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a b s t r a c t

Driven by the dominance of the relational model, we investigate how the requirements of applications
on the certainty of functional dependencies can improve the outcomes of relational database schema
design. For that purpose, we assume that tuples are assigned a degree of possibility with which they
occur in a relation, and that functional dependencies are assigned a dual degree of certainty which says
to which tuples they apply. A design theory is developed for functional dependencies with degrees of
certainty, including efficient axiomatic and algorithmic characterizations of their implication problem.
Naturally, the possibility degrees of tuples bring forward different degrees of data redundancy, caused
by functional dependencies with the dual degree of certainty. Variants of the classical syntactic Boyce–
Codd and Third Normal Forms are established. They are justified semantically in terms of eliminating
data redundancy and update anomalies of given degrees, and minimizing data redundancy of given
degrees across all dependency-preserving decompositions, respectively. As a practical outcome of
our results, designers can simply fix the degree of certainty they target, and then apply classical
decomposition and synthesis to the set of functional dependencies whose associated degree of certainty
meets the target. Hence, by fixing the certainty degree a designer controls which integrity requirements
will be enforced for the application and which data will be processed by the application. The choice
of the certainty degree also balances the classical trade-off between query and update efficiency on
future database instances. Our experiments confirm the effectiveness of our control parameter, and
provide original insight into classical normalization strategies and their implementations.

1. Introduction

According to a Gartner forecast, the NoSQL market will be

worth 3.5 billion US dollars annually by 2018, but by that time

the market for relational database technology will be worth more

than ten times that number, namely 40 billion US dollars an-

nually [19]. This underlines that relational databases are here

to stay, and that there is no substitute for important data [19].

✩ Some results of this article have been announced in Link and Prade (2016).
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However, relational databases were developed for applications in

which data occur with full certainty, such as accounting, inven-

tory, and payroll [14]. Modern applications such as information

extraction, big data, data integration and cleaning, require tech-

niques that can process uncertain data. Research on uncertain

data has been prolific, yet two trends can be observed: Query

processing is the dominant focus point, and uncertainty is mostly

modeled quantitatively in terms of probabilistic data [51]. Here,

we establish a framework that uses information about the un-

certainty in data to design more targeted relational database

schemata. Indeed, the framework produces schema designs based

on the qualitative degree of uncertainty in data that a target

application requires. For different choices of a qualitative degree,

https://doi.org/10.1016/j.is.2019.04.003



Table 1

Integrated relation r .

Project Time Manager Room Trust

Eagle Mon, 9 am Ann Aqua High

Hippo Mon, 1 pm Ann Aqua High

Kiwi Mon, 1 pm Pete Buff High

Kiwi Tue, 2 pm Pete Buff High

Lion Tue, 4 pm Gill Buff High

Lion Wed, 9 am Gill Cyan High

Lion Wed, 11 am Bob Cyan Good

Lion Wed, 11 am Jack Cyan Moderate

Lion Wed, 11 am P am Lava Moderate

Tiger Wed, 11 am P am Lava Low

the corresponding output designs support different levels of data
integrity, data losslessness, query efficiency and update efficiency.

As a running example, sufficiently simple to motive our re-
search and explain our findings, we consider an employee who
extracts information from the web about weekly project meetings
in her company. Attributes of interest are Project, storing projects
with unique names, Time, storing the weekday and start time
of the meeting, Manager, storing the managers of the project
that attend the meeting, and Room, storing the unique name of
a room. The employee keeps track of the sources from which
tuples in her integrated data set originate. Tuples from the of-
ficial project meeting’s web site are denoted by s1, tuples from
a project manager’s web site are denoted by s2, tuples from a
project member’s web site are denoted by s3, and tuples that
originate from blogs are denoted by s4. The different sources have
varying degrees of trust that people would associate with them,
and typically these degrees of trust are ranked. Here, the trust
in s1 is labeled as high, the trust in s1 is labeled as good, the
trust in s3 is labeled as moderate, and the trust in s4 is labeled
as low. Naturally, if a tuple originates from multiple sources
with potentially varying degrees of trust, then we choose the
maximum degree of trust associated with any of those sources.
Table 1 shows the integrated relation, denoted by r , and for each
tuple the degree of trust associated with it.

In classical schema design, update inefficiencies are avoided
by removing data value redundancy. The latter are caused by
data dependencies that model business rules that the underlying
application domain is governed by. Many redundant data value
occurrences are caused by functional dependencies (FDs) [4,9,36,
55]. For example, the relation r from Table 1 satisfies the FD
Manager, Time→ Room, since every pair of tuples with matching
values on Manager and Time has also matching values on Room.
This FD represents a meaningful business rule of the domain, as
no manager can be present in different rooms at the same time.
However, {Manager, Time} is no key as there are different tuples
with matching values on Manager and Time. Indeed, the last
two tuples show that different projects may be discussed in the
same room at the same time. The example describes the situation
in which redundant data values occur. Given that the FD is a
meaningful semantic constraint that is enforced on each instance
over the schema, and knowing all data values of the relation
except for the value of the last tuple on Room (or the value of
the second to last tuple on Room, respectively), we can infer that
this value must be Lava. In this sense, each occurrence of the
value Lava on attribute Room is redundant [55]. Indeed, updates
to a single occurrence of Lava to a different value would result
in a violation of the FD Manager, Time → Room. Classical de-
composition strategies into Boyce–Codd and Third normal forms
eliminate redundant data value occurrences, caused by any FDs,
either completely or as far as possible among all dependency-
preserving decompositions, respectively [4,7,9,10,15,26,36,55]. In
this example, both strategies would lead to the two schemata

Fig. 1. Sub-relations of the relation from Table 1 together with some FDs that

apply to them, and some redundant data value occurrences in bold font.

{Time, Manager, Room} and {Project, Time, Manager}, where the
given FD can be enforced locally on the first schema by the key
{Time, Manager}. This decomposition is illustrated on relation r
from Table 1 in the form of the decomposition D4 in Fig. 2.

Classical relational database schema design does not take into
account any information about the uncertainty of its data. In our
running example, however, such information is present in the
form of the degrees of trust associated with the sources that
tuples originate from. The framework we develop in this article
shows how such information can be used to design more targeted
relational database schemata. We start from the important obser-
vation that different applications have different requirements on
the quality of the data they process. In the context of uncertain
data, such requirements may stipulate that data is only useful for
an application if its degree of uncertainty meets a given threshold.
For example, based on the degrees of trust associated with the
different sources of data, different relations emerge for different
applications. For every application that requires its tuples to be
highly trusted, the sub-relation r1 in Fig. 1 is the right choice. For
every application that requires its tuples to have at least a good
degree of trust, the sub-relation r2 in Fig. 1 is a better choice.
Similarly, other applications may favor the sub-relations r3 or
r4, respectively, from Fig. 1. Our next important observation is
that the different sub-relations are governed by different business
rules, as we will exemplify on some of the FDs that holds on the
sub-relations r1 ⊆ r2 ⊆ r3 ⊆ r4. In our example, r4 satisfies
the FD σ1 : Manager, Time → Room, r3 satisfies the FD σ2 :
Room, Time → Project , r2 satisfies the FD σ3 : Project, Time →
Manager , and r1 satisfies the FD σ4 : Project → Manager , which
we all regard as semantically meaningful constraints. Now it is
important to note that FDs are closed downwards. That is, every FD
that is satisfied by a relation, is also satisfied by every sub-relation
thereof. In our example of the four FDs, r4 satisfies Σ1 = {σ1},
r3 satisfies Σ2 = {σ1, σ2}, r2 satisfies Σ3 = {σ1, σ2, σ3}, and
r1 satisfies Σ4 = {σ1, σ2, σ3, σ4}. This situation is illustrated in
Fig. 1. The downward closure property of FDs in general, and
our example in particular, stress the importance of the duality
between the increase of tuples in relations and the decrease of
FDs that are satisfied by them. This duality is the key idea for
developing a relational schema design framework that exploits
uncertainty in data. Next we use our running example as an
‘‘hors-d’oeuvre’’ for our framework.

Fig. 1 shows some data value occurrences in bold font. Each
of these data value occurrences is redundant in the precise sense
from before. Our ranking of trust degrees naturally resulted in the
linear order of sub-relations, r1 ⊆ r2 ⊆ r3 ⊆ r4. In turn, this re-
sulted in a linear order of FD sets, Σ1 ⊆ Σ2 ⊆ Σ3 ⊆ Σ4. Our main



Fig. 2. Using degrees of uncertainty for data integration and tailoring schema normalization to different application requirements.

observation is that the different degrees of uncertainty allow us

to define different degrees of data value redundancy. We will

develop different syntactic normal forms that eliminate/minimize

the corresponding degrees of data value redundancy, respectively.

Indeed, redundancy in r4 is caused by FDs in Σ1, redundancy in

r3 is caused by FDs in Σ2, redundancy in r2 is caused by FDs

in Σ3, and redundancy in r1 is caused by FDs in Σ4. Hence,

data value redundancy in ri can be eliminated/minimized by

applying classical BCNF/3NF decomposition with respect to the

FD set Σ5−i, for each i = 1, . . . , 4, respectively. Consequently,

different requirements of applications regarding their confidence

in data result in different database schema designs that better

accommodate these requirements.

In particular, the downward closure property means that the

fewer tuples we consider in a relation the more FDs will satisfy

that relation, which illustrates a trade-off between data lossless-

ness (fewer tuples) and data integrity (more FDs that apply). This

has two important consequences for the schema design of appli-

cations. Indeed, the stronger the requirements of an application

are for the quality of their data, the fewer tuples meet those

requirements and the more functional dependencies need to be

considered to remove all redundant data value occurrences. In

other words, the removal of redundant data value occurrences

from relations with additional tuples requires normalization with

respect to a smaller number of FDs. In turn, less normalization

results in better query efficiency, as less joins are required. Note

the difference to the classical normalization framework in which

all applications require the same data, namely all certain tuples.

This classical framework occurs as the special case of our frame-

work in which only one degree of (un)certainty is considered. The

next section provides an overview of the content of the paper,

indicating also how its technical part will organized.

2. Overview

In summary, we will develop a qualitative model for uncertain
data that exploits our previous observations for the benefit of
relational database schema design. The model brings forward a
greater variety of normalized schema designs from which the best
match for the requirements of an application in terms of data
integrity, data losslessness, update efficiency and query efficiency
can be chosen. This will be further explained at the end of this
section, and is also illustrated in Fig. 3. Our contributions are
based on the following notion of a possibilistic functional depen-
dency that the authors of this article introduced in [39]. Before
describing our contributions we first explain this notion and the
qualitative model of uncertainty.

We model uncertainty in data by assigning to each tuple t ∈ r
of a given finite relation r , a degree of possibility (p-degree),
αi = Possr (t), by which t is perceived to occur in r . A p-relation
is a pair (r, Possr ) with a finite relation r and a function Possr .
We refer to ‘‘degree of possibility’’ since the degrees are grading
the possibility that the associated tuple belongs to a possible
world that is compatible with the uncertain database. A more
detailed analysis can be found in [39]. Our p-degrees form a finite,
strictly linear chain α1 > · · · > αk > αk+1, where α1 is the
top p-degree and αk+1 is the bottom p-degree, reserved for tuples
that are regarded as impossible to occur in a given relation. This
provides us with a discrete linear model of uncertainty, similar
to the continuous probabilistic model [0,1] in which 1 denotes
the top probability and 0 the bottom probability reserved for
tuples that are impossible to occur. Our discrete model meets
well the intuition and ability of people to reason qualitatively,
without the need to quantify an exact value such as a probability.
Our running example conforms to this model as the tuples from
source si receive the p-degree αi, for i = 1, . . . , 4, and any
other tuple that could be formed from values of the attributes’



Fig. 3. Exploring certainty degrees as a mechanism to control levels of data

integrity, data losslessness, query efficiency, and update efficiency.

domains and does not occur in the integrated relation r has p-
degree α5. This generalizes the closed world assumption, saying
that tuples known not to attain any non-bottom p-degree are
also known to attain the bottom p-degree. Here, the p-degrees
may originate from linguistic interpretations, as in our example,
high > good > moderate > low > none. Our model results
in a nested chain of possible worlds, r1 ⊆ · · · ⊆ rk, each of
which is a classical relation that contains tuples with p-degree αi

or higher (that is, smaller i). The smallest world, r1, contains only
tuples that are fully possible to occur, while the largest world,
rk, contains all tuples but those with bottom p-degree αk+1. Only
tuples that occur in the smallest world, r1, are regarded as certain,
since they occur in all of the possible worlds r1, . . . , rk. Hence,
the case where k = 1 corresponds to the classical relational
model of data, and our data model is therefore a proper extension
of this model. In [39], possibilistic functional dependencies (pFDs)
were introduced by assigning a degree of certainty (c-degree) to
a classical FD. Our c-degrees form a finite, strictly linear chain
β1 > · · · > βk > βk+1. An FD holds with c-degree βi whenever
it is satisfied in the possible world rk+1−i. On the extreme ends
we have FDs that hold with the top c-degree β1 as they are
satisfied in the largest possible world, rk, and we have FDs that
only hold with c-degree βk+1 as they are not even satisfied by the
smallest possible world r1. In our running example, σ1 holds with
c-degree β1, σ2 holds with c-degree β2, σ3 holds with c-degree
β3, and σ4 holds with c-degree β4, as illustrated in Fig. 1. Thus,
the c-degree of a pFD becomes smaller when the violation of the
pFD originates from a tuple with higher p-degree. This duality
between p-degrees and c-degrees is the same as in possibilistic
logic [22] where a logical proposition is all the less certain as
there exists a counter-model with a high possibility (in agreement
with the duality possibility/necessity in possibility theory).

The work in [39] also describes the novelty of the notion of
a pFD over previous notions. In brief, other work on possibility
theory associates attribute values with possibility distributions
or c-degree to data, while the model in [39] assigns p-degrees
to data and c-degrees to constraints. In the current article we
will show that this is a right notion to exploit uncertainty in data
for relational database schema design. Our contributions are as
follows:
(1) Reasoning about pFDs. We establish a full design theory for
pFDs, including axiomatic and algorithmic characterizations of
their implication problem. Our possibilistic model allows us to
develop strong links between pFDs and classical FDs. We show
that a pFD (X → Y , βi) with c-degree βi is implied by a given
pFD set Σ if and only if the FD X → Y is implied by the βi-cut,

Σβi
, which is the FD set containing all FDs U → V such that some

pFD (U → V , βj) is in Σ where βj is of c-degree βi or higher (that
is, j ≤ i).

In our running example, the set Σ = {(Manager, Time →
Room, β1), (Time, Room → Project, β2)} implies the pFD
(Manager, Time → Project, β2) since the FD set Σβ2

= Σ2 =

{σ1, σ2} implies the FD Manager, Time → Project , but Σ does
not imply the pFD (Manager, Time → Project, β1) since the FD
set Σβ1

= Σ1 = {σ1} does not imply the FD Manager, Time →
Project .

This result is used to establish the soundness and complete-
ness of an axiom system for pFDs that is equivalent to Arm-
strong’s axioms [5] for classical FDs in the special case where
k = 1. The result also enables us to decide the implication
problem for the class of pFDs in time linear in the input. Just
as the classical results on Armstrong’s axioms and the linear-
time decidability of FDs [5,6,18] form a foundation for relational
normalization using Boyce–Codd and Third normal forms, our
findings form a foundation for the normalization framework we
develop in the remainder of the article. As a side remark, it is also
interesting to note that pFDs can be understood as a fragment of
conditional functional dependencies, whose purpose is to manage
the quality of certain data but not to design schemata for un-
certain data [30]. The implication problem of general conditional
functional dependencies is also coNP-complete to decide [30],
and their consistency problem is NP-complete [30] while every
set of FDs and every set of pFDs is consistent. In the same way
FDs constitute a fragment of conditional functional dependencies
that is used for relational database design for certain data, pFDs
constitute a fragment of conditional functional dependencies that
is useful for relational database design for uncertain data.
(2) Qualitative data value redundancy. The intrinsic link be-
tween the c-degree of pFDs and the p-degree of tuples in our
p-relations, enables us to define different degrees of data value
redundancy. In fact, a data value occurrence in some given p-
relation that satisfies a given pFD set is αi-redundant whenever
any modification of this value to a different value results in a p-
relation that violates some given pFD whose c-degree is βk+1−i or
higher. On the extreme ends, αk-redundancy can only be caused
by pFDs with c-degree β1, while α1-redundancy can be caused
by any given pFD. In fact, our notion of αi-redundancy captures
precisely the impact of uncertainty on relational database schema
design we intended: the smaller the p-degree of tuples with αi-
redundant data value occurrences, the smaller the number of
pFDs that can cause it, and therefore the smaller the normal-
ization effort to eliminate it. Note that actual updates only take
place on relations over the relation schemata that have been
established for the given application. Specifically, data in these
relations is understood to meet the application requirements in
terms of their p-degrees. If an update results in a tuple that does
not meet the required p-degree, then the update represent a
tuple deletion. On the level of the applications we have relational
databases. In particular, there is no more distinction between the
different p-degrees of tuples.

For our running example, Fig. 1 shows some examples of data
value occurrences that are redundant in this sense, marked in
bold font. For instance, Lava is α4-redundant because any differ-
ent value in its place would violate the FD σ1 that holds with
c-degree β1; Lion is α3-redundant because any different value in
its place would violate the FD σ2 that holds with c-degree β2; and
Gill is α1-redundant because any different value in its place would
violate the FD σ4 that holds with c-degree β4.

Given the notion of αi-redundant data values, we define a
relation schema with p-degree scale α1 > · · · > αk+1 to be in
αi-Redundancy Free Normal Form (RFNF) with respect to a given
set of pFDs if and only if there is no p-relation over the schema



that satisfies all given pFDs and in which a data value occurrence
is αi-redundant. Again, the special case where k = 1 captures the
definition of a RFNF in the relational model of data [55].
(3) Qualitative update anomalies. Similar to defining different
degrees of data value redundancy, our framework also allows
us to define different degrees of update anomalies. In fact, an
αi-update anomaly occurs whenever a p-relation that satisfies a
given pFD set can be updated in such a way that all minimal keys
with c-degree βk+1−i or higher are satisfied after the update but
not all given pFDs with c-degree βk+1−i or higher. In the case of
pFDs, update anomalies may occur in the form of insertions, or
different kinds of modifications, but not in the form of deletions.
For modifications we distinguish three different types: those in
which the modified tuple does not need to satisfy any require-
ment (type 1), those in which the modified tuple must not be
modified on the attributes of some minimal key (type 2), and
those in which the modified tuple must not be modified on the
attributes of the primary key (type 3).

As an example, consider the tuple with the boldly marked oc-
currence of Gill in Fig. 1. Modifying this value to Rob is an exam-
ple of an α1-key-based type-3 modification anomaly. The modifi-
cation satisfies all minimal keys {Manager, Time}, {Room, Time},
{Project, Time} with respect to the FD set {Manager, Time →

Room; Room, Time → Project; and Project → Manager}, but
violates the FD Project → Manager . If {Project, Time} denotes the
primary key, then the original and modified tuples agree on the
primary key, which gives us an α1-key-based type-3 modification
anomaly.

We then define a relation schema with p-degree scale α1 >

· · · > αk+1 to be in αi-Key-based Insertion Anomaly Normal
Form/Key-based Type-1/2/3 Modification Anomaly Normal Form
(KIANF/KMANF-1/2/3) with respect to a given set of pFDs if
and only if there is no p-relation over the schema that sat-
isfies all given pFDs and in which a corresponding αi-update
anomaly can occur. Again, the special case where k = 1 captures
the definitions of the normal forms in the relational model of
data [55].
(4) Qualitative Boyce–Codd normal form. Our next contribution
is to derive a syntactic characterization of schemata that are in
αi-RFNF with respect to the given set of pFDs, just like Boyce–
Codd normal form is the syntactic normal form that captures
the semantic RFNF [55]. For this purpose, we define that a given
relation schema R with p-degree scale α1 > · · · > αk+1 is in
βi-BCNF with respect to a given set of pFDs, Σ , if and only if for
every non-trivial pFD (X → Y , βi) that can be inferred from Σ by
our axioms, it is the case that (X → R, βi) can be inferred from Σ

by our axioms. Note that this definition is completely syntactic,
utilizing our sound and complete axiomatization of pFDs. The
definition also ensures that the normal form is cover-insensitive,
that is, it does not depend on the choice of a representation
system for pFDs. However, this leaves the question whether one
can check efficiently that a given schema is in βi-BCNF with
respect to a given set Σ of pFDs. Indeed, we show that it suffices
to check for all non-trivial pFDs (X → Y , βj) in Σ where j ≤ i that
(X → R, βi) is implied by Σ . This condition can be validated in
time quadratic in the size of Σ by our result about the linear-
time decidability of pFDs. We then show the important result
that a given schema is in αi-RFNF with respect to a pFD set
Σ if and only if it is in βk+1−i-BCNF with respect to Σ . We
also show the important result that a given schema is in αi-
KIANF/KMANF-1/2/3 with respect to a pFD set Σ if and only if it
is in βk+1−i-BCNF with respect to Σ . Therefore, we can validate,
at design time, in quadratic time in the input whether a given
schema only admits p-relations, at run time, that are free from
αi-redundant data value occurrences and free from αi-key based
update anomalies. Note that these results subsume the classical

finding that a schema in BCNF only permits relations that are
free from redundant data value occurrences and free from update
anomalies as the special case in which k = 1 [55].
(5) Qualitative third normal form. In the classical normal-
ization framework there is a trade-off between dependency-
preservation, achieved by synthesizing schemata into Third nor-
mal form (3NF), and the elimination of data value redundancy,
achieved by BCNF decompositions [4,9,36]. Here, dependency
-preservation guarantees that all FDs can be enforced locally,
without the need of joining relations to check for consistency of
update operations. While a decomposition in BCNF cannot always
preserve all given FDs but ensures that no data value redundancy
occurs, a 3NF synthesis does preserve all given FDs but cannot
always guarantee that all data value redundancy is eliminated.
In fact, using well-defined measures from information theory,
it has been shown [4,36] that 3NF admits a minimal amount
of data value redundancy amongst all decompositions that are
dependency-preserving. For these reasons, we also extend the
classical results on the 3NF to our framework. We define that a
given relation schema R with p-degree scale α1 > · · · > αk+1 is
in βi-3NF with respect to a given set of pFDs, Σ , if and only if
for every non-trivial pFD (X → A, βi) that can be inferred from
Σ by our axioms, it is the case that (X → R, βi) can be inferred
from Σ by our axioms or the attribute A is βi-prime with respect
to Σ . The attribute A is βi-prime with respect to Σ if and only if
A belongs to some attribute set X ⊆ R that is minimal under set
containment with the property that (X → R, βi) can be inferred
from Σ by our axioms. Again, this definition is completely syn-
tactic, utilizing our sound and complete axiomatization of pFDs,
and also ensures that the normal form is cover-insensitive. We
also show that it suffices to check for all non-trivial (X → Y , βj)
in Σ where j ≤ i that (X → R, βi) is implied by Σ or every
A ∈ Y − X is βi-prime with respect to Σ . Just as in the classical
case, the latter condition is likely to be intractable to decide, due
to the NP-completeness of the prime attribute problem, which is
to decide whether a given attribute is (βi-)prime with respect to
a given set of (p)FDs [42]. Again, note that our results subsume
the classical findings as the special case where k = 1 [10].
(6) Qualitative normalization. Next we address the goal of mak-
ing our framework applicable to the design of relational database
schemata. This involves two critical steps. Firstly, we show the
three results that a given relation schema R with p-degree scale
α1 > · · · > αk+1 is in αi-RFNF (βi-BCNF, βi-3NF, respectively)
with respect to the pFD set Σ if and only if the relation schema R
is in RFNF (in BCNF, 3NF, respectively) with respect to the βi-cut
Σβi

. Secondly, we show that a p-relation over relation schema
R and p-degree scale α1 > · · · > αk+1 that satisfies a pFD
(X → Y , βi) is αk+1−i-lossless, that is, the possible world rk+1−i

of that p-relation is the lossless join of its projections on XY
and X(R − Y ): rk+1−i = rk+1−i[XY ] ⊲⊳ rk+1−i[X(R − Y )]. These
results together mean the following. Given a relation schema R
with p-degree scale α1 > · · · > αk+1, a pFD set Σ , and a c-
degree βi with 1 ≤ i ≤ k, a classical BCNF-decomposition of R
with respect to the βi-cut Σβi

gives us a decomposition that is
αk+1−i-lossless and free from αk+1−i-redundancy. Moreover, given
a relation schema R with p-degree scale α1 > · · · > αk+1,
a pFD set Σ , and a c-degree βi with 1 ≤ i ≤ k, a classical
3NF-synthesis of R with respect to the βi-cut Σβi

gives us a
decomposition that is αk+1−i-lossless, βi-dependency-preserving
and only admits minimal amounts of αk+1−i-redundancy amongst
all βi-dependency-preserving decompositions. We conclude that
the choice of the c-degree βi as input provides us with a mech-
anism to control the trade-offs between data integrity and data
losslessness, and between update efficiency and query efficiency.
Indeed, higher levels of data integrity are achieved by selecting
lower c-degrees βi (that is, higher i), resulting in decompositions



that target the local enforcement of the data integrity for all FDs
with c-degree βi or higher, but can only guarantee losslessness for
tuples with p-degree αk+1−i or higher. Vice versa, higher levels
of data losslessness are achieved by selecting higher c-degrees
βi (that is, lower i), resulting in decompositions that preserve
all tuples with p-degree αk+1−i or higher, but only target the
local enforcement of the data integrity for FDs with c-degree
βi or higher. In fact, the choice of βi determines which FDs are
used to perform classical normalization and thereby determines
the number of relation schemata in the output decomposition.
Heuristically, the smaller the number of relation schemata in the
output, the fewer joins are required to process queries and the
more efficient query processing becomes, but the less efficient
update processing becomes. In reality, of course, the choice of the
output design is based on which queries and updates are consid-
ered to be important. Nevertheless, the availability of different
c-degrees βi enables us to produce a greater variety of schema
designs one can choose from. For a fixed choice of a c-degree
βi, the classical properties of BCNF decompositions, 3NF synthesis
and their trade-offs are experienced on the level of the βi-cut.

Fig. 2 shows BCNF design choices for different application
requirements in our running example. Decomposition D1 is tar-
geted at applications that only permit tuples of the highest p-
degree. Consequently, all four of the FDs must be used for nor-
malization. D1 avoids all α1-redundancy but is only α1-lossless.
The decomposition did not preserve the FD σ4. This is simply
to illustrate the case that typically occurs in practice where we
could not find a BCNF-decomposition that preserves all FDs. De-
composition D2 is targeted at applications that permit tuples of
p-degree α1 and α2. Here, the given schema is already in β2-
BCNF, so no decomposition is required. Indeed, D2 avoids all
α2-redundancy and is α2-lossless, since the FDs σ1, σ2 and σ3

were used for normalization. Obviously, all of these three FDs
are preserved. Decomposition D3 is targeted at applications that
require their tuples to have p-degree α1, α2, or α3. D3 avoids
all α3-redundancy and is α3-lossless, since the FDs σ1 and σ2

were used for normalization. The decomposition preserved both
of these FDs. Finally, decomposition D4 targets applications that
accepts tuples with any non-bottom p-degree. D4 avoids all α4-
redundancy and is α4-lossless, since only the FD σ1 was used for
normalization. Of course, the decomposition preserved this FD.

Another useful view of our normalization framework is the
following. The choice of the target c-degree βi means the re-
sulting output design is classically normalized with respect to
all FDs whose c-degree is βi or higher, but may be classically
de-normalized with respect to any FD whose c-degree is lower
than βi. This view suggests that our framework unifies classi-
cal normalization and de-normalization. Thereby, classically de-
normalized schemata can also be justified in terms of the levels
of data integrity and losslessness that are targeted.
(7) Implementation and experiments. We have implemented
our algorithms and made the implementation publicly accessible
by a GUI. While we view this part of our work not as intellectually
challenging, we think that it is the most important contribu-
tion in terms of knowledge transfer. Extensive experiments on a
distributed high-performance computing cluster confirm the ef-
fectiveness of the c-degree βi as a control parameter for relational
database schema normalization. For example, by decreasing βi

towards the bottom c-degree βk, the normalization effort be-
comes gradually larger in terms of both time and the number
of relation schemata in the output. This is rather natural, as the
number of FDs increases. However, we also observe a saturation
point for which the number of relation schemata in the output
decreases again. This saturation point occurs when the pres-
ence of sufficiently many additional FDs transforms attribute sets
into keys. Importantly, the different decompositions that result

from different choices of βi provide different choices in terms
of update and query efficiency. The output decompositions also
have precise characteristics in terms of data losslessness, data
redundancy, and dependency-preservation. An organization can
therefore choose the best fit for a target application by taking into
account these different choices of decompositions and their char-
acteristics. This is illustrated by the different BCNF design choices
for our running example in Fig. 2. Our experiments also provide
new insight into classical normalization trade-offs. For example,
we provide first empirical evidence that, on average, 3NF syn-
thesis has a fair chance of producing an optimal decomposition,
that is, a lossless, dependency-preserving BCNF decomposition,
while BCNF decompositions do not have a reasonable chance
to be dependency-preserving. This empirical finding supports
the preference for 3NF synthesis in database practice over BCNF
decomposition. Designers prefer 3NF synthesis because it ensures
that logically related attributes remain together while BCNF de-
composition does not ensure that. Our finding suggests that 3NF
synthesis also provides a significantly better chance of deriving
an optimal decomposition. Our experimental results further il-
lustrate different strengths and weaknesses of various classical
versions of BCNF decomposition and 3NF synthesis algorithms.
For example, the classical BCNF algorithm that requires expo-
nential time and space [3] produces decompositions that require
significantly fewer relation schemata than the BCNF algorithm
that runs in polynomial time [53]. Heuristically, this suggests to
apply the exponential time and space algorithm whenever feasi-
ble, since its output design will support the efficient processing
of more queries than the output design of the polynomial time
algorithm, simply because the latter output requires more joins.
Another observation is that the 3NF algorithm that is based on a
canonical cover produces fewer schemata than the 3NF algorithm
that is based on a non-redundant, L-reduced cover in which all
FDs have a singleton attribute on their right-hand side. This is
intuitive as a canonical cover contains fewer FDs. The difference
in running time of both algorithms is only marginal. Finally,
we illustrate our framework on a real-world example in which
we extracted information about 100 top-selling books from five
online retailers, and assigned a p-degree αi to tuples if the tuple
occurred in 6 − i of the data sources. We mined the set of pFDs
that hold on the resulting p-relation, and performed a variety of
decompositions for the schema.

In summary, our framework for modeling uncertainty provides
a mechanism to control the trade-off between data integrity
and data losslessness, and the classical trade-off between update
and query efficiency. Thereby, different schema designs can be
computed that support applications with different thresholds on
the confidence in the data. This is illustrated in Fig. 3.
Organization. Our data model of uncertainty is presented in
Section 3, and the notion of a pFD is given in Section 4. The
design theory of pFDs is established in Section 5. Qualitative
variants of BCNF and 3NF are defined in Section 6, and their
semantic justifications are derived. Normalization algorithms are
established in Section 7. The GUI is briefly outlined in Section 8.
Experimental results are discussed in Section 9. Related work is
discussed in Section 11. A real-world example from Web data
extraction is analyzed in Section 10. Finally, Section 12 concludes
and comments on future work.

3. Uncertain databases

We recall the possibilistic data model introduced in [39]. For
a discussion related to the possibilistic grounding of our model
and its originality in comparison to previous work we refer the
interested reader to [39]. The main motivation for the possibilistic
data model its use of the downward closure property of func-
tional dependencies to apply relational database schema design



for applications with uncertain data. This is the contribution of
the current article.

A relation schema, usually denoted by R, is a finite non-empty
set of attributes. Each attribute A ∈ R has a domain dom(A) of
values. A tuple t over R is an element of the Cartesian product
∏

A∈R dom(A) of the attributes’ domains. For X ⊆ R we denote by
t(X) the projection of t on X . A relation over R is a finite set r of
tuples over R. As a running example we use the relation schema
Meeting with attributes Project, Time, Manager, and Room, that
we already introduced in the introductory section.

In the classical relational data model, tuples either belong or
do not belong to a relation, so there is no room for uncertainty.
For example, we cannot express that we have less confidence that
Bob attends a meeting of project Lion on Wednesday at 11 am in
room Cyan than we have confidence that Gill attends a meeting
of project Lion on Wednesday at 11 am in room Cyan. Effective
database support for new applications, such as data cleaning and
integration, requires us to accommodate uncertainty in data and
to make the most out of this additional information. In general,
one may distinguish between uncertainty at the attribute level,
and uncertainty at the tuple level. In practice, the choice would
depend on which information is available.

We define possibilistic relations as relations where each tuple
is associated with some confidence. The confidence of a tuple
expresses up to which degree of possibility a tuple occurs in a re-
lation. Formally, we model the confidence as a scale of possibility,
that is, a finite, strictly linear order S = (S, <) with k+1 elements
where k is some positive integer, which we denote by α1 >

· · · > αk > αk+1, and whose elements αi ∈ S we call possibility
degrees (p-degrees). The top p-degree α1 is reserved for tuples
that are ‘fully possible’ to occur in a relation, while the bottom
p-degree αk+1 is reserved for tuples that are ‘not possible at all’,
that is ‘impossible’, to occur in a relation. The use of the bottom
p-degree αk+1 in our possibilistic data model is the counterpart of
the classical closed world assumption. Humans like to use simple
scales in everyday life, for instance to communicate, compare, or
rank. Simple usually means to classify items qualitatively, rather
than quantitatively by putting a precise value on it. Note that
classical relations use a scale with two elements, that is, where
k = 1.

In our running example, the employee classifies the possibility
with which tuples in her integrated data set occur according to
the source of the information. Tuples from the official project
meeting’s web site are assigned p-degree α1, tuples from a project
manager’s web site are assigned α2, tuples from a project mem-
ber’s web site get degree α3, and tuples that originate from blogs
are assigned degree α4. Implicitly, any other tuple has degree α5,
indicating that it is impossible to occur according to the current
state of information. For a recent sophisticated method to assign
degrees of trusts with websites see Google’s approach from [20].
If desired, the p-degree may carry some linguistic interpretation
such ‘fully possible’ > ‘quite possible’ > ‘medium possible’ >

‘somewhat possible’ > ‘not possible at all’. The scale could have
also originated from a different interpretation, say already held
meetings are classified as α1, confirmed meetings as α2, requested
meetings as α3, planned meetings as α4, and all other meetings
as α5. The degrees may also originate from numerical interpre-
tations, such as 1 > 0.75 > 0.5 > 0.25 > 0. Either way, the
employee has chosen five p-degrees α1 > α2 > α3 > α4 > α5

to qualitatively assign different degrees of uncertainty to tuples,
with top p-degree α1 and bottom p-degree α5. If information
is available on the attribute level, we could still convert this
information to the tuple level. In this case, it would make sense
to assign to a tuple the minimum p-degree across its attribute
values.

Formally, a possibilistic relation schema (p-schema) (R, S) con-
sists of a relation schema R and a possibility scale S . A possibilistic

relation (p-relation) over (R, S) consists of a relation r over R,
together with a function Possr that maps each tuple t ∈ r to a
p-degree Possr (t) in the possibility scale S . Sometimes, we simply
refer to a p-relation (r, Possr ) by r , assuming that Possr has been
fixed. For example, Table 1 shows our p-relation (r, Possr ) over
(Meeting, S = {α1, . . . , α5}).

P-relations enjoy a well-founded semantics in terms of pos-
sible worlds. In fact, a p-relation gives rise to a possibility dis-
tribution over possible worlds of relations. For i = 1, . . . , k let
ri denote the relation that consists of all tuples in r that have a
p-degree of at least αi, that is, ri = {t ∈ r | Possr (t) ≥ αi}. The
linear order of the p-degrees results in a linear order of possible
worlds of relations. Indeed, we have r1 ⊆ r2 ⊆ · · · ⊆ rk. The
possibility distribution πr for this linear chain of possible worlds
is defined by πr (ri) = αi. Note that rk+1 is not considered to be
a possible world, since its possibility π (rk+1) = αk+1 means ‘not
possible at all’. Vice versa, the possibility Possr (t) of a tuple t ∈ r
is the possibility of the smallest possible world in which t occurs,
that is, the maximum possibility max{αi | t ∈ ri} of a world to
which t belongs. If t /∈ rk, then Possr (t) = αk+1. The top p-degree
α1 takes on a distinguished role: every tuple that is ‘fully possible’
occurs in every possible world – and is thus – ‘fully certain’.
This formally confirms our intuition that possibilistic relations
subsume relations (of fully certain tuples) as a special case. Fig. 1
shows the possible worlds r1 ( r2 ( r3 ( r4 of our example
p-relation from Table 1. For i = 1, . . . , 4, the possible world ri
contains all those tuples t from r where Possr (t) ≥ αi.

4. Possibilistic FDs

We recall the notion of a possibilistic functional dependency
(pFDs) introduced in [39]. For a discussion on the novelty of
this notion in relationship to previous work, and the equivalence
of its associated implication problem to that of Horn clauses in
possibilistic propositional logic, we refer the interested reader
to [39]. The remainder of the current article will show that the
notion of pFDs from [39] is fundamental to schema design for
possibilistic data, in the same way the classical notion of FDs is
fundamental to schema design for certain data.

Recall that an FD X → Y is satisfied by a relation r whenever
every pair of tuples in r that have matching values on all the
attributes in X have also matching values on all the attributes in
Y . For example, the FD Manager, Room → Time is not satisfied
by any relation r1, . . . , r4. The FD Project → Manager is satisfied
by r1, but not by r2 and therefore not by r3 and r4. The FD
Project, Time → Manager is satisfied by r1 and r2, but not by r3
and therefore not by r4. The FD Time, Room→ Project is satisfied
by r1, r2, and r3, but not by r4. Finally, the FD Manager, Time →
Room is satisfied by all relations r1, . . . , r4.

Naturally, the p-degrees of tuples that define a p-relation also
define degrees of certainty with which FDs hold in the p-relation.
Intuitively, since the FD Manager, Time → Room is satisfied in
every possible world, it is fully certain to hold in r . As the FD
Time, Room → Project is only violated in a somewhat possible
world r4, it is quite certain. Since the FD Project, Time→ Manager
is only violated in a medium possible world r3, it is medium
certain. As the FD Project → Manager is only violated in a
quite possible world r2, it is somewhat certain. Finally, as the FD
Manager, Room→ Time is violated in the fully possible world r1,
it is not certain at all.

In summary, the marginal certainty with which an FD holds in
a p-relation corresponds to the possibility degree of the smallest
possible world in which the FD is violated. This is illustrated in
Fig. 4 on our running example. Therefore, similar to a scale S

of possibility degrees for tuples we use a scale S
T of certainty

degrees (c-degrees) for FDs. We commonly use subscripted ver-
sions of the Greek letter β to denote c-degrees associated with



Fig. 4. The p-degree αi of the smallest world ri that violates an FD σ determines

the marginal c-degree βk+2−i by which σ holds on the p-relation r .

FDs. Formally, the duality between p-degrees in S and the c-
degrees in S

T can be defined by the mapping αi 7→ βk+2−i, for
i = 1, . . . , k+ 1. Assuming that the world rk+1 cannot satisfy any
FD, the marginal certainty C(r,Possr )(X → Y ) with which the FD
X → Y holds on the p-relation (r, Possr ) is the c-degree βk+2−i

that corresponds to the smallest world ri in which X → Y is
violated, that is,

C(r,Possr )(X → Y ) = min{βk+2−i | 6|=ri
X → Y }.

In particular, if rk satisfies X → Y , then C(r,Possr )(X → Y ) = β1.
We can now define the syntax and semantics of pFDs.

Definition 1. A possibilistic FD (pFD) over a p-schema (R, S) is an
expression (X → Y , β) where X, Y ⊆ R and β ∈ S

T . A p-relation
(r, Possr ) over (R, S) is said to satisfy the pFD (X → Y , β) if and
only if C(r,Possr )(X → Y ) ≥ β .

The p-relation (r, Possr ) of our running example satisfies:
(Manager, Time → Room, β1), (Room, Time → Project, β2),
(Project, Time → Manager, β3), (Project → Manager, β4), and
(Manager, Room → Time, β5). The latter pFD is trivial as β5

is here the bottom c-degree, meaning ‘not certain at all’. Since
C(r,Possr )(Project, Time → Manager) = β3 < β2, the p-relation
violates the pFD (Project, Time→ Manager, β2).

PFDs form a class of integrity constraints tailored to possi-
bilistic data. Indeed, a pFD (X → Y , βi) separates semantically
meaningful from meaningless p-relations by allowing violations
of the FD X → Y only by tuples with a p-degree αj where
j ≤ k + 1 − i. For i = 1, . . . , k, the c-degree βi of (X → Y , βi)
means that the FD X → Y must hold in the possible world rk+1−i.
This constitutes a conveniently flexible mechanism to enforce the
targeted level of data integrity effectively. The other main driver
for pFDs is their impact on the notion of data redundancy. As
pFDs with different c-degree do not apply to the same worlds,
they cause different degrees of data redundancy. As argued in the
introduction already, this observation saves normalization effort
when eliminating data redundancy from less possible worlds, on
which only more certain FDs hold.

5. Qualitative design theory

Classical normalization is founded on the theory of functional
dependencies, in particular the axiomatic and algorithmic solu-
tions to their implication problem. Consequently, we now estab-
lish a design theory for pFDs as a foundation for normal forms,
their justification, and normalization of p-schemata. First, we
establish a strong link between the implication problem of pFDs
and the implication problem of FDs, which is a consequence of the

downward closure property of FDs. Based on this link, we then
establish axiomatic and algorithmic solutions to the implication
problem of pFDs. Note that our design theory for pFDs subsumes
the design theory for classical FDs as the special case where k = 1.

5.1. β-cuts

We establish a precise correspondence between instances of
the implication problem for pFDs and instances of the implication
problem for traditional FDs. Let Σ∪{ϕ} denote a set of pFDs over
a p-schema (R, S). We say that Σ implies ϕ, denoted by Σ |= ϕ,
if every p-relation (r, Possr ) over (R, S) that satisfies every pFD in
Σ also satisfies ϕ.

Example 2. Let Σ consist of the following four pFDs

• (Manager, Time→ Room, β1),

• (Room, Time→ Project, β2),

• (Project, Time→ Manager, β3), and

• (Project → Manager, β4)

over (Meeting, {α1, . . . , α5}). Further, let ϕ denote the pFD
(Room, Time → Manager, β2). Then Σ does not imply ϕ as the
following p-relation witnesses.

Project Time Manager Room Poss. degree

Lion Wed, 3 pm Gill Cyan α1

Lion Wed, 3 pm Robert Cyan α3

For a set Σ of pFDs on some p-schema (R, S) and c-degree
β ∈ S

T where β > βk+1, let

Σβ = {X → Y | (X → Y , β ′) ∈ Σ and β ′ ≥ β}

be the β-cut of Σ . The major strength of our framework is
engraved in the following result. It says that a pFD (X → Y , β)
with c-degree β is implied by a set Σ of pFDs if and only if the
FD X → Y is implied by the β-cut Σβ of Σ .

Theorem 1. Let Σ ∪ {(X → Y , β)} be a set of pFDs over a p-
schema (R, S) where β > βk+1. Then Σ |= (X → Y , β) if and only
if Σβ |= X → Y .

Proof. Suppose (r, Possr ) is some possibilistic relation over (R, S)
that satisfies Σ , but violates (X → Y , β). In particular, C(r,Possr )

(X → Y ) < β implies that there is some relation ri that violates
X → Y and where

βk+2−i < β. (1)

Let U → V ∈ Σβ , where (U → V , β ′) ∈ Σ . Since r satisfies
(U → V , β ′) ∈ Σ we have

C(r,Possr )(U → V ) ≥ β ′ ≥ β. (2)

If ri violated U → V , then

β > βk+2−i by (1)
≥ C(r,Possr )(U → V ) by Definition of C(r,Possr )

≥ β by (2)

a contradiction. Hence, the relation ri satisfies Σβ and violates
X → Y .

Let r ′ denote some relation that satisfies Σβ and violates X →
Y . Without loss of generality, we assume that r ′ = {t, t ′} consists
of only two tuples. If that is not the case, then it is well-known
that there is a sub-relation of r ′ with two tuples that satisfies
Σβ and violates X → Y . Let r be the possibilistic relation over
(R, S) that consists of the relation r ′ and where Possr ′ (t) = α1 and
Possr ′ (t

′) = αi, such that βk+1−i = β . Then r violates (X → Y , β)



Table 2

Armstrong axioms A = {R′, E ′,T ′} of FDs.

XY→Y
X→Y
X→XY

X→Y Y→Z
X→Z

(reflexivity, R′) (extension, E ′) (transitivity, T ’)

since C(r,Possr )(X → Y ) = βk+2−i, as ri = r ′ is the smallest
relation that violates X → Y , and βk+2−i < βk+1−i = β . For
(U → V , β ′) ∈ Σ we distinguish two cases. If ri satisfies U → V ,
then C(r,Possr )(U → V ) = β1 ≥ β . If ri violates U → V , then
U → V /∈ Σβ , i.e., β ′ < β = βk+1−i. Therefore, β ′ ≤ βk+2−i =
C(r,Possr )(U → V ) as ri = r ′ is the smallest relation that violates
U → V . We conclude that C(r,Possr )(U → V ) ≥ β ′. Consequently,
(r, Possr ) is a possibilistic relation that satisfies Σ and violates
(X → Y , β). �

The following example illustrates Theorem 1.

Example 3. Let Σ and ϕ be as in Example 2, in particular Σ
does not imply ϕ. Theorem 1 reduces the implication problem of
pFDs to that of FDs, namely Σβ2

does not imply Room, Time →
Manager . Indeed, the possible world r3 of the p-relation from
Example 2

Project Time Manager Room

Lion Wed, 3 pm Gill Cyan
Lion Wed, 3 pm Robert Cyan

satisfies the two classical FDs Manager, Time → Room and
Room, Time → Project that form Σβ2

, and violates the FD Room,
Time→ Manager .

5.2. Armstrong axioms

The semantic closure Σ∗ = {ϕ | Σ |= ϕ} contains all pFDs
implied by Σ . We compute Σ∗ by applying inference rules of

the form
premise

conclusion
condition, where rules without premise are

axioms. For a set R of inference rules let Σ ⊢R ϕ denote that
there is an inference of ϕ from Σ by R. That is, there is some
sequence σ1, . . . , σn such that σn = ϕ and every σi is in Σ or the
result of applying a rule in R to some premises in {σ1, . . . , σi−1}.
Let Σ+

R = {ϕ | Σ ⊢R ϕ} denote the syntactic closure of Σ under
inferences byR.R is sound (complete) if for every p-schema (R, S)
and for every set Σ we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R ). The (finite)

set R is a (finite) axiomatization if R is both sound and complete.
One of the early and well-known results from relational

database theory are Armstrong’s axioms which Armstrong
showed to be sound and complete for the implication of FDs [5].
The axioms are shown in Table 2.

PFDs enjoy the axiomatization P from Table 3. It subsumes
Armstrong’s axioms [5] for the special case where the scale S

T

consists of just two c-degrees. In these rules all attribute sets
X, Y , Z are subsets of the given relation schema R, the c-degrees
β and β ′ belong to the given certainty scale S

T , and βk+1 de-
notes the bottom c-degree. Note that system P is equivalent to
Armstrong’s axioms for FDs, if the scale S

T consists of just two
certainty degrees. For a completeness proof of P we could have
used the classical strategy to write down a two-tuple p-relation
that violates a given pFD (X → Y , β) that cannot be inferred from
a given pFD set Σ usingP. Instead, we establish the completeness
of P directly by showing that a given pFD (X → Y , β) that is
implied by Σ can be also be inferred from Σ using the rules in P.
This direct proof shows how the bottom axiom B and weakening
rule W can be applied to reduce the inference of (X → Y , β) from
Σ to an inference of X → Y from Σβ . However, the completeness
of A guarantees immediately that X → Y can be inferred from
Σβ , due to Theorem 1 and the assumption that (X → Y , β) is
implied by Σ .

Table 3

Axiomatization P = {R, E,T , B, W } of pFDs.

(XY→Y ,β)

(X→Y ,β)

(X→XY ,β)

(X→Y ,β) (Y→Z,β)

(X→Z,β) (X→Y ,βk+1)

(X→Y ,β)

(X→Y ,β ′)
β ′ < β

(reflexivity, R) (extension, E) (transitivity, T ) (bottom, B) (weakening, W )

Theorem 2. The set P = {R, E, T ,B,W} forms a finite axiomati-
zation for the implication of pFDs.

Proof. The proofs of soundness are straightforward, keeping in
mind the soundness of Armstrong’s axioms for FDs and Theo-
rem 1. For the completeness proof, we take full advantage of
Theorem 1 and the fact that the Armstrong axioms are sound
and complete for the implication of FDs. Let (R, S) be an arbitrary
possibilistic relation schema with |S| = k + 1, and Σ ∪ {(X →
Y , β)} an arbitrary set of pFDs over the schema, such that Σ |=
(X → Y , β) holds. We need to show that Σ ⊢P (X → Y , β) holds,
too.

We distinguish two cases. If β = βk+1, then Σ |= (X → Y , β)
means that Σ ⊢P (X → Y , β) holds by a single application of
the bottom rule B. For the remainder of the proof we therefore
assume that β < βk+1. From Σ |= (X → Y , β) we conclude
Σβ |= X → Y by Theorem 1. Since the Armstrong axioms A

are complete for the implication of FDs, we conclude that Σβ ⊢A

X → Y holds. Now, for the FD set Σβ we define Σ
β

β = {(X →
Y , β) | X → Y ∈ Σβ}. Therefore, the inference of X → Y
from Σβ using the Armstrong axioms can be easily turned into

an inference of (X → Y , β) from Σ
β

β by P, simply by adding
the certainty degree β to each FD that occurs in the inference.
Therefore, whenever an Armstrong axiom R

′, E ′ or T
′ is applied,

one can now apply the corresponding ruleR, E , or T , respectively.

It follows that Σ
β

β ⊢P (X → Y , β) holds. Finally, the definition

of Σ
β

β ensures that every pFD in Σ
β

β can be inferred from a pFD
in Σ by a single application of the weakening rule W . Hence,

Σ
β

β ⊢P (X → Y , β) means, in particular, Σ ⊢P (X → Y , β).
This completes the proof. �

Alternatively, we could have restricted the definition of pFDs
to certainty degrees that are different from the bottom degree.
In that case, the bottom axiom B is not required. Here, we have
decided to include the bottom degree to equip every FD with
some certainty degree.

Example 4. Let Σ and ϕ be as in Example 2, and ϕ′ = (Room,

Time→ Manager, β3). We show an inference of ϕ′ from Σ by P.
Attributes are abbreviated by their first letters.

(RT → P, β2)

W : (RT → P, β3)

E : (RT → RTP, β3) R : (RTP → PT , β3)

T : (RT → PT , β3) (PT → M, β3)

T : (RT → M, β3)

Of course, ϕ cannot be inferred from Σ by P, as Example 2 and
the soundness of P show.

5.3. Decision algorithm

In practice it is often unnecessary to compute the closure Σ∗

from a given set Σ . Instead, rather frequently occurs the problem
of deciding whether a given Σ implies a given ϕ.

PROBLEM: IMPLICATION

INPUT: Relation schema R,
Scale S with k+ 1 possibility degrees,
Set Σ ∪ {ϕ} of pFDs over (R, S)

OUTPUT: Yes, if Σ |= ϕ, and No, otherwise



One may compute Σ∗ and check if ϕ ∈ Σ∗, but this is
inefficient and does not make effective use of the additional input
ϕ. For pFDs, we can exploit Theorem 1 to derive a linear time
algorithm that decides the implication problem. Given a pFD set
Σ ∪ {(X → Y , β)} we return true if β = βk+1 (since this is the
trivial case where βk+1 is the bottom c-degree), otherwise it is
sufficient to check if Σβ |= X → Y . The latter test can be done
in linear time by computing the attribute set closure X+Σβ

= {A ∈

R | Σ ⊢A X → A} of X with respect to Σβ [6]. Algorithm 1
computes the attribute set closure in time O(‖Σβ‖+|X |). We use
‖Σ‖ to denote the total number of attribute occurrences in Σ ,
and |X | to denote the cardinality of X , independently of whether
Σ is a set of pFDs or FDs. We obtain the following algorithmic
characterization.

ALGORITHM 1: Closure Computation

Input: Relation schema R, attribute set X ⊆ R, set Σβ of FDs
over R

Output: Attribute set closure Closure of X with respect to Σβ

Closure← X;
FDList← List of X → Y ∈ Σβ ;
repeat

OldClosure← Closure;
Remove Closure from LHS of FDs in FDList;
for all ∅ → Y in FDList do

Closure← Closure ∪ Y ;
FDList← FDList− {∅ → Y };

end

until Closure=OldClosure or FDList=[ ];
return(Closure);

Therefore, we obtain the following algorithmic characteriza-
tion of the implication problem for pFDs.

Theorem 3. The implication problem Σ |= ϕ of pFDs can be decided
in time O(‖Σ ∪ {ϕ}‖).

We illustrate the algorithm on our running example.

Example 5. Let Σ and ϕ be as in Example 2, and ϕ′ = (Room,

Time → Manager, β3). It follows that ϕ is not implied by Σ as
RT+Σβ2

= RTP . Furthermore, ϕ′ is implied by Σ as RT+Σβ3
= RTPM .

6. Qualitative normal forms

In relational schema design, Boyce–Codd normal form (BCNF)
syntactically characterizes relation schemata that are guaranteed
to be free of data value redundancy in all relations over the
schema, in terms of FDs [55]. Third normal form (3NF) syntacti-
cally characterizes relation schemata that are guaranteed to have
a minimal amount of data value redundancy in their relations
amongst all schemata on which all FDs can be enforced lo-
cally [36]. In relations, data value redundancy is treated uniformly
for all data, and the elimination of all data value redundancy
requires normalization with respect to all FDs.

In p-relations, different tuples may have different p-degrees,
and different pFDs may apply to them. Hence, data value redun-
dancy is caused by pFDs with different c-degrees and occurs in
tuples of different p-degrees. Indeed, the smaller the p-degree for
which data value redundancy is to be eliminated, the smaller the
number of pFDs that can cause this redundancy. Consequently,
the smaller the normalization effort will be, too. We will now
exploit this observation to tailor relational schema design for
applications with different requirements for the uncertainty of

their data. For this purpose, we will introduce notions of data
value redundancy that target the p-degree of tuples in which they
occur. This results in a variety of semantic normal forms by which
data value redundancy of growing p-degrees are eliminated. We
characterize each of the semantic normal forms by a correspond-
ing syntactic normal form, and establish strong correspondences
with BCNF and 3NF in relational databases.

6.1. Redundancy-free normal form

Motivated by the example in our introduction we propose dif-
ferent notions of data value redundancy that are tailored towards
the different p-degrees with which tuples occur in a p-relation.
For this, we exploit the classical proposal by Vincent [55]. Let R
denote a relation schema, A an attribute of R, t a tuple over R, and
Σ a set of FDs over R. A replacement of t(A) is a tuple t̄ over R such
that: i) for all Ā ∈ R−{A} we have t̄(Ā) = t(Ā), and ii) t̄(A) 6= t(A).
For a relation r over R that satisfies Σ and t ∈ r , the data value
occurrence t(A) in r is redundant with respect to Σ if and only
if for every replacement t̄ of t(A), r̄ := (r − {t}) ∪ {t̄} violates
some FD in Σ . A relation schema R is in Redundancy-Free normal
form (RFNF) with respect to a set Σ of FDs if and only if there
are no relation r over R that satisfies Σ , tuple t ∈ r , and attribute
A ∈ R such that the data value occurrence t(A) is redundant with
respect to Σ [55].

Definition 6. Let (R, S) denote a p-schema, Σ a set of pFDs over
(R, S), A ∈ R an attribute, (r, Possr ) a p-relation over (R, S) that
satisfies Σ , and t a tuple in ri. The data value occurrence t(A)
is αi-redundant if and only if t(A) is redundant with respect to
Σαi

= {X → Y | (X → Y , β) ∈ Σ and β ≥ βk+1−i}.

This definition meets the intuition of data value redundancy
we had derived from our motivating example. In particular, the
occurrences of Lava, Lion, and Gill are α4-, α3- and α1-redundant,
respectively. Importantly, αi-redundant data value occurrences
can only be caused by pFDs (X → Y , β) that apply to the
world of the occurrence, that is, where β ≥ βk+1−i. Hence, α1-
redundancy can be caused by pFDs with any c-degree β1, . . . , βk,
while αk-redundancy can only be caused by pFDs with c-degree
β1. Naturally, we have now arrived at the following definition.

Definition 7. A p-schema (R, S) is in αi-Redundancy-Free Normal
Form (αi-RFNF) with respect to a set Σ of pFDs over (R, S) if and
only if there do not exist a p-relation (r, Possr ) over (R, S) that
satisfies Σ , an attribute A ∈ R, and a tuple t ∈ ri such that t(A) is
αi-redundant.

For example, (Meeting, S) is not in α4-RFNF, α3-RFNF, nor α1-
RFNF, but it is in α2-RFNF with respect to Σ . The negative results
follow directly from the redundant data value occurrences in
Fig. 1, but the satisfaction of the α2-RFNF condition is not obvious.
The next result shows that αi-RFNF characterizes p-schemata that
permit only p-relations whose possible world ri is free from data
redundancy caused by the classical FDs that apply to it.

Theorem 4. (R, S) is in αi-RFNF with respect to Σ if and only if R
is in RFNF with respect to Σαi

.

Proof. We show first the following: if (R, S) is not in αi-RFNF
with respect to Σ , then R is in not in RFNF with respect to Σαi

.
According to our hypothesis, there is some possibilistic relation
(r, Possr ) over (R, S) that satisfies Σ , an attribute A ∈ R, and a
tuple t ∈ ri such that t(A) is redundant with respect to Σαi

. In
particular, it follows that ri satisfies Σαi

since r satisfies Σ . Hence,
R is not in RFNF with respect to Σαi

.



We now show: if R is in not in RFNF with respect to Σαi
,

then (R, S) is not in αi-RFNF with respect to Σ . According to our
hypothesis, there is some relation ri over R that satisfies Σαi

, and
some t ∈ ri and A ∈ R such that t(A) is redundant with respect
to Σαi

. In particular, ri must contain some tuple t1 6= t . We
now extend the relation ri to a possibilistic relation (r, Possr ) by
defining Possr (t1) = α1 and Possr (t

′) = αi for all t ′ ∈ ri − {t1}.
We show that r satisfies Σ . If (U → V , β) ∈ Σ is in Σαi

, then
Cr (U → V ) = β1 ≥ β . If (U → V , β) /∈ Σαi

, then β < βk+1−i.
If ri satisfies U → V , then C(r,Possr )(U → V ) = β1 ≥ β . If ri
violates U → V , then C(r,Possr )(U → V ) = βk+2−i ≥ β . As t(A) is
αi-redundant we have shown that (R, S) is not in αi-RFNF with
respect to Σ . �

6.2. Boyce–Codd Normal Form

Our goal is now to characterize α-RFNF, which is a semantic
normal form, purely syntactically. Therefore, we propose qualita-
tive variants of the classical BCNF condition. Recall that a relation
schema R is in Boyce–Codd normal form (BCNF) with respect to
a set Σ of FDs over R if and only if for all X → Y ∈ Σ+

A

where Y 6⊆ X , we have X → R ∈ Σ+
A . Here, Σ+

A denotes the
syntactic closure of Σ with respect to the set A of Armstrong’s
axioms [5]. While α-RFNF is defined semantically using the p-
degree α of a possible world, qualitative variants of BCNF are
defined syntactically using the c-degrees of the given pFDs.

Definition 8. A p-schema (R, S) is in β-Boyce–Codd Normal Form
with respect to a set Σ of pFDs over (R, S) if and only if for every
pFD (X → Y , β) ∈ Σ+

P where Y 6⊆ X , we have (X → R, β) ∈ Σ+
P .

Recall that sets Σ and Θ are covers of one another if Σ∗ = Θ∗

holds. The property of being in β-BCNF with respect to Σ is
independent of the representation of Σ . That is, for any cover Σ ′

of Σ , (R, S) is in β-BCNF with respect to Σ if and only if (R, S)
is in β-BCNF with respect to Σ ′. The β-BCNF condition for a pFD
set Σ can be characterized by the BCNF condition for the FD set
Σβ .

Theorem 5. (R, S) is in β-BCNF with respect to a set Σ if and only
if R is in BCNF with respect to Σβ .

Proof. By definition, (R, S) is in β-BCNF with respect to a set Σ

if and only if for every pFD (X → Y , β) ∈ Σ+
P and Y 6⊆ X we

have (X → R, β) ∈ Σ+
P . Due to Theorem 2 the latter condition is

equivalent to saying that for every pFD (X → Y , β) that is implied
by Σ and Y 6⊆ X , the pFD (X → R, β) is implied by Σ , too.
According to Theorem 1, this statement is equivalent to saying
that for every FD X → Y that is implied by Σβ and Y 6⊆ X , the
FD X → R is implied by Σβ , too. Due to the completeness of the
Armstrong axioms for the implication of FDs, this statements is

equivalent to saying that for every FD X → Y ∈
(

Σβ

)+

A
where

Y 6⊆ X we have X → R ∈
(

Σβ

)+

A
, too. The latter statement,

however, is equivalent to saying that R is in BCNF with respect
to Σβ . �

We are now in a position to characterize the semantic αi-RFNF
by the syntactic βk+1−i-BCNF.

Theorem 6. For all i = 1, . . . , k, (R, S) with |S| = k + 1 is in
αi-RFNF with respect to Σ if and only if (R, S) is in βk+1−i-BCNF
with respect to Σ .

Proof. By Theorem 4, (R, S) is in αi-RFNF with respect to Σ if and
only if R is in RFNF with respect to Σαi

. Since Σαi
= Σβk+1−i

, and
since RFNF and BCNF coincide in relational databases, the latter

Fig. 5. Relationships between normal forms.

statement is equivalent to saying that R is in BCNF with respect to
Σβk+1−i

. However, the last statement is equivalent to saying that
(R, S) is in βk+1−i-BCNF with respect to Σ , by Theorem 5. �

Fig. 5 shows the correspondences between the syntactic and
semantic normal forms, and their relationships to classical normal
forms.

Due to the cover-insensitivity of the β-BCNF condition, one
may wonder about the efficiency of checking whether a given p-
schema (R, S) is in β-BCNF with respect to a set Σ . Indeed, as in
the classical case it suffices to check some pFDs in Σ instead of
checking all pFDs in Σ+

P .

Theorem 7. A p-schema (R, S) is in β-BCNF with respect to a set
Σ of pFDs over (R, S) if and only if for every pFD (X → Y , β ′) ∈ Σ

where β ′ ≥ β and Y 6⊆ X we have (X → R, β) ∈ Σ+
P .

Proof. By Theorem 5, (R, S) is in β-BCNF with respect to Σ if
and only if R is in BCNF with respect to Σβ . However, the latter
condition is well-known to be equivalent to checking for every FD

X → Y ∈ Σβ where Y 6⊆ X that X → R ∈
(

Σβ

)+

A
. The condition

that X → Y ∈ Σβ is equivalent to saying that (X → Y , β ′) ∈ Σ

for β ′ ≥ β . Lastly, the condition X → R ∈
(

Σβ

)+

A
is equivalent

to saying that (X → R, β ′) ∈ Σ+
P for some β ′ ≥ β , according to

Theorems 2 and 1. �

Example 9. Let (Meeting, S) and Σ be as in Example 2. Using
Theorem 7 we can observe that the schema is neither in β1-,
nor β2-, nor β4-BCNF with respect to Σ , but it is in β3-BCNF
with respect to Σ . By Theorem 6 we conclude that the schema is
neither in α4-, nor α3-, nor α1-RFNF with respect to Σ , but it is in
α2-RFNF with respect to Σ . By Theorem 5 it follows that Meeting

is neither in BCNF with respect to Σβ1
, nor Σβ2

, nor Σβ4
, but it

is in BCNF with respect to Σβ3
. Finally, by Theorem 4, it follows

that Meeting is neither in RFNF with respect to Σα4
, nor Σα3

, nor
Σα1

, but it is in RFNF with respect to Σα2
.

6.3. Normal forms that avoid update anomalies

We have seen that αi-RFNF corresponds to βk+1−i-BCNF, which
provides a principled semantic justification of BCNF. In the rela-
tional model, there are other semantic justifications for Boyce–
Codd normal form. For example, tuples usually represent entities
of the real-world. These entities can be uniquely identified by the
values on their key attributes. It is therefore logical to assume
that any updates of an entity only require us to check whether
all specified keys are still valid after the update. In other words, a
good semantic normal form would avoid any update anomalies,
which occur when updates result in instances that satisfy all keys
but violate some other constraint. Another nice feature of such
a normal form is that it integrity checking becomes less com-
putationally involved: key validation can be done in logarithmic
time using appropriate indices, while the validation of functional



dependencies requires quadratic time in the number of tuples.
Our main result shows that βk+1−i-BCNF characterizes those p-
relation schemata that avoid αi-insertion, and three different
types of modification anomalies. Note that deletion anomalies
cannot occur with functional dependencies.

6.3.1. The relational Case
We start by summarizing the formal definitions of key-based

update anomalies from the relational model of data [55]. These
will allow us to state the achievements of the classical Boyce–
Codd normal form in terms of avoiding these anomalies.

An attribute subset X of a relation schema R is said to be a
superkey for an FD set Σ if and only if Σ implies the FD X → R.
We say that X is a candidate key of R for Σ if and only if X
is a superkey of R for Σ and there is no proper subset Y of X
such that Y is a superkey of R for Σ . We use Σk to denote the
set of candidate keys of R for Σ . A primary key of R for Σ is a
distinguished element of Σk.

A relation r over relation schema R is said to have a key-based
insertion anomaly (KIA) with respect to the set Σ of functional
dependencies if and only if (i) r satisfies Σ , (ii) there is some R-
tuple t /∈ r such that r ∪ {t} satisfies Σk, and (iii) r ∪ {t} violates
Σ .

A relation r over relation schema R is said to have a key-based
type-1 modification anomaly (KMA-1) with respect to the set Σ of
functional dependencies if and only if there is a tuple t ∈ r and
an R-tuple t ′ /∈ r such that (i) r satisfies Σ , (ii) (r − {t}) ∪ {t ′}
satisfies Σk, and (iii) (r − {t}) ∪ {t ′} violates Σ .

A relation r over relation schema R is said to have a key-based
type-2 modification anomaly (KMA-2) with respect to the set Σ

of functional dependencies if and only if there is a tuple t ∈ r
and an R-tuple t ′ /∈ r such that (i) r satisfies Σ , (ii) (r −{t})∪ {t ′}
satisfies Σk, (ii’) there is some key K ∈ Σk such that t[K ] = t ′[K ],
and (iii) (r − {t}) ∪ {t ′} violates Σ .

A relation r over relation schema R is said to have a key-based
type-3 modification anomaly (KMA-3) with respect to the set Σ of
functional dependencies if and only if there is a tuple t ∈ r and an
R-tuple t ′ /∈ r such that (i) r satisfies Σ , (ii) (r−{t})∪{t ′} satisfies
Σk, (ii’’) for the primary key K ∈ Σk we have t[K ] = t ′[K ], and
(iii) (r − {t}) ∪ {t ′} violates Σ .

(R, Σ) is said to be in key-based insertion anomaly normal form
(KIANF) if and only if there is no relation r over R which as a KIA
with respect to Σ . Likewise, for j = 1, . . . , 3, (R, Σ) is said to be
in key-based modification anomaly normal form j (KMANFi) if and
only if there is no relation r over R which as a KMA-j with respect
to Σ .

The main result for the relational model is that Boyce–Codd
normal form characterizes the relation schemata that are free
from key-based insertion anomalies and key-based type-i mod-
ification anomalies for i = 1, 2, 3.

Theorem 8 ([55]). Let Σ be a set of functional dependencies over
relation schema R. Then the following are equivalent:

• (R, Σ) is in KIANF

• (R, Σ) is in KMANF-1

• (R, Σ) is in KMANF-2

• (R, Σ) is in KMANF-3

• (R, Σ) is in BCNF. �

6.3.2. The possibilistic Case
Wewill now generalize the results of the last subsection to our

possibilistic setting. Note that the relational case is subsumed by
the possibilistic model as the special case where k = 1. We begin
by distinguishing update anomalies with respect to the p-degrees
of tuples in which they occur.

Definition 10. Let Σ be a set of pFDs over p-relation schema
(R, S) where |S| = k+ 1, and let i ∈ {1, . . . , k}. Then a p-relation
r is said to have an αi-insertion anomaly (αi-KIA) with respect to
Σ if and only if ri has an insertion anomaly with respect to Σαi

.
((R, S), Σ) is said to be in αi-key-based insertion anomaly normal
form (αi-KIANF) if and only if there is no p-relation r over (R, S)
such that r has an αi-KIA with respect to Σ .

For j = 1, 2, 3, a p-relation r is said to have an αi-modification
anomaly of type-j with respect to Σ if and only if ri has a key-
based type-j modification anomaly (αi-KMA-j) with respect to
Σαi

. ((R, S), Σ) is said to be in αi-key-based modification anomaly
normal form-j (αi-KMANF-j) if and only if there is no p-relation r
over (R, S) such that r has an αi-KMA-j with respect to Σ .

We illustrate the definitions by the following examples. For
these examples, let Σ consist of the following four pFDs

• (Manager, Time→ Room, β1),

• (Room, Time→ Project, β2),

• (Project, Time→ Manager, β3), and

• (Project → Manager, β4)

over (Meeting, {α1, . . . , α5}). In addition, r denotes the p-relation
from Table 1. We start with an insertion anomaly.

Example 11. We illustrate the case of an α4-KIA. We know that
Σα4

= {Manager, Time → Room}, and Σk
α4
= {{Manager, Time,

Project}}. Now, if t denotes the tuple
(Project: Tiger; Time: Wed, 11 am; Manager: Pam; Room:

Mauve) , then r4 ∪ {(t, α4)} satisfies Σk
α4
, but violates Σα4

.

Next we will illustrate the case of a modification anomaly.

Example 12. We illustrate the case of an α3-KMA-2. We know
that Σα3

= {Manager, Time→ Room; Room, Time→ Project}, and

Σk
α3
= {{Manager, Time}}. Now, if t denotes the tuple

(Project: Lion; Time: Wed, 11 am;Manager: Jack; Room: Cyan) ,
and t ′ denotes the tuple

(Project: Panda; Time: Wed, 11 am; Manager: Jack; Room:
Cyan) , then t[Time,Manager] = t ′[Time,Manager], and (r3 −
{(t, α3)}) ∪ {(t

′, α3)} satisfies Σk
α3
, but violates Σα3

.

Finally, we give another example of a modification anomaly.

Example 13. We illustrate the case of an α1-KMA-3. We know
that Σα1

= {Manager, Time → Room; Room, Time → Project;

Project → Manager}, and Σk
α1
= {{Manager, Time}, {Room, Time},

{Project, Time}} with primary key {Project, Time}. Now, if t de-
notes the tuple

(Project: Lion; Time: Tue, 4 pm; Manager: Gill; Room: Buff) ,
and t ′ denotes the tuple

(Project: Lion; Time: Tue, 4 pm; Manager: Rob; Room: Buff) ,
then t[Project, Time] = t ′[Project, Time], and (r1 − {(t, α1)}) ∪
{(t ′, α1)} satisfies Σk

α1
, but violates Σα1

.

We are now able to state the main result of this subsection.

Theorem 9. Let Σ be a set of pFDs over p-relation schema (R, S)
where |S| = k + 1, and let i ∈ {1, . . . , k}. Then the following are
equivalent:

1. ((R, S), Σ) is in αi-KIANF

2. (R, Σαi
) is in KIANF

3. ((R, S), Σ) is in αi-KMANF-1

4. (R, Σαi
) is in KMANF-1

5. ((R, S), Σ) is in αi-KMANF-2

6. (R, Σαi
) is in KMANF-2

7. ((R, S), Σ) is in αi-KMANF-3



8. (R, Σαi
) is in KMANF-3

9. ((R, S), Σ) is in βk+1−i-BCNF.

Proof. The result follows straight from the definitions, the fact

that Σαi
= Σβk+1−i

, and Theorem 8. �

Example 14. For our running example, we know that the p-

relation schema (Meeting, {α1, . . . , α5}) with pFD set Σ is not in

α1-BCNF, not in α2-BCNF, and not in α3-BCNF, but it is in α2-BCNF.

Examples 11–13 therefore also illustrate Theorem 9.

6.4. Third normal form

Similar to the β-BCNF we are now introducing the β-Third

normal form (3NF). The goal of this normal form is similar to

its classical counterpart: 3NF ensures that all FDs can be en-

forced locally, without the need of joining relations to check for

consistency of updates.

Recall the 3NF condition from relational databases: A relation

schema R is in 3NF with respect to a given set Σ of FDs if and

only if for every FD X → A ∈ Σ+
A where A /∈ X , we have

X → R ∈ Σ+
A or A is a prime attribute. An attribute A is prime if

and only if it occurs in some minimal key with respect to Σ . An

attribute subset X of R is a key of R with respect to Σ if and only

if X → R ∈ Σ+
A . A key X of R is minimal with respect to Σ if and

only if every proper attribute subset Y of X is not a key of R with

respect to Σ .

We will now introduce analogous concepts for possibilistic

databases. Given a p-schema (R, S), a c-degree β ∈ S
T , and a set

Σ of pFDs over (R, S), an attribute subset X of R is said to be a

β-key of R with respect to Σ if and only if (X → R, β) ∈ Σ+
P .

A β-key X of R with respect to Σ is a β-minimal key if and only

if every proper attribute subset Y of X is not a β-key of R with

respect to Σ . An attribute A ∈ R is said to be β-prime if and only

if it is contained in some β-minimal key X of R with respect to

Σ .

Definition 15. A p-schema (R, S) is in β-Third Normal Form (3NF)

with respect to a set Σ of pFDs over (R, S) if and only if for every

pFD (X → A, β) ∈ Σ+
P where A /∈ X , we have (X → R, β) ∈ Σ+

P

or A is a β-prime attribute.

Theorem 5 characterized β-BCNF with respect to the pFD set

Σ in terms of classical BCNF with respect to the β-cut Σβ . An

analogous result holds for 3NF.

Theorem 10. (R, S) is in β-3NF with respect to a set Σ if and only

if R is in 3NF with respect to Σβ .

Proof. Theorem 1 guarantees that (X → Y , β) ∈ Σ+
P if and only

if X → Y ∈ (Σβ )
+
A . In particular, X is a (minimal) β-key of R with

respect to Σ if and only if X is a (minimal) key of R with respect

to Σβ . �

Again, due to the cover-insensitivity of the β-3NF condition,

one may wonder about the ‘‘efficiency’’ of checking whether a

given p-schema (R, S) is in β-3NF with respect to a set Σ . Indeed,

as in the classical case it suffices to check some pFDs in Σ instead

of checking all pFDs in Σ+
P .

Theorem 11. A p-schema (R, S) is in β-3NF with respect to a set

Σ of pFDs over (R, S) if and only if for every pFD (X → Y , β ′) ∈ Σ

where β ′ ≥ β and Y 6⊆ X, we have (X → R, β) ∈ Σ+
P or every

attribute A ∈ Y − X is β-prime.

Proof. A relation schema R is in 3NF with respect to an FD set
Σβ if and only if for every FD X → Y ∈ Σβ where Y 6⊆ X , we
have X → R ∈ (Σβ )

+
A or every attribute A ∈ Y − X is prime. The

theorem now follows from Theorem 1. �

Example 16. Let (Meeting, S) and Σ be as in Example 2. Using
Theorem 11, the schema is in neither β1- nor β2-3NF, but it is in
β3-3NF and in β4-3NF with respect to Σ . Finally, by Theorem 10,
Meeting is neither in 3NF with respect to Σβ1

nor Σβ2
, but it is

in 3NF with respect to Σβ3
and with respect to Σβ4

.

7. Qualitative normalization

We now establish algorithmic means to design relational
database schemata for applications with uncertain data. We first
describe our overall strategy of database normalization for such
applications, and its impact on current database design practice.
Subsequently, we address decompositions into variants of Boyce–
Codd normal form and synthesis into variants of Third normal
form.

7.1. Strategy and impact on practical database design

The input to the database normalization process is a pos-
sibilistic schema (R, S) together with a set Σ of possibilistic
functional dependencies. As in the classical design process, data is
not required for the process. In particular, we do not require any
p-relations as part of the input. However, having data available is
likely to benefit the design process as the data can help designers
to identify those pFDs that are meaningful for the domain of
our applications. For instance, there is empirical evidence that
Armstrong databases do help with the acquisition of meaningful
functional dependencies [37]. Recall that Armstrong databases are
databases that satisfy those pFDs of the input set, and violate all
those pFDs that are not implied by the input set. We enlist the in-
vestigation of Armstrong p-relations for sets of pFDs under future
work, and assume that the input Σ to the database normalization
process consists of those pFDs that are meaningful for the given
domain.

Indeed, the availability of c-degrees as part of the input pro-
vides us with many choices for database normalization. The
choice we make is determined by the application requirements.
In fact, based on the requirements that applications have on the
p-degrees of tuples or the c-degrees of constraints, we fix the
appropriate c-degree β ∈ S

T that determines which possible
world we classically normalize with respect to the set of classical
FDs that apply to it. Note that the duality between the p-degrees
and the c-degrees allows us to fix the dual c-degree, even if
the application requirements are only available in terms of the
p-degrees.

Once we have fixed the certainty degree β , we can sim-
ply perform classical normalization with respect to the set of
classical FDs whose c-degrees are at least as high as the tar-
get c-degree, that is, with respect to the β-cut Σβ . Indeed, we
can pursue BCNF decompositions to obtain αk+1−i-lossless de-
compositions free from any αk+1−i-data value redundancy but
potentially not βi-dependency-preserving (that is, some FDs may
require validation on the join of some relations). We can also
pursue 3NF synthesis to obtain αk+1−i-lossless, βi-dependency-
preserving decompositions where the degree of αk+1−i-data re-
dundancy is minimal with respect to all decompositions that are
βi-dependency-preserving.

Different choices of c-degrees address different application
requirements. Hence, the availability of the c-degrees provides
organizations with a variety of normalized database schemata.
In this sense, the degree of certainty is a parameter that allows



stakeholders to control trade-offs between data integrity and
data losslessness, as well as between query efficiency and update
efficiency, as illustrated in Fig. 3.

Relational normalization appears as a special case of this pro-
cess where only two c-degrees are available, namely the top
and the bottom c-degree. Here, the only FD set we can use to
perform classical normalization results from pFDs that have the
top c-degree. If more c-degrees are available for a domain, then
different requirements of applications in this domain identify
different possible worlds and therefore different sets of functional
dependencies and tuples they apply to.

Finally, we stress that the instances over the output of the nor-
malization process are classical relations. In particular, the tuples
do not carry any p-degrees. By the results of the previous section,
the relations do not exhibit any data redundancy nor any form of
update anomalies by design. Indeed, the underlying application –
according to its requirements – only considers tuples that meet
the p-degree threshold, and for such tuples, we do not have data
redundancy nor anomalies by design.

7.2. BCNF Decomposition

We recall basic terminology from relational databases. A de-
composition of relation schema R is a set D = {R1, . . . , Rn} of
relation schemata such that R1 ∪ · · · ∪ Rn = R. For Rj ⊆ R and
FD set Σ over R, Σ[Rj] = {X → Y | X → Y ∈ Σ+

A and X, Y ⊆ Rj}
denotes the projection of Σ onto Rj. A decomposition D of a
relation schema R with FD set Σ is called lossless if and only if
every relation r over R that satisfies Σ is the join of its projections
on the elements of D, that is, r = ⊲⊳Rj∈D r[Rj]. Here, r[Rj] =
{t(Rj) | t ∈ r}. A BCNF decomposition of a relation schema
R with FD set Σ is a decomposition D of R where every Rj ∈
D is in BCNF with respect to Σ[Rj]. Theorem 5 motivates the
following definition of a BCNF decomposition that is lossless for
a given degree of possibility. Again, the definition exploits the
relationships between p-degrees associated with tuples of data,
and c-degrees associated with FDs.

Definition 17. An αk+1−i-lossless BCNF decomposition of a p-
schema (R, {α1, . . . , αk+1}) with respect to the pFD set Σ is a
lossless BCNF decomposition of R wrt Σβi

.

Instrumental to Definition 17 is the following decomposition
theorem, which follows directly from Theorem 1. It covers the
classical decomposition theorem [48] as the special case of having
just one possible world.

Theorem 12. Let (X → Y , βi) be a pFD with 1 ≤ i < k + 1 that
satisfies the p-relation (r, Possr ) over the p-schema (R, S). Then

rk+1−i = rk+1−i[XY ] ⊲⊳ rk+1−i[X(R− Y )],

that is, the possible world rk+1−i of r is the lossless join of its
projections on XY and X(R− Y ).

Therefore, an αk+1−i-lossless BCNF decomposition with respect
to a pFD set Σ can simply be obtained by performing a classical
lossless BCNF decomposition with respect to the βi-cut Σβi

of Σ .
This suggests a simple lossless BCNF decomposition strategy.

PROBLEM: Qualitative BCNF Decomposition

INPUT: Possibilistic Relation Schema (R, S)
Set Σ of pFDs over (R, S)

Certainty degree βi ∈ S
T − {βk+1}

OUTPUT: αk+1−i-lossless BCNF decomposition
of (R, S) with respect to Σ

METHOD: Perform a lossless BCNF decomposition
of R with respect to Σβi

We illustrate the decomposition on our running example.

Example 18. Let (Meeting, S) and Σ be as in Example 2.
As (Meeting, S) is not in β2-BCNF wrt Σ , we perform an α3-
lossless BCNF decomposition wrt Σβ2

. The result consists of R1 =
{Project, Room, Time} with projected FD set

Σβ2
[R1] = {Room, Time→ Project},

and R2 = {Manager, Room, Time} with projected FD set

Σβ2
[R2] = {Manager, Time→ Room}.

Note that every FD in Σβ2
is implied by Σβ2

[R1] ∪Σβ2
[R2]. Since

the pFDs in Σ apply to the worlds r1, r2 and r3 from Fig. 1,
this decomposition may be applied to the world r3 to obtain the
instance D3 shown in Fig. 2.

The last example is rather special, since one cannot expect
to preserve all FDs in the BCNF decomposition process. This is
illustrated with another example.

Example 19. Let (Meeting, S) and Σ be as in Example 2. As
(Meeting, S) is not in β4-BCNF wrt Σ , we perform an α1-lossless
BCNF decomposition wrt Σβ4

. The result is R1 = {Manager,
Project} with projected FD set

Σβ4
[R1] = {Project → Manager},

and R2 = {Project, Room, Time} with projected FD set

Σβ4
[R2] = {Room, Time→ Project,

Project, Time→ Room}.

Note that the FD Manager, Time → Room is not implied by
Σβ4

[R1] ∪ Σβ4
[R2]. Since the pFDs in Σ apply only to world r1

from Fig. 1, this decomposition may be applied to r1 to obtain
the instance D1 shown in Fig. 2.

A decomposition D of relation schema R with FD set Σ is
dependency-preserving if and only if Σ+

A = (∪Rj∈DΣ[Rj])
+
A .

Definition 20. A β-dependency-preserving decomposition of a
p-schema (R, S) with respect to the pFD set Σ is a dependency-
preserving decomposition of R with respect to Σβ .

The α3-lossless BCNF decomposition from Example 18 is β2-
dependency-preserving, but the α1-lossless BCNF decomposition
from Example 19 is not β4-dependency-preserving. In fact, for
(Meeting, S) and Σ as in Example 2 there is no β4-dependency-
preserving, α1-lossless BCNF decomposition of Σ . In practice,
lost dependencies can only be validated by joining relations
after inserts or modification. For example, to validate the FD
Manager, Time → Room after an update, one would have to join
R1 and R2 from Example 19. This can be prohibitively expensive.

7.3. 3NF synthesis

3NF synthesis guarantees dependency-preservation, but can-
not guarantee the elimination of all data value redundancy in
terms of FDs. Recently, an information-theoretic framework was
developed to provide a formal justification for Third normal form
by showing that it pays the smallest possible price, in terms of
data redundancy, for achieving dependency-preservation [4,36].
For these reasons we will now equip our database schema design
framework for uncertain data with an appropriate 3NF synthesis
strategy.

A 3NF decomposition of a relation schema R with respect to
an FD set Σ is a decomposition D of R where every Rj ∈ D is in
3NF with respect to Σ[Rj]. Theorem 10 motivates the following
definition.



Definition 21. A βi-dependency-preserving, αk+1−i-lossless 3NF
decomposition of a p-schema (R, {α1, . . . , αk+1}) with respect to
the pFD set Σ is a dependency-preserving, lossless 3NF decom-
position of R wrt Σβi

.

According to Theorem 12 a βi-dependency-preserving, αk+1−i-
lossless 3NF synthesis with respect to a pFD set Σ can simply
be obtained by performing a classical dependency-preserving
lossless 3NF synthesis with respect to the βi-cut Σβi

of Σ .

PROBLEM: Qualitative 3NF Synthesis

INPUT: Possibilistic relation schema (R, S)
Set Σ of pFDs over (R, S)

Certainty degree βi ∈ S
T − {βk+1}

OUTPUT: βi-dependency-preserving, αk+1−i-lossless
3NF decomposition of (R, S) wrt Σ

METHOD: Perform a dependency-preserving, lossless
3NF synthesis of R with respect to Σβi

We illustrate the synthesis on our running example.

Example 22. Let (Meeting, S) and Σ be as in Example 2. Since
(Meeting, S) is not in β2-3NF with respect to Σ , we perform an
α3-lossless, β2-dependency-preserving 3NF synthesis. The result
consists of the two schemata R1 = {Project, Room, Time} with
projected FD set

Σβ2
[R1] = {Room, Time→ Project},

and R2 = {Manager, Room, Time} with projected FD set

Σβ2
[R2] = {Manager, Time→ Room}.

Note that R1 is in BCNF with respect to Σβ2
[R1], and R2 is in BCNF

with respect to Σβ2
[R2], as we have already seen in Example 18.

The ultimate we can strive for is a dependency-preserving,
lossless BCNF decomposition. There are two approaches: per-
forming a lossless BCNF decomposition and hope that it is
dependency-preserving, or performing a dependency-preserving
3NF synthesis and hope that all schemata are actually in BCNF. It
is a natural and important practical question which approach has
a better chance of succeeding. We will provide an answer to this
question with first empirical evidence later when we present our
experiments in Section 9.

8. GUI

A web-based GUI1 provides full access to our algorithms and
experiments. It consists of three main parts.

Under Classical Normalization, users can input a relation
schema and a set of FDs. Several algorithms can be applied to
this and additional input. Regarding BCNF decompositions, users
can choose from the standard algorithm [3], the polynomial-time
algorithm [53], and a variation of the latter that computes the
projection of original FD sets to the final output schemata only.
For 3NF synthesis, users can decide whether the algorithm should
be applied with respect to canonical covers (Option: Unique LHS),
or with respect to non-redundant, L-reduced covers in which
every FD has only one attribute on the right (Option: Expanded).

Under Qualitative Normalization, see Fig. 6, qualitative variants
of all of the algorithms above can be applied to a set of pFDs
over a p-schema and an optional attribute subset, as specified by
a user or randomly generated by the GUI. The user can specify

1 http://www.dbschemadesign.cs.auckland.ac.nz/.

Fig. 6. User interface — normalization.

a scale of c-degrees in the form of positive integers, and assign

these to FDs to obtain pFDs. Whenever the user specifies a c-

degree (under Scale Index), the GUI applies the scaled version of

an algorithm with that c-degree. Otherwise, the same output is

returned as for the classical algorithms. As an illustration, Fig. 7

shows the input and output to the β2-BCNF decomposition from

Example 18. The latter figure also shows that the application

returns several timings with the output.



Fig. 7. BCNF example in GUI.

Under Experiments, our GUI provides the ability to launch
experiments with our algorithms, either via the Web or in a
distributed way upon high-performance computing facilities.2

9. Experiments

In this section we present and analyze the results of our
experiments regarding the qualitative variants of BCNF decompo-
sitions and 3NF syntheses. The analysis includes new insights into
classical relational schema design trade-offs. We remark that our
sole utilization of the existing distributed cluster environment
was the parallel execution of our sequential implementations on
as many artificially created examples as possible.

Our core analysis concerns the trade-offs between the elimina-
tion of data value redundancy achieved by BCNF decompositions
and the preservation of FDs achieved by 3NF syntheses, as well
as between query and update efficiency. The simplest general
heuristic measure for the query and update efficiency of a de-
composition is the number of its schemata - to which we refer
as the size of the decomposition. In fact, the more schemata a
decomposition contains the more updates and the less queries
it can support efficiently. In particular, less schemata require
less joins, the main source of complexity in query evaluation.
We measure the size of the decomposition (y-axis) in (1) the
given number k of different c-degrees, (2) the given number of
different possible worlds, and (3) the size of the given constraint
sets. We represent these three measures uniformly as the given
maximum c-degree βk (x-axis). Indeed, the given number k of
different c-degrees coincides with the given number of possible
worlds, and the size of the input constraint set Σ is that of
its βk-cut. In particular, recall that Σβ1

⊆ · · · ⊆ Σβk
holds,

so the size of the input constraint sets grows as k grows. Our
experiments have been run up to k = 15. We argue that this
number is representative as decision-making becomes ineffective
when an organization must distinguish between higher numbers
of degrees for uncertainty. Nevertheless, our framework can also
be used to run experiments for larger numbers k.

2 https://www.nesi.org.nz.

For our analysis we compare five normalization algorithms:
BCNF(1) is the classical BCNF decomposition algorithm that takes
exponential time and space, BCNF(2) is Tsou and Fischer’s
polynomial-time algorithm, BCNF(3) is the variant of BCNF(2)
where the projection of original FD sets is only determined for
the output schemata, 3NF(1) is the 3NF synthesis algorithm that
first computes a non-redundant, L-reduced cover in which all FDs
have a singleton attribute on the right-hand side, and 3NF(2) is
the 3NF synthesis algorithm that first computes a canonical cover.

Fig. 8 shows the average size of decompositions and average
times to generate them (y-axis) in the given number k of available
c-degrees (x-axis: k = 1, . . . , 15). For a fixed k, the averages
of βi-BCNF/3NF decompositions (using the 5 algorithms) were
taken over 5000 randomly generated input pFD sets Σ over a
fixed relation schema with 15 attributes and the number k of
available c-degrees. The maximum number s of pFDs in each set
Σ is s = 15 in the left column and s = 75 in the right column of
Fig. 8, respectively.

The experiments show nearly uniform results: The lowest-
sized decomposition is BCNF(1), that are followed by BCNF(2,3)
which agree, followed by 3NF(2), and then 3NF(1). The results are
rather intuitive as 3NF produces more schemata to accommodate
the preservation of all FDs and thereby sacrificing the elimination
of some data value redundancy. The graphs show the price for
producing a BCNF decomposition in polynomial time, which re-
sults from not having to check the BCNF condition of intermediate
results and thereby producing schemata not required by BCNF(1).
It is interesting that this price is still mostly smaller than that
to accommodate dependency-preservation. However, we will see
later that the superfluous schemata in BCNF(2,3) are unlikely to
help with dependency-preservation. Finally, 3NF(2) generates less
schemata than 3NF(1) as a canonical cover contains less FDs than
the other cover considered. The difference between BCNF(1) and
3NF(2) tells us how many more schemata are required to guaran-
tee dependency-preservation. The results suggest to prefer BCNF
decomposition in terms of query efficiency and, obviously, in
terms of elimination of data value redundancy. They do not mean
by any means, to prefer BCNF decomposition in terms of update
efficiency. Indeed, BCNF decompositions are only more efficient
for updates of redundant data value occurrences caused by FDs
preserved during the decomposition, while update inefficiencies
result from having to join schemata to validate FDs that were not
preserved during the decomposition.

The experiments show that the c-degree is a parameter that
can effectively control the size of the decompositions that are
produced, and thereby address different levels of query and up-
date efficiency. The graphs illustrate an interesting behavior for
the size of the decompositions in the growing size of the input
FD set. When there are about as many given FDs as underlying
attributes (left column), then the average size of decompositions
grows linearly. When there are significantly more given FDs than
underlying attributes (that is, 5 times as many FDs in the right
column), then a global maximum is observable in the average size
of decompositions. This is explained by the fact that there will be
a point when there are sufficiently many FDs that turn attribute
sets into keys, in which case further decompositions become
unnecessary. Not surprisingly, this saturation point comes earlier
for BCNF(1) than for any of the other algorithms considered. For
larger FD sets, higher levels of data integrity (which coincide with
lower levels of data losslessness) achieve the same levels of query
efficiency as significantly lower levels of data integrity (which
coincide with higher levels of data losslessness).

The bottom row of Fig. 8 shows the average times to generate
the decompositions for our two experiments with s = 15 and s =
75. BCNF(2) takes the lowest time, followed by BCNF(3), followed
by BCNF(1), and followed by 3NF(1,2). These results are intuitive,



Fig. 8. Average size of decompositions and average times to generate them (y-axis) in the given number k of available c-degrees (x-axis: k = 1, . . . , 15). For a fixed

k, the averages were taken over 5000 randomly generated input pFD sets Σ over a fixed relation schema with 15 attributes and the number k of available c-degrees.

The maximum number s of pFDs in each Σ is 15 in the left column and 75 in the right column.

Fig. 9. Percentages of 3NF outputs in BCNF versus BCNF outputs that are dependency-preserving, and average times to check for BCNF in 3NF outputs versus

dependency-preservation in BCNF outputs, respectively, for the given number k of available c-degrees (x-axis: k = 1, . . . , 15). For a fixed k, the average was taken

over 5000 randomly generated input pFD sets Σ over a fixed relation schema with 15 attributes and the number k of available c-degrees. The maximum number s

of pFDs in each Σ is s = 15 in the left column and s = 75 in the right column.

too. BCNF(2) demonstrates its major strength in comparison to
the other algorithms, with a maximum average of 8 ms for s = 15
and 13 ms for s = 75. BCNF(3) requires slightly more time with
a maximum average of 12 ms for s = 15 and 35 ms for s = 75,
resulting from the projections of the given FD sets to the final
output schemata at the end. BCNF(1) requires more time with a
maximum average of 630 ms for s = 15 and 627 ms for s = 75,
as a result of projecting the given FD sets to all intermediate and
final schemata. Finally, 3NF(1,2) requires significantly more time
with a maximum average of 64 s for s = 15 and 530 s for s = 75.
Considering the purpose of schema design, all these times can

easily be considered as very efficient, and should not be a decisive

factor when choosing a final decomposition.

Two main observations illustrate inherent trade-offs. For BCNF

decompositions, decompositions of smaller size come at the price

of requiring more time to be generated. In other words,

polynomial-time BCNF decompositions result from not having

to spend time on validating the BCNF condition, thereby gen-

erating additional schemata that are superfluous in terms of

update efficiency but may significantly add to the inefficiency of

query evaluation. For 3NF decompositions, the price to pay for



dependency-preservation is a higher complexity in terms of the
size of the decompositions and the time taken to generate them.

The final decision whether to use a 3NF decomposition that is
not a BCNF decomposition or a BCNF decomposition that is not
dependency-preserving requires a case by case analysis. Consid-
ering update efficiency one must ask whether frequent updates
are slowed down more by data value redundancies inherent in
the given 3NF decomposition that is not a BCNF decomposition, or
by the validation of FDs that are not preserved in the given BCNF
decomposition. This should be balanced with an analysis which
of the schemata provide better efficiency in evaluating frequent
queries.

An important practical question is which of the two nor-
malization strategies is more likely to result in an ultimate de-
composition, defined as a lossless, dependency-preserving BCNF
decomposition. Therefore, we computed the percentages of those
lossless BCNF decompositions that are dependency-preserving
and of those lossless 3NF decompositions that are in BCNF, ob-
tained from our randomly created inputs. The results are shown
in the top row of Fig. 9. It shows the 3NF strategy as the clear
winner. In fact, it is intuitive that the probability of generat-
ing some 3NF pattern that violates the BCNF condition is lower
than the probability of not preserving some FD. However, the
difference is substantial. Indeed, for the case where s = 15,
the percentage for 3NF(1,2) is 73, for BCNF(1) it is 22.5 and for
BCNF(3) it is 20. For the case where s = 75, the percentage
for 3NF(1,2) is 53, for BCNF(1) it is 18.5 and for BCNF(3) it is
12. These observations provide first empirical explanations why
3NF is the preferred strategy in practice, not only in terms of
grouping together logically linked attributes but also in terms of
the chances for creating an optimal decomposition for which all
data value redundancy is eliminated and consistency with respect
to all FDs can be enforced locally.

Finally, the bottom row of Fig. 9 shows that the average
time to validate the BCNF condition for a given 3NF decom-
position is less than the average time to validate dependency-
preservation for a given BCNF decomposition. However, the most
time-consuming case requires less than 2 ms.

10. A real-world example from web data extraction

In this section we illustrate our decomposition framework
on a real-world example from Web data extraction. Here, basic
information about the top-100 best-selling books was extracted
from five online book sellers:

1. eBay book store3

2. Amazon book store4

3. book directory5

4. Barnes & Noble6

5. Easons.7

For our collection the tool Web Scraper8 was used on a
Chrome extension plugin. It extracted the content from the same
HTML tags from every book web page. The extracted results had
many mistakes initially, since not all books have the same details
and the same HTML tags may also have different values. Errors
were fixed manually. In total, 344 tuples were extracted over the
p-schema (Books, {α1, . . . , α5, α6}) with Books = {title, author,

3 http://www.half.ebay.com/books-bestsellers.
4 https://www.amazon.com/best-sellers-books-Amazon/zgbs/books.
5 https://www.bookdepository.com/bestsellers.
6 http://www.barnesandnoble.com/b/books/_/N-1fZ29Z8q8.
7 http://www.easons.com/shop/c-bestselling-books.
8 http://webscraper.io/.

page, price, publisher}. For i = 1, . . . , 6, a tuple was assigned p-
degree αi if and only if it was contained in 6− i of the data sets.
The p-degree therefore denotes the possibility by which a book
is listed in the top-100 of each book seller. From the resulting
p-relation we then computed a canonical cover Σ for the set of
pFDs that are satisfied by it. We obtained the following pFD set
Σ:

1. (title→ author, β1),

2. (title, page→ price, β1),

3. (title, publisher → price, β1),

4. (title, price→ page, β1),

5. (author, price→ publisher, β1),

6. (title→ price, β2),

7. (author, page→ publisher, β2),

8. (author, price→ page, β2),

9. (page, price→ author, β2),

10. (page, publisher → price, β3),

11. (publisher, price→ page, β3),

12. (page→ price, β4),

13. (publisher → author, β4),

14. (publisher, price→ title, β4),

15. (publisher → price, β5).

In what follows we list ten different decompositions into
β-BCNF and β-3NF together with their properties regarding loss-
lessness, elimination of data redundancy and update anomalies,
and preservation of functional dependencies.

• β1-BCNF, α5-lossless, no α5-redundancy, no α5-update
anomalies:

– R1 = {author, title} with title→ author ,

– R2 = {page, price, publisher, title} with page, title →
price; price, title→ page; price, title→ publisher

– Not β1-dependency-preserving, e.g. the following two
FDs were lost: publisher, title → price; and author,
price→ publisher

• β2-BCNF, α4-lossless, no α4-redundancy, no α4-update
anomalies:

– R1 = {author, page, publisher} with author, page →
publisher

– R2 = {author, page, price} with page, price → author
and author, price→ page

– R3 = {page, price, title} with title → price and title →
page

– β2-dependency-preserving

• β3-BCNF, α3-lossless, no α3-redundancy, no α3-update
anomalies:

– R1 = {author, page, price, publisher} with author,
price → publisher; author, page → price; price,
publisher → page; page, publisher → author; and
page, price→ author

– R2 = {author, page, title} with title → author and
title→ page

– β3-dependency-preserving

• β4-BCNF, α2-lossless, no α2-redundancy, no α2-update
anomalies:

– R1 = {author, publisher} with publisher → author

– R2 = {page, price, publisher, title} with page → price;
title → publisher; page → title; price, publisher →
page; and title→ page

– not β4-dependency preserving, e.g. the following two
FDs were lost: author, price → publisher and author,
price→ page



• β5-BCNF, α1-lossless, no α1-redundancy, no α1-update
anomalies:

– R = {author, page, price, publisher, title} with page →
author; title → page; title → price; publisher → page;
author, price→ publisher; and page→ title

– β5-dependency-preserving

• β1-3NF, α5-lossless, β1-dependency-preserving:

– Canonical cover:

∗ title→ author
∗ page, title→ price

∗ publisher, title→ price

∗ price, title→ page

∗ author, price→ publisher

– Minimal keys:

∗ {page, title};

∗ {price, title};

∗ {publisher, title}

– 3NF decomposition:

∗ R1 = {author, title} with title→ author

∗ R2 = {page, price, title} with page, title → price
and price, title→ page

∗ R3 = {price, publisher, title} with price, title →
publisher and publisher, title→ price

∗ R4 = {author, price, publisher} with author,
price→ publisher

∗ This decomposition satisfies BCNF, so there are no
α5-redundancy and no α5-update anomalies

• β2-3NF, α4-lossless, β2-dependency-preserving:

– Canonical cover:

∗ title→ page, price

∗ author, page→ publisher;

∗ page, price→ author;

∗ author, price→ page

– Minimal keys:

∗ {title}

– β2-3NF decomposition:

∗ R1 = {page, price, title} with title → price and
title→ page

∗ R2 = {author, page, publisher} with author,
page→ publisher

∗ R3 = {author, page, price} with page, price →
author and author, price→ page

∗ This decomposition satisfies BCNF, so there are no
α4-redundancy and no α4-update anomalies

• β3-3NF, α3-lossless, β3-dependency-preserving:

– Canonical cover:

∗ page, publisher → price

∗ title→ author, price

∗ page, price→ author

∗ author, price→ publisher

∗ author, page→ publisher

∗ price, publisher → page

– Minimal keys:

∗ {title}

– β3-3NF decomposition:

∗ R1 = {page, price, publisher} with page, price →
publisher; page, publisher
→ price; price, publisher → page

∗ R2 = {author, price, title} with title → price and
title→ author

∗ R3 = {author, page, price} with author, page →
price; page, price → author; and author, price →
page

∗ R4 = {author, price, publisher} with author, price
→ publisher and price, publisher → author

∗ R5 = {author, page, publisher} with author, page
→ publisher and page, publisher → author

∗ This decomposition satisfies BCNF, so there are no
α3-redundancy and no α3-update anomalies

• β4 3NF, α2-lossless, β4-dependency-preserving:

– Canonical cover:

∗ price, publisher → title;

∗ author, price→ page;

∗ title→ page;

∗ page→ price, publisher;

∗ publisher → author

– Minimal keys:

∗ {title},

∗ {page},

∗ {author, price},

∗ {price, publisher}

– β4-3NF decomposition:

∗ R = {author, page, price, publisher, title} with
price, publisher → title; author, price → page;
title → page; page → price, publisher; and
publisher → author

∗ This schema violates BCNF, so there are examples
of α1-redundancy and α1-update anomalies

• β5-3NF, α1-lossless, β5-dependency-preserving:

– Canonical cover:

∗ author, price→ page

∗ publisher → title

∗ page→ author, price, publisher

∗ title→ page

– Minimal keys:

∗ {title},

∗ {page},

∗ {author, price},

∗ {publisher}

– β5-3NF decomposition:

∗ R = {author, page, price, publisher, title} with
author, price → page; publisher → title; page →
author, price, publisher; and title→ page

∗ This decomposition satisfies BCNF, so there are no
α1-redundancy and no α1-update anomalies

We conclude this section with the following remarks. Three
out of the five BCNF decompositions are dependency-preserving,
while four out the five 3NF decompositions are in BCNF. Fur-
thermore, the BCNF decompositions consisted of two relation
schemata on average, while the 3NF decompositions consisted of



almost 3 relation schemata on average. These trends are intuitive
and consistent with our experiments from the previous section. In
particular, the size of the resulting decompositions illustrates the
trade-off between update efficiency (achieved by dependency-
preservation) and query efficiency (achieved by decompositions
of smaller size, since less joins are required).

Note that all decompositions in our example were purely
reliant on the FD discovered from the given data instance. Our
goal of this section was not to discuss the meaningfulness of
the discovered FDs for the given application domain, but sim-
ply to illustrate our decomposition framework and the semantic
achievements of the different normal forms. In practice, normal-
ization should only rely on input FDs that are meaningful for the
application domain.

11. Related work

We comment on complementary approaches to deal with
uncertainty in data, and highlight the novelty of our contributions
in the context of previous research.

There are two major and complementary approaches to deal-
ing with uncertainty in data. In general, probability theory is
quantitative with more precise outcomes, but these come at
the price of acquiring actual probabilities and high computa-
tional complexities in managing them [51]. Possibility theory
can accommodate qualitative information, and the acquisition
and computation of possibilities and certainties is simpler [23].
Consider for example a data integration scenario where differ-
ent degrees of trust in data sources are easily captured using a
possibilistic data model, while a probabilistic approach requires
a mapping of trust to precise probability values, and if such a
mapping is not meaningful (that is, ‘‘made up because we need
one’’), the accuracy of any derived results is questionable. How-
ever, if data uncertainty does come with meaningful probability
values, for example from statistical analysis, a probabilistic model
is more appropriate if it can be managed with feasible resources.
Hence the choice between probabilistic and possibilistic data
models should depend on the available uncertainty information
and available resources. In recent work, a survey of practical
methods for constructing possibility distributions was given [25].

Research on probabilistic databases has focused on queries [51].
Typical is the desire to extend trusted relational technology to
handle uncertainty. This is also inherent here: We show how to
exploit relational normalization for schema design of applications
with qualitatively uncertain data.

Probabilistic databases address the need to deal with uncertain
data when meaningful probability distributions are available [51].
Constraints present a key challenge: ‘‘When the data is uncer-
tain, constraints can be used to increase the quality of the data,
and hence they are an important tool in managing data with
uncertainties’’ [16]. Suciu et al. emphasize that ‘‘the main use of
probabilities is to record the degree of uncertainty in the data and
to rank the outputs to a query; in some applications, the exact
output probabilities matter less to the user than the ranking of
the outputs’’ [51]. Hence, a qualitative approach to uncertainty,
such as the one that possibility theory enables [13,24,45], can
avoid the high complexity in obtaining and processing probabili-
ties, while guaranteeing the same qualitative outcome. Here, we
refer to the same qualitative outcome in the case where only the
ranking is presented to the user, but not the degree of uncertainty
(e.g. the probability and the p/c-degree, respectively).

As mentioned, our approach differs from quantitative frame-
works by its qualitative nature. Moreover, it is beneficial to point
out how it fundamentally departs from probabilistic modeling.
Our p-relations and their possible world semantics may give the
impression that they can be modeled as probabilistic conditional

(PC) tables [51]: Each tuple t with associated p-degree αi in
a p-relation would be assigned the propositional formula X =

α1 ∨ · · · ∨ X = αi in the PC-table. In fact, the results of our
framework depend on the downward closure property of FDs.
However, to take advantage of the downward closure property
in PC-tables one would have to restrict their use of propositional
formulae to the ones above, that is, X = α1 ∨ · · · ∨ X = αi.
However, the p-degrees do not obey the rules of the probability
calculus. Importantly, there is no research in which constraints
on probabilistic databases have been associated with the data or
worlds to which they apply. Therefore, probabilistic databases do
not have a notion that corresponds to our c-degrees and provides
the fundamental control mechanism to define different degrees
of data value redundancy and the normal forms that target the
elimination/minimization of these, as shown in Fig. 3. Indeed,
constraints on probabilistic databases are applied to clean data,
in which possible worlds that violate them are simply removed,
the probability distribution is adjusted according to the weight
of a constraint, or repairs are sampled [51]. We are therefore
unaware of any research in which probabilistic constraints have
been applied to develop a database schema design theory, in
particular a relational one. This, however, is the focus of the
current article in the context of a possibilistic model. In fact, the
possibilistic framework is characterized by the existence of dual
notions of possibility and certainty: something is all the more
certain as its negation is less possible, while probabilities are
auto-dual, that is, Prob(¬X) = 1 − Prob(X). Lastly, the logic of
possibilistic FDs behaves like possibilistic logic [22], that is, it is
sound and complete on the basis of the repeated use of a min-
based inference rule, while the probabilistic counterpart, namely
Prob(Y ) ≥ max{0, Prob(X)+ Prob(X → Y )− 1}, would not lead to
a complete calculus [21].

Few papers address schema design for uncertain data [13,50].
Das Sarma, Ullman and Widom develop an ‘‘FD theory for data
models whose basic construct for uncertainty is alternatives’’ [50].
That work is thus fundamentally different from the current ap-
proach. In particular, p-relations cannot always be expressed by
the uncertain relations of [50]. For example, the simple two-
tuple p-relation {(t1, α1), (t2, α2)} with the possible worlds w1 =

{t1} ⊆ {t1, t2} = w2 cannot be expressed: The world w1 says
there is at most one tuple in which t1 is an alternative, while
the world w2 says that there must be at least two tuples, namely
one tuple in which t1 is an alternative and one tuple in which
t2 is an alternative. Indeed, t1 and t2 cannot be alternatives of
the same tuple since possible worlds in [50] result from choosing
one alternative from each tuple. The article [13] models fuzziness
in an Entity-Relationship model, so addresses schema design by
a conceptual approach and not by a logical approach as we do
in the current article. [13] derives the uncertainty of their fuzzy
functional dependencies from fuzzy similarity relations between
attribute values, as proposed in [47]. That means that classical
normalization is applied to data value redundancy with weaker
notions of value equality, but always to the same set of tuples
and the same set of FDs. Instead, the certainty of pFDs in the
current article is derived from the largest possible world of tuples
to which they apply. That means classical normalization is still
applied to data value redundancy based on value equality, but
optimized in terms of the number of FDs that apply to a possible
world. Both approaches are therefore incomparable.

Possibilistic functional dependencies, as used in the current
article, were introduced in [39], where their novelty over other
possibilistic notions of FDs is explained, their grounding with
the rules of possibility theory is established, and the equivalence
of their implication problem with that of Horn clauses in pos-
sibilistic propositional logic is proven, capturing Fagin’s result
from traditional FDs and Boolean Horn clauses as the special case



where k = 1 [27]. Reasoning about pFDs and their use for schema
design, which is the main practical motivation for this notion of a
pFD, are the contributions of the current article. Reasoning about
keys and cardinality constraints have also been studied in [31,33]
in the context of our possibilistic data model.

The present article is an extension of [40]. Multiple addi-
tions were made: the present article contains all proofs, and
an extended presentation with more motivation and examples.
Update anomalies were not discussed in [40], but provide an im-
portant semantic justification for our scaled Boyce–Codd normal
forms. Additional experiments were included in the present arti-
cle, illustrating trade-offs between Boyce–Codd and Third normal
forms, and highlighting that synthesizing schemata into Third
normal form provides a better chance of obtaining a dependency-
preserving, lossless Boyce–Codd normal form than the Boyce–
Codd normal form decomposition approach does. Finally, we have
also included a real-world possibilistic example, in which tuples
about books were extracted from five different online stores, and
assigned p-degrees with respect to the number of stores in which
they occur. Subsequently, the pFDs that hold on the resulting
p-relation were mined, and decompositions into β-BCNF and
β-3NFs were applied.

Conditional functional dependencies target the cleaning of cer-
tain data and not schema design [30], while pFDs target schema
design for uncertain data and not data cleaning. While possibilis-
tic conditional functional dependencies may provide an interest-
ing notion for data cleaning, they are not the focus of the current
article and will be studied in the future. Nevertheless, it is useful
to compare pFDs with conditional functional dependencies. In
fact, pFDs can be expressed by conditional functional dependen-
cies if we view our p-degrees as data on which the conditions for
conditional functional dependencies can be defined. For example,
to view the pFD (Manager, Time → Room, β1) as a conditional
functional dependency, the tableau associated with the condi-
tional functional dependency contains a column for the p-degrees
with entry {α1, . . . , αk}, which stipulates to which tuples the FD
Manager, Time → Room applies. In this sense, the contributions
of our article show that pFDs form a fragment of conditional
functional dependencies that is particularly relevant to the re-
lational database schema design of uncertain data, similar to
how FDs form a fragment of conditional functional dependen-
cies that is particularly relevant to relational database schema
design of certain data. In particular, we also show that pFDs
enjoy the same efficient computational properties as traditional
FDs, while reasoning about conditional functional dependencies
is intractable in general [30], and therefore not useful for schema
design methods. Another important difference is that conditional
functional dependencies are defined on certain data, while we are
interested in uncertain data. This difference in target applications
is emphasized by our possible world semantics, which is funda-
mental to our definitions and results, while conditional functional
dependencies are only defined on the single possible world which
is certain.

Relational schema design for temporal databases with multi-
ple granularities has been studied in [58]. Here, time granularities
form a lattice with respect to containment of the time intervals.
The authors establish an axiomatization for their notion of tem-
poral functional dependencies, and propose temporal versions of
Boyce–Codd and Third normal forms, without semantically justi-
fying them. Basically, data redundancy (without formally defining
it) is avoided by rolling out the data with respect to the right time
granularity. In contrast, our work deals primarily with uncer-
tainty, which is not a dimension considered in [58]. In particular,
no degrees of possibility are assigned to data and no dual degrees
of certainty are assigned to functional dependencies. The use of
certainty degrees allows us to avoid data redundancy up to the

degree that we target. Despite these fundamental differences, the
axiomatization of the temporal FDs is syntactically similar to the
axiomatization of our possibilistic FDs. It would be interesting
future work to investigate schema design for uncertain temporal
databases.

Deduction, which is captured by datalog rules, in the presence
of contradictions, which are captured by violations of functional
dependencies, have recently been studied in [1,2]. A simple non-
deterministic semantics was proposed for datalog with FDs based
on inferring facts one at a time, never violating the FDs. They
also discuss a set-at-a-time semantics, where at each iteration,
all facts that can be inferred are added to the database, and then
choices are made between contradicting facts. It was shown how
to capture possible worlds along with their probabilities via PC-
tables. In addition, the problems of computing the probabilities
of answers, of identifying most likely supports for answers, and
of determining the extensional facts that are most influential for
deriving a particular fact were studied. In this sense, the viola-
tions of functional dependencies are used to derive probabilities
of query answers and their explanations. In our approach we
use the downward-closure property of functional dependencies
to stipulate the qualitative degree of certainty by which they hold.
The degrees of certainty for functional dependencies allow us
to develop a schema design methodology for applications with
uncertain data.

Approximate dependencies, e.g. [41], tolerate violations of the
given constraints up to a given threshold. Our constraints are not
approximate: They are either satisfied or violated by the tuples
to which they apply. It is future work to investigate approximate
versions of our constraints.

Horizontal decompositions have been studied for the rela-
tional model of data to accommodate exceptions to functional
dependencies that should hold on the given schema [44]. The
main aim is to partition a relation horizontally into the part of the
relation that satisfies a given FD and the part of the relation that
has exceptions to the satisfaction of the FD. In our framework,
we partition the largest possible world rk into the largest possible
world ri ⊆ rk that meets the minimum p-degree requirement and
the complement rk − ri. In particular, we regard the complement
as unworthy for the application. It would make sense to combine
both approaches in future research. This would accommodate
the handling of exceptions in the possibilistic model, allowing
horizontal decompositions for each of the possible worlds.

Similar to how our model assigns p-degrees to data and c-
degrees to functional dependencies, previous work on multilevel
relations assign authorization labels to data [43]. That work is pri-
marily concerned with restricting access for users to those parts
of the data which they are authorized to see. An important aspect
is the guarantee of entity and referential integrity, as enforced
by keys and foreign keys, respectively. The model is based on
assigning sensitivity labels at the attribute level. Our model is
primarily concerned with schema design for uncertain data, based
on different degrees of data redundancy caused by functional
dependencies. It is based on assigning possibility degrees on the
tuple level. In the future it would be interesting to develop a
normalization framework that is based on uncertainty at the
attribute level.

Many classical results enabled us to develop schema design for
uncertain data. FDs are already mentioned in the seminal paper
by Codd [14] and constitute one of the most prolific concepts
in databases. Armstrong axiomatized FDs [5], and linear-time
algorithms to decide their implication problem are known [6,
18]. These results provide the foundation for relational schema
design, including 3NF [7,10,12], BCNF [8,15] and their semantic
justification as to dependency-preservation and minimization of
data redundancy [4,36,55]. Deciding if a schema is in 3NF is



Table 4

Achievements of β-BCNF and β-3NF.

αk+1−i- No αk+1−i- No αk+1−i- βi-dependency Computational complexity of

lossless redundancy update anomaly preserving deciding normal form criteria

βi-BCNF ✔ ✔ ✔ P (on schema)/coNP-complete (on projected schema)

βi-3NF ✔ ✔ NP-complete

NP-complete, while the same problem for BCNF is in P-time
but deciding if a projection of a schema is in BCNF is coNP-
complete [6]. Algorithms that compute a lossless BCNF decom-
position in P-time exist [53,59,60]. Our experiments reveal new
insight into the classical trade-off between 3NF synthesis and
BCNF decomposition.

Schema design is important for any data model, semantic [11],
nested [49,56], object-oriented [52], temporal [32], XML [4,36,57],
and data models with tuple alternatives [50].

12. Conclusion and future work

We reflect on what we have achieved and how these achieve-
ments impact on current database design practice. Finally, we
outline future work.

12.1. Conclusion

We have established a framework in which quality relational
database schemata are designed for applications that require data
of sufficient confidence. Our framework exploits requirements
about the degrees of certainty required for functional dependen-
cies that are relevant for a given application, and dually about the
degrees of possibility required for tuples considered to be rele-
vant. Indeed, these requirements are exploited to design better
relational database schemata.

In technical terms, we have established foundations for a
design theory by characterizing the implication problem for func-
tional dependencies with certainty degrees both axiomatically
and in terms of a linear time decision algorithm. These founda-
tions enabled us to introduce different degrees of the syntactic
Boyce–Codd normal form and to justify them semantically in
terms of characterizing schemata whose instances are free from
data value redundancy and update anomalies up to the degree
that an application requires. Similarly, different degrees of the
syntactic Third normal form are introduced and justified se-
mantically in terms of characterizing schemata whose instances
exhibit minimal amounts of data value redundancy among all
schemata that preserve all given FDs up to the degree that an
application requires. Therefore, our variants of the Boyce–Codd
and Third normal forms extend their classical properties in terms
of losslessness, data redundancy, update anomalies, dependency-
preservation and computational complexity, down to any degree
of certainty required, as shown in Table 4. In particular, the core
of the computational problems rest in deciding β-BCNF for pro-
jections of the given schema (coNP-completeness), and deciding
β-3NF for a given schema (NP-completeness). Our experiments
confirm the effectiveness and efficiency of our framework, and
provide original insight into relational schema design trade-offs
in terms of query and update performance.

In practical terms, our framework is able to refine the classical
database design process by effectively utilizing the degree of
certainty that an application requires from the functional de-
pendencies that are relevant for it. In fact, by fixing a degree
of certainty, classical decomposition and synthesis approaches
can be applied to the set of classical functional dependencies
that meet the certainty degree. By design, the outputs of the
normalization process are guaranteed to enjoy the properties we
have established for this degree of certainty. In other words, by

selecting different degrees of certainty, organizations can use our
framework to explore different schema design options and make
a decision informed by the properties of the different design
options and the requirements of the application in terms of the
target levels for data integrity, data losslessness, query efficiency
and update efficiency, as illustrated in Fig. 3. If degrees of cer-
tainty express preference, then our framework can also be seen
as unifying relational normalization and de-normalization. In fact,
classically de-normalized schemata are fully normalized for the
FDs that meet the targeted preference threshold. Our experiments
empirically justify the dominant use of 3NF synthesis in practice
— showing that it offers better chances of obtaining an optimal
schema than BCNF decompositions do.

12.2. Future work

Our current article has addressed the problem how the avail-
ability of c-degrees can improve the design of classical relational
database schema. A related problem, not addressed in the current
article, is the problem of possibilistic database design where the
result is a possibilistic schema that carries possibilistic instances.
In that case we would have p-degrees attached to the tuples,
and tuples as well as their p-degrees could then be updated.
Along the same lines of research, we may consider possibilistic
models of uncertainty with various levels of expressivity, such as
possibilistic conditional tables recently introduced in [46].

There are several other areas that also warrant future research.
There are all practically motivated by the potential need of appli-
cations. For example, partial instead of linear orders of possibility
and certainty degrees might be available. Theorem 1, which en-
ables all our results, does no longer hold for partial orders. Linear
orders represent the practically most interesting case and form
the qualitative counterpart to the linear order of probabilities.
We remark that any results in our current article still apply to
every chain of any given partial order. Furthermore, degrees of
possibility might be available at the attribute instead of the tuple
level. Hence, a normalization framework should be developed
for this type of information. Applications suffer from incomplete
information, for example in the form of missing data values.
Hence, another extension of our work to handling null marker
occurrences is desirable. Recently, schema normalization in the
presence of null markers has been considered as well [34,35]. Just
like schema designs for certain data depend on the identification
of semantically meaningful FDs, schema designs for uncertain
data depend on the identification of semantically meaningful
pFDs. As already indicated in Section 7 this strongly motivates
the extension of research about Armstrong relations [29] to our
qualitative setting. Data redundancy and update anomalies are
not only caused by functional dependencies, but other kinds of
data dependencies. For certain data, the normalization framework
encompasses other normal forms such as 4NF [28,55], essential
tuple normal form [17], 5NF [54] and Inclusion Dependency nor-
mal form [38]. Hence, it is interesting to extend these normal
forms to uncertain data. This, however, is not straightforward
as neither multivalued dependencies, nor join dependencies, nor
inclusion dependencies are closed downward. Finally, different
applications may need to handle data in different formats. Con-
sequently, an extension of our methods to other data models,
including XML, RDF, and graph data, would also be interesting.
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