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Abstract. It is assumed that preferences between two items, described
in terms of criteria values belonging to a finite scale, are known for a
limited number of pairs of items, which constitutes a case base. The
problem is then to predict the preference between the items of a new pair.
A new approach based on analogical proportions is presented. Analogical
proportions are statements of the form “a is to b as c is to d”. If the change
between item-1 and item-2 is the same as the change between item-3 and
item-4, and a similar statement holds for item’-1, item’-2, item’-3, item’-
4, then one may plausibly assume that the preference between item-1 and
item’-1 is to the preference between item-2 and item’-2 as the preference
between item-3 and item’-3 is to the preference between item-4 and item’-
4. This offers a basis for a plausible prediction of the fourth preference if
the three others are known. This approach fits well with the postulates
underlying weighted averages. Two algorithms are proposed that look
for triples of preferences appropriate for a prediction. The first one only
exploits the given set of examples. The second one completes this set with
new preferences deducible from this set under a monotony assumption.
This completion is limited to the generation of preferences that are useful
for the requested prediction. The predicted preferences should fit with
the assumption that known preferences agree with a unique unknown
weighted average. The reported experiments suggest the effectiveness of
the proposed approach.

1 Introduction

Analogical reasoning is reputed to be a valuable heuristic means for extrapolating 
plausible conclusions on the basis of comparisons. A simple form of this idea is 
implemented by case-based reasoning (CBR) [1], where conclusions known for 
stored cases are tentatively associated to similar cases. A more sophisticated 
option relies on the idea of analogical proportions. By analogical proportions,
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we mean statements of the form “a is to b as c is to d”. We assume here that,
a, b, c, d refer to four items described by their vector of features values for a
considered set of features. The analogical proportion is to be understood as “a
differs from b as c differs from d” and conversely “b differs from a as d differs from
c”. Then inference is based on triples of vectors (rather than taking vectors one
by one as in case-based reasoning). The underlying idea is that if four items a,
b, c, d are making an analogical proportion on describing features, an analogical
proportion may hold as well on another mark pertaining to them, and then if
this mark is known for a, b and c, one may compute it for d in such a way that
the marks make an analogical proportion.

The notion of analogical proportions and their formalization has raised a
trend of interest in the last two decades [14,16,18,20,21]. Moreover analogical
proportion-based classifiers have been designed and experienced with success
[3,4,15], first for Boolean and then for nominal and numerical attributes. In
this case, the predicted mark is the label of the class. Although it is not intu-
itively obvious why analogical proportion-based inference may work well, one
may notice that such a proportion enforces a parallel between four situations in
such a way that the change between a and b is the same as the change between
c and d. So this inference exploits co-variations.

One may wonder if what is working in classification may also be applied
to preference prediction. The aim of this paper is to check whether analogical
proportions may be a suitable tool for predicting preferences. This idea has been
recently advocated in [17], but without providing any experimental evidence
that it may work. This paper further investigates this idea and provides an
experimentation of this idea. The problem considered is no longer to predict a
class for a new item, but a preference relation between two items on the basis of
a set of examples made of known comparisons applying to pairs of items. This
set of examples plays the role of a case base, where a case is just a pair of vectors
describing the two items together with information saying what item is preferred.
Cases stating preferences are not usual in CBR literature, although they are
clearly cases of interest. Still this should not be confused with “preference-based
CBR” [2] where preferences between competing solutions in the context of a
problem are handled.1

Preference learning has become a popular artificial intelligence topic [7,9,10,
12]. Preference learning often relies on the assumption that data sets are mas-
sively available. Interestingly enough, analogical proportion-based inference may
work with a rather small amount of examples, as we shall see. Preference-learning
approaches often rely on the hypothesis that known preferences agree with a

1 During the time we were finalizing this paper, we become aware of a very recent
work [8], also aiming at predicting preferences on an analogical basis. Their approach
exploits what is called “the horizontal reading” in [17], while here we investigate “the
vertical reading” (also introduced in [17]). Moreover the focus of [8] is on learning
to rank evaluated with a loss function, which is slightly different from the one here
on predicting preferences and computing the error rate of predictions. A detailed
comparison of the relative merits of the two approaches are beyond the scope of this
paper, but will be the topic of a forthcoming study.



unique unknown aggregation function or with a conditional preference struc-
ture that has to be identified. Analogical proportion-based methods extrapolate
predictions from known cases without looking for some underlying explanation
model.

The paper is structured as follows. Section 2 recalls the necessary back-
ground on analogical proportions and their use in plausible inference mecha-
nisms, while Sect. 3 restates important facts in multiple criteria decision that are
relevant for applying analogical proportion-based inference to preference predic-
tion. Section 4 presents two algorithms, one exploiting a set of given examples,
one using an extension of this set relying on a monotony assumption of the pref-
erences. Section 5 shows that promising results can be obtained, while Sect. 6
provides some lines for further research.

2 Background on Analogical Proportions

As already said, an analogical proportion is a statement of the form “a is to b as c
is to d”. It is denoted a : b :: c : d usually. The name comes from a parallel, already
made in Ancient Greek time, with geometric proportions that equate the ratio of
two numbers a and b with the ratio of c and d, which may appear as a particular
case of an analogical proportion. This is maybe why analogical proportions are
supposed to obey the three following postulates (which correspond to properties
of geometric proportions):

(1) a : b :: a : b (reflexivity);
(2) a : b :: c : d = c : d :: a : b (symmetry);
(3) a : b :: c : d = a : c :: b : d (central permutation).

Let us assume that a, b, c and d take their values in a finite set U with at least
two elements. Let u, v ∈ U . It follows immediately that (u, u, u, u), (u, u, v, v),
and (u, v, u, v) are valid schemas for the analogical proportion. Other possible
schemas with two distinct values are on the one hand (u, u, u, v), (u, u, v, u),
(u, v, u, u), and (v, u, u, u), and on the other hand (u, v, v, u). They all disagree
with the idea of proportion: indeed, e.g., it would be weird to claim that “u is
to u as u is to v” if v �= u, while “u is to v as v is to u” looks debatable as well,
since the change from v to u is opposite to the one from u to v.

So the simplest model for analogical proportions, is to consider that the
quaternary relation in U4 is valid if and only if a : b :: c : d is of the form
(u, u, u, u), (u, u, v, v), or (u, v, u, v). In the case where U would be replaced
by the set of real numbers, a more liberal model may be considered where a :
b :: c : d holds as soon as a − b = c − d [19], and where more than two distinct
values may appear in the 4-tuples that make an analogical proportion, e.g.,
0 : 0.5 :: 0.5 : 1 , or 0.2 : 0.4 :: 0.6 : 0.8. However, we shall not use this modeling
in the following since we use a finite set U , encoded by numbers, but where the
difference operation ‘−’ is not a closed operation.



The above definition of an analogical proportion extends to vectors straight-
forwardly. Let a = (a1, · · · , an), b = (b1, · · · , bn), c = (c1, · · · , cn), d =
(d1, · · · , dn), then

a : b :: c : d if and only if ∀i, ai : bi :: ci : di, i = 1, n.

Then analogical proportion-based inference [4,20] is usually defined by the fol-
lowing pattern of plausible inference

∀i ∈ [[1, n]], ai : bi :: ci : di

m(a) : m(b) ::m(c) : m(d)

where m(x) denotes a mark associated with vector x, e.g., the label of the class
of x, in a classification problem. More generally, m(x) may be also a vector. Here
m represents the sign of the preference relation (the value of m is in {�,�}).
Then if m(a), m(b), m(c) are already known, while m(d) is unknown, we can
infer a plausible value for m(d) by solving the equation m(a) : m(b) ::m(c) : ?
whose solution is always unique, when it exists. However, note that u : v : v : ?
has no solution, since neither u : v : v : v nor u : v : v : u are valid analogical
proportions.

In the following, the items we consider are made of preferences between two
vectors of criteria values, of the form a1 � a2, b1 � b2, c1 � c2 and d1 � d2.
Then an instance of the analogical proportion-based preference inference is now

∀j ∈ [[1, n]], a1
j : b1

j :: c1
j : d1

j and a2
j : b2

j :: c2
j : d2

j

a1 � a2, b1 � b2, c1 � c2

− − − − − − − − − − − − − − − − − − − − −
d1 � d2.

Two other instances, which involve the reversed preference relation �, and
which are in agreement with the valid patterns of analogical proportions, would
correspond to following the analogical entailments with the same first premise

as above that we do not repeat:

a1 � a2, b1 � b2, c1 � c2

− − − − − − − − − − −
d1 � d2.

and
a1 � a2, b1 � b2, c1 � c2

− − − − − − − − − − −
d1 � d2.

As we are going to see now, other concerns should be taken into account for
a proper preference prediction mechanism. For that we need to first recall some
results in multiple criteria analysis, and to make some observations.



3 Multiple Criteria-Based Preference and Analogical

Proportions

In practice, the most largely used multiple criteria aggregation operators are
weighted sums. Let x = (x1, . . . , xn) be a vector of evaluations representing a
choice according to n criteria. The same finite scale S = {1, 2, ..., k} is used
for all criteria (the greater the value, the better it is). As pointed out in [17],
an important property satisfied by many aggregation operators, in particular
weighted sums, is that contradictory tradeoffs are forbidden (in fact, not showing
contradictory tradeoffs is a property shared by many preference models, not only
by weighted sums). This is expressed by the following postulate.

We cannot have together the four following preference statements: ∀i, j

A : x−iα � y−iβ
and B : x−iγ � y−iδ
and C : v−jα � w−jβ
and D : v−jγ ≺ w−jδ

So the first three statements should entail

D′ : v−jγ � w−jδ

where � denotes a preference relation (x � y is the same as y � x) and x−i

denotes the n-1-dimensional vector made of the evaluations of x on all criteria
except the ith one for which the Greek letter denotes the substituted value. This
postulate ensures that the difference between γ and δ is at least as large as that
between α and β, independently of the criterion on which this difference shows
up. In other words, in context x−i the values of α, β are not enough for reversing
the preference, while γ, δ are sufficient; in context v−j the values of α, β are now
sufficient for getting the preference reversed, then it should be a fortiori the case
with γ, δ in this new context.

This postulate is verified by preferences that can be represented by a weighted
sum of utilities, i.e., in case there exist a real-valued function u defined on S and
a set of n weights pi summing up to 1, such that, ∀x, y, x � y if and only if

U(x) =

n∑

i=1

piu(xi) ≥ U(y) =

n∑

i=1

piu(yi).

where U(x) is the global utility of the choice associated with vector x.
The above pattern of inference is compatible with the analogical proportion-

based patterns of the previous section. In fact, a violation of this pattern would
lead to observe a reversed analogical proportion (of the form a is to b as b is to
a) on the preference symbols, which is opposite to what analogical proportion
expresses [18].



Besides, the problem considered in this paper is the following. Given a set
E of preferences of the form xk � yk (k = 1, · · · ,m), representing what we
know about the preferences of an agent about some pairs of choices, can we
predict its preference between two other choices x and y? First, an idea is to
make the assumption that the preferences of the agent obey a weighted sum
aggregation scheme, whose weights are unknown. Then, we might think of finding
a sampling of systems of weights summing to 1 that are compatible with the
constraints induced by E. But, enumerating the vertices of the polytope defined
by the system of inequations corresponding to the preferences in E is a NP
hard problem that is not easy at all to handle in practice [13]. Indeed given a
feasible system of linear inequalities, generating all vertices of the corresponding
polyhedron is hard. Yet, in the case of bounded polyhedra (i.e., polytope) the
complexity remains open. It is why we have chosen to explore another route in
this study, based on the exploitation of a pattern avoiding contradictory trade-
offs, and patterns expressing that preferences should go well with analogical
proportions. This idea which may sound fancy at first glance is based on the
empirical evidence that analogical proportion-based classifiers work well and the
theoretical result that such classifiers make no error in the Boolean case when the
labeling function is affine [6]. A result of the same nature might be conjectured
when attributes are nominal rather the Boolean. In our case since the scale S is
finite, criteria may be regarded as nominal attributes.

4 Analogy-Based Preference Prediction

As just said, we investigate how analogical proportions can help for predicting
preference relations from a given set of such relations, while avoiding the gen-
eration of contradictory trade-offs. We call APP such a method, which is short
for “Analogy-based Preference Prediction”.

Let us consider a preference relation � over the universe set Sn (n is the
number of criteria) and a set of preference examples E = {ei : xi � yi} telling us
that choice xi is preferred to choice yi. We may apply monotony on examples in
the set E, in order to produce other new valid examples. Namely, if (xi � yi) ∈ E
and if x′, y′ are such that x′ � xi and yi � y′ due to dominance, then x′ � y′

should hold as well. We denote comp(E) this completion of set E by repeated
application of monotony. Moreover the scale S = {1, 2, ..., k}. In the experiments
we use S = {1, 2, 3, 4, 5}. Such a scale is usual in practice.

4.1 Methodology

Given a new item D : X,Y whose preference is to be predicted, the basic principle
of APP is to find the good triples (A,B,C) of examples in E (or if possible
in comp(E)) that form with D either the non-contradictory trade-offs pattern
(considered in first), or one of the three analogical proportion-based inference
patterns. Such triples, when applicable, will help to guess the preference of D
by applying a majority vote on the solutions provided by each of these triples.



Let us consider one of the basic patterns:

A : x−iα � y−iβ

B : x−iγ � y−iδ

C : v−jα � w−jβ

D : v−jγ ? w−jδ

where preference of D is unknown.
The APP can be described by this basic process:

– For a given D, search for good triples in E.
– In case no good triples could be found in E, search for such triples in comp(E).
– Apply a majority vote on the candidate solutions of these good triples to

predict the preference of D.

The process of searching for good triples can be summarized by the following 3
steps:

1. Find good C: In the basic pattern, we can see that the item C may be any
example in the set E which is identical to D except on one criterion that is
denoted by its index j. The intuitive idea of APP is to start by searching for
the best examples C ∈ E that fit the basic pattern considered. As j may be
any index in the set of criteria, a loop on all possible criteria j ∈ {1, ..., n}
should be executed in order to find j. Once a candidate C is found, this helps
to also fix parameters α, β, γ and δ for the current candidate triple. We save
such parameters as param = {α, β, γ, δ, j}.

2. Find good A: Once parameters α and β are fixed for each example C, it is
easy to find a good example A ∈ E in which α and β appears on the same
criterion, indexed by i. As in the case of C, a similar process is to be applied
to find such examples A. This helps to fix a new parameter i and update the
set of parameters to be param = {α, β, γ, δ, j, i}.

3. Find good B: As a result of the previous step, to each candidate pair
(A,C) along with D corresponds a set of candidate parameters param =
{α, β, γ, δ, j, i}. The last step is to find all good examples B ∈ E to enclose
the triple (A,B,C), i.e., those that fit exactly the pattern: p : x−iγ, y−iδ
regardless of the sign of the preference relation.

The next step of the APP is to predict preference based on the selected good
triples. Each candidate triple helps to predict an atomic preference solution for
D by inference based on any of the previous patterns described in Sects. 2 and
3. A global preference solution is computed through a majority vote applied on
all atomic solutions and finally assigned to D.

As expected, the proposed APP may fail in case no examples C (or A, or
B) could be found in the set E especially when E has a limited size (only
few examples of preferences between choices are available). To overcome this
problem, we propose to expand the set E and search for examples e in comp(E).



For any example e ∈ E s.t.: e : x−iα � y−iβ, one may produce a new valid
preference example by dominance (monotony) defined as:

newe ∈ comp(E) iff newe : newx−iα � newy−iβ

and newx−i ≥ x−i and y−i ≥ newy−i (1)

For any relation e with opposite preference sign corresponds a newe by reversing
the operators.

4.2 Algorithms

Based on the previous ideas, we propose two different algorithms for predicting
preferences in the following.

Let E be a training set of examples whose preference is known. Given a
new preference relation D /∈ E whose preference is to be predicted, the first
alternative is to look at all good triples (A,B,C) ∈ E that provide a solution for
the item D. It is important to note that in a pre-processing step, one may search
for the appropriate pairs (A,B) ∈ E, s.t: A : x−iα, y−iβ and B : x−iα

′

, y−iβ
′

,
i.e., A is identical as B except in one attribute. This step aims to filtering the
high number of pairs and keeping only those that fit the previous patterns. This
first option is described by Algorithm 1.

Algorithm 1. APP with restricted set

Input: a training set E of examples with known preferences
a new item D /∈ E whose preference is unknown.
PredictedPref = false
Preprocess: S(A,B) = FindPairs(E).
CandidateVote(p)=0, for each p ∈ {�, �}
for each C ∈ E do

if IsGood(C) then

for each (A, B) ∈ S(A,B) do

if IsGood(A) AND IsGood(B) then

p = Sol(A, B, C, D)
CandidateV ote(p)++

end if

end for

end if

end for

maxi = max{CandidateV ote(p)}
if maxi �= 0 AND unique(maxi, CandidateV ote(p)) then

Preference(D) = argmaxp{CandidateV ote(p)}
PredictedPref = true

end if

if PredictedPref then

returnPreference(D)
else

return (not predicted)
end if



In case Algorithm 1 fails to find good triples, the second alternative (described
by Algorithm 2) aims at expanding the set of preference examples E by searching
for good triples (A,B,C) in comp(E). In this set, examples are produced by
applying dominance (monotony) on elements found in E.

Note that the algorithms that we proposed in this paper are quite different
from the one in [17], where only a brute force procedure for preference prediction
is presented without giving any clue for implementation. Neither an evaluation
process nor comparisons are provided. Moreover, the algorithm in [17] assumes
that a completed set Comp(E) is first computed and used as input for prediction.
Generating the whole set Comp(E) is computationally very expensive, while it
may be useless. In this paper we search for useful elements in Comp(E) only in
case no appropriate triples can be found in E. This clearly reduces the computa-
tional burden. We then describe a precise process for searching for appropriate
triples and also present a way to evaluate the algorithm’s performance (which is
not done in [17]). In terms of complexity, due to the use of triples of items, our
algorithms have a cubic complexity while the approach to find the set of weights
compatible with the set E has at least a complexity O(|E| ∗ |E′|n), where n is
the number of weighted averages to be generated and E’ is the new set generated
from one of these weights.

Algorithm 2. APP with a completion set

Input:a training set E of examples with known preferences
a new item D /∈ E whose preference is unknown.
Preprocess: S(A,B) = FindPairs(E).
if Algo1(D,E)=not predicted then

CandidateVote(p)=0, for each p ∈ {�, �}
for each C ∈ E do

newC=comp(C)
for each (A, B) ∈ E × E do

if IsGood(A) AND IsGood(B) then

p = Sol(A, B, newC, D)
CandidateV ote(p)++

end if

end for

if CandidateVote(p)=0, for each p ∈ {�, �} then

for each A ∈ E do

newB=comp(B)
if IsGood(A) AND IsGood(NewB) then

p = Sol(A, newB, newC, D)
CandidateV ote(p)++

end if

end for

end if

end for

end if

Preference(D) = argmaxp{CandidateV ote(p)}
return Preference(D)



5 Experiments

In order to evaluate the proposed APP algorithms, we have developed a set of
experiments that we describe in the following. We finally compare these algo-
rithms to a nearest neighbors method.

5.1 Datasets and Validation Protocol

The experimental study is based on three datasets, the two first ones are syn-
thetic data generated from a chosen weighted average function. For each of
these datasets, all possible combinations of the feature values over the scale
S are considered. For each pair of vectors (x, y) ∈ E2, the preference is deter-
mined, through computing weighted averages as follows: x � y if and only if
U(x) =

∑n

i=1 wixi ≥ U(y) =
∑n

i=1 wiyi, where wi is the weight associated to
criterion i.

– Dataset 1: we consider only 3 criteria in each preference relation i.e., n = 3
and we test with 3 different options of this dataset. In each of them, examples
are generated using a different weighted average function:

• Weights1(noted w1) with 0.6, 0.3, 0.1 weights respectively for criteria 1, 2
and 3.

• Weights2(w2) with 0.5, 0.3, 0.2 weights respectively for criteria 1, 2 and
3.

• Weights3(w3) with 0.7, 0.2, 0.1 weights respectively for criteria 1, 2 and
3.

– Dataset 2: we expand each preference relation to support 5 criteria, i.e.:
n = 5 and similar to dataset1, we tried different options of weights:

• Weights1(w1) with 0.4, 0.3, 0.1, 0.1, 0.1 weights respectively for criteria 1,
2, 3, 4 and 5.

• Weights2(w2) with 0.3, 0.3, 0.2, 0.1, 0.1 weights respectively for criteria 1,
2, 3, 4 and 5.

• Weights3(w3) with 0.6, 0.2, 0.1, 0.05, 0.05 weights respectively for criteria
1, 2, 3, 4 and 5.

We may consider that 5 criteria is already a rather high number of criteria for
the cognitive appraisal of an item by a human user in practice. For both datasets,
each criterion is evaluated on a scale with 5 different values, i.e., S = {1, ..., 5}.

To check the applicability of APP algorithms, it is important to measure
their efficiency on real data. For such data, two choices/options are provided
to a human judge and ask him/her to pick one of them. To the best of our
knowledge, there is no such a dataset that is available in this format [5]. For this
purpose, we select the Food dataset from context aware recommender systems
available in2.

2 https://github.com/trungngv/gpfm.



– The Food dataset used by [5] contains 4036 user preferences among 20 food
menus picked by 212 users. In each of them a user is supposed to provide a
numerical rating. Each item in this dataset is represented by three features
that correspond to three different level of user hunger. Each of them could be
in 3 possible situations. To test this dataset, we first pre-process it to generate
the preferences in the format recommended by our model: We group all the
input data by user and by foods. For any two inputs with different ratings, we
generate a preference relation. Since we are only dealing with nominal values
in this paper, we limit our study to 5 different foods.

Regarding the validation protocol, for each dataset we have investigated different
sizes of E between 20 to 1000 examples. For each subset of data, we repeat the
experiment 100 times to get stable results. In each experiment, a standard 10
fold cross-validation technique is applied. The prediction accuracies shown in
next subsection for both algorithms are for the testing set and are the average
over the 100 rounds.

5.2 Results

Figures 1 and 2 show prediction accuracies of APP algorithms respectively for
Datasets 1 and 2 for different sizes of each dataset and different weights (see
curves “Algo1 wi(E)” and “Algo2 wi(E)”; the other curves using InterE data
are explained at the end of Sect. 5.2).

Fig. 1. Prediction accuracies for Dataset 1 with 3 criteria and different sizes of subsets
of data.

If we compare results of Algorithm 1 and 2 in Figs. 1 and 2, we can draw the
following conclusions:

– In case of Dataset 1, Algorithm 2 is largely better than Algorithm 1 for small
sizes of the dataset (size < 500). Algorithm 1 and 2 provide close results for
datasets with more than 500 examples even if Algorithm 2 is always better.



Fig. 2. Prediction accuracies for Dataset 2 with 5 criteria and different dataset sizes

– Algorithm 1 seems inefficient for prediction when only a small sample E of
examples is given. Since we are only dealing with grades in a nominal way in
this paper, many triples are rejected due to the ‘yes-no’ acceptance condition
for appropriate triples. This may be relaxed and extended to deal with truly
numerical values (which is a process under study).

– Algorithm 2 shows a very good prediction ability even with rather small
samples (i.e., 50 preference examples). Due to monotony exploited by this
algorithm, it is always possible to find appropriate triples in Comp(E).

– Since Algorithm 2 is clearly better than Algorithm 1, we limit our experiments
on Algorithm 2 when applied to Dataset 2.

– In case of Dataset 2, prediction accuracy of Algorithm 2 is clearly improved
when dataset size increases as in case of Dataset1.

– If we compare results for the two datasets, it is obvious that Algorithm 2
is significantly better when applied to Dataset 1 (with 3 criteria) than to
Dataset 2 (with 5 criteria). This means that it is easier for Algorithm 2 to
predict preferences with a limited number of criteria, as we may expect.

– The three weighted averages for Datasets 1 and 2 yield close results even
though the weights w1 for Dataset 1 and w2 for Dataset 2 give slightly worse
results. In the two latter, the weights are less contrasted (i.e., closer to each
other), which may indicate that it is somewhat easier for the algorithm to
predict preferences generated from a weighted average with more contrasted
weights. Still the three weights sets yield very similar results for large dataset
sizes.

The previous results show the effectiveness of Algorithm 2 as preference pre-
dictor which fits with a given weighted average used to produce the preference
examples especially for small number of criteria.

It is worth pointing out that the predicted preferences have been evaluated
as being valid, or not, on the basis of 3 weighted averages, the ones used for
generating the dataset with its three versions. It is clear that a given set E
of preference examples is compatible with a more large collections of weights.



Strictly speaking a prediction is valid if it is correct with respect to at least one of
the collections of weights compatible with E. As already said, determining all the
extreme points of the polytope of the weights compatible with E is quite tricky.
So in the above reported experiments, we have compared the prediction to ones
obtained by using the weighted averages used in the generation of the training
set, and thus the reported accuracies are lower bounds of the true accuracies.

In the following, we aim at estimating the extent to which APP algorithms
succeed to fit with a larger variety of weighted averages. For this purpose, we
also experiment our algorithms on datasets obtained by applying the following
procedure:

1. Select m different weighted averages P1, P2, ...Pm, all of them satisfying the
same ranking for the importance of each criterion. We denote E1, E2, ..., Em

respectively the corresponding sets of preference examples.
2. Find the intersection set of these preference sets denoted InterE = E1 ∩

E2 ∩ ... ∩ Em containing only examples that any of all weighted averages
∈ {P1, P2, ...Pm} can generate.

3. Apply APP Algorithms to predict preferences on subsets of InterE.

To test the previous idea, we use 5 different weighted averages (m = 5)
keeping the same importance ranking for the criteria. Results of Algorithm1
and 2 are given in Figs. 1 and 2 (See Algo1(InterE) and Algo2(InterE)). These
results show that:

– Accuracy of Algorithm 2 is clearly improved when the set InterE is used
instead of the set E which is produced from one of the 5 weighted averages.
This can be noticed for most dataset sizes especially large sizes of the data.

– For Algorithm1, a slight improvement is noticed when using the set InterE
especially for large dataset sizes exceeding 100 examples.

This confirms our intuition and shows that if preference examples agree with a
variety of weighted averages, more predicted preferences can be considered as
fitting with these examples.

5.3 Comparison with a Nearest Neighbor Method

In the following, we aim at comparing APP algorithms to a basic nearest-
neighbor (NN) preference learning approach. That is why we implemented and
tested a NN preference learning algorithm that we call NNPL. The basic prin-
ciple of this algorithm is to predict any new preference example d in the same
way as its nearest − neighbor preference example(s) belonging to the training
set. For this purpose, we compute the distance of d to all training examples and
we select those being sufficiently close. In case of ties, a majority vote is applied.
Let us consider an example d : u ? v to be predicted and c : xi � yi ∈ E, we
compute two distances to c defined as:

Dis1(c, d) = (| u − xi |, | v − yi |)



Dis2(c, d) = (| u − yi |, | v − xi |)

where | a − b | is simply the Manhattan distance of vectors components.
We define:

NN(c, d) = {c ∈ E s.t.:Dis(c, d) ≤ θ}

where Dis(c, d) = Min(Dis1, Dis2).
We want to check if the preference d is predicted by APP in the same way

as by NNPL. For this purpose, we computed the frequency of the cases where
both APP and NNPL predict the correct preference for d (this case is denoted
SS), the frequency of the cases where both algorithms predict an incorrect label
(denoted FF ), the frequency where APP prediction is correct and NNPL pre-
diction is wrong (SF ) and the frequency where APP prediction is wrong and
NNPL prediction is correct (FS). For this experiment we exploit APP algo-
rithms applied to Dataset 1 for which we only consider the cases where both
APP and NNPL are able to provide a prediction (we only include examples that
can be predicted by the two compared algorithms). Regarding the threshold θ,
we tried 3 different values in {1, 2, 3} and we report the results for the best one
(θ is fixed to 2 in this experiment). Results are saved in Table 1.

Table 1. Frequency of success/fail of APP predictions that are predicted same/not
same as the NNPL approach

Dataset size Algo1 Algo2

SS FF SF FS SS FF SF FS

50 0.901 0 0.099 0 0.697 0.026 0.2 0.076

100 0.807 0.04 0.113 0.04 0.811 0.035 0.134 0.02

200 0.841 0.02 0.081 0.058 0.826 0.023 0.106 0.045

500 0.887 0.015 0.056 0.042 0.863 0.012 0.069 0.056

1000 0.92 0.011 0.042 0.027 0.911 0.013 0.045 0.031

In this table, we note that:

– For most cases, APP and NNPL agree and predict the same preference (the
highest frequency can be seen in column SS).

– If we compare results in column SF and FS, we can see that the frequency
of cases where APP provides the correct prediction, while NNPL does not
(column SF ) is significantly better than the opposite case (column FS). This
can be seen for all dataset sizes (except the smallest one). Especially for a size
of 100 examples, more than 10% of the total correctly predicted examples are
predicted differently from the NNPL.

Lastly, we also compare the prediction accuracy of APP algorithms to NNPL
when applied to the Food dataset as representative of real data. Results of Food
dataset, in Table 2, shows that:



Table 2. Classification accuracy of Algo 1 and 2 applied to Food dataset

Dataset Algo1 Algo2 NNPL [5]

Food 73.31 ± 2.81 73.35 ± 2.63 61.57 ± 3.58 61

– APP algorithms performs well when dealing with real dataset as in case of
synthetic data.

– Algorithms 1 and 2 significantly outperform the probabilistic approach pro-
posed by [5] applied to this dataset.

– Algorithms 1 and 2 also do better than the NNPL.

In fact, APP benefits from two basic differences if compared to the classic NNPL
(i) using a large amount of triple voters for prediction while NNPL uses a sim-
pler voting-based strategy that directly applies a vote on the nearest neighbor
examples and (ii) using more complex calculation by comparing pairs of items
instead of comparing simply two items. We note that the four items involved in
each comparison are not necessarily closes as we shall see from the basic pattern
described in Sect. 4.1. In this pattern, it is clear that D is neighbor to C (only
one criteria is different) and B is neighbor to A but D is not necessarily neigh-
bor to A or B. This increase in terms of complexity (which is cubic in case of
APP) may explain the good results of APP if compared to NNPL having linear
complexity.

6 Conclusion

The approach presented in the paper does not amount to inducing a general
representation of the set of examples under the form of a particular class of
aggregation functions or of a graphical preference representation, from which
we could predict a preference relation between any pair of choices. We simply
apply an analogical inference principle (or in the comparative study, a nearest
neighbor principle) for making directly the prediction. This type of approach is
successful in classification. The present study shows that it is applicable as well
in preference learning. Still in classification, the classes have just to be mutually
exclusive. Preferences are more structured in the sense that they are expected not
to exhibit contradictory trade-offs and to be monotone, which has to be taken
into account in the learning process. In our approach, our experiments have
been on training sets generated by means of weighted sums, which is a quite
standard aggregation function, and we have obtained good results for rather
small subsets of examples. Still it is known that the representation of multiple-
criteria preferences may require more general settings such as Choquet integrals
[11] where the condition for avoiding contradictory trade-offs is weaker. Adapting
the proposed approach to guess preferences generated by such more general
settings is a topic for further research.



References

1. Aamodt, A., Plaza, E.: Case-based reasoning; foundational issues, methodological
variations, and system approaches. AICom 7(1), 39–59 (1994)
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7. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview.
Artif. Intell. 175(7–8), 1037–1052 (2011)
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12. Hüllermeier, E., Fürnkranz, J.: Editorial: preference learning and ranking. Mach.
Learn. 93(2–3), 185–189 (2013)

13. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V.: Generating all
vertices of a polyhedron is hard. Discret. Comput. Geom. 39(1), 174–190 (2008)

14. Lepage, Y.: Analogy and formal languages. In: Proceedings FG/MOL 2001, pp.
373–378 (2001). http://www.slt.atr.co.jp/lepage/pdf/dhdryl.pdf.gz

15. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms
and two experiments in machine learning. JAIR 32, 793–824 (2008)

16. Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy
logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI),
vol. 5590, pp. 638–650. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02906-6 55

17. Pirlot, M., Prade, H., Richard, G.: Completing preferences by means of analog-
ical proportions. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C.
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