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The paper introduces a new semantics for temporal STIT logic (the logic of seeing to it that) based on concurrent game structures (CGSs), thereby strengthening the connection between temporal STIT and existing logics for MAS including coalition logic, alternating-time temporal logic and strategy logic whose language are usually interpreted over CGSs. Moreover, it provides a complexity result for a rich temporal STIT language interpreted over these structures. The language extends that of full computation tree logic (CTL * ) by individual agency operators, allowing to express sentences of the form "agent i sees to it that φ is true, as a consequence of her choice".

INTRODUCTION

STIT logic (the logic of seeing to it that) by Belnap et al. [START_REF] Belnap | Facing the future: agents and choices in our indeterminist world[END_REF][START_REF] Horty | Agency and Deontic Logic[END_REF][START_REF] Horty | The deliberative STIT: A study of action, omission, and obligation[END_REF] is one of the most well-known formal theories of agency. It is the logic of sentences of the form "group sees to it that φ is true", denoted by [ ]φ, where a group is defined to be a set of agents. Following [START_REF] Lorini | A logic for reasoning about counterfactual emotions[END_REF], one might use the terms 'group STIT logic' and 'individual STIT logic' to designate, respectively, the family of STIT languages that contain a group agency operator [ ] for every group and the family of STIT languages that only contain an individual agency operator [{i}] for every agent i.

Two variants of STIT have been studied in the literature: 'atemporal STIT' and 'temporal STIT' (T-STIT). At the syntactic level, the former corresponds to the family of languages for expressing properties of individual and group agency with no temporal operators. Notable examples are the languages studied by [START_REF] Balbiani | Alternative Axiomatics and Complexity of Deliberative STIT Theories[END_REF][START_REF] Grossi | The Ceteris Paribus Structure of Logics of Game Forms[END_REF][START_REF] Herzig | Properties of logics of individual and group agency[END_REF][START_REF] Lorini | A logic for reasoning about counterfactual emotions[END_REF]. The latter corresponds to extensions of atemporal STIT languages by temporal operators for expressing properties of agency in connection with time such as the temporal operator 'next' of linear temporal logic LTL [START_REF] Broersen | Deontic epistemic stit logic distinguishing modes of mens rea[END_REF][START_REF] Schwarzentruber | Complexity Results of STIT Fragments[END_REF] 1 as well as future and past tense operators of basic tense logic [START_REF] Horty | Agency and Deontic Logic[END_REF][START_REF] Lorini | Temporal STIT logic and its application to normative reasoning[END_REF][START_REF] Wölf | Propositional Q-logic[END_REF]. At the semantic level, atemporal STIT abstracts away from the branching-time account of agency and only considers one-shot interaction. On the contrary, T-STIT focuses on repeated (possibly infinite) interactions and requires a 1 The main feature of the language studied by [START_REF] Broersen | Deontic epistemic stit logic distinguishing modes of mens rea[END_REF] is that the temporal operator 'next' and the agency operator are fused into a single operator. In the language studied by [START_REF] Schwarzentruber | Complexity Results of STIT Fragments[END_REF] they are kept separated. formal semantics of branching-time. This corresponds to the gametheoretic distinction between games in normal form and games in extensive form. 2Although STIT theory has a solid philosophical basis, at the current stage, its applicability to multi-agent systems (MAS) is limited for at least two reasons.

First of all, existing semantics for STIT use notions such as moment, history and 'not necessarily discrete' time that are unfamiliar and unattractive to most logicians in arti cial intelligence (AI). The structures with respect to which STIT languages are interpreted highly di er from the structures that are traditionally used in the area of logics for MAS including coalition logic (CL) [START_REF] Pauly | A Modal Logic for Coalitional Power in Games[END_REF], alternating-time temporal Logic (ATL) [START_REF] Alur | Alternating-time temporal logic[END_REF][START_REF] Goranko | Complete axiomatization and decidability of Alternating-time temporal logic[END_REF] and strategy logic (SL) [START_REF] Mogavero | Reasoning about strategies[END_REF]. These logics are usually interpreted over concurrent game structures (CGSs). CGSs have been widely used in AI to model interaction between multiple agents. Moreover, their connections with alternative models of interaction in AI including alternating transition systems [START_REF] Alur | Alternating-time temporal logic[END_REF], reactive modules [START_REF] Van Der Hoek | On the complexity of practical ATL model checking[END_REF], e ectivity functions [START_REF] Goranko | State and path coalition e ectivity models of concurrent multi-player games[END_REF] and models of propositional control [START_REF] Belardinelli | On logics of strategic ability based on propositional control[END_REF] have been clari ed.

Secondly, the computational properties of STIT theory including decidability and complexity are far less studied and understood than those of CL, ATL and SL. Therefore, its potential for applications remains unclear, compared to existing logics for MAS. Few properties of STIT are known and all of them are limited either to atemporal STIT languages or to restrictive temporal STIT languages whose only temporal operator is the next-time operator. For instance, it is known that the satis ability problem is undecidable for temporal and atemporal group STIT with more than two agents [START_REF] Herzig | Properties of logics of individual and group agency[END_REF] and NEXPTIME-complete for both the atemporal individual STIT language [START_REF] Balbiani | Alternative Axiomatics and Complexity of Deliberative STIT Theories[END_REF] and the temporal individual STIT language restricted to the next-time operator [START_REF] Schwarzentruber | Complexity Results of STIT Fragments[END_REF].

The aim of this paper is to overcome these two limitations of STIT theory (i) by introducing a new semantics for STIT based on CGSs, and (ii) by providing a complexity result for a rich temporal individual STIT language -including operators 'next' and 'until' of LTL -interpreted over CGSs. Di erently from the original Belnap et al. 's semantics, our CGSs semantics for STIT assumes time to be discrete. This assumption is fundamental for proving our complexity result, as the techniques we use are based on automata and only apply to discrete branching-time structures.

The paper is organized as follows. In Section 2, we rst recall Belnap et al's de nition of BT +AC structures and de ne a variant of these structures with discrete time (discrete BT +ACs). Then, in Section 3, we introduce a temporal STIT language that extends the language of full computation tree logic CTL * [START_REF] Emerson | Sometimes' and 'not never' revisited: on branching versus linear time[END_REF][START_REF] Emerson | Deciding full branching time logic[END_REF][START_REF] Reynolds | An axiomatization of full computation tree logic[END_REF] by agency operators. We de ne the interpretation of this language relative to discrete BT +ACs. In Section 4, we present a new semantics for STIT based on CGSs and interpret the language of Section 3 over this De nition 2.1. A tree is a pair T = (Mom, ≺), where:

• Mom is a nonempty set of moments;

• ≺ is a binary relation on Mom that is serial, irre exive, transitive, left-linear4 and rooted 5 . We let ≻ be the inverse relation of ≺.

The notion of a history is also crucial in such structures.

De nition 2.2. Histories are sets h, h ′ , . . . of moments that are linearly ordered by ≺ and are maximal for inclusion. H T is the set of all histories in the tree T , and H m is the set of histories h such that m ∈ h (the histories "passing through m")-we omit reference to the given tree, in this case.

BT +AC structures are introduced by the following de nition as branching-time structures augmented by choices of agents and groups. In order to de ne them, we need to x a countable set of atomic propositions Atm and a nite set of agents Agt = {1, . . . , n}. Before the de nition some preliminary notation: given a binary relation R on a set of elements X and an element x of X , we de ne

R (x ) = { ∈ X : x R }. De nition 2.3. A BT +AC structure is a tuple B = (T , (∼ m, ) m ∈Mom, ∈2 Agt , υ) where:
• T is a tree;

• every ∼ m, is an equivalence relation on its corresponding set of histories H m passing through m; • υ : Atm -→ 2 Mom is a valuation function associating atoms with sets of moments; and such that: (B1) for all m ∈ Mom and for all h 1 , . . . ,

h n ∈ H m : 1≤i ≤n ∼ m, {i } (h i ) ∅; (B2) for all m ∈ Mom and for all ∈ 2 Agt : ∼ m, = i ∈ ∼ m, {i } ; (B3) for all m, m ′ ∈ Mom and for all h, h ′ ∈ H T : if m ≺ m ′ and h, h ′ ∈ H m ′ , then h, h ′ ∈ H m and h ∼ m,Agt h ′ .
h ∼ m, h ′ means that history h is choice-equivalent to history h ′ for group at moment m. Constraint B1 expresses the so-called assumption of independence of choices: if for every agent i ∈ Agt, ∼ m, {i } (h i ) is a possible choice for agent i at moment m, then the intersection of all these choices is non-empty. More intuitively, this means that agents can never be deprived of choices due to the choices made by other agents. Constraint B2 just says that the collective choice of the group is equal to the intersection of the choices of all its individuals. Constraint B3 corresponds to the property of no choice between undivided histories. It captures the idea that if two histories come together in some future moment then, in the present, each agent does not have a choice between these two histories. This implies that if an agent can choose between two histories at a later stage, then she does not have a choice between them in the present.

We here de ne a subclass of BT +ACs under the assumption of the discreteness of time. This step is needed in order to relate them with CGSs in Section 5.

De nition 2.4.

A structure B = (T , (∼ m, ) m ∈Mom, ∈2 Agt , υ) is discrete i : (B4) every history h in H T is isomorphic to the set of natural num- bers.
Given the discreteness of time assumption, for every moment in a history we can identify the successor moment along this history. De nition 2.5. Let B = (T , (∼ m, ) m ∈Mom, ∈2 Agt , υ) be a discrete BT +AC structure and let h ∈ H T . Then, succ h : h -→ h is the successor moment function for the history h such that, for all m, m ′ ∈ h, succ h (m) = m ′ i m ≺ m ′ and there is no

m ′′ ∈ h such that m ≺ m ′′ ≺ m ′ .
Constraint B4 in De nition 2.4 guarantees that the function succ h is well-de ned. The seriality of the relation ≺ guarantees that succ h is total. class of structures. In Section 5, we provide two results: the treemodel property for our temporal STIT logic interpreted over CGSs and an equivalence result relative to the two semantics based on CGSs and discrete BT +ACs. Since the logic on the whole language is undecidable, we de ne in Section 6 the temporal individual STIT fragment which is proved in Sections 7, 8 and 9 to be decidable. For that purpose, a dedicated semantics is de ned in Section 7. We prove in Section 8 that this semantics is equivalent to the CGS semantics. Finally, in Section 9, an automaton is constructed that recognizes exactly the models in the dedicated semantics satisfying a given formula. In Section 10, we conclude.

At the end of this introduction, we would like to mention the related work by [START_REF] Broersen | A STIT-extension of ATL[END_REF] who extend the language of ATL by 'strategic' STIT operators in order to express that "group performs a strategy that, whatever strategy is taken by the others, ensures that a certain property φ holds". 3 There are substantial di erences between their work and our work: (i) Broersen et al. interpret their STIT-extension of ATL over alternating transition systems (ATSs), while we interpret our temporal STIT logic over CGSs; (ii) they do not prove any equivalence result between the semantics based on ATSs and the semantics based on BT +ACs for their STIT-extension of ATL, while we prove equivalence between the semantics based on CGSs and the semantics based on discrete BT +ACs for our temporal STIT language; (iii) they do not provide any decidability or complexity result for their language or for some fragments of it, while we do it for our language.

BT +AC-BASED SEMANTICS FOR T-STIT

We now consider BT +AC structures which were rst introduced in STIT theory by Belnap et al. [START_REF] Belnap | Facing the future: agents and choices in our indeterminist world[END_REF][START_REF] Horty | Agency and Deontic Logic[END_REF]. Such structures are based on full trees of branching time temporal logics augmented with grouprelative relations. The structures we are presenting here di er from Belnap et al. 's original ones in two minor respects. First, we replace the function of choice with choice-equivalence classes, with a move that is usual in STIT logics and will have no bearings in what follows. Secondly, the truth values of atomic propositions are assumed to be moment-determinate in a way consistent with branching-time temporal logics such as CTL * , while Belnap et al. assume that they depend on the history passing through the moment.

We start with the following de nition of tree, de ned as a set of moments and a branching-time temporal relation over them.

DT-STIT G n LANGUAGE

We now introduce the language of discrete-time temporal group STIT logic DT-STIT G n . This language, denoted by L DT-STIT G n (Atm, n), extends the language of CTL * by 'seeing-to-it-that' operators for all groups. It is de ned by the following BNF:

φ,ψ ::= p | ¬φ | φ ∧ ψ | Xφ | φ U ψ | φ | [ ]φ
where p ranges over Atm and ranges over 2 Agt . When there is no risk of confusion, we simply write L G n instead of L DT-STIT G n (Atm, n). The length φ of the formula φ is the number of occurrences of symbols in φ.

Xφ, φ U ψ and φ have a similar reading as in CTL * : Xφ has to be read "φ will be true in the next moment along the current history", φ U ψ has to be read "ψ is true now or will be true at some moment in the future along the current history, and φ has to hold until ψ ", and φ has to be read "φ is true in all possible histories starting in the current moment". [ ]φ has to be read "group sees to it that φ, regardless of what the agents outside choose".

Formulas of the language L G n are evaluated with respect to a discrete BT +AC structure B = (T , (∼ m, ) m ∈M, ∈2 Agt , υ) and a moment-history pair m, h such that m ∈ Mom and h ∈ H m :

B, m, h |= p ⇐⇒ m ∈ υ (p) B, m, h |= ¬φ ⇐⇒ B, m, h |= φ B, m, h |= φ ∧ ψ ⇐⇒ B, m, h |= φ B, m, h |= ψ B, m, h |= φ ⇐⇒ ∀h ′ ∈ H m : B, m, h ′ |= φ B, m, h |= [ ]φ ⇐⇒ ∀h ′ ∈ H m : h ∼ m, h ′ B, m, h ′ |= φ B, m, h |= Xφ ⇐⇒ B, succ h (m), h |= φ B, m, h |= φ U ψ ⇐⇒ ∃m ′ ∈ h : m m ′ B, m ′ , h |= ψ ∀m ′′ ∈ h : m m ′′ ≺ m ′ B, m ′′ , h |= φ
A formula φ of the language L G n is satis able relative to the class of discrete BT +ACs i there exists a discrete BT +AC B and a moment-history pair m, h such that B, m, h |= φ. The formula φ is valid relative to this class i ¬φ is not satis able.

CGS-BASED SEMANTICS FOR DT-STIT G n

In this section, we provide a semantics for DT-STIT G n based on concurrent game structures (CGSs). We rst remind the de nition of this class of structures. Our presentation of CGSs slightly di ers from the way CGSs are usually presented in the semantics for ATL and SL (see, e.g., [START_REF] Goranko | Complete axiomatization and decidability of Alternating-time temporal logic[END_REF][START_REF] Mogavero | Reasoning about strategies[END_REF]). Speci cally, we associate every joint action to a binary relation over states satisfying certain properties, while they use a transition function mapping every state and every joint action executable at this state to a successor state.

De nition 4.1. A concurrent game structure (CGS) is a tuple M = (W , Act, (R δ ) δ ∈JAct , V ) where:
• W is a nonempty set of possible worlds or states;

• Act is a set of names for atomic actions, with JAct = Act n the corresponding set of names for joint actions and with elements of JAct denoted by δ, δ ′ , . . .;

• every R δ is a binary relation on W ; • V : W -→ 2 Atm is a valuation function;
and such that for every w, , u ∈ W , δ ∈ JAct:

(C1) R δ is deterministic, i.e., for all w ∈ W there is at most one such that wR δ ;

(C2) if δ (1) ∈ C 1 (w ), . . . , δ (n) ∈ C n (w ) then R δ (w ) ∅; (C3) δ ∈JAct R δ (w ) ∅; where δ (i) is the i th component of δ and C i (w ) = {a ∈ Act : ∃δ ∈ JAct s.t. R δ (w ) ∅ and δ (i) = a}.
Constraint C1 expresses joint action determinism, namely, the fact that the outcome of the collective choice of all agents is uniquely determined. Constraint C2 corresponds to the independence of choices assumption in a way similar to Constraint B1 in De nition 2.3. According to Constraint C3, every state in a CGS has at least one successor, where the successor of a given state is a state which is reachable from the former via a collective choice of all agents. Notice that the set C i (w ) in the previous de nition corresponds to agent i's set of available actions at state w, i.e., the set of actions that agent i can choose at state w.

The previous notion of CGS is the one traditionally used in area of logics for multi-agent systems. In this paper, we consider a more general class of CGSs, called non-deterministic CGS, that better relate with BT +AC structures, as de ned in De nition 2.3.

De nition 4.2.

A non-deterministic CGS is like a CGS except that it does not necessarily satisfy Constraint C1 of joint action determinism in De nition 4.1.

The following de nition introduces the concept of trace, as an in nite sequence of alternating states and joint actions such that a joint action is responsible for the transition from its preceding state to its subsequent state. In other words, a trace τ can be seen as an in nite sequence

w 1 δ 1 w 2 δ 2 w 3 δ 3 . . . such that w k ∈ W , δ k ∈ JAct and w k R δ k w k +1 , for all k > 0. De nition 4.3. Let M = (W , Act, (R δ ) δ ∈JAct , V ) be a CGS. A trace in M is a pair τ = (τ S , τ C ) with τ S : N * -→ W and τ C : N * -→ JAct such that τ S (k )R τ C (k ) τ S (k + 1) for all kN * . The set of all traces in M is denoted by Trace M . Given a trace τ = (τ S , τ C ) ∈ Trace M and k ∈ N * , τ ≥k is the trace (τ ′ S , τ ′ C ) in Trace M such that, for all ℓ > 0: τ ′ S (ℓ) = τ S (k + ℓ -1) and τ ′ C (ℓ) = τ C (k + ℓ -1)
. In other words, if τ is the in nite sequence w 1 δ 1 w 2 δ 2 w 3 δ 3 . . ., then τ ≥k is the in nite sequence w k δ k w k +1 δ k +1 . . .. More succinctly, τ ≥k is the su x of the sequence τ starting at the k th state in τ .

The following de nition introduces the concept of choice equivalence. The idea is that two traces are choice equivalent for a given group i (i) the two traces have the same initial state, and (ii) the agents in the group make the same choices at the beginning of the two traces.

De nition 4.4. Two traces τ = (τ S , τ C ) and τ ′ = (τ ′ S , τ ′ C ) are state-equivalent, denoted by τ ≡ τ ′ , if and only if τ S (1) = τ ′ S (1). Two traces τ = (τ S , τ C ) and τ ′ = (τ ′ S , τ ′ C ) are choice-equivalent for group ∈ 2 Agt , denoted by τ ≡ τ ′ , if and only if τ ≡ τ ′ , and τ C (1)(i) = τ ′ C (1)(i) for all i ∈ .
Truth of a DT-STIT G n formula is evaluated with respect to a nondeterministic CGS M = (W , Act, (R δ ) δ ∈JAct , V ) and a trace τ = (τ S , τ C ) in M, as follows:

M, τ |= p ⇐⇒ p ∈ V (τ S (1)) M, τ |= ¬φ ⇐⇒ M, τ |= φ M, τ |= φ ∧ ψ ⇐⇒ M, τ |= φ M, τ |= ψ M, τ |= Xφ ⇐⇒ M, τ ≥2 |= φ M, τ |= φ U ψ ⇐⇒ ∃k ∈ N * : M, τ ≥k |= ψ ∀h ∈ N : 1 ≤ h < k M, τ ≥h |= φ M, τ |= φ ⇐⇒ ∀τ ′ ∈ Trace M : τ ≡ τ ′ M, τ ′ |= φ M, τ |= [ ]φ ⇐⇒ ∀τ ′ ∈ Trace M : τ ≡ τ ′ M, τ ′ |= φ
Validity and satis ability of DT-STIT G n relative to CGSs and nondeterministic CGSs are de ned in the usual way.

TREE-MODEL PROPERTY AND SEMANTIC EQUIVALENCE

Let R * , R -and R + be, respectively, the re exive, transitive closure, the inverse and the transitive closure of R = δ ∈JAct R δ .

De nition 5.1. Let M = (W , Act, (R δ ) δ ∈JAct , V ) be a non-deterministic CGS. We say that:

• M has a unique root i there is a unique w 0 ∈ W (called the root), such that, for every ∈ W , w 0 R * ; • M has unique predecessors i for every ∈ W , the cardinality of R -( ) is at most one; • M has no cycles i R + is irre exive.

De nition 5.2. A non-deterministic CGS is tree-like if and only

if it has a unique root, unique predecessors and no cycles.

The following lemma states that satis ability relative to the class of non-deterministic CGSs with unique predecessors and no cycles is equivalent to satis ability relative to the class of tree-like non-deterministic CGSs.

L 5.3. Let φ ∈ L G n .
Then, φ is satis able relative to nondeterministic CGSs with unique predecessors and no cycles i φ is satis able relative to tree-like non-deterministic CGSs.

P

. The right-to-left direction is clear. We prove the left-to-right direction. Let M = (W , Act, (R δ ) δ ∈JAct , V ) be a nondeterministic CGS with unique predecessors and no cycles and let

τ 0 = (τ S , τ C ) ∈ Trace M such that M, τ 0 |= φ. Let w 0 = τ S (1). Let M ′ = (W ′ , Act, (R ′ δ ) δ ∈JAct , V ′
) the submodel of M generated by the state w 0 , that is:

• W ′ = { ∈ W : w 0 R * }, • R ′ δ = R δ ∩ (W ′ × W ′ ) for all δ ∈ JAct, • V ′ ( ) = V ( ) for all ∈ W ′ .
Clearly, M ′ is a tree-like CGS and τ 0 ∈ Trace M ′ . Moreover, it is easy to prove, by structural induction on φ, that M ′ , τ 0 |= φ.

The following lemma states that satis ability relative to the class of non-deterministic CGSs is equivalent to satis ability relative to the class of non-deterministic CGSs with unique predecessors and no cycles.

L 5.4. Let φ ∈ L G n .
Then, φ is satis able relative to nondeterministic CGSs i φ is satis able relative to non-deterministic CGSs with unique predecessors and no cycles.

P

. The right-to-left direction of the lemma is clear. We prove the left-to-right direction.

Let M = (W , Act, (R δ ) δ ∈JAct , V ) be a non-deterministic CGS and let τ = (τ S , τ C ) ∈ Trace M such that M, τ |= φ.

We rst de ne the set of tracks in M, denoted by Track M , a track being a non-empty nite sequence w 0 δ 1 w 1 . . .

δ k w k such that (i) w 0 ∈ W , (ii) δ 1 w 1 . . . δ k w k is a possibly nite sequence in (JAct × W ) * , and (iii) for every 0 ≤ h ≤ k -1, w h R δ h+1 w h+1 .
Elements of Track M are denoted by σ , σ ′ , . . . For every σ ∈ Track M , we denote by σ [last] the last element in the sequence σ .

Given a trace τ = (τ S , τ C ) ∈ Trace M and k > 0, let τ ≤k be the track τ S (1)τ C (1) . . . τ C (k -1)τ S (k ).

We are going to transform M into a new non-deterministic CGS

M ′ = (W ′ , Act, (R ′ δ ) δ ∈JAct , V ′ ) where: • W ′ = Track M ; • for all σ , σ ′ ∈ W ′ and for all δ ∈ JAct, σ R ′ δ σ ′ i σ ′ = σδ for some ∈ W . • for all p ∈ Atm and for all σ ∈ W ′ , p ∈ V ′ (σ ) i p ∈ V (σ [last]
). In other words, the model M ′ is de ned as follows: (i) its set of states coincides with the set of tracks in M, (ii) a joint action δ is responsible for the transition from the track σ to the track σ ′ i σ ′ is a possible continuation of the track σ via the joint action δ , and (ii) an atomic proposition p is true at track σ i p is true in the last state of σ . It is straightforward to verify that M ′ is a CGS with unique predecessors and no cycles.

Let us de ne the function f mapping traces in M into traces in

M ′ . Let τ = (τ S , τ C ) ∈ Trace M and τ ′ = (τ ′ S , τ ′ C ) ∈ Trace M ′ . Then, f (τ ) = τ ′ i , for all k > 0: (i) τ ′ S (k ) = τ ≤k , and (ii) τ ′ C (k ) = τ C (k ).
It is routine to verify that f so de ned is a bijection.

By induction on the structure of φ, it can be shown that "M, τ

|= φ i M ′ , f (τ ) |= φ". Hence, M ′ , f (τ ) |= φ.
The following theorem follows straightforwardly from Lemma 5.3 and Lemma 5.4. It highlights that DT-STIT G n interpreted over the CGS semantics satis es the tree-model property.

T 5.5. Let φ ∈ L G n .
Then, φ is satis able relative to non-deterministic CGSs i φ is satis able relative to tree-like nondeterministic CGSs.

The nal result of this section is a lemma stating that satis ability for DT-STIT G n relative to the class of BT +AC structures is equivalent to satis ability for DT-STIT G n relative to the class of tree-like nondeterministic CGSs. L 5.6. Let φ ∈ L G n . Then, φ is satis able relative to BT +AC structures i φ is satis able relative to tree-like non-deterministic CGSs.

P

. We rst prove the left-to-right direction. Let B = (T , (∼ m, ) m ∈M, ∈2 Agt , υ) be a BT +AC structure where T = (Mom, ≺) is its corresponding tree. Moreover, let m 0 ∈ Mom be a moment and h 0 ∈ H m 0 a history passing through m 0 such that B, m 0 , h 0 |= φ.

We are going to transform B into a new structure M = (W , Act, (R δ ) δ ∈JAct , V ) whose components are de ned as follows:

• W = Mom; • Act = m ∈Mom,i ∈Agt H m / ∼ m, {i } ;
• for all m, m ′ ∈ W and for all δ ∈ JAct, mR δ m ′ i there exists h ∈ H m such that succ h (m) = m ′ and δ (i) =∼ m, {i } (h) for all i ∈ Agt; • for all p ∈ Atm and for all m ∈ W , p ∈ V (m) i p ∈ υ (m). It is routine to verify that M is a tree-like non-deterministic CGS. Furthermore, by induction on the structure of φ, it is easy to check that M, τ |= φ, where τ = (τ S , τ C ) is the trace in Trace M such that, for all k > 0:

(i) τ S (k ) = (k ), and (ii) τ C (k ) = f (k ) (∼ (k ),Agt (h 0 )
) and where the function : N * -→ Mom is de ned inductively as follows: (iii) (1) = m 0 , and (iv) for all k > 0, (k + 1) = succ h 0 ( (k )).

Let us now prove the right-to-left direction. Let M = (W , Act, (R δ ) δ ∈JAct , V ) be a tree-like non-deterministic CGS and let τ = (τ S , τ C ) ∈ Trace M such that M, τ |= φ. We are going to transform M into a new structure B = (T , (∼ m, ) m ∈M, ∈2 Agt , υ) with T = (Mom, ≺). First, we de ne Mom and ≺ in the pair T :

• Mom = W ;

• for all w, ∈ Mom, w ≺ i wR + . Since M is tree-like, it is easy to verify that T so de ned is a tree. Moreover, because of the tree-likeness of M, we can de ne a function t : Trace M -→ H T such that for all τ = (τ S , τ C ) ∈ Trace M :

t (τ ) = {w ∈ W : wR + τ S (1)} ∪ {τ S (k ) : k ∈ N * }.
Then, we de ne the remaining components of the tuple B:

• for all w ∈ Mom, for all ∈ 2 Agt and for all h, h ′ ∈ H w , h ∼ w, h ′ i there exists δ, δ ′ ∈ JAct and , u ∈ W such that δ = δ ′ , ∈ h, u ∈ h ′ , wR δ and wR δ ′u; • for all p ∈ Atm and for all w ∈ Mom, p ∈ υ (w ) i p ∈ V (w ); where δ = δ ′ i δ (i) = δ ′ (i) for all i ∈ .

It is easy to verify that B so de ned is a BT +AC structure. Furthermore, by induction on the structure of φ, it is easy to check that B, m, h |= φ, for m = τ S (1) and h = t (τ ).

The following theorem is a direct consequence of Theorem 5.5 and Lemma 5.6. T 5.7. Let φ ∈ L G n . Then, φ is satis able relative to BT +AC structures i φ is satis able relative to non-deterministic CGSs.

INDIVIDUAL FRAGMENT

The satis ability problem of DT-STIT G n is undecidable if n > 2. To show this, consider the satis ability-preserving translation from group STIT's language to L G n that replaces all propositional variables p with Xp. Since group STIT has been proved in [START_REF] Herzig | Properties of logics of individual and group agency[END_REF] to be undecidable, DT-STIT G n is also undecidable. This undecidability result holds even if the language is restricted to groups of cardinality at most two. Therefore, to obtain a decidable fragment, we restrict the language of DT-STIT G n to groups that are singletons. We call this fragment the discrete-time temporal individual STIT logic, DT-STIT n for short. For the sake of simplicity, we write [i] φ instead of [{i}] φ. Moreover, assuming that n ≥ 2, we omit the historical necessity, since [START_REF] Balbiani | Alternative Axiomatics and Complexity of Deliberative STIT Theories[END_REF] proved that it can be de ned by φ [i] [j] φ for some arbitrary distinct i, j ∈ Agt. The resulting language L DT-STIT n (Atm, n) is de ned by the following BNF:

φ ::= p | ¬φ | φ ∧ ψ | Xφ | φ U ψ | [i]φ
where p range over Atm and i over Agt. When there is no risk of confusion, we simply write L n instead of L DT-STIT n (Atm, n). We de ne the usual closure property on sets of formulas. Formally, a set Σ ⊆ L n is closed i :

(1

) ∀φ ∈ Σ, if ψ is a subformula of φ then ψ ∈ Σ, ( 2 
) ∀φ ∈ Σ, if φ = ¬ψ then ψ ∈ Σ else ¬φ ∈ Σ, and (3) ∀φ U ψ ∈ Σ, X (φ U ψ ) ∈ Σ.
For all formula φ 0 ∈ L n , Cl (φ 0 ) denotes the least closed set containing φ 0 . It can easily be proved that Cl (φ 0 ) is linear in φ 0 .

PSEUDO-MODEL SEMANTICS

In this section, we describe an alternative semantics for DT-STIT n that makes it easy for an automaton to check the satis ability of a formula. This new semantics can be broken down into two components: the local pseudo-models which correspond to worlds in the CGS semantics and the pseudo-models which are in nite trees whose branches correspond to traces in the CGS semantics. Through this section, Σ denotes an arbitrary closed set of formulas. In Section 8.1, the construction of a pseudo-model from a nondeterministic CGS provides some intuitions for the abstract de nitions of the pseudo-model semantics.

Local pseudo-models

De nition 7.1. A subset h ⊆ Σ is maximal locally consistent i : (1) ∀¬φ ∈ Σ, φ ∈ h i ¬φ ∈ h, (2) ∀φ ∧ ψ ∈ Σ, φ ∧ ψ ∈ h i φ ∈ h and ψ ∈ h, (3) ∀φ U ψ ∈ Σ, φ U ψ ∈ h i ψ ∈ h or {φ, X (φ U ψ )} ⊆ h, and (4) ∀ [i] φ ∈ h, φ ∈ h.
The set of maximal locally consistent subsets of Σ is denoted by H Σ . When Σ = Cl (φ 0 ) we simply write H φ 0 . For all h 1 , h 2 ∈ H Σ and all i ∈ Agt, we say that h 1 and h 2 are [i]-compatible i for all φ ∈ Σ such that φ ∈ Atm or φ = [i]ψ for some ψ ∈ L n , φ ∈ h 1 i φ ∈ h 2 . We say that h 1 and h 2 are -compatible i they are [i]-compatible for all i ∈ Agt.

De nition 7.2.

A local pseudo-model is a tuple (H, ∼, h 0 ) where H is a subset of H Σ , ∼ is a function assigning to each agent i an equivalence relation i ∼ over H and h 0 is a designated element of H. It must satisfy the following conditions:

(1) for all i ∈ Agt and all

h 1 , h 2 ∈ H, if h 1 i ∼ h 2 then h 1 and h 2 are [i]-compatible, (2) for all [i] φ ∈ Σ and all h 1 ∈ H, if [i] φ h 1 then there is h 2 ∈ i ∼ (h 1 ) such that φ h 2 , and (3) for all h 1 , . . . , h n ∈ H, ∩ i ∈Agt i ∼ (h i ) ∅, where i ∼ (h 1 ) h 2 ∈ H h 1 i ∼ h 2 .
The set of local pseudo-models for Σ is denoted by L Σ . When Σ = Cl (φ 0 ) we simply write L φ 0 . xed mathematical object such that Nop L Σ . An in nite sequence σ ∈ (H Σ ) ω is a path in t. We say that:

• σ is an active path of t i for all pre xes θ of σ , t (θ ) Nop;

• σ is a ⋄-path of t i there is a nite sequence θ ∈ (H Σ ) * , called the initial point of σ , such that:

θσ is an active path of t, -σ 1 ∈ H 0 for (H 0 , ∼ 0 , h 00 ) = t (θ ), and

-for all k ≥ 1, σ k +1 = h 0k for (H k , ∼ k , h 0k ) = t θσ ≤k ;
• σ is a -compatible support of an active path θ of t i for all k > 0, σ k and θ k are -compatible. For all S ⊆ L n , let S X denote the set of formulas φ such that Xφ ∈ S or ¬X¬φ ∈ S. De nition 7.4. An in nite sequence σ ∈ (H Σ ) ω is ful lling i for all k > 0:

(1) σ k X ⊆ σ k+1 , and

(2) for all φ U ψ ∈ σ k , there is ℓ ≥ k such that ψ ∈ σ ℓ . De nition 7.5. A pre-model t on Σ is a pseudo-model on Σ i : (1) t (ϵ ) Nop and for all σ ∈ (H Σ ) * and h ∈ H Σ , t (σh) Nop i there is (H, ∼, h 0 ) ∈ L Σ such that t (σ ) = (H, ∼, h 0 ) and h ∈ H, (2) all ⋄-path of t are ful lling, and (3) for all active path σ of t, there is a -compatible support of σ that is ful lling.

A pseudo-model t on Σ satis es a formula φ 0 ∈ Σ i t (ϵ ) = (H ϵ , ∼ ϵ , h 0ϵ ) and φ 0 ∈ h 0ϵ for some (H ϵ , ∼ ϵ , h 0ϵ ) ∈ L Σ . A formula φ 0 ∈ L n is satis able in the pseudo-model semantics i there is a pseudo-model t on Cl (φ 0 ) that satis es φ 0 .

The following lemma states that if there is a ful lling -compatible support of a path, then this support is unique. It can easily be proved by a standard induction on the formula φ. L 7.6. Let σ 1 and σ 2 be in nite ful lling sequences such that for all k > 0, σ k 1 and σ k 2 are -compatible. Then for all φ ∈ Σ and all

k > 0, φ ∈ σ k 1 i φ ∈ σ k 2 .

EQUIVALENCE OF THE SEMANTICS

In this section, we prove the following theorem that states the equivalence between the pseudo-model semantics and the nondeterministic CGS semantics. Since the pseudo-model semantics is used in the decision procedure for DT-STIT n satis ability, the proof of the left-to-right direction is called completeness and the proof of the right-to-left direction is called soundness. 6 Given a set S , let < be the strict lexicographic order on S * . By De nition 2.1, (S * , <) is a tree. We abusively identify labeled trees with their labeling function.

T 8.1. A formula φ 0 ∈ L n is satis able in the nondeterministic CGS semantics i it is satis able in the pseudo-model semantics.

Completeness

Let M = W, Act , (R δ ) δ ∈JAct , V be a non-deterministic CGS, τ 0 a trace in M and φ 0 ∈ L n a formula such that M, τ 0 φ 0 . We will construct a pseudo-model on Cl (φ 0 ) satisfying φ 0 .

Firstly, we need to associate a local pseudo-model to each world in W. This step is analogous to the ltration in [START_REF] Balbiani | Alternative Axiomatics and Complexity of Deliberative STIT Theories[END_REF] except that we need to consider traces. Formally, we de ne the function Φ such that Φ(τ ) = φ ∈ Cl (φ 0 ) M, τ φ for all τ ∈ Trace M . Then we associate to each world w ∈ W a pair (H w , ∼ w ) where:

• H w h ∈ H φ 0 ∃τ ∈ Trace M , τ S (1) = w and Φ(τ ) = h ; • ∼ w is the function assigning to each i ∈ Agt the equivalence relation i ∼ w over H w such that for all h 1 , h 2 ∈ H w , h 1 i ∼ w h 2 i there is τ 1 , τ 2 ∈ Trace M such that τ 1S (1) = τ 2S (1) = w, τ 1C (1)(i) = τ 2C (1)(i), Φ(τ 1 ) = h 1 and Φ(τ 2 ) = h 2 . L 8.2.
For all w ∈ W and all h ∈ H w , (H w , ∼ w , h) is a local pseudo-model.

P

. The proofs for conditions (1) and ( 2) of De nition 7.2 are straightforward. For (3), let h 1 , . . . ,

h n ∈ H w . There is τ 1 , . . . , τ n ∈ Trace M such that for all i ∈ Agt, τ i S (1) = w and Φ(τ i ) = h i . Construct δ ∈ JAct such that for all i ∈ Agt, δ (i) = τ i C (1)(i). By C2, there is x ∈ W such that w R i x. Hence by C3, there is τ ∩ ∈ Trace M such that τ ∩S (1) = w and τ ∩C (1) = δ . Clearly, for all i ∈ Agt, h i i ∼ w Φ(τ ∩ ).
Secondly, we select traces in M that will correspond to the active paths in the pseudo-model. Assuming that Nop

Trace M , we construct inductively the functions r : H φ 0 * -→ Trace M ∪ {Nop} and s : H φ 0 * × H φ 0 -→ Trace M ∪ {Nop} as follows:

• r (ϵ ) τ 0 and • for all σ ∈ H φ 0 * and all h ∈ H φ 0 :

-if r (σ ) = Nop then s (σ , h) Nop; otherwise, let r (σ ) = τ σ = (τ σ S , τ σ C ) and -if h W τ σ S (1) then s (σ , h) Nop; -else if Φ(τ σ ) = h then s (σ , h) τ σ ; -otherwise, set s (σ , h) τ σ h for some arbitrary τ σ h = τ σ h S , τ σ h C such that τ σ h S (1) = τ σ S (1) and Φ(τ σ h ) = h, which exists by construction; • if s (σ , h) = Nop then r (σh) Nop else r (σh) s (σ , h) ≥2 . If r (σ ) = τ = (τ S , τ C ),
we write r S (σ ) and r C (σ ) to denote respectively τ S and τ C . The notation is similar for s.

Finally, the pre-model

t on Cl (φ 0 ) is constructed such that for all σ ∈ H φ 0 * , if r (σ ) = Nop then t (σ ) = Nop else t (σ ) = H r S (σ )(1) , ∼ r S (σ )(1) , Φ (r (σ )) . L 8.3.
t is a pseudo-model on Cl (φ 0 ).

P

. We only prove condition (3) of Def. 7.5, the other ones being similar or straightforward. Let us say that a path σ matches a trace τ i for all k > 0, σ k = Φ τ ≥k . Obviously, in such a case, σ is ful lling. Let σ be an active path of t. De ne

Pseudo-models

For any alphabet A, we write A * and A ω to denote respectively the set of all nite sequences over A and the set all in nite sequences over A. We write ϵ to denote an empty sequence. For all σ ∈ A * , we write |σ | to denote the length of σ . For all nite or in nite sequences σ and all k > 0, we write σ k , σ ≤k and σ ≥k to denote respectively the k th element in σ , the pre x of σ of length k and the su x of σ starting at the k th element. By convention, σ ≤0 = ϵ.

A pre-model on Σ is an in nite tree 6 t : ( H Σ ) * -→ L Σ ∪ {Nop} over the alphabet H Σ , labeled with L Σ ∪ {Nop}, where Nop is any

0 De ne W σ ∈ H φ 0 * t (σ ) Nop and Act 2 H φ 0 and construct the tuple M = W, Act , (R δ ) δ ∈JAct , V such that for all σ 1 , σ 2 ∈ W: • for all δ ∈ JAct, σ 1 R δ σ 2 i there is h ∈ H φ 0 such that σ 2 = σ 1 h and for all i ∈ Agt, δ (i) = i ∼ 1 (h); • for all p ∈ Atm, p ∈ V(σ 1 ) i p ∈ h 01 ;
where (H 1 , ∼ 1 , h 01 ) = t (σ 1 ). It can easily be checked that M is a non-deterministic CGS.

Then to each trace τ = (τ S , τ C ) of M, we associate the active path σ τ and the integer ℓ τ such that for all k > 0, τ S (k ) = σ ≤k +ℓ τ . The following truth lemma can be proved by structural induction on φ. L 8.4. For all formulas φ ∈ Cl (φ 0 ), all traces τ = (τ S , τ C ) of M and all ful lling -compatible supports θ of σ τ , M, τ φ i φ ∈ θ ℓ τ +1 . Now, to prove the right-to-left direction of Theorem 8.1, it sufces to construct inductively the ⋄-path σ with initial point ϵ such that for all k > 0, σ k h 0k where (H k , ∼ k , h 0k ) = t σ ≤k -1 . By Lemma 7.6, σ is its own -compatible support. Moreover, there is a trace τ 0 in M such that σ τ 0 = σ and ℓ τ 0 = 0. Therefore, by Lemma 8.4, M, τ 0 φ 0 .

DECISION PROCEDURE

We propose a decision procedure for the satis ability problem of DT-STIT n . Given a formula φ 0 ∈ L n , this procedure constructs an automaton on in nite trees and returns whether there exists a tree that is recognized by this automaton. We prove that the procedure can be executed in double exponential time in φ 0 and that φ 0 is DT-STIT n satis able if and only if the procedure returns true.

Automata

Given a formula φ 0 ∈ L n , we construct an automaton that recognize exactly the pseudo-models on Cl (φ 0 ) satisfying φ 0 . This automaton is the product of three automata: one for each condition of De nition 7.5. We rst recall some basic notions about automata.

Given an alphabet A, a non-deterministic Büchi word automaton over A is a tuple A = (S, S 0 , ρ, F) where S is the set of states of the automaton, S 0 ∈ S is the initial state, ρ : S × A -→ 2 S is a non-deterministic transition function and F ⊆ S is the termination condition. Given an in nite word σ ∈ A ω , a run of A on σ is a word r ∈ S ω such that r 1 = S 0 and for all k ≥ 1, r k +1 ∈ ρ (r k , σ k ). The set of states occurring in nitely often in a run r is denoted by inf(r ). A word σ is accepted by A i there is a run r of A on σ such that inf(r ) ∩ F ∅.

A deterministic Streett tree automaton over A is a tuple A = (S, S 0 , ρ, F) similar to a non-deterministic Büchi word automaton except that ρ : S × A --⇀ S n is a partial function that assigns an n-ary tuples of states and F ⊆ 2 S × 2 S is a set of pairs of sets of states. Given a ordered set I of cardinality n and an in nite tree t : I * -→ A, a run of A on t is a tree t r : I * -→ S such that t r (ϵ ) = S 0 and for all σ ∈ I * , (t r (σα )) α ∈I = ρ (t r (σ ), t (σ )). For all branches σ ∈ S ω of t r , the set of states occurring in nitely often in σ is denoted by inf(σ ). A tree t is accepted by A i there is a run t r of A on t such that for any branch σ of t r and any pair 

(A, B) ∈ F , if inf(σ ) ∩ A ∅ then inf(σ ) ∩ B ∅.
A 1 = (S 1 , S 01 , ρ 1 , F 1 ) is de ned such that S 1 {def, Nop}, S 01 def, F 1 ∅ and ρ 1 (S σ , t (σ )) = (S σ h ) h ∈H φ 0
i one of the following conditions holds:

• S σ = def, t (σ ) = (H, ∼, h 0 ) for some (H, ∼, h 0 ) ∈ L φ 0 and for all h ∈ H φ 0 , S σ h =      def if h ∈ H Nop otherwise ;
• S σ = Nop, t (σ ) = Nop and for all h ∈ H φ 0 , S σ h = Nop. The following lemma is straightforward. i one of the following conditions holds:

• t (σ ) = (H, ∼, h 0 ) for some (H, ∼, h 0 ) ∈ L φ 0 , c σ ⊆ h 0 and for all h ∈ H φ 0 c σ h = h X and:

e σ h =            ψ ψ h 0 and ∃φ, φ U ψ ∈ h 0 if h = h 0 and e σ = ∅ e σ \ h 0 if h = h 0 and e σ ∅ ∅ otherwise
• t (σ ) = Nop and for all h ∈ H φ 0 , c σ h = ∅ and e σ h = e σ .

• t (σ ) = (H, ∼, h 0 ) for some (H, ∼, h 0 ) ∈ L φ 0 , c σ \h 0 ∅ and for all h ∈ H φ 0 , c σ h = e σ h = Cl (φ 0 ). Intuitively, for each state (c, e), c is the set of formulas that must be satis ed at the current state, whereas e is the set of formulas that must be eventually satis ed. L 9.2. If a pseudo-model t on Cl (φ 0 ) satis es φ 0 then t is accepted by A 2 .

P

. Let t be a pseudo-model satisfying φ 0 . Since ρ 2 is total there is a run t r of A 2 on t. Let σ ∈ H φ 0 ω be an arbitrary path in t. We will prove that the branch in t r corresponding to σ satis es the Streett condition

F 2 . For all k > 0, let (c k , e k ) t r (σ ≤k ). Moreover, if t (σ ≤k ) Nop let (H k , ∼ k , h 0k ) t (σ ≤k ).
The following properties can be proved by induction on k:

∀k > 0, if t (σ ≤k ) Nop then c k ⊆ h 0k (1) ∀k > 0, if e k ∅ then t (σ ≤k ) Nop (2) τ = (τ S , τ C ) such that for all k > 0, τ S (k) = r S σ ≤k-1 (1) and τ C (k) = s C σ ≤k-1 , σ k (1)
. It can easily be checked that for all k > 0, Φ(τ ≥k ) and σ k are -compatible. Hence there is a ful lling -compatible support of σ .

Since t satis es φ 0 , we have proved the left-to-right direction of Theorem 8.1.

Soundness

Let φ 0 be a formula in L n and t a pseudo-model on Cl (φ 0 ) satisfying φ 0 . We will construct a non-deterministic CGS satisfying φ .

• α = (H, ∼, h 0 ) for some (H, ∼, h 0 ) ∈ L φ 0 , c k = ∅, c k+1 ∈ H φ 0 and e k +1 = ∅. • α = (H, ∼, h 0 ) for some (H, ∼, h 0 ) ∈ L φ 0 , c k ∈ H φ 0 , c k and h are -compatible, c k +1 ∈ H φ 0 , (c k ) X ⊆ c k +1 and if e k = ∅ then e k+1 = ψ ψ c k and ∃φ, φ U ψ ∈ c k else e k +1 = e k \ c k . • c k+1 = e k+1 = Cl (φ 0 ). • α = Nop and e k+1 = ∅.
Given a pre-model t on Cl (φ 0 ) and a path σ in t, a sequence θ ∈ H φ 0 × L φ 0 ∪ {Nop} ω represents σ i θ 1 = (h, t (ϵ )) for some h ∈ H φ 0 and for all k > 1, θ k = σ k -1 , t (σ ≤k-1 ) . By a reasoning similar to the proofs of Lemmas 9.2 and 9.3, the following lemma can easily be proved. L 9.4. Let t be a pre-model on Cl (φ 0 ). If t is a pseudo-model then all sequences representing a path in t are accepted by A 3N . Conversely, if all sequences representing a path in t are accepted by A 3N then t satis es condition (3) of Def. 7.5. By Piterman's construction [START_REF] Piterman | From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata[END_REF], A 3N can be converted into an equivalent deterministic Streett automaton A 3D on words over the alphabet H φ 0 × L φ 0 ∪ {Nop} . The number of states of A 3D is double exponential in φ 0 and the number of its termination pairs is exponential in φ 0 . Finally, A 3N can be converted into an equivalent deterministic Streett automaton A 3 over pre-models by adding the label of each edge into the state of the automaton. The number of states of A 3 is still double exponential in φ 0 and the number of its termination pairs is still exponential in φ 0 .

Complexity

To determine the satis ability of a formula φ 0 , the automaton A is constructed as the product of the automata A 1 , A 2 and A 3 . Since the number of local pseudo-models is double exponential in φ 0 , the construction of A takes double exponential time. The number of states of A is double exponential in φ 0 and the number of its termination pairs is exponential in φ 0 . Emerson and Jutla [START_REF] Emerson | The Complexity of Tree Automata and Logics of Programs[END_REF] proved that the emptiness of a Streett tree automaton with s states and p termination pairs can be decided in (s • p) O(p ) deterministic time. Hence, the emptiness problem for A can be decided in double exponential time in φ 0 . By combining the lemmas of the previous sections we have that A is empty if and only if φ is unsatis able. Since CTL * is 2EXPTIME-hard [START_REF] Vardi | Improved upper and lower bounds for modal logics of programs: Preliminary Report[END_REF] and can be faithfully translated into DT-STIT n , we have proved the following theorem. 

CONCLUSION

We have provided a new semantics based on concurrent game structures (CGSs) for a temporal STIT logic that extends CTL * by agency operators. We have proved that the semantics based on CGSs and the semantics based on discrete BT +AC structures are equivalent for this logic. Furthermore, we have proved that the satis ability problem of the individual STIT fragment of our logic is 2EXPTIME-complete, the same complexity as CTL * .

In future work, we plan to introduce a more practical semantics for our temporal STIT logic based on the model representation known as "simple reactive modules language" (SRML) [START_REF] Van Der Hoek | On the complexity of practical ATL model checking[END_REF], a simpli ed version of "reactive modules language" (RML) by [START_REF] Alur | Reactive modules[END_REF], used in model checkers such as SMV and MOCHA. SRML describes models in a more concise way than CGSs. As shown by [START_REF] Van Der Hoek | On the complexity of practical ATL model checking[END_REF], satis ability checking and model checking for ATL are both EXPTIME-complete when using SMRL. On the contrary, when using CGSs, satis ability checking for ATL is EXPTIME-complete [START_REF] Van Drimmelen | Satis ability in alternating-time temporal logic[END_REF][START_REF] Walther | The Complexity of Tree Automata and Logics of Programs[END_REF], while model checking is solvable in polynomial time [START_REF] Alur | Alternating-time temporal logic[END_REF][START_REF] Goranko | Complete axiomatization and decidability of Alternating-time temporal logic[END_REF]. We will verify whether the same kind of phenomenon appears in the context of our temporal STIT logic, namely whether complexity of satis ability checking for our logic does not increase when moving from CGSs to SMRL, while complexity of model checking does.

We also plan to study an epistemic extension of our temporal STIT logic, after having enriched CGSs with epistemic accessibility relations for representing agents' uncertainties. We expect this epistemic extension of our logic to be well-suited to model repeated games with imperfect information. Now suppose that there is only a nite number of integer k such that e k = ∅. Since e 0 = ∅, there is a greatest integer ℓ such that e ℓ = ∅. Since e ℓ+1 ∅, t σ ≤ℓ Nop and by [START_REF] Alur | Reactive modules[END_REF], for all ψ ∈ e ℓ+1 , ψ σ ℓ and there is φ such that φ U ψ ∈ σ ℓ . Moreover by (2), t σ ≤k Nop for all k > ℓ. Therefore, by ( 1): (i) for all k ≥ ℓ, σ k = h 0k , (ii) for all k > ℓ, e k ⊆ e ℓ+1 , and (iii) there is ψ such that for all k > ℓ, ψ ∈ e k and ψ σ k . But it can easily be checked that σ ≥ℓ is a ⋄-path in t. Therefore σ ≥ℓ is ful lling and there must exist k > ℓ such that ψ ∈ σ k . L 9.3. If a pre-model t on Cl (φ 0 ) is accepted by A 2 then t satis es condition (2) of Def. 7.5 and φ 0 ∈ h 0 for (H, ∼, h 0 ) = t (ϵ).

P

. Let t r be an accepting run of A 2 on a tree t, and σ a ⋄-path in t with initial point θ. We will prove that σ is ful lling.

Let us de ne, f or a ll k > 0 , (c k , e k ) t r (θσ ) ≤k a nd, since θσ is active, (H k , ∼ k , h 0k ) t (θσ ) ≤k . If there is ℓ such that c ℓ = Cl (φ 0 ) then c k = e k = Cl (φ 0 ) for all k ≥ ℓ and t r would not be accepting. Therefore, for all k, c k ⊆ h 0k (in particular φ 0 ∈ h 00 ) and c k+1 = (θσ ) k+1 X . Hence, for all k > 0, σ k X ⊆ σ k+1 because σ k+1 = h 0( |θ |+k ) . We have proved condition (1) of Def. 7. [START_REF] Belardinelli | On logics of strategic ability based on propositional control[END_REF].

Suppose now that for some φ U ψ ∈ L n and ℓ ∈ N * , φ U ψ ∈ σ ℓ and ψ σ k for all k ≥ ℓ. It can easily be checked that for all k ≥ ℓ, φ U ψ ∈ σ k . Since t r is accepting, there are ℓ 1 > |θ | + ℓ such that e ℓ 1 = ∅ and ℓ 2 > ℓ 1 such that e ℓ 2 = ∅. By de nition,

h 0ℓ 1 = σ ℓ 1 +1-|θ | . Since ℓ 1 + 1 -|θ | > k, ψ ∈ e ℓ 1 +1
. But for e ℓ 2 to be empty, there must exist ℓ 3 such that ℓ 1 < ℓ 3 < ℓ 2 and ψ ∈ h 0ℓ 3 which is not possible because ℓ 3 -|θ | > ℓ and ψ σ ℓ 3 -|θ | . We have proved condition (2) of Def. 7.4. 
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 13 Automaton for condition (3) of Def. 7.5. We rst de ne the non-deterministic Büchi word automaton A 3N over the al-phabet H φ 0 × L φ 0 ∪ {Nop} . Let A 3N = (S 3N , S 03N , ρ 3N , F 3N ) with S 3N 2 Cl(φ 0 ) × 2 Cl(φ 0 ) , S 03N(∅, ∅), F 3N {(c, e) | e = ∅} and ρ 3N ((c k , e k ) , (h, α )) = (c k+1 , e k+1 ) i one of the following condition holds:

The relationship between the semantics for atemporal STIT and games in normal form has been explored, e.g., by[START_REF] Lorini | A Modal Logic of Epistemic Games[END_REF][START_REF] Tamminga | Deontic Logic for Strategic Games[END_REF][START_REF] Turrini | Agreements as Norms[END_REF].

In[START_REF] Broersen | Embedding Alternating-time Temporal Logic in Strategic Logic of Agency[END_REF], they moreover provide a polynomial embedding of ATL into the 'strategic' variant of STIT by[START_REF] Horty | Agency and Deontic Logic[END_REF].

Left linear means that for all m, m ′ , m ′′ ∈ Mom, if m ′ ≺ m and m ′′ ≺ m then m ′ = m ′′ or m ′ ≺ m ′′ or m ′′ ≺ m ′ .

Rooted means that there exists m ∈ Mom such that for all m ′ ∈ Mom, m ≺ m ′ or m = m ′ .