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ABSTRACT

The paper introduces a new semantics for temporal STIT logic 
(the logic of seeing to it that) based on concurrent game struc-
tures (CGSs), thereby strengthening the connection between tem-

poral STIT and existing logics for MAS including coalition logic, 
alternating-time temporal logic and strategy logic whose language 
are usually interpreted over CGSs. Moreover, it provides a com-

plexity result for a rich temporal STIT language interpreted over 
these structures. The language extends that of full computation 
tree logic (CTL∗) by individual agency operators, allowing to ex-
press sentences of the form “agent i sees to it that φ is true, as a 
consequence of her choice”.

1 INTRODUCTION

STIT logic (the logic of seeing to it that) by Belnap et al. [5, 16, 17] is 
one of the most well-known formal theories of agency. It is the logic 
of sentences of the form “group J sees to it that φ is true”, denoted 
by [J ]φ, where a group J is defined to be a set of agents. Following 
[20], one might use the terms ‘group STIT logic’ and ‘individual 
STIT logic’ to designate, respectively, the family of STIT languages 
that contain a group agency operator [J ] for every group J and the 
family of STIT languages that only contain an individual agency 
operator [{i}] for every agent i.

Two variants of STIT have been studied in the literature: ‘atem-

poral STIT’ and ‘temporal STIT’ (T-STIT). At the syntactic level, 
the former corresponds to the family of languages for expressing 
properties of individual and group agency with no temporal opera-
tors. Notable examples are the languages studied by [3, 14, 15, 20]. 
The latter corresponds to extensions of atemporal STIT languages 
by temporal operators for expressing properties of agency in con-
nection with time such as the temporal operator ‘next’ of linear 
temporal logic LTL [6, 25]1 as well as future and past tense opera-
tors of basic tense logic [16, 18, 32]. At the semantic level, atemporal 
STIT abstracts away from the branching-time account of agency 
and only considers one-shot interaction. On the contrary, T-STIT 
focuses on repeated (possibly infinite) interactions and requires a

1The main feature of the language studied by [6] is that the temporal operator ‘next’
and the agency operator are fused into a single operator. In the language studied by
[25] they are kept separated.

formal semantics of branching-time. This corresponds to the game-

theoretic distinction between games in normal form and games in

extensive form.2

Although STIT theory has a solid philosophical basis, at the

current stage, its applicability to multi-agent systems (MAS) is

limited for at least two reasons.

First of all, existing semantics for STIT use notions such as mo-

ment, history and ‘not necessarily discrete’ time that are unfamiliar

and unattractive to most logicians in arti!cial intelligence (AI).

The structures with respect to which STIT languages are inter-

preted highly di"er from the structures that are traditionally used

in the area of logics for MAS including coalition logic (CL) [22],

alternating-time temporal Logic (ATL) [2, 13] and strategy logic (SL)

[21]. These logics are usually interpreted over concurrent game

structures (CGSs). CGSs have been widely used in AI to model

interaction between multiple agents. Moreover, their connections

with alternative models of interaction in AI including alternating

transition systems [2], reactive modules [28], e"ectivity functions

[12] and models of propositional control [4] have been clari!ed.

Secondly, the computational properties of STIT theory including

decidability and complexity are far less studied and understood than

those of CL, ATL and SL. Therefore, its potential for applications re-

mains unclear, compared to existing logics for MAS. Few properties

of STIT are known and all of them are limited either to atemporal

STIT languages or to restrictive temporal STIT languages whose

only temporal operator is the next-time operator. For instance, it is

known that the satis!ability problem is undecidable for temporal

and atemporal group STIT with more than two agents [15] and

NEXPTIME-complete for both the atemporal individual STIT lan-

guage [3] and the temporal individual STIT language restricted to

the next-time operator [25].

The aim of this paper is to overcome these two limitations of

STIT theory (i) by introducing a new semantics for STIT based on

CGSs, and (ii) by providing a complexity result for a rich temporal

individual STIT language — including operators ‘next’ and ‘until’ of

LTL — interpreted over CGSs. Di"erently from the original Belnap

et al.’s semantics, our CGSs semantics for STIT assumes time to be

discrete. This assumption is fundamental for proving our complex-

ity result, as the techniques we use are based on automata and only

apply to discrete branching-time structures.

The paper is organized as follows. In Section 2, we !rst recall

Belnap et al’s de!nition of BT+AC structures and de!ne a variant

of these structures with discrete time (discrete BT+ACs). Then, in

Section 3, we introduce a temporal STIT language that extends the

language of full computation tree logic CTL∗ [9, 11, 24] by agency

operators. We de!ne the interpretation of this language relative to

discrete BT+ACs. In Section 4, we present a new semantics for STIT

based on CGSs and interpret the language of Section 3 over this

2The relationship between the semantics for atemporal STIT and games in normal
form has been explored, e.g., by [19, 26, 27].



De"nition 2.1. A tree is a pair T = (Mom,≺), where:

• Mom is a nonempty set of moments;

• ≺ is a binary relation onMom that is serial, irre#exive, transi-

tive, left-linear4 and rooted5. We let ≻ be the inverse relation

of ≺.

The notion of a history is also crucial in such structures.

De"nition 2.2. Histories are sets h,h′, . . . of moments that are

linearly ordered by ≺ and are maximal for inclusion. HT is the set

of all histories in the tree T , and Hm is the set of histories h such

3In [7], they moreover provide a polynomial embedding of ATL into the ‘strategic’
variant of STIT by [16].
4Left linear means that for allm,m′,m′′ ∈ Mom, ifm′ ≺ m andm′′ ≺ m then
m′ =m′′ orm′ ≺ m′′ orm′′ ≺ m′.
5Rooted means that there existsm ∈ Mom such that for allm′ ∈ Mom,m ≺ m′ or
m =m′.

thatm ∈ h (the histories “passing throughm”)—we omit reference

to the given tree, in this case.

BT+AC structures are introduced by the following de!nition

as branching-time structures augmented by choices of agents and

groups. In order to de!ne them, we need to !x a countable set of

atomic propositions Atm and a !nite set of agents Agt = {1, . . . ,n}.

Before the de!nition some preliminary notation: given a binary

relation R on a set of elements X and an element x of X , we de!ne

R (x ) = {y ∈ X : xRy}.

De"nition 2.3. A BT+AC structure is a tuple B = (T , (∼〈m, J 〉

)m∈Mom, J ∈2Agt ,υ) where:

• T is a tree;

• every ∼〈m, J 〉 is an equivalence relation on its corresponding

set of histories Hm passing throughm;

• υ : Atm −→ 2Mom is a valuation function associating atoms

with sets of moments;

and such that:

(B1) for allm ∈ Mom and for allh1, . . . ,hn ∈ Hm :
⋂

1≤i≤n ∼〈m, {i }〉

(hi ) , ∅;

(B2) for allm ∈ Mom and for all J ∈ 2Agt : ∼〈m, J 〉=
⋂

i ∈J ∼〈m, {i }〉;

(B3) for all m,m′ ∈ Mom and for all h,h′ ∈ HT : if m ≺ m′ and

h,h′ ∈ Hm′ , then h,h
′ ∈ Hm and h ∼〈m,Agt〉 h

′.

h ∼〈m, J 〉 h
′ means that history h is choice-equivalent to history

h′ for group J at momentm. Constraint B1 expresses the so-called

assumption of independence of choices: if for every agent i ∈ Agt,

∼〈m, {i }〉 (hi ) is a possible choice for agent i at moment m, then

the intersection of all these choices is non-empty. More intuitively,

this means that agents can never be deprived of choices due to

the choices made by other agents. Constraint B2 just says that

the collective choice of the group J is equal to the intersection of

the choices of all its individuals. Constraint B3 corresponds to the

property of no choice between undivided histories. It captures the idea

that if two histories come together in some future moment then,

in the present, each agent does not have a choice between these

two histories. This implies that if an agent can choose between two

histories at a later stage, then she does not have a choice between

them in the present.

We here de!ne a subclass of BT+ACs under the assumption of

the discreteness of time. This step is needed in order to relate them

with CGSs in Section 5.

De"nition 2.4. A structure B = (T , (∼〈m, J 〉)m∈Mom, J ∈2Agt ,υ) is

discrete i":

(B4) every history h in HT is isomorphic to the set of natural num-

bers.

Given the discreteness of time assumption, for every moment in

a history we can identify the successor moment along this history.

De"nition 2.5. Let B = (T , (∼〈m, J 〉)m∈Mom, J ∈2Agt ,υ) be a dis-

crete BT+AC structure and let h ∈ HT . Then, succh : h −→ h is

the successor moment function for the history h such that, for all

m,m′ ∈ h, succh (m) =m′ i"m ≺ m′ and there is nom′′ ∈ h such

thatm ≺m′′ ≺m′.

Constraint B4 in De!nition 2.4 guarantees that the function

succh is well-de!ned. The seriality of the relation ≺ guarantees that

succh is total.

class of structures. In Section 5, we provide two results: the tree-
model property for our temporal STIT logic interpreted over CGSs 
and an equivalence result relative to the two semantics based on 
CGSs and discrete BT+ACs. Since the logic on the whole language 
is undecidable, we de!ne in Section 6 the temporal individual STIT 
fragment which is proved in Sections 7, 8 and 9 to be decidable. 
For that purpose, a dedicated semantics is de!ned in Section 7. We 
prove in Section 8 that this semantics is equivalent to the CGS 
semantics. Finally, in Section 9, an automaton is constructed that 
recognizes exactly the models in the dedicated semantics satisfying 
a given formula. In Section 10, we conclude.

At the end of this introduction, we would like to mention the 
related work by [8] who extend the language of ATL by ‘strategic’ 
STIT operators in order to express that “group J performs a strategy 
that, whatever strategy is taken by the others, ensures that a certain 
property φ holds”.3 There are substantial di"erences between their 
work and our work: (i) Broersen et al. interpret their STIT-extension 
of ATL over alternating transition systems (ATSs), while we inter-
pret our temporal STIT logic over CGSs; (ii) they do not prove any 
equivalence result between the semantics based on ATSs and the 
semantics based on BT+ACs for their STIT-extension of ATL, while 
we prove equivalence between the semantics based on CGSs and 
the semantics based on discrete BT+ACs for our temporal STIT 
language; (iii) they do not provide any decidability or complexity 
result for their language or for some fragments of it, while we do it 
for our language.

2 BT+AC-BASED SEMANTICS FOR T-STIT
We now consider BT+AC structures which were !rst introduced in 
STIT theory by Belnap et al. [5, 16]. Such structures are based on 
full trees of branching time temporal logics augmented with group-
relative relations. The structures we are presenting here di"er from 
Belnap et al.’s original ones in two minor respects. First, we replace 
the function of choice with choice-equivalence classes, with a move 
that is usual in STIT logics and will have no bearings in what follows. 
Secondly, the truth values of atomic propositions are assumed to 
be moment-determinate in a way consistent with branching-time 
temporal logics such as CTL∗, while Belnap et al. assume that they 
depend on the history passing through the moment.

We start with the following de!nition of tree, de!ned as a set of 
moments and a branching-time temporal relation over them.



3 DT-STITG
n LANGUAGE

We now introduce the language of discrete-time temporal group

STIT logicDT-STITGn . This language, denoted byL
DT-STIT

G
n

(Atm,n),

extends the language of CTL∗ by ‘seeing-to-it-that’ operators for

all groups. It is de!ned by the following BNF:

φ,ψ ::= p | ¬φ | φ ∧ψ | Xφ | φ Uψ | �φ | [J ]φ

where p ranges over Atm and J ranges over 2Agt . When there is no

risk of confusion, we simply writeLG
n instead ofL

DT-STIT
G
n

(Atm,n).

The length ��φ�� of the formula φ is the number of occurrences of

symbols in φ.

Xφ, φ U ψ and �φ have a similar reading as in CTL
∗: Xφ has

to be read “φ will be true in the next moment along the current

history”, φ Uψ has to be read “ψ is true now or will be true at some

moment in the future along the current history, and φ has to hold

until ψ ”, and �φ has to be read “φ is true in all possible histories

starting in the current moment”. [J ]φ has to be read “group J sees

to it that φ, regardless of what the agents outside J choose”.

Formulas of the language LG
n are evaluated with respect to a

discrete BT+AC structure B = (T , (∼〈m, J 〉)m∈M, J ∈2Agt ,υ) and a

moment-history pair 〈m,h〉 such thatm ∈ Mom and h ∈ Hm :

B, 〈m,h〉 |= p ⇐⇒m ∈ υ (p)

B, 〈m,h〉 |= ¬φ ⇐⇒ B, 〈m,h〉 6|= φ

B, 〈m,h〉 |= φ ∧ψ ⇐⇒ B, 〈m,h〉 |= φ and B, 〈m,h〉 |= ψ

B, 〈m,h〉 |= �φ ⇐⇒∀h′ ∈ Hm : B, 〈m,h′〉 |= φ

B, 〈m,h〉 |= [J ]φ ⇐⇒∀h′ ∈ Hm : if h ∼〈m, J 〉 h
′

then B, 〈m,h′〉 |= φ

B, 〈m,h〉 |= Xφ ⇐⇒ B, 〈succh (m),h〉 |= φ

B, 〈m,h〉 |= φ Uψ ⇐⇒ ∃m′ ∈ h :m � m′ and B, 〈m′,h〉 |= ψ and

∀m′′ ∈ h : ifm � m′′ ≺m′

then B, 〈m′′,h〉 |= φ

A formula φ of the language LG
n is satis!able relative to the

class of discrete BT+ACs i" there exists a discrete BT+AC B and a

moment-history pair 〈m,h〉 such that B, 〈m,h〉 |= φ. The formula φ

is valid relative to this class i" ¬φ is not satis!able.

4 CGS-BASED SEMANTICS FOR DT-STITG
n

In this section, we provide a semantics for DT-STITGn based on

concurrent game structures (CGSs). We !rst remind the de!nition

of this class of structures. Our presentation of CGSs slightly di"ers

from the way CGSs are usually presented in the semantics for ATL

and SL (see, e.g., [13, 21]). Speci!cally, we associate every joint

action to a binary relation over states satisfying certain properties,

while they use a transition function mapping every state and every

joint action executable at this state to a successor state.

De"nition 4.1. A concurrent game structure (CGS) is a tuple

M = (W ,Act, (Rδ )δ ∈JAct ,V ) where:

• W is a nonempty set of possible worlds or states;

• Act is a set of names for atomic actions, with JAct = Actn

the corresponding set of names for joint actions and with

elements of JAct denoted by δ ,δ ′, . . .;

• every Rδ is a binary relation onW ;

• V :W −→ 2Atm is a valuation function;

and such that for everyw,v,u ∈W , δ ∈ JAct:

(C1) Rδ is deterministic, i.e., for allw ∈W there is at most one v

such thatwRδv ;

(C2) if δ (1) ∈ C1 (w ), . . . ,δ (n) ∈ Cn (w ) then Rδ (w ) , ∅;

(C3)
⋃

δ ∈JAct Rδ (w ) , ∅;

where δ (i ) is the ith component of δ and Ci (w ) = {a ∈ Act : ∃δ ∈

JAct s.t. Rδ (w ) , ∅ and δ (i ) = a}.

Constraint C1 expresses joint action determinism, namely, the fact

that the outcome of the collective choice of all agents is uniquely de-

termined. Constraint C2 corresponds to the independence of choices

assumption in a way similar to Constraint B1 in De!nition 2.3.

According to Constraint C3, every state in a CGS has at least one

successor, where the successor of a given state is a state which is

reachable from the former via a collective choice of all agents. No-

tice that the set Ci (w ) in the previous de!nition corresponds to

agent i’s set of available actions at state w , i.e., the set of actions

that agent i can choose at statew .

The previous notion of CGS is the one traditionally used in area

of logics for multi-agent systems. In this paper, we consider a more

general class of CGSs, called non-deterministic CGS, that better

relate with BT+AC structures, as de!ned in De!nition 2.3.

De"nition 4.2. A non-deterministic CGS is like a CGS except

that it does not necessarily satisfy Constraint C1 of joint action

determinism in De!nition 4.1.

The following de!nition introduces the concept of trace, as an

in!nite sequence of alternating states and joint actions such that a

joint action is responsible for the transition from its preceding state

to its subsequent state. In other words, a trace τ can be seen as an

in!nite sequencew1δ1w2δ2w3δ3 . . . such thatwk ∈W , δk ∈ JAct

andwkRδkwk+1, for all k > 0.

De"nition 4.3. Let M = (W ,Act, (Rδ )δ ∈JAct ,V ) be a CGS. A

trace in M is a pair τ = (τS ,τC ) with τS : N∗ −→ W and τC :

N
∗ −→ JAct such that τS (k )RτC (k )τS (k + 1) for all kN

∗. The set

of all traces inM is denoted by TraceM .

Given a trace τ = (τS ,τC ) ∈ TraceM and k ∈ N∗, τ ≥k is the

trace (τ ′
S
,τ ′
C
) in TraceM such that, for all ℓ > 0:

τ ′
S
(ℓ) = τS (k + ℓ − 1) and τ

′
C (ℓ) = τC (k + ℓ − 1).

In other words, if τ is the in!nite sequencew1δ1w2δ2w3δ3 . . ., then

τ ≥k is the in!nite sequence wkδkwk+1δk+1 . . .. More succinctly,

τ ≥k is the su$x of the sequence τ starting at the kth state in τ .

The following de!nition introduces the concept of choice equiv-

alence. The idea is that two traces are choice equivalent for a given

group J i" (i) the two traces have the same initial state, and (ii) the

agents in the group make the same choices at the beginning of the

two traces.

De"nition 4.4. Two traces τ = (τS ,τC ) and τ ′ = (τ ′
S
,τ ′
C
) are

state-equivalent, denoted by τ ≡ τ ′, if and only if τS (1) = τ ′
S
(1).

Two traces τ = (τS ,τC ) and τ ′ = (τ ′
S
,τ ′
C
) are choice-equivalent

for group J ∈ 2Agt , denoted by τ ≡J τ
′, if and only if τ ≡ τ ′, and

τC (1) (i ) = τ
′
C
(1) (i ) for all i ∈ J .



Truth of a DT-STITGn formula is evaluated with respect to a non-

deterministic CGS M = (W ,Act, (Rδ )δ ∈JAct ,V ) and a trace τ =

(τS ,τC ) inM , as follows:

M,τ |= p ⇐⇒ p ∈ V (τS (1))

M,τ |= ¬φ ⇐⇒M,τ 6 |= φ

M,τ |= φ ∧ψ ⇐⇒M,τ |= φ andM,τ |= ψ

M,τ |= Xφ ⇐⇒M,τ ≥2 |= φ

M,τ |= φ Uψ ⇐⇒ ∃k ∈ N∗ : M,τ ≥k |= ψ and

∀h ∈ N : if 1 ≤ h < k thenM,τ ≥h |= φ

M,τ |= �φ ⇐⇒∀τ ′ ∈ TraceM : if τ ≡ τ ′ thenM,τ ′ |= φ

M,τ |= [J ]φ ⇐⇒∀τ ′ ∈ TraceM : if τ ≡J τ
′
thenM,τ ′ |= φ

Validity and satis!ability of DT-STITGn relative to CGSs and non-

deterministic CGSs are de!ned in the usual way.

5 TREE-MODEL PROPERTY AND SEMANTIC

EQUIVALENCE

Let R∗, R− and R+ be, respectively, the re#exive, transitive closure,

the inverse and the transitive closure of R =
⋃

δ ∈JAct Rδ .

De"nition 5.1. LetM = (W ,Act, (Rδ )δ ∈JAct ,V ) be a non-deter-

ministic CGS. We say that:

• M has a unique root i" there is a uniquew0 ∈W (called the

root), such that, for every v ∈W ,w0R
∗v ;

• M has unique predecessors i" for every v ∈W , the cardinal-

ity of R− (v ) is at most one;

• M has no cycles i" R+ is irre#exive.

De"nition 5.2. A non-deterministic CGS is tree-like if and only

if it has a unique root, unique predecessors and no cycles.

The following lemma states that satis!ability relative to the

class of non-deterministic CGSs with unique predecessors and no

cycles is equivalent to satis!ability relative to the class of tree-like

non-deterministic CGSs.

Lemma 5.3. Let φ ∈ LG
n . Then, φ is satis"able relative to non-

deterministic CGSs with unique predecessors and no cycles i# φ is

satis"able relative to tree-like non-deterministic CGSs.

Proof sketch. The right-to-left direction is clear. We prove the

left-to-right direction. LetM = (W ,Act, (Rδ )δ ∈JAct ,V ) be a non-

deterministic CGS with unique predecessors and no cycles and let

τ0 = (τS ,τC ) ∈ TraceM such that M,τ0 |= φ. Let w0 = τS (1). Let

M ′ = (W ′,Act, (R ′
δ
)δ ∈JAct ,V

′) the submodel of M generated by

the statew0, that is:

• W ′ = {v ∈W : w0R
∗v},

• R ′
δ
= Rδ ∩ (W ′ ×W ′) for all δ ∈ JAct,

• V ′(v ) = V (v ) for all v ∈W ′.

Clearly,M ′ is a tree-like CGS and τ0 ∈ TraceM ′ . Moreover, it is easy

to prove, by structural induction on φ, thatM ′,τ0 |= φ. �

The following lemma states that satis!ability relative to the class

of non-deterministic CGSs is equivalent to satis!ability relative to

the class of non-deterministic CGSs with unique predecessors and

no cycles.

Lemma 5.4. Let φ ∈ LG
n . Then, φ is satis"able relative to non-

deterministic CGSs i# φ is satis"able relative to non-deterministic

CGSs with unique predecessors and no cycles.

Proof sketch. The right-to-left direction of the lemma is clear.

We prove the left-to-right direction.

Let M = (W ,Act, (Rδ )δ ∈JAct ,V ) be a non-deterministic CGS

and let τ = (τS ,τC ) ∈ TraceM such thatM,τ |= φ.

We !rst de!ne the set of tracks in M , denoted by TrackM , a

track being a non-empty !nite sequence w0δ1w1 . . . δkwk such

that (i) w0 ∈ W , (ii) δ1w1 . . . δkwk is a possibly !nite sequence

in (JAct ×W )∗, and (iii) for every 0 ≤ h ≤ k − 1, whRδh+1wh+1.

Elements of TrackM are denoted by σ ,σ ′, . . . For every σ ∈ TrackM ,

we denote by σ [last] the last element in the sequence σ .

Given a trace τ = (τS ,τC ) ∈ TraceM and k > 0, let τ ≤k be the

track τS (1)τC (1) . . . τC (k − 1)τS (k ).

We are going to transformM into a new non-deterministic CGS

M ′ = (W ′,Act, (R ′
δ
)δ ∈JAct ,V

′) where:

• W ′ = TrackM ;

• for all σ ,σ ′ ∈W ′ and for all δ ∈ JAct, σR ′
δ
σ ′ i" σ ′ = σδv

for some v ∈W .

• for all p ∈ Atm and for all σ ∈ W ′, p ∈ V ′(σ ) i" p ∈

V (σ [last]).

In other words, the model M ′ is de!ned as follows: (i) its set of

states coincides with the set of tracks in M , (ii) a joint action δ is

responsible for the transition from the track σ to the track σ ′ i"

σ ′ is a possible continuation of the track σ via the joint action δ ,

and (ii) an atomic proposition p is true at track σ i" p is true in the

last state of σ . It is straightforward to verify thatM ′ is a CGS with

unique predecessors and no cycles.

Let us de!ne the function f mapping traces in M into traces in

M ′. Let τ = (τS ,τC ) ∈ TraceM and τ ′ = (τ ′
S
,τ ′
C
) ∈ TraceM ′ . Then,

f (τ ) = τ ′ i", for all k > 0: (i) τ ′
S
(k ) = τ ≤k , and (ii) τ ′

C
(k ) = τC (k ).

It is routine to verify that f so de!ned is a bijection.

By induction on the structure ofφ, it can be shown that “M,τ |= φ

i"M ′, f (τ ) |= φ”. Hence,M ′, f (τ ) |= φ. �

The following theorem follows straightforwardly from Lemma

5.3 and Lemma 5.4. It highlights that DT-STITGn interpreted over

the CGS semantics satis!es the tree-model property.

Theorem 5.5. Let φ ∈ LG
n . Then, φ is satis"able relative to

non-deterministic CGSs i# φ is satis"able relative to tree-like non-

deterministic CGSs.

The !nal result of this section is a lemma stating that satis!ability

forDT-STITGn relative to the class of BT+AC structures is equivalent

to satis!ability for DT-STITGn relative to the class of tree-like non-

deterministic CGSs.

Lemma 5.6. Let φ ∈ LG
n . Then, φ is satis"able relative to BT+AC

structures i# φ is satis"able relative to tree-like non-deterministic

CGSs.

Proof sketch. We !rst prove the left-to-right direction. Let

B = (T , (∼〈m, J 〉)m∈M, J ∈2Agt ,υ) be a BT+AC structure where T =

(Mom,≺) is its corresponding tree. Moreover, let m0 ∈ Mom be

a moment and h0 ∈ Hm0 a history passing throughm0 such that

B, 〈m0,h0〉 |= φ.



We are going to transform B into a new structureM = (W ,Act,

(Rδ )δ ∈JAct ,V ) whose components are de!ned as follows:

• W = Mom;

• Act =
⋃

m∈Mom,i ∈Agt Hm/∼〈m, {i }〉;

• for allm,m′ ∈W and for all δ ∈ JAct,mRδm
′ i" there exists

h ∈ Hm such that succh (m) = m′ and δ (i ) =∼〈m, {i }〉(h) for

all i ∈ Agt;

• for all p ∈ Atm and for allm ∈W , p ∈ V (m) i" p ∈ υ (m).

It is routine to verify thatM is a tree-like non-deterministic CGS.

Furthermore, by induction on the structure of φ, it is easy to check

thatM,τ |= φ, where τ = (τS ,τC ) is the trace in TraceM such that,

for all k > 0: (i) τS (k ) = д(k ), and (ii) τC (k ) = fд (k ) (∼〈д (k ),Agt〉
(h0)) and where the function д : N∗ −→ Mom is de!ned induc-

tively as follows: (iii) д(1) = m0, and (iv) for all k > 0, д(k + 1) =

succh0 (д(k )).

Let us now prove the right-to-left direction. Let M = (W ,Act,

(Rδ )δ ∈JAct ,V ) be a tree-like non-deterministic CGS and let τ =

(τS ,τC ) ∈ TraceM such thatM,τ |= φ. We are going to transform

M into a new structure B = (T , (∼〈m, J 〉)m∈M, J ∈2Agt ,υ) with T =

(Mom,≺). First, we de!ne Mom and ≺ in the pair T :

• Mom =W ;

• for allw,v ∈ Mom,w ≺ v i"wR+v .

Since M is tree-like, it is easy to verify that T so de!ned is a tree.

Moreover, because of the tree-likeness of M , we can de!ne a func-

tion t : TraceM −→ HT such that for all τ = (τS ,τC ) ∈ TraceM :

t (τ ) = {w ∈W : wR+τS (1)} ∪ {τS (k ) : k ∈ N
∗}.

Then, we de!ne the remaining components of the tuple B:

• for all w ∈ Mom, for all J ∈ 2Agt and for all h,h′ ∈ Hw ,

h ∼〈w, J 〉 h
′ i" there exists δ ,δ ′ ∈ JAct and v,u ∈ W such

that δ J = δ ′
J
, v ∈ h, u ∈ h′,wRδv andwRδ ′u;

• for all p ∈ Atm and for allw ∈ Mom, p ∈ υ (w ) i" p ∈ V (w );

where δ J = δ ′
J
i" δ (i ) = δ ′(i ) for all i ∈ J .

It is easy to verify that B so de!ned is a BT+AC structure.

Furthermore, by induction on the structure of φ, it is easy to

check that B, 〈m,h〉 |= φ, form = τS (1) and h = t (τ ). �

The following theorem is a direct consequence of Theorem 5.5

and Lemma 5.6.

Theorem 5.7. Let φ ∈ LG
n . Then, φ is satis"able relative to

BT+AC structures i# φ is satis"able relative to non-deterministic

CGSs.

6 INDIVIDUAL FRAGMENT

The satis!ability problem of DT-STITGn is undecidable if n > 2. To

show this, consider the satis!ability-preserving translation from

group STIT’s language to LG
n that replaces all propositional vari-

ables p with Xp. Since group STIT has been proved in [15] to be

undecidable, DT-STITGn is also undecidable. This undecidability

result holds even if the language is restricted to groups of car-

dinality at most two. Therefore, to obtain a decidable fragment,

we restrict the language of DT-STITGn to groups that are single-

tons. We call this fragment the discrete-time temporal individual

STIT logic, DT-STITn for short. For the sake of simplicity, we write

[i]φ instead of [{i}]φ. Moreover, assuming that n ≥ 2, we omit

the historical necessity, since [3] proved that it can be de!ned by

�φ � [i] [j]φ for some arbitrary distinct i, j ∈ Agt. The resulting

language LDT-STITn
(Atm,n) is de!ned by the following BNF:

φ ::= p | ¬φ | φ ∧ψ | Xφ | φ Uψ | [i]φ

where p range over Atm and i over Agt. When there is no risk of

confusion, we simply write Ln instead of LDT-STITn
(Atm,n). We

de!ne the usual closure property on sets of formulas. Formally, a

set Σ ⊆ Ln is closed i":

(1) ∀φ ∈ Σ, ifψ is a subformula of φ thenψ ∈ Σ,

(2) ∀φ ∈ Σ, if φ = ¬ψ thenψ ∈ Σ else ¬φ ∈ Σ, and

(3) ∀φ Uψ ∈ Σ, X (φ Uψ ) ∈ Σ.

For all formula φ0 ∈ Ln , Cl (φ0) denotes the least closed set con-

taining φ0. It can easily be proved that ��Cl (φ0)�� is linear in ��φ0��.

7 PSEUDO-MODEL SEMANTICS

In this section, we describe an alternative semantics for DT-STITn
that makes it easy for an automaton to check the satis!ability

of a formula. This new semantics can be broken down into two

components: the local pseudo-models which correspond to worlds

in the CGS semantics and the pseudo-models which are in!nite

trees whose branches correspond to traces in the CGS semantics.

Through this section, Σ denotes an arbitrary closed set of formulas.

In Section 8.1, the construction of a pseudo-model from a non-

deterministic CGS provides some intuitions for the abstract de!ni-

tions of the pseudo-model semantics.

7.1 Local pseudo-models

De"nition 7.1. A subset h ⊆ Σ is maximal locally consistent i":

(1) ∀¬φ ∈ Σ, φ ∈ h i" ¬φ ∈ h,

(2) ∀φ ∧ψ ∈ Σ, φ ∧ψ ∈ h i" φ ∈ h andψ ∈ h,

(3) ∀φ Uψ ∈ Σ, φ Uψ ∈ h i"ψ ∈ h or {φ,X (φ Uψ )} ⊆ h, and

(4) ∀ [i]φ ∈ h, φ ∈ h.

The set of maximal locally consistent subsets of Σ is denoted by

HΣ. When Σ = Cl (φ0) we simply writeHφ0 .

For all h1,h2 ∈ HΣ and all i ∈ Agt, we say that h1 and h2 are

[i]-compatible i" for all φ ∈ Σ such that φ ∈ Atm or φ = [i]ψ

for some ψ ∈ Ln , φ ∈ h1 i" φ ∈ h2. We say that h1 and h2 are

�-compatible i" they are [i]-compatible for all i ∈ Agt.

De"nition 7.2. A local pseudo-model is a tuple (H ,∼,h0) where

H is a subset of HΣ, ∼ is a function assigning to each agent i an

equivalence relation i
∼ over H and h0 is a designated element of H .

It must satisfy the following conditions:

(1) for all i ∈ Agt and all h1,h2 ∈ H , if h1
i
∼ h2 then h1 and h2

are [i]-compatible,

(2) for all [i]φ ∈ Σ and all h1 ∈ H , if [i]φ < h1 then there is

h2 ∈
i
∼ (h1) such that φ < h2, and

(3) for all h1, . . . ,hn ∈ H , ∩i ∈Agt
i
∼ (hi ) , ∅,

where i
∼ (h1) �

{
h2 ∈ H

��� h1
i
∼ h2

}
. The set of local pseudo-models

for Σ is denoted by LΣ. When Σ = Cl (φ0) we simply write Lφ0 .

Lemma 7.3. The cardinality of LΣ is double exponential in |Σ|.

Proof sketch. Let Bk denote the kth Bell number. It can easily

be checked that |LΣ | is bounded by 22
|Σ|
Bn
|Σ |

2 |Σ | . �



!xed mathematical object such that Nop < LΣ. An in!nite sequence

σ ∈ (HΣ )
ω is a path in t . We say that:

• σ is an active path of t i" for all pre!xes θ of σ , t (θ ) , Nop;

• σ is a ⋄-path of t i" there is a !nite sequence θ ∈ (HΣ )
∗,

called the initial point of σ , such that:

– θσ is an active path of t ,

– σ 1 ∈ H0 for (H0,∼0,h00) = t (θ ), and

– for all k ≥ 1, σk+1 = h0k for (Hk ,∼k ,h0k ) = t
(

θσ ≤k
)

;

• σ is a �-compatible support of an active path θ of t i" for all

k > 0, σk and θk are �-compatible.

For all S ⊆ Ln , let S
X denote the set of formulas φ such that

Xφ ∈ S or ¬X¬φ ∈ S .

De"nition 7.4. An in!nite sequence σ ∈ (HΣ )
ω is ful"lling i"

for all k > 0:

(1)
(

σk
)X
⊆ σk+1, and

(2) for all φ Uψ ∈ σk , there is ℓ ≥ k such thatψ ∈ σ ℓ .

De"nition 7.5. A pre-model t on Σ is a pseudo-model on Σ i":

(1) t (ϵ ) , Nop and for all σ ∈ (HΣ )
∗ and h ∈ HΣ, t (σh) , Nop

i" there is (H ,∼,h0) ∈ LΣ such that t (σ ) = (H ,∼,h0) and

h ∈ H ,

(2) all ⋄-path of t are ful!lling, and

(3) for all active path σ of t , there is a �-compatible support of

σ that is ful!lling.

A pseudo-model t on Σ satis"es a formula φ0 ∈ Σ i" t (ϵ ) =

(Hϵ ,∼ϵ ,h0ϵ ) andφ0 ∈ h0ϵ for some (Hϵ ,∼ϵ ,h0ϵ ) ∈ LΣ. A formula

φ0 ∈ Ln is satis"able in the pseudo-model semantics i" there is a

pseudo-model t on Cl (φ0) that satis!es φ0.

The following lemma states that if there is a ful!lling �-compati-

ble support of a path, then this support is unique. It can easily be

proved by a standard induction on the formula φ.

Lemma 7.6. Let σ1 and σ2 be in"nite ful"lling sequences such that

for all k > 0, σk
1
and σk

2
are �-compatible. Then for all φ ∈ Σ and all

k > 0, φ ∈ σk
1
i# φ ∈ σk

2
.

8 EQUIVALENCE OF THE SEMANTICS

In this section, we prove the following theorem that states the

equivalence between the pseudo-model semantics and the non-

deterministic CGS semantics. Since the pseudo-model semantics is

used in the decision procedure for DT-STITn satis!ability, the proof

of the left-to-right direction is called completeness and the proof of

the right-to-left direction is called soundness.

6Given a set S , let < be the strict lexicographic order on S∗ . By De!nition 2.1, (S∗, <)
is a tree. We abusively identify labeled trees with their labeling function.

Theorem 8.1. A formula φ0 ∈ Ln is satis"able in the non-

deterministic CGS semantics i# it is satis"able in the pseudo-model

semantics.

8.1 Completeness

Let M =
(

W,Act , (Rδ )δ ∈JAct ,V
)

be a non-deterministic CGS, τ0
a trace inM and φ0 ∈ Ln a formula such thatM ,τ0 � φ0. We will

construct a pseudo-model on Cl (φ0) satisfying φ0.

Firstly, we need to associate a local pseudo-model to each world

inW. This step is analogous to the !ltration in [3] except that we

need to consider traces. Formally, we de!ne the function Φ such

that Φ(τ ) =
{

φ ∈ Cl (φ0) ��M ,τ � φ
}

for all τ ∈ TraceM . Then we

associate to each worldw ∈W a pair (Hw ,∼w ) where:

• Hw �
{
h ∈ Hφ0

��� ∃τ ∈ TraceM ,τS (1) = w and Φ(τ ) = h
}
;

• ∼w is the function assigning to each i ∈ Agt the equivalence

relation i
∼w overHw such that for allh1,h2 ∈ Hw ,h1

i
∼w h2

i" there is τ1,τ2 ∈ TraceM such that τ1S (1) = τ2S (1) = w ,

τ1C (1) (i ) = τ2C (1) (i ), Φ(τ1) = h1 and Φ(τ2) = h2.

Lemma 8.2. For allw ∈W and all h ∈ Hw , (Hw ,∼w ,h) is a local

pseudo-model.

Proof sketch. The proofs for conditions (1) and (2) of De!ni-

tion 7.2 are straightforward. For (3), let h1, . . . ,hn ∈ Hw . There

is τ1, . . . ,τn ∈ TraceM such that for all i ∈ Agt, τiS (1) = w

and Φ(τi ) = hi . Construct δ ∈ JAct such that for all i ∈ Agt,

δ (i ) = τiC (1) (i ). By C2, there is x ∈ W such that w Ri x . Hence

by C3, there is τ∩ ∈ TraceM such that τ∩S (1) = w and τ∩C (1) = δ .

Clearly, for all i ∈ Agt, hi
i
∼w Φ(τ∩). �

Secondly, we select traces inM that will correspond to the active

paths in the pseudo-model. Assuming that Nop < TraceM , we

construct inductively the functions r :
(

Hφ0

)∗
−→ TraceM ∪{Nop}

and s :
(

Hφ0

)∗
×Hφ0 −→ TraceM ∪ {Nop} as follows:

• r (ϵ ) � τ0 and

• for all σ ∈
(

Hφ0

)∗
and all h ∈ Hφ0 :

– if r (σ ) = Nop then s (σ ,h) � Nop;

otherwise, let r (σ ) = τσ = (τσ S ,τσ C ) and

– if h <WτσS (1) then s (σ ,h) � Nop;

– else if Φ(τσ ) = h then s (σ ,h) � τσ ;

– otherwise, set s (σ ,h) � τσh for some arbitrary τσh =
(

τσhS ,τσhC
)

such that τσhS (1) = τσ S (1) and Φ(τσh ) =

h, which exists by construction;

• if s (σ ,h) = Nop then r (σh) � Nop else r (σh) � s (σ ,h)≥2.

If r (σ ) = τ = (τS ,τC ), we write rS (σ ) and rC (σ ) to denote respec-

tively τS and τC . The notation is similar for s .

Finally, the pre-model t on Cl (φ0) is constructed such that for

all σ ∈
(

Hφ0

)∗
, if r (σ ) = Nop then t (σ ) = Nop else t (σ ) =

(

HrS (σ ) (1) ,∼rS (σ ) (1) ,Φ (r (σ ))
)

.

Lemma 8.3. t is a pseudo-model on Cl (φ0).

Proof sketch. We only prove condition (3) of Def. 7.5, the other

ones being similar or straightforward. Let us say that a path σ

matches a trace τ i" for all k > 0, σk = Φ

(

τ ≥k
)

. Obviously, in

such a case, σ is ful!lling. Let σ be an active path of t . De!ne

7.2 Pseudo-models

For any alphabet A, we write A∗ and Aω to denote respectively the 
set of all !nite sequences over A and the set all in!nite sequences 
over A. We write ϵ to denote an empty sequence. For all σ ∈ A∗, we 
write |σ | to denote the length of σ . For all !nite or in!nite sequences 
σ and all k > 0, we write σk , σ ≤k and σ ≥k to denote respectively 
the kth element in σ , the pre!x of σ  of length k  and the su$x of σ 
starting at the kth element. By convention, σ ≤0 

= ϵ .
A pre-model on Σ is an in!nite tree6 t  :  (HΣ )

∗ −→ LΣ ∪ {Nop} 
over the alphabet HΣ, labeled with LΣ ∪ {Nop}, where Nop is any



0

De!neW �
{
σ ∈
(

Hφ0

)∗ ��� t (σ ) , Nop
}
and Act � 2Hφ0 and

construct the tupleM =
(

W,Act , (Rδ )δ ∈JAct ,V
)

such that for all

σ1,σ2 ∈W:

• for all δ ∈ JAct, σ1 Rδ σ2 i" there is h ∈ Hφ0 such that

σ2 = σ1h and for all i ∈ Agt, δ (i ) = i
∼1 (h);

• for all p ∈ Atm, p ∈ V(σ1) i" p ∈ h01;

where (H1,∼1,h01) = t (σ1). It can easily be checked that M is a

non-deterministic CGS.

Then to each trace τ = (τS ,τC ) of M , we associate the active

path στ and the integer ℓτ such that for all k > 0, τS (k ) = σ ≤k+ℓτ .

The following truth lemma can be proved by structural induction

on φ.

Lemma 8.4. For all formulas φ ∈ Cl (φ0), all traces τ = (τS ,τC )

of M and all ful"lling �-compatible supports θ of στ , M ,τ � φ i#

φ ∈ θ ℓτ+1.

Now, to prove the right-to-left direction of Theorem 8.1, it suf-

!ces to construct inductively the ⋄-path σ with initial point ϵ such

that for all k > 0, σk � h0k where (Hk ,∼k ,h0k ) = t
(

σ ≤k−1
)

. By

Lemma 7.6, σ is its own �-compatible support. Moreover, there

is a trace τ0 in M such that στ0 = σ and ℓτ0 = 0. Therefore, by

Lemma 8.4,M ,τ0 � φ0.

9 DECISION PROCEDURE

We propose a decision procedure for the satis!ability problem of

DT-STITn . Given a formula φ0 ∈ Ln , this procedure constructs an

automaton on in!nite trees and returns whether there exists a tree

that is recognized by this automaton. We prove that the procedure

can be executed in double exponential time in ��φ0�� and that φ0 is

DT-STITn satis!able if and only if the procedure returns true.

9.1 Automata

Given a formula φ0 ∈ Ln , we construct an automaton that rec-

ognize exactly the pseudo-models on Cl (φ0) satisfying φ0. This

automaton is the product of three automata: one for each condition

of De!nition 7.5. We !rst recall some basic notions about automata.

Given an alphabetA, a non-deterministic Büchi word automaton

over A is a tuple A = (S, S0, ρ ,F) where S is the set of states of

the automaton, S0 ∈ S is the initial state, ρ : S × A −→ 2S is a

non-deterministic transition function and F ⊆ S is the termination

condition. Given an in!nite word σ ∈ Aω , a run of A on σ is a

word r ∈ Sω such that r1 = S0 and for all k ≥ 1, rk+1 ∈ ρ (rk ,σk ).

The set of states occurring in!nitely often in a run r is denoted by

inf(r ). A word σ is accepted by A i" there is a run r of A on σ

such that inf(r ) ∩ F , ∅.

A deterministic Streett tree automaton over A is a tuple A =

(S, S0, ρ ,F) similar to a non-deterministic Büchi word automaton

except that ρ : S × A −−⇀ Sn is a partial function that assigns an

n-ary tuples of states and F ⊆ 2S × 2S is a set of pairs of sets of

states. Given a ordered set I of cardinality n and an in!nite tree

t : I∗ −→ A, a run of A on t is a tree tr : I∗ −→ S such that

tr (ϵ ) = S0 and for all σ ∈ I∗, (tr (σα ))α ∈I = ρ (tr (σ ), t (σ )). For all

branches σ ∈ Sω of tr , the set of states occurring in!nitely often

in σ is denoted by inf(σ ). A tree t is accepted by A i" there is a

run tr of A on t such that for any branch σ of tr and any pair

(A,B) ∈ F , if inf(σ ) ∩A , ∅ then inf(σ ) ∩ B , ∅.

9.1.1 Automaton for condition (1) of Def. 7.5. The determinis-

tic Streett tree automaton A1 = (S1, S01, ρ1,F1) is de!ned such

that S1 � {def,Nop}, S01 � def, F1 � ∅ and ρ1 (Sσ , t (σ )) =

(Sσh )h∈Hφ0
i" one of the following conditions holds:

• Sσ = def, t (σ ) = (H ,∼,h0) for some (H ,∼,h0) ∈ Lφ0 and

for all h ∈ Hφ0 , Sσh =

def if h ∈ H

Nop otherwise
;

• Sσ = Nop, t (σ ) = Nop and for all h ∈ Hφ0 , Sσh = Nop.

The following lemma is straightforward.

Lemma 9.1. A pre-model t on Cl (φ0) satis"es condition (1) of

Def. 7.5 i# it is accepted by A1.

9.1.2 Automaton for condition (2) of Def. 7.5. De!ne the deter-

ministic Streett tree automaton A2 = (S2, S02, ρ2,F2) where S2 �

2Cl(φ0 ) × 2Cl(φ0 ) , S02 � ({φ0}, ∅), F2 � {(S2, {(c, e ) ∈ S2 | e = ∅})}

and ρ2 ((cσ , eσ ), t (σ )) = ((cσh , eσh ))h∈Hφ0
i" one of the following

conditions holds:

• t (σ ) = (H ,∼,h0) for some (H ,∼,h0) ∈ Lφ0 , cσ ⊆ h0 and

for all h ∈ Hφ0 cσh = h
X and:

eσh =



{

ψ ��ψ < h0 and ∃φ,φ Uψ ∈ h0
}

if h = h0 and eσ = ∅

eσ \ h0 if h = h0 and eσ , ∅

∅ otherwise

• t (σ ) = Nop and for all h ∈ Hφ0 , cσh = ∅ and eσh = eσ .

• t (σ ) = (H ,∼,h0) for some (H ,∼,h0) ∈ Lφ0 , cσ \h0 , ∅ and

for all h ∈ Hφ0 , cσh = eσh = Cl (φ0).

Intuitively, for each state (c, e ), c is the set of formulas that must be

satis!ed at the current state, whereas e is the set of formulas that

must be eventually satis!ed.

Lemma 9.2. If a pseudo-model t on Cl (φ0) satis"es φ0 then t is

accepted by A2.

Proof sketch. Let t be a pseudo-model satisfying φ0. Since ρ2

is total there is a run tr ofA2 on t . Let σ ∈
(

Hφ0

)ω
be an arbitrary

path in t . We will prove that the branch in tr corresponding to

σ satis!es the Streett condition F2. For all k > 0, let (ck , ek ) �

tr (σ
≤k ). Moreover, if t (σ ≤k ) , Nop let (Hk ,∼k ,h0k ) � t (σ ≤k ).

The following properties can be proved by induction on k :

∀k > 0, if t (σ ≤k ) , Nop then ck ⊆ h0k (1)

∀k > 0, if ek , ∅ then t (σ ≤k ) , Nop (2)

τ = (τS , τC ) such that for all k > 0, τS (k ) = rS 
(

σ ≤k−1
) 
(1) and

τC (k ) = sC 
(

σ ≤k−1, σk 
) 
(1). It can easily be checked that for all k > 0, Φ(τ ≥k ) and σk are �-compatible. Hence there is a ful!lling 

�-compatible support of σ . �

Since t satis!es φ0, we have proved the left-to-right direction of 
Theorem 8.1.

8.2 Soundness

Let φ0 be a formula in Ln and t a pseudo-model on Cl (φ0) satisfying 
φ0. We will construct a non-deterministic CGS satisfying φ .



• α = (H ,∼,h0) for some (H ,∼,h0) ∈ Lφ0 , ck = ∅, ck+1 ∈

Hφ0 and ek+1 = ∅.

• α = (H ,∼,h0) for some (H ,∼,h0) ∈ Lφ0 , ck ∈ Hφ0 , ck
and h are �-compatible, ck+1 ∈ Hφ0 , (ck )

X ⊆ ck+1 and

if ek = ∅ then ek+1 =
{

ψ ��ψ < ck and ∃φ,φ Uψ ∈ ck
}

else

ek+1 = ek \ ck .

• ck+1 = ek+1 = Cl (φ0).

• α = Nop and ek+1 = ∅.

Given a pre-model t on Cl (φ0) and a path σ in t , a sequence

θ ∈
(

Hφ0 ×
(

Lφ0 ∪ {Nop}
))ω

represents σ i" θ1 = (h, t (ϵ )) for

some h ∈ Hφ0 and for all k > 1, θk =
(

σk−1, t (σ ≤k−1)
)

. By a

reasoning similar to the proofs of Lemmas 9.2 and 9.3, the following

lemma can easily be proved.

Lemma 9.4. Let t be a pre-model on Cl (φ0). If t is a pseudo-model

then all sequences representing a path in t are accepted by A3N .

Conversely, if all sequences representing a path in t are accepted by

A3N then t satis"es condition (3) of Def. 7.5.

By Piterman’s construction [23], A3N can be converted into an

equivalent deterministic Streett automaton A3D on words over

the alphabetHφ0 ×
(

Lφ0 ∪ {Nop}
)

. The number of states of A3D

is double exponential in ��φ0�� and the number of its termination

pairs is exponential in ��φ0��. Finally, A3N can be converted into an

equivalent deterministic Streett automaton A3 over pre-models by

adding the label of each edge into the state of the automaton. The

number of states of A3 is still double exponential in ��φ0�� and the

number of its termination pairs is still exponential in ��φ0��.

9.2 Complexity

To determine the satis!ability of a formula φ0, the automaton A is

constructed as the product of the automata A1, A2 and A3. Since

the number of local pseudo-models is double exponential in ��φ0��,
the construction of A takes double exponential time. The number

of states of A is double exponential in ��φ0�� and the number of its

termination pairs is exponential in ��φ0��. Emerson and Jutla [10]

proved that the emptiness of a Streett tree automaton with s states

and p termination pairs can be decided in (s · p)O (p ) deterministic

time. Hence, the emptiness problem forA can be decided in double

exponential time in ��φ0��. By combining the lemmas of the previous

sections we have that A is empty if and only if φ is unsatis!able.

Since CTL∗ is 2EXPTIME-hard [30] and can be faithfully translated

into DT-STITn , we have proved the following theorem.

Theorem 9.5. The satis"ability problem ofDT-STITn is 2EXPTIME-

complete.

10 CONCLUSION

We have provided a new semantics based on concurrent game

structures (CGSs) for a temporal STIT logic that extends CTL∗ by

agency operators. We have proved that the semantics based on

CGSs and the semantics based on discrete BT+AC structures are

equivalent for this logic. Furthermore, we have proved that the

satis!ability problem of the individual STIT fragment of our logic

is 2EXPTIME-complete, the same complexity as CTL∗.

In future work, we plan to introduce a more practical seman-

tics for our temporal STIT logic based on the model representation

known as “simple reactive modules language” (SRML) [28], a sim-

pli!ed version of “reactive modules language” (RML) by [1], used in

model checkers such as SMV and MOCHA. SRML describes models

in a more concise way than CGSs. As shown by [28], satis!ability

checking and model checking for ATL are both EXPTIME-complete

when using SMRL. On the contrary, when using CGSs, satis!ability

checking forATL is EXPTIME-complete [29, 31], while model check-

ing is solvable in polynomial time [2, 13]. We will verify whether

the same kind of phenomenon appears in the context of our tempo-

ral STIT logic, namely whether complexity of satis!ability checking

for our logic does not increase when moving from CGSs to SMRL,

while complexity of model checking does.

We also plan to study an epistemic extension of our temporal

STIT logic, after having enriched CGSs with epistemic accessibility

relations for representing agents’ uncertainties. We expect this

epistemic extension of our logic to be well-suited to model repeated

games with imperfect information.

Now suppose that there is only a !nite number of integer k  such 
that ek = ∅. Since e0 = ∅, there is a greatest integer ℓ such that 

eℓ = ∅. Since eℓ+1 , ∅, t 
(

σ ≤ℓ 
) 
, Nop and by (1), for all ψ ∈ eℓ+1, 

ψ < σ ℓ and there is φ such that φ U ψ ∈ σ ℓ . Moreover by (2),

t 
(

σ ≤k 
) 
, Nop for all k > ℓ. Therefore, by (1): (i) for all k ≥ ℓ, 

σk 
= h0k , (ii) for all k > ℓ, ek ⊆ eℓ+1, and (iii) there is ψ such that 

for all k > ℓ, ψ ∈ ek and ψ < σk . But it can easily be checked that 
σ ≥ℓ is a ⋄-path in t . Therefore σ ≥ℓ is ful!lling and there must exist 
k > ℓ such that ψ ∈ σk . �

Lemma 9.3. If a pre-model t on Cl (φ0) is accepted by A2 then t 
satis"es condition (2) of Def. 7.5 and φ 0 ∈ h 0 for (H , ∼, h 0) = t (ϵ ).

Proof. Let tr be an accepting run of A2 on a tree t , and σ a 
⋄-path in t with initial point θ . We will prove that σ is ful!lling.

Let us de!ne, f or all k  >  0 , (ck , ek )  �  t r 
(

(θσ ) ≤k 
)  
and, since

θσ is active, (Hk , ∼k , h0k ) � t 
(

(θσ ) ≤k 
)

. If there is ℓ such that 
cℓ = Cl (φ0) then ck = ek = Cl (φ0) for all k ≥ ℓ and tr would not 
be accepting. Therefore, for all k , ck ⊆ h0k (in particular φ0 ∈ h00)

and ck+1 = 
(

(θσ )k+1
)X

. Hence, for all k > 0, 
(

σk 
)X 
⊆ σk+1 

because σk+1 
= h0( |θ |+k ) . We have proved condition (1) of Def. 7.4.

Suppose now that for some φ U ψ ∈ Ln and ℓ ∈ N∗, φ U ψ ∈ σ ℓ 

and ψ < σk for all k ≥ ℓ. It can easily be checked that for all 
k ≥ ℓ, φ U ψ ∈ σk . Since tr is accepting, there are ℓ1 > |θ | + ℓ 
such that eℓ1 = ∅ and ℓ2 > ℓ1 such that eℓ2 = ∅. By de!nition,
h0ℓ1 = σ ℓ1+1−|θ | . Since ℓ1 + 1 − |θ | > k , ψ ∈ eℓ1+1. But for eℓ2 to 
be empty, there must exist ℓ3 such that ℓ1 < ℓ3 < ℓ2 and ψ ∈ h0ℓ3 

which is not possible because ℓ3 − |θ | > ℓ and ψ < σ ℓ3−|θ | . We have 
proved condition (2) of Def. 7.4. �

9.1.3 Automaton for condition (3) of Def. 7.5. We !rst de!ne 
the non-deterministic Büchi word automaton A3N over the al-
phabet Hφ0 × 

(

Lφ0 ∪ {Nop}
)

. Let A3N = (S3N , S03N , ρ3N , F3N ) 
with S3N � 2Cl(φ0 ) × 2Cl(φ0 ) , S03N � (∅, ∅), F3N � {(c, e ) | e = ∅}
and ρ3N ((ck , ek ) , (h, α )) = (ck+1, ek+1) i" one of the following 
condition holds:



REFERENCES
[1] R. Alur and T. A. Henzinger. 1999. Reactive modules. Formal Methods in System

Design 15, 11 (1999), 7–48.
[2] R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-time temporal

logic. Journal of the ACM 49, 5 (2002), 672–713.
[3] P. Balbiani, A. Herzig, and N. Troquard. 2008. Alternative Axiomatics and Com-

plexity of Deliberative STIT Theories. Journal of Philosophical Logic 37, 4 (2008),
387–406.

[4] F. Belardinelli and A. Herzig. 2016. On logics of strategic ability based on propo-
sitional control. In International Joint Conference on Arti"cial Intelligence – IJCAI.
AAAI Press, 95–101.

[5] N. Belnap, M. Perlo", and M. Xu. 2001. Facing the future: agents and choices in
our indeterminist world. Oxford University Press.

[6] J. Broersen. 2011. Deontic epistemic stit logic distinguishing modes of mens rea.
Journal of Applied Logic 9, 2 (2011), 137–152.

[7] J. Broersen, A. Herzig, and N. Troquard. 2006. Embedding Alternating-time
Temporal Logic in Strategic Logic of Agency. Journal of Logic and Computation
16, 5 (2006), 559–578.

[8] J. Broersen, A. Herzig, and N. Troquard. 2006. A STIT-extension of ATL. In
European Conference on Logics in Arti"cial Intelligence – JELIA. Springer, 69–81.

[9] E. A. Emerson and J. Halpern. 1986. ‘Sometimes’ and ‘not never’ revisited: on
branching versus linear time. J. ACM 33 (1986), 151–178.

[10] E. A. Emerson and C. S. Jutla. 1999. The Complexity of Tree Automata and Logics
of Programs. SIAM J. Comput. 29, 1 (1999), 132–158.

[11] E. A. Emerson and A. Sistla. 1984. Deciding full branching time logic. Information
and Control 61 (1984), 175–201.

[12] V. Goranko and W. Jamroga. 2016. State and path coalition e"ectivity models of
concurrent multi-player games. Autonomous Agents and Multi-Agent Systems 30,
3 (2016), 446–485.

[13] V. Goranko and G. van Drimmelen. 2006. Complete axiomatization and decidabil-
ity of Alternating-time temporal logic. Theoretical Computer Science 353 (2006),
93–117.

[14] D. Grossi, E. Lorini, and F. Schwarzentruber. 2015. The Ceteris Paribus Structure
of Logics of Game Forms. Journal of Arti"cial Intelligence Research 53 (2015),
91–126.

[15] A. Herzig and F. Schwarzentruber. 2008. Properties of logics of individual and
group agency. In Advances in Modal Logic – AiML. College Publications, 133–149.

[16] J. F. Horty. 2001. Agency and Deontic Logic. Oxford University Press.

[17] J. F. Horty and N. Belnap. 1995. The deliberative STIT: A study of action, omission,
and obligation. Journal of Philosophical Logic 24, 6 (1995), 583–644.

[18] E. Lorini. 2013. Temporal STIT logic and its application to normative reasoning.
Journal of Applied Non-Classical Logics 23, 4 (2013), 372–399.

[19] E. Lorini and F. Schwarzentruber. 2010. A Modal Logic of Epistemic Games.
Games 1, 4 (2010), 478–526.

[20] E. Lorini and F. Schwarzentruber. 2011. A logic for reasoning about counterfactual
emotions. Arti"cial Intelligence 175, 3-4 (2011), 814–847.

[21] F. Mogavero, A. Murano, and M. Y. Vardi. 2010. Reasoning about strategies. In
Foundations of Software Technology and Theoretical Computer Science – FSTTCS
(LIPIcs), Vol. 8. 133–144.

[22] M. Pauly. 2002. A Modal Logic for Coalitional Power in Games. Journal of Logic
and Computation 12, 1 (2002), 149–166.

[23] N. Piterman. 2006. From Nondeterministic Büchi and Streett Automata to Deter-
ministic Parity Automata. In Logic in Computer Science – LICS. IEEE, 255–264.
https://doi.org/10.1109/LICS.2006.28

[24] M. Reynolds. 2001. An axiomatization of full computation tree logic. Journal of
Symbolic Logic 66, 3 (2001), 1011–1057.

[25] F. Schwarzentruber. 2012. Complexity Results of STIT Fragments. Studia Logica
100, 5 (2012), 1001–1045.

[26] A. Tamminga. 2013. Deontic Logic for Strategic Games. Erkenntnis 78, 1 (2013),
183–200.

[27] P. Turrini. 2006. Agreements as Norms. In Deontic Logic in Computer Science –
DEON. Springer, 31–45.

[28] W. van der Hoek, A. Lomuscio, and M. Wooldridge. 2006. On the complexity
of practical ATL model checking. In Joint conference on Autonomous Agents and
Multiagent Systems – AAMAS. ACM, 201–208.

[29] G. van Drimmelen. 2003. Satis!ability in alternating-time temporal logic. In Logic
in Computer Science – LICS. IEEE, 208–217.

[30] M. Y. Vardi and L. J. Stockmeyer. 1985. Improved upper and lower bounds for
modal logics of programs: Preliminary Report. In Symposium on the Theory of
Computing – STOC. ACM, 240–251.

[31] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. 2006. The Complexity of Tree
Automata and Logics of Programs. Journal of Logic and Computation 16, 6 (2006),
765–787.

[32] S. Wölf. 2002. Propositional Q-logic. Journal of Philosophical Logic 31 (2002),
387–414.




