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Abstract

The classification of a new item may be viewed as a

matter of associating it with the class where it is the least

at odds w.r.t. the elements already in the class. An

oddness measure of an item with respect to a multiset,

applicable to Boolean features as well as to numerical

ones, has been recently proposed. It has been shown

that cumulating this measure over pairs or triples

(rather than larger subsets) of elements in a class could

provide an accurate estimate of the global oddness of an

item with respect to a class. This idea is confirmed and

refined in the present paper. Rather than considering all

the pairs in a class, one can only deal with the pairs

whose an element is one of the nearest neighbors of the

item, in the target class. The oddness evaluation

computed on this basis still leads to good results in

terms of accuracy. One can take a step further and

choose the second element in the pair also as another

nearest neighbor in the class. Although the method

relies on the notion of neighbors, the resulting algorithm

is far from being a variant of the classical k‐nearest

neighbors approach. The oddness with respect to a class

computed only on the basis of pairs made of two nearest

neighbors leads to a low complexity algorithm. Experi-

ments on a set of UCI benchmarks show that the

classifier obtained can compete with other well‐known

approaches.



1 INTRODUCTION

A decade ago, a new method of classification based on analogical proportions (ie, statements of 
the form “a is to b as c is to d”), has been proposed, showing its effectiveness on Boolean 
classical UCI benchmarks.1 The method had a cubic complexity due to the search for suitable 
triples of examples for building analogical proportions with the item to be classified. A 
computational improvement of the previous analogical classifier has been recently made.2,3 It 
has been shown that choosing one element of the triple as a nearest neighbor of the item to be 
classified reduces the complexity without harming the accuracy.

Besides, analogical proportions have been recognized as being members of a larger family, 
the so‐called “logical proportions.”4,5 Logical proportions are propositional logic expressions 
that link four Boolean variables through equivalences between similarity or dissimilarity 
indicators pertaining to pairs of these variables. Apart from the analogical proportion, another 
remarkable type of logical proportions, named heterogeneous proportions, expresses that there 
is an element at odds (an intruder) among four Boolean values, which is not in some prescribed 
position (eg, “there is an intruder value among a, b, c, d which is not a). If there is an intruder 
in the multiset {a, b, c} ∪ {d}, which is neither a, nor b, nor c, this means that d is at odds with 
the triple {a, b, c}. The truth value of such a heterogeneous proportion‐based expression can 
then be considered as an oddness index telling if d is at odds or not w.r.t. {a, b, c}.

Several classification methods rely on the intuitive idea that a new item should be classified 
in the class with respect to which it appears to be the least at odds. Heterogeneous proportions 
provide a natural basis to build a global oddness measure of an item x with respect to a set, by 
cumulating the oddness index with regard to different triples of elements in the set for the 
different features. This has suggested a simple procedure for classifying an item x , which puts it 
into the class C that minimizes this global oddness measure. This has been experimented with 
promising results for Boolean features.6 But this method has the drawback of dealing with a 
huge number of triples. Moreover, it has also been noticed that the oddness measure of an item 
with respect to a triple can be generalized to a subset of any size, as well as to numerical 
features.7,8 In this paper, we reconsider the above ideas, but we focus on the interest of using 
pairs rather than triples when building of the oddness measure. This has an obvious complexity 
advantage, but may also lead to slightly better results in general, as we shall see.

First, in this paper, we further investigate the comparison between the use of pairs and the 
use of triples in the oddness measure. Then, we only use pairs and triples in a given class whose 
one element is a nearest neighbor of the item, in the class. Finally, we more particularly 
investigate the use of oddness measures based on selected pairs, since our aim here is to show 
that we can keep on with the same idea of oddness. Doing so, we preserve the accuracy while 
drastically reducing the complexity by constraining the set of considered pairs. The idea is to 
constrain the choice of the two elements in the pairs. We first consider the option of building 
pairs with one element as a nearest neighbor and the other member of the pair as a most remote 
element of the item among the examples (thus providing a view of the diversity in the class). 
Then, we investigate the use of pairs made of two nearest neighbors only. However, the way we 
use these pairs of neighbors is very different from the k‐NN method as it will be explained 
below.

The paper is a substantially expanded version of a short conference paper,9 with more 
methodological developments and a new experimental part. The paper is structured as follows. 
Section 2 restates the logical definition of an oddness index, for Boolean, and then for numerical 
features (rescaled in the unit interval, as a graded truth value), first with respect to one feature



and then to a set of features. In Section 3, we explain why it is of interest to use a pair‐ or a triple‐
based evaluation of global oddness. We then build a global oddness measure of an item with 
respect to a class by cumulating oddness indices w.r.t. subsets of the given class. In Section 4, our 
experimentations proceed in two steps: first, we implement and test oddness‐based classifiers 
with singletons, pairs, and triples. Second, we select one element of each pair, or triple, as a 
nearest neighbor in the candidate class, thus reducing the complexity. It appears that the accuracy 
becomes even slightly better, especially in the case of pairs. In Section 5, we investigate the 
possibility of considering more constrained pairs where the two elements of the pairs are selected 
as nearest neighbors. It preserves the good accuracy results while reducing again the complexity. 
The concluding remarks in Section 7 stress the novelty of the approach.

2 ODDNESS INDEX OF AN ITEM W.R.T. A MULTISET
OF VALUES

We first provide a definition of the oddness of an item with respect to a multiset of any size, for one 
feature, and we relate this elementary oddness index to heterogeneous logical proportions in the 
case of triples. Then, we extend the oddness index to numerical features, and to a set of 
features.

2.1 The Boolean case
What does it mean to be an outsider or an intruder with respect to a multiset of n Boolean 
values, logically speaking? This can be formally stated as follows: Given a multiset of Boolean 
values {ai ∣ i ∈ [1, n]}, we look for a logical formula F (a1, …, an, x) such that:

F (a1, …, an, x) = 1 if a1 = ⋯ = an = 0, x = 1

or if a1 = ⋯ = an = 1, x = 0

and

F (a1, …, an, x) = 0 otherwise

This formula should obviously be independent of the order of the ai’s and should satisfy the 
following properties:

1. In the case x = 1, F a a x( ,…, , ) = 1n1 implies that all the ai’s should be 0, which is equivalent

to ∨∈ a = 0i n i[1, ] . So the formula we look for implies:

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟∨ ≡

∈

a x¬

i n

i

[1, ]

since x and the disjunction should have different truth values.



2. In the case x = 0, F a a x( ,…, , ) = 1n1 implies all the ai’s should be 1, which is equivalent to

∧ ∈ a = 1i n i[1, ] . So the formula we look for also implies:

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟∧ ≡

∈

a x¬

i n

i

[1, ]

It means that we can summarize the oddness of a given Boolean value x with respect to a

given multiset of Boolean values ∣ ∈a i n{ [1, ]}i as follows:

∣ ∈ ∨ ≡ ∧ ∧ ≡∈ ∈odd a i n x a x a x({ [1, ]}, ) = ¬ ( ) ¬ ( )i def i n i i n i[1, ] [1, ] (1)

Due to the commutativity of logical operators ∨ and ∧, the ordering of the ai’s is meaningless 
and we can simply keep a multiset notation. In the particular case of three Boolean variables 
(n = 2), this formula leads to the truth table in Table 1, in the case of four Boolean variables 
(n = 3), to the truth table in Table 2.

It is clear that odd holds true only when the value of x is seen as being at odds among the other 
values: roughly speaking, x is the intruder in the multiset of values. In the case n = 2, 
odd ({a1, a2}, x) is 0 if and if the value of x is among the majority value in the set {a1, a2, x}. 
When n = 3, odd ({a1, a2, a3}, x) does not hold true in the situation where there is a majority 
among values in a1, a2, a3, x and x belongs to this majority (eg, odd ({0, 1, 0}, 0) = 0), or when 
there is no majority at all (eg, odd ({0, 1, 1}, 0) = 0).

2.2 Link with heterogeneous proportions
When odd ({a, b, c}, x) is true, this means that among the four variables a, b, c, x in this order, 
there is an intruder which is not a, b, or c. A direct link between the Boolean oddness index and 
the heterogeneous proportions previously mentioned in the introduction, in relation with the

TABLE 1 odd a a x({ , }, )1 2 truth values

a_1 a_2 x odd

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0



analogical proportion, can be established. There are four heterogeneous proportions denoted

H H H H, , ,1 2 3 4
5 whose truth tables are given in Table 3 (only the lines leading to truth value 1

are indicated).

These proportions express the fact that there is an intruder among a b c d{ , , , }, which is not

a H( )1 , which is not b H( )2 , which is not c H( )3 , and which is not d H( )4 , respectively. It is then

clear that we have:

≡ ∧ ∧odd a b c x H a b c x H a b c x H a b c x({ , , }, ) ( , , , ) ( , , , ) ( , , , ).1 2 3

This conjunction tells us that among a b c x, , , in this order, there is an intruder, which is not

a b, , or c: this means x is the intruder. Indeed, we can check that the conjunction

∧ ∧H a b c x H a b c x H a b c x( , , , ) ( , , , ) ( , , , )1 2 3 has Table 2 as truth table.

TABLE 2 odd a a a x({ , , }, )1 2 3 truth values

a_1 a_2 a_3 x odd

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

TABLE 3 H H H H, , ,1 2 3 4 Boolean truth tables

H_1 H_2 H_3 H_4

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0

1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1

0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0

1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0



2.3 Extension to numerical data
Assuming that numerical features are renormalized between 0 and 1, an option for an extension 
of the oddness index to such feature values is to use the standard counterpart of the logical 
connectives in the [0, 1]‐valued Łukasiewicz logic,10 where:

1. min extends the conjunction ∧, max the disjunction ∨,
2. ⋅1 − ( ) extends the negation ¬,

3. ∣⋅ ⋅∣1 − − extends the equivalence ≡.

Then, a graded counterpart to formula (1) is,

∣ ∈ ∣ ∣ ∣ ∣
∈ ∈

odd a i n x x a x a({ [1, ]}, ) = min( − max , − min )i def
i n

i
i n

i
[1, ] [1, ]

(2)

When restricted to Boolean values, this formula reduces to formula (1). The use of

Łukasiewicz connectives for extending oddness to numerical values, even if many other choices

would be possible, is a natural option here since it leads to take into account extremal values

(via min and max) and the absolute values of differences, easy to understand as distances. It can

be checked in the graded case that:

1. ⋯ ∣ ∣odd u u v u v({ , , }, ) = − . Indeed, if u v= , the last value is not an intruder. The larger

∣ ∣u v− , the more v is at odds w.r.t. the n values equal to u.

2. ⋯ ⋯odd u u v v v({ , , , , , }, ) = 0 which is consistent with the expected semantics of odd since v

belongs to the multiset ⋯ ⋯u u v v{ , , , , , }.

3. if ≤ ≤∈ ∈a x amin maxi n i i n i[1, ] [1, ] , formula (2) implies that ∣ ∈odd a i n x({ [1, ]}, )i ≤ 0.5. This

again agrees with our need since, in that case, odd should remain rather small as long as x is

in between elements of the multiset. The oddness can be high (> 0.5) only if x is outside the

convex hull of the multiset.

From these properties, we understand that the proposed definition fits with the intuition and

provides high truth values when x appears at odds w.r.t. the set ⋯a a{ , , }n1 and low truth values

in the opposite case where x is not too different from the other values. Let us consider the

particular cases when n = 1, n = 2, and ≥n 3.

1. When n = 1, in the Boolean case, the formula odd a x({ }, )1 is just equivalent to ≡a x¬( )1 . In

that particular case, this is equivalent to ≡a x¬ 1 . In the multiple‐valued logic extension,

the truth value of ∣ ∣odd a x x a({ }, ) = −1 1 . This is just the distance (in ) between the two

values.

2. When n = 2, formula (2) reduces to: odd a b x({ , }, ) ∣ ∣ ∣ ∣x a b x a b= min( − max( , ) , − min( , ) ),

ie, ∣ ∣ ∣ ∣odd a b x x a x b({ , }, ) = min( − , − ), ie, the min of the distances between x and each of

a and b. This is also the classical distance between x and the set a b{ , }.

3. When ≥n 3, it is worth noticing that ∣ ∈odd a i n x({ [1, ]}, )i is no longer always equal to the

distance of x to the subset ∣ ∈a i n{ [1, ]}i , ie, ∣ ∈ ∣ ∣∈d a i n x x a({ [1, ]}, ) = min −i i n i[1, ] . In fact,

∣ ∈ ≤ ∣ ∈d a i n x odd a i n x({ [1, ]}, ) ({ [1, ]}, )i i . Indeed, as can be seen in formula (2), odd is the

minimum of two distances to elements in the multiset ∣ ∈a i n{ [1, ]}i , while



∣ ∈d a i n x({ [1, ]}, )i is the minimum of the distances to the n elements of the multiset. For

instance, in the case n = 3, odd ({0.2, 0.5, 0.8}, 0.6) = 0.2 and d ({0.2, 0.5, 0.8}, 0.6) = 0.1.

This is a distinctive feature of singletons and pairs to be such that ∣ ∈odd a i n x({ [1, ]}, ) =i

∣ ∈d a i n x({ [1, ]}, )i for n = 1 and n = 2. In fact, for ≥n 3, we have that ∣ ∈odd a i n a({ [1, ]}, )i i

is not necessarily equal to 0. Values ≥n 3 have to be investigated in the future.

2.4 | Extension to vectors

Generally, items are represented by a set ofm features, rather than one feature. That is why we

have to define an oddness measure for vectors of dimension m. When dealing with vectors

⃗ ∈x [0, 1]m, Boolean vectors are also covered as a particular case. The odd measure, defined by

(1) and extended in (2) is used to estimate to what extent a value x can be considered as being at

odds among a multiset S of values for one feature.

A natural option for an extension tom features is to consider a definition of odd for vectors

as the sum componentwise of the odd values computed via formula (1) or (2). This leads to the

general formula:

⃗ ∣ ∈ ⃗

∑ ∣ ∈

odd a i n x

odd a i n x

({ [1, ]}, ) =

({ [1, ]}, )

i def

j

m

i
j j

=1

(3)

where x j is the jth component of ⃗x and the ai
j
’s are the jth components of the vectors ⃗ai

respectively. Obviously,

⃗ ∣ ∈ ⃗ ∈odd a i n x m({ [1, ]}, ) [0, ]i

as being the sum of m numbers belonging to [0, 1].

In particular, ⃗ ⃗odd a x({ }, ) reduces to the L1 norm in m of the vector ⃗ ⃗a x− :

∣ ∣ ∣∣ ⃗ ⃗∣∣Σ a x a x− = −j
m j j

L=1
1. In the case of n, this is just the Hamming distance between ⃗a

and ⃗x .
The Boolean case and the numerical case are just particular cases of formula (3) where 

m = 1. Note that we implicitly assume that the features are independent in this context.
If odd ({ai⃗ ∣i ∈ [1, n]}, x ⃗) = 0, it means that no feature indicates that x  ⃗ behaves as an 

intruder among the ai’s. On the contrary, high values of odd ({ai⃗ ∣i ∈ [1, n]}, x ⃗) (close to m) 
means that, on many features, x⃗  appears as an intruder.

3 ODDNESS‐BASED CLASSIFIERS

We now explain how the oddness index odd can be used for building a classifier.

3.1 Global oddness measure

Given a set C = {ai⃗ ∣i ∈ [1, n]} of vectors gathering the set of examples of the same class, one 
might think of computing odd (C , x ⃗) as a way of evaluating how much x ⃗ is at odds with respect



toC . An immediate classification algorithm would be to compute C ⃗odd x( , ) for every class and

to allocate to ⃗x the class which minimizes this number. Nevertheless, as explained now, this

number is not really meaningful when the size ofC is large, whatever the number of features.

Indeed, we have to be careful because then ⃗ ∣ ∈a i n{ [1, ]}i is summarized by two vectors

made respectively by the minimum and the maximum of the feature values among the

examples ofC (due to formulas 2 and 3). These two vectors have high chance to be fictitious in

the sense that, usually, they are not elements of C ⃗ ∣ ∈a i n= { [1, ]}i . Approximating our

knowledge of the set ⃗ ∣ ∈a i n{ [1, ]}i using only the maximal ranges of the feature values over the

members of the set seems very crude.

The above remark tends to indicate that ⃗ ∣ ∈ ⃗odd a i n x({ [1, ]}, )i may not be a good marker of

the oddness of x w.r.t. ⃗ ∣ ∈a i n{ [1, ]}i when n is large. We have to devise a method allowing to

overcome this issue.

An idea is then to consider small subsets S of the classC , then compute ⃗odd S x( , ) and finally

add all these atomic oddness indices to get a global measure of oddness of ⃗x w.r.t. C . This

approach leads to the following initial formula: C ⃗⊆ ∣ ∣Σ odd S x( , )S S n, = . But, to take into account

the relative size of the different classes, it is fair to introduce a normalization factor and our

final definition is:

C
C C

⃗ ∑ ⃗
∣ ∣ ⊆ ∣ ∣

( )
Odd x odd S x( , ) =

1
( , )n

n

S S n, =

As we consider only subsets S of small size (ie, singletons, pairs, or triples), the previous

formula becomes:

1. For singletons:

C
C

C
⃗

∣ ∣
∑ ⃗ ⃗⃗∈Odd x odd a x( , ) =

1
({ }, )a1

Since ⃗ ⃗ ∣∣ ⃗ ⃗∣∣odd a x a x({ }, ) = − L1
, Odd is just the average L1 distance between ⃗x and all the

elements of the class C .

2. For pairs:

C
C C

⃗ ∑ ⃗ ⃗ ⃗
∣ ∣ ⃗ ⃗∈

( )
Odd x odd a b x( , ) =

1
({ , }, )a b2

2

,

As already said, normalizing the summation aims to take into consideration the relative size

of different classes. As the size of the subsets S (equal to 2 here) do not have any impact on

classification in practice and as, for big classes,
C∣ ∣

( )
2

is more or less equal to C∣ ∣2, in practice, we

simply use a normalization factor equal to
C

1
2
.

3. For triples:

C
C C

⃗ ∑ ⃗ ⃗ ⃗ ⃗
∣ ∣ ⃗ ⃗ ⃗∈

( )
Odd x odd a b c x( , ) =

1
({ , , }, )a b c3

3

, ,



In practice, we use
C∣ ∣

1
3
as normalization factor.

In the above evaluation, we consider all the subsets ofC of a given size. We first explore this

option. We might also imagine to deal only with particular subsets of a given size as soon as we

do not harm the performance. In the following, we refer to the choice of particular subsets, by

the general term of optimization when speaking of the proposed classifiers.

3.2 | Classification

A classification algorithm is easily deducible from this oddness measure. LetTS be a training set

composed of instances ⃗ ⃗z cl z( , ( )), where ⃗ ∈z m or m and ⃗cl z( ) is the label of ⃗z . Given a new

instance ⃗ ∉x TS without label, and choosing a suitable size n, we allocate to this item the label

corresponding to the class minimizing C ⃗Odd x( , )n .

Algorithm 1 Oddness‐based algorithm

Input: a training set TS of examples ⃗ ⃗z cl z( , ( ))

a new item ⃗x ,
an integer n,

Partition TS into sets C of examples with the same label c.

for each Cdo

Compute C ⃗Odd x( , )n for subsets of size n

end for

C⃗ ⃗cl x argmin Odd x( ) = ( ( , ))c n

return ⃗cl x( )

In the following, we first report results obtained with this algorithm on different 
benchmarks. Later, we shall continue to apply the same algorithm but by slightly modifying 
the global oddness measure Oddn that we use in Algorithm 1.

4 EXPERIMENTATIONS AND PRELIMINARY DISCUSSION

In this section, we provide experimental results obtained with Oddness‐based classifiers and we 
compare them to other machine learning classifiers. After introducing the datasets for the 
benchmarks, we report the results obtained with the oddness‐based classifiers, first considering 
all the subsets of a given size to compute the global oddness measures. Then, we progressively 
filter the considered subsets by only using appropriate ones.

4.1 Datasets

The experimental study is based on 19 datasets taken from the UCI machine learning 
repository.11 A brief description of these data sets is given in Table 4.

Since an oddness‐based classifier is able to deal with both Boolean or multivalued features in 
this study, the first part in this Table 4 includes eight datasets with categorical or Boolean 
attribute values and the second part includes 10 datasets with only numerical attributes.

In terms of classes, we deal with a maximum number of 26 classes. To apply the Boolean and 
multiple‐valued semantics framework, all categorical attributes are binarized and all numerical



attributes are rescaled. More precisely, we just replace a real value r with r r

r r

−

−

min

max min

, where rmin and

rmax respectively represent the minimal and the maximal values for this attribute on this data set.

A real value is thus changed into a number that may be understood as a truth value. The minimal

and the maximal values for each attribute are computed is a preprocessing step using the training

set only. These values are then used to scale both training and testing data. If a value in the rescaled

testing set is outside the range [0, 1], we remove the corresponding item. This appears in only some

of the tested datasets with maximum one or two items in the testing set to be removed.

For nominal attributes, we experiment over the following eight datasets:

1. Balance, Car, and Hayes‐Roth are multiple classes datasets.

2. Monk1, Monk2, Monk3, Spect, and Voting datasets are binary class problems. Monk3 has

noise added (in the sample set only). Spect and Voting data sets contain only binary

attributes. Voting has missing attribute values.

For numerical datasets, we experiment over the following 11 datasets:

1. Iris, Wine, Sat.Image, Glass, Segment, and Letter datasets are multiple class problems.

2. Diabetes, W.B. Cancer, Heart, Magic, and Ionosphere are binary class datasets.

4.2 Testing protocol
In terms of protocol, we apply a standard 10‐fold cross‐validation technique. As usual, the final 
accuracy is obtained by averaging the 10 different accuracies for each fold. However, classical

TABLE 4 Description of datasets

Datasets Instances Nominal Att. Binary Att. Numerical Att. Classes

Balance 625 4 20 – 3

Car 743 7 21 – 4

Monk1 432 6 15 – 2

Monk2 432 6 15 – 2

Monk3 432 6 15 – 2

Spect 267 – 22 – 2

Voting 435 – 16 – 2

Hayes‐Roth 132 5 15 – 3

Diabetes 768 – – 8 2

W. B. Cancer 699 – – 9 2

Heart 270 – – 13 2

Magic 1074 – – 11 2

Ionosphere 351 – – 35 2

Iris 150 – – 4 3

Wine 178 – – 13 3

Satellite Image 1090 – – 36 6

Segment 1500 – – 19 7

Glass 214 – – 9 7

Letter 1076 – – 16 26



classifiers (with which we compare our approach) as well as some variants of Oddness‐classifiers 
(that will be introduced in Section 4.4) have parameters to be tuned before performing this cross‐
validation. To do that, we randomly choose a fold (as recommended by12), we keep only the 
corresponding training set (ie, which represents 90% of the full data set). On this training set, we 
again perform a 10‐fold cross‐validation with diverse values of the parameters. We then select the 
parameter values providing the best accuracy. These tuned parameters are then used to perform 
the initial cross‐validation. As expected, these tuned parameters change with the target data set. 
To be sure that our results are stable enough, we run each algorithm (with the previous 
procedure) five times so we have five different parameter optimizations. Each displayed 
parameter in Tables 5 and 6 (that we denote β) is the average value over the five different values 
(one for each run). The results shown in Tables 5 and 6 are the average values obtained from five 
rounds of this complete process. In case there is no parameter to be tuned (this is the case of Odd1, 
Odd2, and Odd3 in next section), we simply apply a standard 10‐fold cross‐validation still repeated 
five times to get stable results.

4.3 Results for the classifiers Odd1, Odd2, and Odd3

In this section, we test the efficiency of the basic oddness classifiers. Table 7 provides mean 
accuracies and standard deviations obtained with our implementations of Odd1, Odd2, and Odd3.

We observe that:

1. Odd1 is globally less accurate than other classifiers for all datasets, having an average

accuracy of 73% when Odd2 has 78% and Odd3 has 79%.

2. For 10 datasets, the accuracy increases when we use subsets of triples instead of pairs (this is

also true when we use subsets of pairs instead of singletons; see for example “Car” and

“Spect.” datasets).

3. However, these results remain not satisfactory if compared to the well‐known algorithms

such as SVM or IBK, not only in terms of accuracy, but also in terms of complexity. In the

next section, we apply different optimizations, focusing on Odd2 classifier.

Note that the results reported here for Odd1 are quite similar to the ones obtained in Bounhas 
et al.8 But since we follow a slightly more strict experimental protocol in this paper, we have 
repeated the experiments with the new protocol for having clear points of comparison for the 
new experiments reported in the following. While results for Odd2 and Odd3 are reported for the 
first time in this paper.

4.4 Use of an improved oddness measure

The rather poor performances of our oddness classifiers may be due to the huge number of 
subsets considered in each class, having equal importance, while a lot of them blur the accuracy 
of oddness measure through the summation. We may think of privileging subsets including 
elements of particular interest such as nearest neighbors in the class.

On top of that, such a strategy will reduce the computational complexity of the algorithms. 
An obvious option is to consider only subsets which contain one of the k nearest neighbors of x

in the class. In that case, we have to adjust the normalization factor which becomes
C∣ ∣k

1

× n−1
in

the Oddn formula.



TABLE 5 Classification accuracies given as mean and standard deviation with improved Odd NN( )1 , Odd NN Std( , )2 , Odd NMRE( )2 , Odd NN NN( , )2 , and

Odd NN Std Std( , , )3 obtained with the best parameter β

Odd NN( )1 Odd NN Std( , )2 Odd NMRE( )2 Odd NN NN( , )2 Odd NN Std Std( , , )3

Datasets Acc. β Acc. β Acc. β Acc. β Acc. β

Balance 82.79± 4.29 9 87.4± 4.08 21 82.62± 3.06 (16, 13) 83.9± 5.02(−) 17 88.62± 3.4 2

Car 91.95± 3.31 8 92.04± 4.04 7 91.19± 2.68 (6, 20) 92.45± 3.88(.) 7 90.93± 4.03 5

Monk1 99.91± 0.09 6 99.77± 0.23 4 99.43± 0.79 (7, 7) 99.81± 0.67(.) 6 99.31± 3.39 1

Monk2 66.54± 2.1 20 64.45± 3.1 19 65.42± 3.27 (19, 2) 67.46± 3.25(+) 16 60.93± 4.16 17

Monk3 99.95± 0.05 3 99.95± 0.72 1 99.37± 1.4 (5, 12) 100(.) 5 99.95± 0.05 2

Spect 82.74± 6.49 13 83.95± 4.72 9 83.14± 8.15 (14, 16) 84.55± 4.42(+) 16 84.1± 4.58 5

Voting 93.04± 3.2 9 94.23± 3.95 10 93.45± 4.99 (5, 15) 95.33± 2.84(+) 17 93.81± 2.86 11

Hayes‐Roth 63.17± 12.41 14 78.35± 11.94 3 74.59± 8.93 (4, 19) 77.73± 9.62(−) 7 79.37± 9.74 7

Diabetes 75.06± 3.25 17 76.28± 3.83 17 75.5± 4.53 (16, 11) 75.28± 4.26(−) 18 75.91± 4.58 15

Cancer 97.07± 2.19 3 97.27± 1.34 5 97.15± 2.61 (4, 9) 97.24± 1.63(.) 12 97.04± 2.24 5

Heart 82.33± 5.15 13 82.52± 7.87 13 83.41± 7.04 (10, 5) 82.54± 5.06(.) 19 82.2± 4.01 13

Magic 78.78± 1.58 13 79.05± 3.13 16 78.06± 3.48 (14, 18) 79.23± 2.41(.) 18 74.53± 3.02 17

Ionosphere 90.61± 3.84 1 92.09± 3.32 8 91.18± 4.51 (1, 18) 91.78± 4.95(−) 15 90.55± 4.05 14

Iris 94.56± 4.11 9 94.97± 4.41 9 94.94± 4.33 (11, 9) 94.57± 4.11(−) 14 94.64± 5.32 7

Wine 97.55± 3.07 11 98.47± 2.52 5 97.2± 3.19 (3, 15) 98.37± 2.77(.) 9 97.16± 4.76 5

Sat. Image 94.79± 2.78 3 95.03± 3.08 1 94.49± 2.08 (2, 12) 95.38± 2.59(+) 5 93.43± 2.38 1

Segment 96.76± 1.3 2 96.67± 1.44 1 96.67± 1.25 (2, 9) 96.79± 1.17(+) 4 95.31± 2.14 3

Glass 72.87± 8.1 3 75.84± 9.8 3 74.94± 8.58 (3, 5) 77.93± 7.27(+) 3 72.22± 8.19 3

Letter 75.66± 3.34 2 75.86± 4.57 2 75.1± 2.77 (3, 17) 78.04± 3.76(+) 5 73.8± 2.81 2

Average 86.11 87.59 86.73 87.81 86.52



TABLE 6 Results for other machine learning classifiers obtained with the best parameter β

IBk C4.5 JRIP SVM (RBFKernel) SVM (PolyKernel)

Datasets Accuracy β Accuracy β Accuracy β Accuracy β Accuracy β

Balance 90.15± 2.6 17 77.5± 5.12 0.3 76.84± 2.28 7 99.17± 0.34 (32 768, 0.00195) 98.53± 0.26 (128, 1)

Car 91.84± 3.51 2 95.53± 2.02 0.2 91.54± 3.21 6 99.37± 0.12 (32 768, 0.03125) 99.19± 0.19 (32 768, 2)

Monk1 99.95± 0.05 3 97.77± 2.95 0.1 94.63± 9.29 3 100 (32 768, 0.5) 100 (32 768, 6)

Monk2 67.04± 1.19 13 95.32± 2.22 0.4 79.68± 6.14 10 100 (32 768, 0.03125) 100 (32 768, 2)

Monk3 99.95± 0.05 1 100.0± 0.0 0.1 99.91± 1.44 2 100 (32 768, 0.5) 100 (32 768, 7)

Spect 80.91± 8.46 6 82.21± 6.38 0.3 82.75± 5.7 5 83.59± 0.55 (5, 8) 83.14± 1.03 (0.5, 1)

Voting 92.58± 3.21 2 95.1± 3.58 0.3 95.42± 2.68 2 96.37± 0.10 (32, 0.03125) 95.72± 0.21 (0.03125, 2)

Hayes‐Roth 63.62± 9.38 5 82.57± 5.18 0.1 83.8± 6.64 5 79.70± 1.55 (32 768, 0.0078) 79.85± 2.05 (32, 1)

Diabetes 75.08± 3.53 20 74.73± 4.14 0.2 74.63± 5.22 5 77.37± 0.31 (8192, 3.051E− 5) 77.34 ±0.30 (0.5, 1)

W. B. Cancer 96.66± 2.97 4 94.79± 3.19 0.2 95.87± 2.9 4 96.74± 0.12 (2, 2) 96.92 ±0.23 (2, 1)

Heart 82.06± 8.82 10 78.34± 7.05 0.2 78.52± 7.32 4 79.98± 0.73 (32, 0.125) 83.77± 0.55 (0.5, 1)

Magic 78.4± 2.53 13 75.73± 2.55 0.3 76.69± 3.44 5 82.06± 0.23 (512, 0.125) 81.89± 0.45 (32, 3)

Ionosphere 90.83± 3.83 1 89.56± 5.62 0.1 89.01± 4.75 5 94.70± 0.32 (2, 2) 89.28± 0.43 (0.03125, 2)

Iris 94.99± 3.89 6 94.28± 5.19 0.2 93.65± 5.24 6 94.13± 1.28 (32 768, 0.5) 96.13± 0.99 (512, 1)

Wine 98.06± 2.81 8 94.23± 5.54 0.1 94.99± 3.49 8 98.20± 0.47 (32 768, 2) 98.53± 0.75 (2, 1)

Sat. Image 94.9± 2.04 1 92.71± 2.73 0.1 92.77± 3.48 3 96.01± 0.24 (8, 2) 95.11± 0.18 (0.5, 4)

Segment 96.46± 1.44 2 95.77± 1.77 0.2 94.55± 1.96 6 96.98± 0.25 (2048, 0.125) 97.14± 0.17 (8, 4)

Glass 72.87± 5.38 1 69.92± 7.4 0.2 69.06± 6.28 5 68.50± 1.57 (2, 8) 73,01± 1.50 (2048, 2)

Letter 75.79± 3.32 1 63.38± 4.04 0.2 62.6± 5.42 9 83.59 ±0.55 (32 768, 0.5) 82.93± 0.54 (0.5, 3)

Average 86.43 86.81 85.63 90.87 90.97



In Table 5, we provide mean accuracies and standard deviations for improved Odd1, Odd2,

and Odd3 in case of Boolean or numerical data. For each classifier, the displayed results

correspond to the optimal value of the parameter β (for all oddness‐classifiers, β being the

number of nearest neighbors) obtained as a result of the optimization step in the inner cross‐

validation. We use an obvious notation for each classifier, Odd NN Std( , )2 for instance means

that we use a nearest neighbor and any other element to build a pair. In Table 5, we also save

results for two supplementary tested oddness‐classifiers named Odd NMRE( )2 and

Odd NN NN( , )2 . A full description of these two latter classifiers will be provided in Section 5.

As we can see in this Table 5, considering the average accuracy on all datasets, Odd2 is the

best performer for most datasets if compared to other options using singletons or triples, even if

Odd1, and Odd3 remain quite close.

For this reason, we now investigate Odd2 to get a better understanding of its behavior and

then we compare it smoothly to other classifiers. We also propose other options for building

pairs in the next section. In the following, we only focus on Odd NN Std( , )2 classifier and we

study the impact of parameter k on this classifier.

Study of impact of k on Odd NN Std( , )2 performances

Looking at the results of Odd NN Std( , )2 in Table 5, we can draw the following conclusions:

1. It is clear that this optimized classifier is significantly more efficient than the basic classifierOdd2

for most datasets. The best accuracy for this option is noted for datasets: “Balance,” “Car,”

TABLE 7 Classification accuracies given as mean and standard deviation with Odd1, Odd2, and Odd3

Datasets Odd1 Odd2 Odd3

Balance 83.67± 3.82 58.19± 6.04 61.42± 7.08

Car 57.89± 7.73 77.81± 7.74 84.35± 3.87

Monk1 75.01± 6.53 74.92± 6.11 74.91± 4.71

Monk2 50.74± 9.11 50.92± 8.97 51.87± 7.92

Monk3 97.23± 1.78 97.23± 2.02 97.22± 2.67

Spect 44.02± 6.63 72.99± 9.34 84.32± 4.77

Voting 89.13± 5.34 89.42± 4.79 88.78± 4.7

Hayes‐Roth 66.47± 9.64 76.87± 10.39 80.46± 8.03

Diabetes 75.05± 3.96 73.59± 3.13 72.55± 4.25

W. B. Cancer 94.17± 3.8 96.16± 2.89 97.01± 1.74

Heart 83.17± 6.77 82.53± 7.64 81.8± 6.33

Magic 61.48± 2.41 73.22± 2.96 71.79± 3.33

Ionosphere 69.38± 3.87 87.83± 4.28 86.6± 6.47

Iris 94.53± 7.28 94.98± 6.1 95.08± 4.51

Wine 94.95± 5.4 95.49± 5.34 95.92± 4.86

Sat. Image 86.89± 2.51 87.63± 2.93 88.6± 2.92

Segment 78.74± 3.55 85.44± 4.12 85.17± 2.37

Glass 37.29± 11.31 47.27± 12.23 48.48± 7.43

Letter 49.72± 3.72 59.2± 3.37 60.47± 5.59

Average 73.13 77.98 79.31



“Spect,” “Sat.Image,” “Wine,” and “Glass” having large number of attributes and/or classes. The

average accuracy over all datasets is 87% for the Odd NN Std( , )2 and 78% for the basic Odd2.

2. Regarding the optimized parameter k, we can see that the best results are obtained with large

values of k for some datasets such as: “Balance,” “Monk2,” and “Diabetes.” For other

datasets with large dimension such as “Sat.Image,” “Segment,” and “Letter,” even very small

values of k provide the best accuracies (k= 1 or 2). Since subsets of pairs are generally less

informative than subsets of triples, it is better to consider, for this option, large values of k to

take advantage of a larger variety of data.7,8 It remains to investigate what would be a

suitable value for k leading to the best accuracy for any data set.

3. It is quite clear that the proposed classifier, especially Odd NN Std( , )2 , performs well to

classify numerical as well as Boolean data sets. These results highlight that the proposed

multivalued oddness measure correctly extends the Boolean case.

4.5 Comparison with other classifiers
To evaluate the efficiency of the oddness‐classifiers, we compare their accuracy to existing 
classification approaches:

• IBk: a k‐NN classifier, we use the Manhattan distance and we tune the classifier on different

values of the parameter k = 1, 2, …,21.

• C4.5: generating a pruned or unpruned C4.5 decision tree. We tune the classifier with

different confidence factor used for pruning C = 0.1, 0.2, …,0.5.

• JRip: propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction

(RIPPER), optimized version of IREP. We tune the classifier for different number of

optimization runs O = 2, 4, …,10 and we apply pruning.

• SVM: a sequential minimal optimization algorithm for training a support vector classifier. We

use two types of kernels: the RBF‐Kernel and we tune its parameter γ γ( = 2 , 2 ,…,2 )−15 −13 3

and the Poly‐Kernel and we tune its degree d (d = 1, 2, …,10; also called exponent). We also

tune the complexity parameter C = 2 , 2 , …,2−5 −3 15 with each type of kernel as recommended

by Hsu et al.12

Accuracy results for IBk, C4.5, JRIP, and SVMs are obtained by using the free

implementation of Weka software to the datasets described in Table 4. To run IBk, C4.5, and

JRIP, we first optimize the corresponding parameter for each classifier, using the meta

CVParameterSelection class provided by Weka. For SVM, since we have to tune both the

complexity C (independent of the type of the kernel) as well as the kernel parameter γ for RBF‐

Kernel and the degree d for the Poly‐Kernel, we use the GridSearch package available with

Weka suitable for tuning two parameters. Both CVParameterSelection and GridSearch classes

allow to perform parameter optimization by cross‐validation applied to the training set only.

This enables to select the best value of the parameter for each data set, then we train and test

the classifier using this selected value of this parameter. Classification results for C4.5, JRIP,

and SVMs, displayed in Table 6, correspond to the best/optimized value of each tuned

parameter (denoted β in this table, for SVM β correspond to the best pair (C,γ) for RBF‐kernel

or (C,d) for Poly‐kernel).



4.5.1 Evaluation of Odd2 (NN , Std) classifier with respect to other 
classifiers

If we compare the results of Odd2 (NN , Std) classifier to those of machine learning algorithms in 
Table 6, we note that:

1. The Odd NN Std( , )2 classifier performs more or less in the same way as the best known

algorithms. Especially, this classifier outperforms all other classifiers Except SVM for 13 out

of 19 datasets. In particular, Odd NN Std( , )2 is significantly better than IBk and SVM‐based

Poly‐Kernel for datasets “Ionosphere,” “Spect,” and “Glass” and performs similar to SVM‐

based Poly‐Kernel for datasets “Monk1,” “Monk3,” “W.B. Cancer,” “Wine,” and “Sat.

Image.”

2. If compared to IBk classifier, we can observe that Odd NN Std( , )2 significantly outperforms

IBk on datasets “Spect,” “Voting,” “Hayes‐Roth,” “Diabetes,” “Ionosphere,” “Magic,” and

“Glass” and has similar results for “Monk1,” “Monk3,” “Wine,” “Sat.Image,” “Segment,”

and “Letter.”

3. The computed average accuracy over 19 datasets for each classifier, confirms our

observations and shows that the Odd NN Std( , )2 is ranked the second just after SVM

classifier.

4. Odd NN Std( , )2 shows high efficiency to classify datasets “Balance,” “Car,” “Sat.Image,”

“Segment,” and “Glass” (which have multiple classes) which demonstrates its ability to deal

with multiple class data sets.

5. Odd NN Std( , )2 seems to be also efficient when classifying data sets with a large number of

attributes as in the case of “Car” and “Ionosphere” and large number of instances as in the

case of “Magic,” “Sat.Image,” and “Segment” for instance.

6. Odd NN Std( , )2 has close classification results to those of analogy‐based classifier in the

numerical case3,13 for most datasets. In the Boolean case, both oddness‐based and analogy‐

based classifiers2,3 achieve good results for “Balance,” “Car,” “Monk1,” and “Monk3.” For

“Monk2” data set, Analogy‐based classifier significantly outperforms Odd NN Std( , )2 while

for “Spect” and “Voting” the converse is observed. However, even if there is a path (through

logical proportions, in the Boolean case) relating the respective building blocks on which

analogy‐based classifiers and the classifiers studied here are based, the two types of

classifiers seem to rely on different ideas: the control of the dissimilarity via the oddness

measure, and the fact of privileging linearity in the other case.14

The above results suggest to focus more on the Odd2. In the next section, we investigate 
further options to select suitable pairs in a class.

5 EXPERIMENTING WITH MORE CONSTRAINED PAIRS

We have seen that selecting one element of a pair as a nearest neighbor in the target class of the 
item to be classified leads to good accuracy rates. So, why not to also carefully select the second 
element of the pair? This is what we do in the following sections, first by choosing a second 
element very far from the item to be classified, then by choosing the second element as another 
nearest neighbor in the class.



5.1 Odd2 using a remote element

A drastic option is to consider the second element of the pair as being among the Most Remote 
Elements (MRE) to the item x ⃗. Indeed, we may think that pairs including an MRE are more 
informative since they allow to sample a larger variety of data, which may be of interest 
especially when the function underlying the classification is complex. The intuition behind 
taking b  ⃗ as an MRE might be justified by the fact that, in this case, the interval of values 
[ai, bi], i = 1, …, m remains sufficiently large since vectors a ⃗ and b ⃗ are very different (min and 
max are more informative here). This will guaranty to get sufficiently high values of atomic 
odd (xi, {ai, bi}). Cumulating these elementary odd values through pairs may contribute to 
quickly converge to the appropriate class. In that case, Odd (x ⃗, C ) is the sum of k × k′ atomic

oddness values and then belong to the interval k k[0, × ]′ . In the following, we denote NMRE,

the classifier using this option.

The algorithm NMRE has two main parameters to be tuned: k the number of nearest

neighbors and k′ the number of most remote elements which are taken into account to compute

the oddness measure. In the following, we investigate the behavior of NMRE algorithm on all

the experimented datasets. In Table 5, we provide the accuracy results of NMRE‐classifier

(denoted:Odd NMRE( )2 ). These results correspond to the optimal values of k and k′ obtained as

a result of the optimization step in the inner cross‐validation.

From Table 5, we can draw the following comments:

1. NMRE classifier provides good results for large values of k or k′ on most datasets. This

suggests that, for small values of k, there is not enough information allowing to properly

classify.

2. The average value of parameter k′ over all datasets is higher than that of parameter k.

3. NMRE is efficient to classify both Binary or numerical datasets as in the case of Odd2

classifier.

4. If compared to Odd NN Std( , )2 , the NMRE seems less efficient on almost all datasets except

for Monk2 for which it provides better results.

These primary observations lead us to test another option.

5.2 Odd2 using two nearest neighbors
The previous experiments have shown that choosing one element in the pair contributes to 
improve the performance w.r.t. the case where any subsets were considered. Nevertheless, 
choosing the second element of the pair as the most remote element does not really help to 
improve the accuracy. So we are led to the idea of still choosing this second element as one of 
the k nearest neighbors in the class, keeping it distinct from the first one. And the

normalization factor is chosen accordingly as
( )
1
k

2

. This is also clearly beneficial from a

complexity viewpoint.

In Table 5, we also show classification accuracy of Odd2 classifier, in which each pair

element is among the k nearest neighbors in the class. We denote this classifierOdd NN NN( , )2 .

Results of Odd NN NN( , )2 in Table 5 shows that:



1. If we compare results of the classifier using pairs with two nearest neighbors to those of the

basic Odd2 classifier in Table 7, it is clear that this third optimized option also performs

largely better than the basic Odd2 classifier.

2. To compare the Odd NN NN( , )2 to the Odd NN Std( , )2 classifier, in the Odd NN NN( , )2

column of Table 5 we assign a positive “+” mark if the Odd NN NN( , )2 is better than the

Odd NN Std( , )2 , a negative mark “−” in the opposite case and a neutral mark “.” if they have

equivalent accuracies. This comparison shows that the two classifiers have close efficiency

for many datasets. Especially, the Odd NN NN( , )2 is slightly better for seven datasets and

worst for five datasets.

5.3 | Statistical evaluation of Oddness‐classifiers

The comparative studies with other classifiers are first carried out through the Friedman

test.15 It is a nonparametric test used to detect differences in n treatments groups with equal

sample sizes across multiple test attempts. The null hypothesis, ⋯H F F F n0: (1) = (2) = = ( )

states that there is no significant difference between groups of algorithms against the alternative

hypothesis: at least one group is significantly different. In case the Friedman test indicates

significance, a post‐hoc test after Conover16 is applied to calculate the corresponding levels of

significance. The output of this test is simply the computed P‐values corresponding to each pair

of compared groups saved in the lower triangle of the P‐values matrix. For this test, we also

apply a Bonferroni‐type adjustment of P‐values.

In a preliminary step, we aim to compare betweenOddness classifiers using singletons, pairs, or

triples to check our first observations in previous sections. For this reason, we compare between

Odd1,Odd2,Odd3,Odd NN( )1 ,Odd NN Std( , )2 , andOdd NN Std Std( , , )3 . This comparison confirms

that Odd NN Std( , )2 is significantly better than all other compared classifiers using singletons or

triples with a P‐value at least equal to 0.00644 as a result of the post‐hoc test after Conover.

Since Oddness‐classifiers using pairs are the best among other family of Oddness classifiers,

in the following we restrict our evaluation to the efficiency of Odd NN Std( , )2 , Odd NMRE( )2 ,

and Odd NN NN( , )2 and we compare their accuracy to that of other machine learning

classifiers. Since the Friedman test, provided a significant P‐value= 1.295e − 9, we then apply a

post‐hoc test after Conover and we use Bonferroni‐type adjustment of the P‐values.

In Table 8, we provide the results of the computed P‐values for each pair of compared

classifiers. Significant P‐values (<0.05) are given in bold.

The computed P‐values are consistent with the following observations:

1. The SVM using (RBF or Poly‐Kernel) significantly outperforms the IBK, the C4.5, and the

JRIP classifiers. It also outperforms Odd NMRE( )2 classifier. While SVM using Poly‐Kernel

seems better than Odd NN Std( , )2 .

2. It is clear thatOdd NN Std( , )2 significantly outperforms the IBK, the C4.5, the JRIP classifiers

and also Odd NMRE( )2 .

3. This demonstrates that the proposed first optimization not only reduces the complexity

which becomes linear, but also considerably improves the classification accuracy if

compared to the basic classifier without any optimization or to IBK classifier.

4. The Odd NN NN( , )2 classifier is largely better than IBK, the C4.5, and the JRIP.



TABLE 8 Results for the Wilcoxon Matched‐Pairs Signed‐Ranks Test, The * (resp. *) means that the classifier in the row (resp. in the column) is statistically better

than the classifier on the column (resp. on the raw)

IBK C4.5 JRIP SVM(RBFKernel) SVM(PolyKernel) Odd NN Std( , )2 O d NM ERd ( )2

C4.5 1 – – – – – –

JRIP 0.09433 1 – – – – –

SVM(RBFKernel) 9.5e− 08* 1.8e− 11* 1.2e− 14* – – – –

SVM(PolyKernel) 2.8e− 09* 4.0e− 13* 2.3e− 16* 1 – – –

Odd NN Std( , )2 0.01172* 1.5e− 05* 2.7e− 08* 0.20023 0.02257* – –

Odd NMRE( )2 1 1 0.07757 1.3e− 07* 3.9e− 09* 0.01462* –

Odd NN NN( , )2 0.00011* 5.1e− 08* 5.1e− 11* 1 0.77887 1 0.00014*



5. As in the case of the Odd NN Std( , )2 classifier, the Odd NN NN( , )2 is also statistically better

than the Odd NMRE( )2 classifier.

6. Since the computed P‐value is not significant, no clear conclusion can be stated regarding

Odd NN Std( , )2 and Odd NN NN( , )2 . This is obvious from Table 5 since they have close

average accuracies over the 19 datasets.

The last results suggest that using subsets made of pairs of two nearest neighbors is enough

to achieve good results and there is no need to cross all the training set to construct pairs as in

the Odd NN Std( , )2 classifier for example. In view of the accuracy results, these pairs could be

considered as representative of the training data for the considered class.

TABLE 9 Comparative study between oddness classifiers and IBk in terms of procedure and complexity

Procedure Complexity

Odd3 ‐ Compute the average distance to allpossibletriples of items in

each class.

∣ ∣O C( )3

‐ Assign to ⃗x the class with the shortest distance.

Odd NN Std Std( , , )3 ‐ Select the k‐NN of ⃗x in each class. ∣ ∣O k C( * )2

‐ Compute the average distance to all possible item triples in each

class where only one of the items is among the k‐NN.

‐ Assign to ⃗x the class with the shortest distance.

Odd2 ‐ Compute the average distance to all possible pairs of items in

each class.

∣ ∣O C( )2

‐ Assign to ⃗x the class with the shortest distance.

Odd NN Std( , )2 ‐ Select the k‐nearest neighbors of ⃗x in each class. ∣ ∣O k C(( * ))

‐ Compute the average distance to all possible pairs of items in

each class where only one of the items is among the k‐nearest

neighbors.

‐ Assign to ⃗x the class with the shortest distance.

Odd NN NN( , )2 ‐ Select the k‐nearest neighbors of ⃗x in each class. ∕O k k( *( − 1) 2)

‐ Compute the average distance to all possible pairs of nearest

neighbors in each class.

‐ Assign to ⃗x the class with the shortest distance.

Odd1 ‐ Compute the average distance to all items in each class. ∣ ∣O C( )

‐ Assign to ⃗x the class with the shortest distance.

Odd NN( )1 ‐ Select the k‐nearest neighbors of ⃗x in each class. O k( )

‐ Compute the average distance to each nearest neighbor in each

class.

‐ Assign to ⃗x the class with the shortest distance.

IBk ‐ Select the overall k‐nearest neighbors of ⃗x in TS regardless of

the class.

O k( )

‐ Assign to ⃗x the most frequent class among its k‐nearest

neighbors.



6 NEAREST NEIGHBORS IN ODDNESS CLASSIFIERS AND 
COMPARISON WITH THE STANDARD k‐NN

Lastly, we study the difference between all proposed oddness classifiers and also the standard k‐
NN classifier in terms of procedure and complexity.

It is worth noticing that although we use k nearest neighbors, this leads to a method that 
differs from the standard k‐NN classifier at list in two sides. First, we use the nearest neighbors in 
a given class, and we do it for each class. In fact, we consider local nearest neighbors instead of 
global ones as in k‐NN. It means that we are considering the same number of nearest neighbors 
for each class, while the k‐NN are not, in general, uniformly distributed over the classes.

Second, oddness classifiers benefits from averaging the distance of x  ⃗ to its k nearest 
neighbors in each class when selecting the best class, while standard k‐NN method applies 
directly a vote on the k nearest neighbors labels without computing the distance to these nearest 
neighbors. It’s known that, the efficiency of the “majority voting” classifiers can be significantly 
decreased in case there is a most frequent that may dominate the prediction of the classified 
instances, since this class tends to be common among the k nearest neighbors.17

The experimental results given in the previous sections (see for example first column in 
Table 5) confirm this difference since we observe that Odd1 (NN ) and Odd2 (NN , NN ) perform 
quite differently than k‐NN on some benchmarks even they have close complexity.

In Table 9, we provide a comparative study by summarizing the basic logic behind each 
proposed classifier and a detailed complexity evaluation.

It is clear that the complexity is significantly reduced when we use Odd3 (NN , Std, Std) 
instead of Odd3 and Odd2 (NN , Std) instead of Odd2. This drop in complexity is more achieved 
with Odd2 (NN , NN ) classifier if compared to Odd2 (NN , Std) mainly for data sets with large 
number of examples. Evidently, this has a considerable impact on the run time. If we consider 
the case of Monk1 when C is equal to 90% of the whole data set in each class, the total number 
of pairs that can be built from the used part of the data set for each class is:

1. more than 18 000 for Odd2,

2. Almost 2900 for the Odd2(NN,Std) with k= 15,

3. Only about 100 for Odd2(NN,NN) with k= 15.

7 | CONCLUSION

Classifying an item by choosing the class where it is the less at odds may be considered as a

basic idea in machine learning. In this paper, we have studied an original way to estimate

oddness. We have started from a logical interpretation of oddness to define a logical oddness

index, indicating if a given item is at odds or not w.r.t. a multiset of n values, both in the

Boolean case and in the real case. Then, by adding these atomic oddness indices, we get a global

oddness measure of this item w.r.t. a class. With diverse choices of n, we implement this notion

to build classifiers. It appears that using pairs (n = 2) provides good accuracy results while

giving a lower complexity. We investigate deeper this option by filtering the candidate pairs for

a given class. To do so, we select the elements of the pair in various ways. First, we fix one

element of the pair as a nearest neighbor in the class of the item to be classified. Then, we fix

the second one as a most remote element: this leads to a degraded accuracy. Finally, we



consider the second element as a second nearest neighbor in the class. Our experiments on UCI

benchmarks show that we are still competitive with regard to state of the art classifiers (k‐NN,

SVM) while having drastically decreased the complexity. Indeed, as datasets become bigger and

bigger, the scalability of oddness‐based classifiers is paramount: this has to be further

investigated in future works. While using the classical notion of nearest neighbor, our handling

of them is quite different from the one in k‐NN methods. It is also worth noticing that the idea

of no longer estimating similarity on a pure one‐to‐one basis, but rather in considering triples or

quadruplets (including the new item) can be encountered elsewhere in machine learning,18 in

relation with the idea of comparative proportions, which is not far from the notion of logical

proportions to which our view of oddness is related.
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