directly initialized by injecting at the per-
turbed interface a vorticity field stemming from the linear
analysis of the Richtmyer–Meshkov instability. The differ-
ences between the two types of initialization were found to
be negligible. Therefore, in this work, we opt for the sec-
ond type of initialization. Indeed, it greatly alleviates the
computational cost of the simulation, as the shock struc-
ture does not need to be solved explicitly and as the do-
main length can be reduced in the inhomogeneous direc-
tion.

Thus, at initial time, the simulation is set by imposing a
perturbed interface and a perturbed vorticity field at the
center of the domain. The perturbed interface is defined
by its power spectrum Ph which is set to:

Ph(k⊥) = h2k−1
0

2(s0+2)/2

Γ( s02 )

(
k⊥
k0

)s0−1

e−2(k⊥/k0)2 ,

where s0 − 1 is the exponent of Ph at large scales, k0 is a
cut-off wavenumber at small scales and h2 is the variance
of the perturbation interface. The velocity field induced
by the linear Richtmyer–Meshkov instability is imposed
according to the description given in [13]. The same pro-
cedure as the one prescribed in App. B of Ref. [11] is
used.

In all the simulations performed hereafter, the cut-off
wavenumber k0 and the perturbation height variance are
chosen equal to:

k0 =
2π

λ0
=

π

4∆x
and

√
h2

∆x
= 2.5 with ∆x =

Ldom

N
.
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The infrared exponent s0 is varied from 0 to 4. More
precisely, 5 simulations are performed with the following
values of s0:

values of s0 : 0 , 1 , 2 , 3 , 4

The different simulations we perform unfold similarly. Af-
ter a short transient, including a linear phase, the simu-
lations approach a state where the length of the mixing
zone L(t) and the different one point second-order cor-
relations of velocity and concentration obey approximate
power laws. This evolution is indicative of a self-similar
regime and is reached at approximately the same non-
dimensional time for all simulations, i.e. for t ≥ t0 with:

t0 ≈ 3tref with tref =
λ2

0√
h2At∆U

.

Details about this evolution can be found in Ref. [13].

6.2. Description of the PDF model simulations

The same configuration as the one described in the pre-
vious section is also simulated using the two-scale Langevin
PDF model proposed in this work. To this end, we use a
Lagrangian Monte Carlo (LMC) method to solve Eq. (35).
This method is second order accurate in time and space
and is fully described in [54]. The LMC simulations re-
ported hereafter are performed by following the stochastic
evolutions of Np = 105 Lagrangian particles per cells, on
a grid of Nx = 512 cells discretizing the same domain as
the LES.

The LMC simulations are initialized at t ≈ t0, i.e. when
the flow becomes self-similar. At this time, we extract,
from the LES, planes perpendicular to x3 and located at
the positions of the Monte Carlo grid cell centers. Then,
we attribute to each Lagrangian particle in a given cell
a velocity field sampled from the 1024 × 1024 points of
the corresponding extracted plane. This ensures that the
one point PDF of the velocity field at initial time converges
towards the PDF of the LES simulation whenNp increases.

Besides, to initialize the LMC simulations, we must also
specify a value for the mean dissipation ε. Since we are
using implicit LES, we do not have access to an explicit
value of this quantity. Still, we can determine the overall
integrated value of the dissipation. Indeed, from Eq. (16),
we have:

∂t

∫
kdx3 = −

∫
εdx3 .

Knowing the time evolution of
∫
kdx3, we can compute its

derivative and estimate
∫
εdx3. To obtain a local value

of ε, we then assume that ε and k share the same spatial
profile. With this hypothesis, we can initialize ε as follows:

At t = t0 , ε(x3) =

∫
εdx3∫
kdx3

k(x3) .

This completes the initialization procedure of the LMC
simulations.

6.3. Self-similar evolution

The two-scale Langevin PDF model Eq. (35) was de-
signed with the explicit purpose of reproducing the self-
similar evolutions of the mixing zone with, the kinetic
energy and the anisotropy of the Reynolds stresses in
Richtmyer–Meshkov turbulence. To check whether the
first of these purposes is met, we introduce the half-width
of the mixing zone:

Lk = x+
1/2 − x

−
1/2

with x±1/2 such that k(x±1/2) = max k

and x+
1/2 > 0 , x−1/2 < 0 .

Figure 2 shows the evolution of Lk for different values of
s0. It can be seen that the two-scale Langevin PDF model
yields an evolution of Lk which is close to the one obtained
from the LES. The largest differences are observed for the
case s0 = 1. Both LES and Langevin model evolutions
remain close to the predicted power law Lk ∝ tΘ with
Θ = 2/(s0 + 4).

Similar observations are made for the decay of the ki-
netic energy, as given by the evolution of max(k). The
two-scale Langevin model follows closely the LES simula-
tions and both evolve approximately as the expected power
law max(k) ∝ t−2(1−Θ).

Finally, larger differences are seen for the global
anisotropy bG33 as defined by Eq. (3), especially for s0 = 1.
Still, the two-scale Langevin model retrieves the correct
trend of increasing anisotropy with decreasing s0 and
yields value which are globally on par with the LES simu-
lation.

In order to obtain a more synthetic comparison of the
self-similar properties discussed above, we measure the
growth exponent Θ by doing a least-square fit of a power
law on the evolution of Lk, from t ≥ t0. The value of the
fitted power law exponent is displayed for the LES and the
two-scale Langevin model in Fig. 5a as a function of s0.
It is also compared against the theoretical prediction Eq.
(8). A good agreement is observed between the different
simulation results and the predicted value. Note that the
LES points shown in Fig. 5a are different from those dis-
played in [13]. Indeed, the definition of Θ used in [13] is
based on the mean concentration profile and not on the
kinetic energy. Similarly, Fig. 5b shows the value of bG33

at the end of the simulations for the LES and Langevin
model. It can be seen that the two-scale Langevin model
reproduces the variations of anisotropy as a function of s0.

In addition, Fig. 5a and 5b display results obtained from
simulations done with the standard simplified Langevin
model (SLM). We recall that this model is given by Eq.
(12) with Gij = −C1ωδij , or equivalently by setting CL1 =
0, MS

ij = δij and ΩP = 0 in the two-scale equation (35).
The value of the SLM constants are set to C1 = 4.15 and
Cε2 = 1.92, which are two of the most frequently used
values for these coefficients. The drawbacks of the SLM
mentioned in the introduction can be clearly observed in
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Figure 2: Evolution of Lk
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Figure 4: Evolution of max(k)

these figures. It can be seen that the growth exponent Θ
does not match the expected one and that a strong, almost
complete, return to anisotropy occurs. The proposed two-
scale Langevin model improves those two aspects.

6.4. Role of the pressure flux term

Another focus of the present work is the role played
by turbulent transport by the pressure flux. To account
for this effect, we added in our model (Eq. (35)) a term
proportional to the pressure frequency ΩP = ∂kukp′/k.
The effect of this additional term is assessed hereafter by
comparing two sets of LMC simulations. The first one is
done by including the pressure term and the second one
by discarding it, i.e. by setting ΩP = 0.

The main observation is that the mixing zone width ob-
tained without accounting for the pressure term is sys-
tematically larger than the one obtained with it. Besides,
while the width predicted by the full model remains close
to the LES results, this is not the case anymore when
ΩP = 0. These aspects are illustrated in Fig. 6a for the
simulation with s0 = 2. The origin of this property can
be traced back to the differences in the kinetic energy flux
of the two models. When ΩP is accounted for, the flux is
equal to u3k + u3p′ ≈ 3

5u3k while it is equal to u3k oth-

erwise. Since u3k is initially the same for the two simula-
tions, the energy flux is higher for the case with ΩP = 0
and the mixing zone width increases faster, at least ini-
tially. Accordingly, the decrease of the maximum kinetic

energy is also faster.
Another systematic effect concerns anisotropy. In Fig.

6b, one can see that the model with ΩP = 0 slightly over-
predicts bG33 compared with the full model. This result is
shown for the simulation with s0 = 2 but it applies equally
well to the other ones. This difference can be attributed to
the fact that the ΩP term is akin to an additional return
to isotropy term. Hence its presence leads to a decrease in
anisotropy.

As a whole, accounting for the pressure term appears
fundamental for ensuring the coherence between the LES
and the Langevin model results. Without it, differences on
the order of 10% are observed on the mixing zone width
and maximum kinetic energy.

6.5. Spatial profiles

The two-scale Langevin model has been designed to re-
produce the 0D self-similar evolutions of the mixing zone
width, kinetic energy and anisotropy. As shown in the
previous subsections, the model is indeed successful in per-
forming this task. The question we would like to examine
here is whether the model can also predict correct spa-
tial profiles and not only some of their integrals. Fig. 7
displays the spatial profiles of u′23 and u′21 at the end of
the simulation with s0 = 2. It can be seen that the two-
scale Langevin model yields spatial profiles which are in
good agreement with the LES. In particular, the model
predicts spatial profiles which are not parabolic, as would
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Figure 5: Θ and bG33 at the end of the simulations, as a function of
s0

RSM do, but are thinner at the center and display tails
on the edges. Similar comparisons also apply to the other
simulations with different s0.

6.6. PDF of the longitudinal velocity

To conclude the validation of the two-scale Langevin
model, we investigate the shapes of the PDF of the longi-
tudinal velocity u3. Overall, a good agreement is observed
between the LES and the two-scale Langevin model, as
shown in Figs. 8-11. In particular, the emergence of a
peak at negative velocities, its position and amplitude, is
correctly reproduced by the model. This feature of the
PDF has been analyzed in [55]. It is attributed to the
effects of inhomogeneity and more specifically to the gra-
dient of kinetic energy.

What is more, the model also correctly captures the de-
pendency of the PDF shape on initial conditions. This
dependency is most evident close to the center of the mix-
ing zone. For s0 = 4, the PDF at x3/Lk ≈ 0 is close to a
Gaussian. As s0 decreases, the shape of the PDF becomes
squarer (see Fig. 8) until two small peaks arise close to

0 2 4 6 8 10 12 14

t/tref

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L
k

LES

with ΩP

without ΩP

(a)

0 2 4 6 8 10 12 14

t/tref

0.00

0.05

0.10

0.15

0.20

b
G 33

LES

with ΩP

without ΩP

(b)

Figure 6: Influence of the transport by the pressure flux on the
evolution of Lk and bG33 for the simulation with s0 = 2.

v3 = 0, for s0 = 1. At other positions, the PDF becomes
more asymmetric as s0 decreases from 4 to 1.

Beyond the sole validation of the two-scale Langevin
model, we would like to point out that the evolution of
the PDF with s0 is, in itself, a striking result. Indeed,
the permanence of large-eddies predicts a dependency on
initial conditions for second-order correlations but does
not say anything about higher order correlations. Figures
8-11 show that this dependency extends to the whole PDF
and its associated one-point statistics.

13



2 1 0 1 2

x3/Lk

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

k

LES

Two-scale Lang.

(a) u′23

2 1 0 1 2

x3/Lk

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0.0000025

0.0000030

0.0000035

k

LES

Two-scale Lang.

(b) u′21

Figure 7: Influence of the transport by the pressure flux term on
the evolution of Lk and bG33 for the simulation with s0 = 2.

7. Conclusion

Despite their apparent simplicity, Richtmyer-Meshkov
turbulent mixing zones are challenging flows to model.
The main reason is that they obey the principle of per-
manence of large-eddies so that initial conditions have a
lasting influence on their evolution.

The main purpose of this work was to account for this
initial condition dependency in a Langevin PDF model. To
this end, we considered the two-scale methodology usually
considered for Reynolds stress models [32] and adapted it
to the simplified Langevin model (SLM). As a result, we
derived a two-scale Langevin model. Its large scale part ac-
counts for the preservation of large scale initial conditions,
while its small scale part is similar to the usual SLM.

In addition to this aspect, we also discussed the role
played by the turbulent transport by the pressure flux.
The latter is almost systematically neglected in Langevin
models, while it may play a role in a mixing zone. A
closure for this term was thus proposed.

The two-scale Langevin model, with a pressure flux
term, was validated by comparing it against several LES
of Richtmyer-Meshkov turbulent mixing zones. In these
simulations, the initial conditions were varied in order to
obtain different self-similar states. As a whole, the pro-
posed model yields results which are in good agreement

with the LES. The mixing zone width, levels of kinetic
energy and anisotropy are correctly reproduced. Besides,
the shapes of the modeled PDF are also coherent with
those extracted from the LES. On all of these aspects, the
proposed model offers a significant improvement over the
standard SLM.

As a perspective, the precise formulation of the pro-
posed model is tightly tied to the properties of Richtmyer-
Meshkov turbulent mixing zones. However, the overall
methodology which allowed to derive this model can be
used in other contexts. Besides, as for Reynolds stress
models [32], two-scale formulations with broader range
of applications can also in principle be adapted from the
present methodology.
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Figure 8: PDF of the longitudinal velocity at different points and at the end of the simulation with s0 = 1.
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Figure 9: PDF of the longitudinal velocity at different points and at the end of the simulation with s0 = 2.

15



4 3 2 1 0 1 2 3 4

v3/σ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

σ
f

LES

Two-scale Lang.

x3/Lk ≈ 0

4 3 2 1 0 1 2 3 4

v3 /σ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ
f

LES

Two-scale Lang.

x3/Lk ≈ 0.2

6 4 2 0 2 4 6

v3 /σ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

σ
f

LES

Two-scale Lang.

x3/Lk ≈ 0.4

6 4 2 0 2 4 6

v3/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ
f

LES

Two-scale Lang.

x3/Lk ≈ 0.6

8 6 4 2 0 2 4 6 8

v3 /σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ
f

LES

Two-scale Lang.

x3/Lk ≈ 0.8

Figure 10: PDF of the longitudinal velocity at different points and at the end of the simulation with s0 = 3.
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Figure 11: PDF of the longitudinal velocity at different points and at the end of the simulation with s0 = 4.
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