
HAL Id: hal-02382714
https://hal.science/hal-02382714

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Approach to Generate the Traceability Between
Restricted Natural Language Requirements and AADL

Models
Fei Wang, Zhibin Yang, Zhi-Qiu Huang, Cheng-Wei Liu, Yong Zhou,

Jean-Paul Bodeveix, M Filali

To cite this version:
Fei Wang, Zhibin Yang, Zhi-Qiu Huang, Cheng-Wei Liu, Yong Zhou, et al.. An Approach to Gener-
ate the Traceability Between Restricted Natural Language Requirements and AADL Models. IEEE
Transactions on Reliability, 2019, 1 (1), pp.1-20. �10.1109/TR.2019.2936072�. �hal-02382714�

https://hal.science/hal-02382714
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/25027

To cite this version: Wang, Fei and Yang, Zhibin and Huang, Zhi-Qiu
and Liu, Cheng-Wei and Zhou, Yong and Bodeveix, Jean-Paul and Filali,
Mamoun An Approach to Generate the Traceability Between Restricted
Natural Language Requirements and AADL Models. (2019) IEEE
Transactions on Reliability, 1 (1). 1-20. ISSN 0018-9529

Official URL

DOI : https://doi.org/10.1109/TR.2019.2936072

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

1

An Approach to Generate the Traceability Between

Restricted Natural Language Requirements

and AADL Models
Fei Wang , Zhi-Bin Yang , Zhi-Qiu Huang , Cheng-Wei Liu, Yong Zhou, Jean-Paul Bodeveix,

and Mamoun Filali

Abstract—Requirements traceability is broadly recognized as a
critical element of any rigorous software development process, es-
pecially for building safety-critical software (SCS) systems. Model-
driven development (MDD) is increasingly used to develop SCS in
many domains, such as automotive and aerospace. MDD provides
new opportunities for establishing traceability links through mod-
eling and model transformations. Architecture Analysis and Design
Language (AADL) is a standardized architecture description lan-
guage for embedded systems, which is widely used in avionics and
aerospace industries to model safety-critical applications. However,
there is a big challenge to automatically establish the traceability
links between requirements and AADL models in the context of
MDD, because requirements are mostly written as free natural
language texts, which are often ambiguous and difficult to be pro-
cessed automatically. To bridge the gap between natural language
requirements (NLRs) and AADL models, we propose an approach
to generate the traceability links between NLRs and AADL models.
First, we propose a requirement modeling method based on the
restricted natural language, which is named as RM-RNL. The
RM-RNL can eliminate the ambiguity of NLRs and barely change
engineers’ habits of requirement specification. Second, we present a
method to automatically generate the initial AADL models from the
RM-RNLs and to automatically establish traceability links between
the elements of the RM-RNL and the generated AADL models.
Third, we refine the initial AADL models through patterns to
achieve the change of requirements and traceability links. Finally,
we demonstrate the effectiveness of our approach with industrial
case studies and evaluation experiments.

This work was supported in part by the National Natural Science Foundation
of China under Grant 61502231 and Grant 61772270, in part by the National
Defense Basic Scientific Research Project under Grant JCKY2016203B011, in
part by the National Key Research and Development Program under Grant
2018YFB1003902 and Grant 2016YFB1000802, in part by the Natural Science
Foundation of Jiangsu Province under Grant BK20150753, in part by the
Avionics Science Foundation of China under Grant 2015ZC52027, and in part
by the Fundamental Research Funds for the Central Universities under Grant
NP2017205. Associate Editor:

W. Eric Wong. (Corresponding authors: Zhi-Bin Yang; Zhi-Qiu Huang.)

F. Wang, Z.-B. Yang, Z.-Q. Huang, C.-W. Liu, and Y. Zhou are with the

Key Laboratory of Safety-Critical Software (Ministry of Industry and Infor-
mation Technology), College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211106, China (e-mail:
wangfei2014@nuaa.edu.cn; yangzhibin168@163.com; zqhuang@nuaa.edu.cn;
lcwj3nuaa@nuaa.edu.cn; zhouyong @nuaa.edu.cn).

J.-P. Bodeveix and M. Filali are with the Institut de Recherche en Informatique
de Toulouse, Centre National de la Recherche Scientifique, l’Université Paul
Sabatier, Université de Toulouse, Toulouse F-31062, France (e-mail: bodeveix@
irit.fr; filali@irit.fr).

Digital Object Identifier 10.1109/TR.2019.2936072

Index Terms—Architecture Analysis and Design Language
(AADL), model-driven development (MDD), refinement, re-
quirement traceability, restricted natural language requirements
(NLRs), safety-critical software (SCS).

I. INTRODUCTION

S
OFTWARE has been widely used in safety-critical systems,

and it is increasing in size and complexity. Software safety

has become critical to the development of such systems, since

the consequence of a failure in such software may be serious

[1]. Therefore, developing safety-critical software (SCS) im-

poses special demands for ensuring the quality of the developed

software.

Requirement traceability is defined as “the ability to follow the

life of a requirement in both a backward and forward direction”

[2], and it is a critical element of any rigorous software devel-

opment process [3], especially for building SCS systems. For

example, the Federal Aviation Administration has established

DO-178C [4] as the accepted means for certifying all new

aviation software, and this standard specifies that at each stage of

development software, developers must be able to demonstrate

traceability of designs against requirements. Similarly, the U.S.

Food and Drug Administration states that traceability analysis

must be used to verify that a software design implements all of

its specified software requirements, that all aspects of the design

are traceable to software requirements, and that all code is linked

to established specifications and established test procedures [5].

Model-driven development (MDD) is increasingly used to de-

velop SCS in many domains, such as automotive and aerospace

[6]. To improve the quality and control development costs of

systems, MDD advocates the use of formally defined models

as first-class citizens during software development instead of

using models just as informal mediums for describing software

systems or to facilitate interteam communication [7]. Existing

MDD languages and approaches have covered various modeling

demands, such as Unified Modeling Language (UML) [8] for

general modeling, SysML [9] for system modeling, Simulink

[10] for control system modeling, and Architecture Analysis and

Design Language (AADL) [11] for the architectural modeling

of embedded systems.

AADL is an architecture description language standardized

by the Society of Automotive Engineers (SAE) in 2004 and

published as SAE 5506 standard. It is a de facto standard in the

domain of avionics and automotive software systems. AADL is
specifically designed for the specification, analysis, code genera-

tion, and automated integration of real-time critical systems (real
time, embedded, fault tolerant, secure, safety critical, software
intensive, and so on) [12]. Moreover, it provides a vehicle to
allow analysis of system (and system of systems) designs prior to
development and supports a model-based development approach
throughout the system life cycle [13].

MDD also provides new opportunities for establishing trace-

ability links through modeling and model transformations [14].
With the support of MDD strategies, transformation-based tech-

niques can generate traceability links along with the generation
of artifacts (e.g., design models), which may be represented in
different languages and at different levels of abstractions [15].

However, it is difficult to establish the traceability links
between requirements and design models in the context of
MDD. There is a substantial inherent gap between requirement
descriptions and designs, because the transformation from re-

quirements to design models is not included in the model-driven
architecture life cycle, which starts from an analysis model (or
design model) and ends with deployed code [15]. The reason of
this exclusion is perhaps that requirements are always written
with free natural language texts, which are not a model formal
enough to be understood by computers. As a result, free natural
language requirements (NLRs) are not suitable for automated
transformations.

Therefore, we leverage MDD techniques into the automatic
generation of traceability links between NLRs and AADL
models.

A. Research Questions

Traceability links provide a critical support for numerous

software engineering activities, including safety analysis, com-

pliance verification, and impact prediction [16]. Therefore,

traceability is a critical element of almost all SCS develop-

ment processes. Although the traceability concept seems very

promising to be a significant value gain in a project, it is still

not very widely spread in the development practice except for

projects under certain circumstances. Despite the needed efforts,

the perceived benefits for developers are often low because the

quality of captured traceability information is often low or its

validity and correctness is hard to ensure [17].

In this article, we apply MDD techniques into automatic gen-

eration of traceability links between NLRs and AADL models.

In order to achieve this goal, we derive the following research

questions.

1) RQ-1: How to precisely describe the requirements of

SCS and barely change engineers’ habits of requirement

specification?

2) RQ-2: How to automatically establish traceability links

between NLRs and AADL models?

3) RQ-3: How to maintain the traceability links when the

requirements change or AADL models are refined?

B. Contribution

Our overall objective is to devise a methodology and its tool

to automatically establish traceability links between NLRs and

design models. The contributions of this article are given as

follows.

1) We propose a requirements modeling method based on re-

stricted natural language (RM-RNL), which was extended

from [18]. The RM-RNL can eliminate the ambiguity of

NLRs and barely change engineers’ habits of requirement

specification.

2) In the context of MDD, we propose a method to au-

tomatically generate the initial AADL models from the

RM-RNLs and to automatically establish traceability links

between the elements of the RM-RNL and the generated

AADL models.

3) We refine the initial AADL models through patterns to

achieve the change of requirements and traceability links.

4) We demonstrate the effectiveness of our approach with

industrial case studies and evaluation experiments.

C. Organization

The rest of this article is organized as follows. Section II

presents the background of this article. In Section III, we

describe the traceability scenarios and present the formal de-

scription of traceability links in each traceability scenario. In

Section IV, we introduce the RM-RNL briefly and then describe

the automatic generation method of requirement traceability

links based on model transformations. The maintenance of

requirement traceability during the AADL refinement process is

described in Section V. In Section VI, we illustrate the validation

of the approach with two industry case studies. In Section

VII, we evaluate our approach and discuss potential threats

to the validity of the discovered results. In Section VIII, we

discuss the work related to our study. Section IX concludes this

article.

II. BACKGROUND

A. MACAerospace Project

MACAerospace is a research project about modeling, analy-

sis, and code generation for aerospace software in China. The

aim of the MACAerospace project is to reduce the barriers of

entering model-based systems engineering (MBSE) for engi-

neers and implement an MBSE tool that fits the actual demand

of Chinese industries.

AADL is a de facto standard in the domain of avionics and

automotive software systems. It is a unifying framework for

model-based software systems engineering to capture the static

modular software architecture, the runtime architecture in terms

of communicating tasks, the computer platform architecture on

which the software is deployed, and any physical system or

environment with which the system interacts [11]. Thus, AADL

provides a rigorous and extensible foundation for the application

of MDD for embedded systems to allow analysis of system

(and system of systems) designs prior to development and sup-

ports an MDD approach throughout the life cycle of embedded

systems [19].

Moreover, AADL allows introducing both property sets and

annex sublanguages as extensions. The first is to extend property

sets for information, which cannot be described by predefined

Fig. 1. Global view of the MACAerospace project.

property sets. The second is to extend AADL annex, which is

a sublanguage concerning on specific aspects, and their own

semantics should be consistent to AADL core semantics. Ex-

isting AADL annexes include Data-Model annex [20], which

describes the modeling of specific data constraint with AADL,

Error Model Annex V2 [21], which specifies fault and propaga-

tion concerns, ARINC653 Annex [22], which defines modeling

patterns for modeling avionics system, and Behavior Annex

(BA) [23], which describes component behaviors with state

machines, and so on.

The global view of the MACAerospace project is given in

Fig. 1. MACAerospace is an integrated toolset for modeling,

analysis, verification, and code generation based on AADL. Its

functions are presented as follows:

1) a requirement modeling method based on restricted Chi-

nese natural language for Aerospace Software. This re-

quirement modeling method can be extended to other

safety-critical domains, such as railway and automotive;

2) automatically generate the AADL models from the

RM-RNL through model transformations;

3) refinement of the initial AADL models with graphi-

cal BA/hierarchical BA [24] and graphical synchronous

language SIGNAL [25];

4) provide an integrated verification environment for AADL

models using existing verification and analysis tools, such

as Timed Abstract State Machine (TASM) [26], UPPAAL

[27], and so on. MACAerospace can perform composi-

tional verification based on AGREE [28] at system level.

The verification results are feedback to the AADL models;

5) automatically generate C/Ada code from the AADL

models;

6) verify the semantic consistency between AADL models

and C/Ada code;

7) reverse engineering from C/Ada code to AADL models;

8) traceability and documents generation.

Fig. 2. Dimensions and directions of traceability links.

This article mainly focuses on the traceability between NLRs

and AADL models. Concretely speaking, as shown in the red

part of Fig. 1, the main research contents of this article in-

clude automatically generating the requirement traceability links

based on model transformations and maintaining traceability

links when the requirements change or AADL models are

refined.

B. Requirement Traceability

In requirement engineering domain, the term traceability is

usually used for the ability to follow the traces to and from re-

quirements. One common definition of requirement traceability

is given by Pinheiro [29] as “the ability to define, capture, and

follow the traces left by requirements on other elements of the

software development environment and the traces left by those

elements on requirements.” Another definition of requirement

traceability is offered by Gotel and Finkelstein [2] as “the ability

to describe and follow the life of a requirement, in both forward

and backward directions (i.e., from its origins, through its de-

velopment and specification, to its subsequent deployment and

use, and through periods of on-going refinement and iteration in

any of these phases).”

Usually, these definitions are also implicitly (e.g., in [30]) or

explicitly [31] extended to general traceability of all artifacts

as the ability to define, describe, capture, and follow traces

from and to artifacts throughout the whole software development

process, which seems sensible because all artifacts of a software

development are (or at least should be) driven by requirements.

Tracing can be considered for various purposes and so is per-

formed based on different foundations, such as based on logical

interrelations among artifacts or based on temporal dependence

between artifacts. The most common types of traceability, in the

requirement traceability literature, are forward and backward

traceability, horizontal and vertical traceability, and prerequire-

ment specification (pre-RS) and postrequirement specification

(post-RS) traceability [32], which are illustrated in Fig. 2.

1) Forward Traceability and Backward Traceability [33]:
Forward traceability refers to following the traceability links
to the artifacts that have been derived from the artifact under
consideration. Backward traceability refers to the ability to
follow the traceability links from a specific artifact back to
its sources from which it has been derived. The forward and
backward directions pertain to the logical flow of the software
and system development process. These are the fundamental and
primitive types of tracing.

2) Horizontal Traceability and Vertical Traceability [34]:
These terms differentiate between traceability links of artifacts
belonging to the same project phase or level of abstraction,
and links between artifacts belonging to different ones. Hori-

zontal traceability is about tracing artifacts at the same level
of abstraction. Vertical traceability is used to trace artefacts at
different levels of abstraction to accommodate lifecycle-wide
or end-to-end traceability. These two types can employ both
forward and backward traceability.

3) Pre-RS Traceability and Post-RS Traceability [2]: This
two types of traceability are more conceptual in nature, and
these can employ each of the above tracing types in some
combinations. Pre-RS traceability comprises all those traces that
show the derivation of the requirements from their sources and,
hence, explicates the requirements production process. Post-RS
traceability comprises those traces derived from or grounded in
the requirements and, hence, explicates the requirements deploy-

ment process. This two types of traceability may employ forward
traceability, backward traceability, horizontal traceability, and
vertical traceability.

III. TRACEABILITY SCENARIOS

In this section, we derive a description model from the
existing body of knowledge on requirement traceability that
characterizes major traceability scenarios in this article. Differ-

ent intended traceability usage scenarios may require different
artifacts to be related [35]. For example, the demonstration of
regulatory compliance requires traceability between regulatory
codes and requirements, while, in contrast, the demonstration
of implementation completeness requires traceability between
requirements and source code. In this article, we focus on three
traceability scenarios in the development process of software:

1) TS-1: implementing a new requirement.

2) TS-2: implementing a requirement change.

3) TS-3: implementing a refined artifact of design model.

The first traceability scenario (TS-1) is based on the RM-

RNL, which automatically generates the AADL models and

requirement traceability links through model transformations.

TS-2 describes the requirement changes, that is, change the

elements of the RM-RNL; we should regenerate the AADL

models and the traceability links. Therefore, the implementation

of TS-1 and TS-2 is the same in our approach. TS-3 describes the

refinement of the AADL models; we should maintain the change

of the requirements and the traceability links at the same time.

Therefore, we propose the concept of “refinement patterns” to

refine the initial AADL models and achieve the change of the

requirements and the traceability links.

Generally, the software development life cycle mainly in-

cludes three kinds of artifacts: requirement specification, design

model, and source code. We denote R as a set of requirement

specifications that explicitly describe the function and nonfunc-

tion constraints that should be implemented in the software

system, D as a set of the artifacts in the design model that contain

explicit instructions on how to build a software system in order

to satisfy R, and S as a set of source codes that implement D

in order to build the software system. In addition, the software

development life cycle spans two different stages: the initial

development stage and the evolution and refinement stage [36].

We denote CR as a set of requirement change specifications that

describe how a software system is supposed to be changed to

meet newly emerged, shifted, or misunderstood customers’ ex-

pectations. Similarly, we denote CD as a set of design evolution

and refinement and CS as a set of changed source code.

The usage of traceability refers to the activity of following

traceability links from a source artifact to a target artifact [37] to

achieve an explicit goal in a development project. The usage of

traceability has two main benefits: it is essential to change impact

analysis, and it helps to determine completion. Thereby, impact

analysis refers to identifying the consequences of implementing

a new or a changed requirement [38]. Completion analysis refers

to resolving either the traceability from requirements to their

implementation or vice versa and allows determining whether

or not all the specifications and the implementation are com-

plete [39]. While project managers and requirement engineers

concern with the change impact on and the completeness of

requirements artifacts, system engineers and developers concern

with the change impact on and the completeness of source code

artifacts.

In summary, analyzing change impact and determining com-

pleteness are the most common traceability use cases in practice.

Therefore, in order to standardize the process of establishing

traceability links (path), we give the standard form of require-

ment traceability links (path) in three traceability scenarios

based on the requirement traceability description model shown

in Fig. 3.

In the following subsections, we discuss these three trace-

ability scenarios and refer especially to three characteristics: the

source artifacts on which the analysis is applied, the traceability

link paths that are followed to conduct the analysis, and the

target artifacts to which traceability link paths are resolved. Ad-

ditionally, we provide illustrating examples for each discussed

scenario.

A. Implementing a New Requirement or Requirement Change

First, we consider the horizontal traceability in the require-

ments phase. In this phase, we concern with the analysis of

effects that a new or a changed requirement has on its dependent

requirements artifacts. Horizontal traceability relations from

a new or changed requirement to dependent requirements or

requirement changes are to be resolved by the stakeholders

in order to identify what other requirements are potentially

impacted. Thus, the source artifact is an element of R or CR; the

target artifacts are dependent requirement artifacts, which are

Fig. 3. Requirement traceability description model.

potentially impacted by the new or changed requirement. The

traceability link paths between source and target artifacts consist

of horizontal traceability links across requirement artifacts only.

Thus, traceability paths can consist of any of the following trace-

ability links in any sequence: r → r, r → cr, cr → cr, cr → r,

where r ∈ R and cr ∈ CR.

Next, we consider the vertical traceability in the process of

requirements implementing. In this phase, we must create a set

of new design and source code artifacts to implement the new

requirements, and also, we can establish a traceability link path

between requirements and source code. We also concern with

completeness determination for new or changed requirements.

The vertical traceability is resolved by the engineers to follow

the implementation process subsequently from its originating

requirement to its final result (source code) in order to identify

whether or not all stated requirements are satisfied by source

code. Thus, the source artifact is an element of R or CR, and

the target artifacts are elements of S. The traceability link paths

between source and target artifacts consist of vertical traceability

links only. Each traceability link path connects a requirement

with a source code artifact through zero to many intermediate

design artifacts: r[→ d]∗ → s or cr[→ d]∗ → s, where r ∈ R,

d ∈ D, s ∈ S and cr ∈ CR.

Examples: The example of implementing a new requirement

is shown in Fig. 4(a). In this example, the set of source artifacts

consists of the newly created requirement r2 and the set of target

artifacts consists of r1, which is the only dependent requirement

of r2. The artifacts r2 and r1 are connected through the trace-

ability link path: r2 → r1. In addition, we create design artifact

d2 and code artifact s2 and s3 to fulfill the new requirement r2.

While r2 and s3 are connected through the traceability link path:

r2 → d2 → s2, the artifacts r2 and s3 are connected through the

traceability link path: r2 → d2 → s3. Similarly, the example of

implementing a requirement change is shown in Fig. 4(b); we

Fig. 4. Overview of the traceability links for each implementation scenario.
(a) Implementation of new requirements. (b) Implementation of changed
requirements. (c) Implementation of design refinement.

can create horizontal traceability link path: cr1 → r2 → r1, and

vertical traceability link path: cr1 → d3 → s4.

B. Implementing a Refined Artifact in Design Models

First, we consider the horizontal traceability of refined ar-

tifacts in the design model. In this phase, we concern with

the analysis of effects that a refined design artifact has on its

dependent design artifacts. Thus, the source artifact is an element

of CD; the target artifacts are dependent design model artifacts,

which are potentially impacted by the refined design artifacts.

The traceability link paths between source and target artifacts

consist of horizontal traceability links across design artifacts

only. Thus, traceability link paths can consist of any of the

following traceability links in any sequence: cd → d, cd → cd,

where d ∈ D and cd ∈ CD.

Next, we consider the vertical traceability in the process

of implementation. In this phase, we must change or create

a set of requirement and source code artifacts to satisfy the

refined artifacts in design model, and also, we must maintain the

traceability link path from design to requirements and design

to source code. In addition, we also concern with complete-

ness determination for the refined design models. Therefore,

the vertical traceability can be trace to requirement through

backward traceability, and trace to source code through forward

traceability. Thus, the source artifact is an element of CD, and the

target artifacts are elements of CR or CS. Each traceability link

path connects a design artifact with a requirement or source code

artifact: cd[→ d]∗[→ r]∗ → cr, where r ∈ R, d ∈ D, cr ∈ CR

and cd ∈ CD.

Examples: The example of implementing a refined artifact in

design models is shown in Fig. 4(c); the set of source artifacts

consists of the refined design model artifacts cd1 and the set of

target artifacts consists of the changed requirement cr1. While

cd1 and cr1 are connected through the traceability link path:

cd1 → d1 → r1 → cr1 .

IV. AUTOMATICALLY GENERATE THE REQUIREMENT

TRACEABILITY LINKS

In this section, we first introduce the RM-RNL; then, we

describe the method of transformation from the RM-RNL to

the AADL models. Finally, we present the traceability between

the RM-RNL and the AADL models.

A. RM-RNL

To promote the application of MDD in safety-critical do-

mains and bridge the gap between NLRs and AADL mod-

els, we proposed a requirements description method based on

the restricted NLRs template in [18]. However, this require-

ment template mainly describes the hierarchical structure of

the requirements and the interface and interaction between the

modules, and it lacks of the description ability for functional

behaviors.

Specifically, the RM-RNL provides a method to structure re-

quirements and restricts the way how users specify requirements.

RM-RNL is a 4-tuples, i.e., RM-RNL ::=< Glossary,Data_

Dictionary,Requirement_Template_Set,Restricted_

Rules >.

1) Glossary: A Glossary describes the domain and system

specified terminologies in requirement specifications, includ-

ing the names of systems, modes, hardware, states, etc. Each

terminology in Glossary can be defined as a 3-tuple, i.e.,

Terminology ::=< Id,Name, Type >.

2) Data_Dictionary: A Data_Dictionary describes all the

data and event elements in requirement specifications, including

static data (constants or parameters), dynamic data (interactive

data), etc. Data has simple or complex types (like struct in C).

Each data in Data_Dictionary can be defined as a 7-tuple, i.e.,

Data ::=< Id,DataName,DataType,DataUnit,Data

Range,Data−Accuracy,DataDescription >.

3) Requirement_Template_Set: It is a common practice in

industry to decompose requirements with hierarchical structure,

which is same as AADL models. Thus, requirement specifica-

tions in RM-RNL are organized as four levels: System (SRT),

sub-System (SSRT), Function (FRT), and sub-Function (SFRT),

for each level we define a template. A higher level requirement

template can take lower level ones as its children, and these

hierarchical relations build up the structure of requirements.

We also define a shared function block requirement template

(SFBRT), which describes common functions used in different

function blocks.

Specifically, a requirement template usually consists of an

identifer (ID), name, input, output, template composition, and

requirement constraint. ID represents the unique identifier of

the template. Name represents the name of the template that is

defined in Glossary. Input and output describe the interaction

between the current module and others, and generally include

two types of event and data. Template composition describes

that a complex system can be decomposed into several sub-

systems and functions, and a subsystem can be further decom-

posed into several subsystems and functions, and a function

can be decomposed into several subfunctions. Requirement

constraint includes mode transition, functional requirement,

hardware constraint, interface requirement, and performance

requirement.

1) Mode transition describes modes and mode transitions of

the module (Not in SFRT and SFBRT).

TABLE I
GENERAL RESTRICTION RULES OF SENTENCE

2) Functional requirements represent the dynamic behav-

ior of the module. For a critical functional requirement,

we can mark it as safety-critical function. According to

the ICE61508 standard, the safety requirements can be

divided into safety functional requirements and safety-

related constraints. Therefore, a safety requirement can

be expressed by one or more safety-critical functions and

safety-related constraints.

3) Hardware constraints represent the hardware requirements

of the software systems, such as CPU, memory, etc.

4) Interface requirements represent the requirements of the

interface between each module and the environment, such

as interface data transfer protocol.

5) Performance requirements represent the quantitative re-

quirements for the ability of software to complete

tasks, such as real time, power consumption, maximum

processing capacity, etc.

4) Restricted_Rules: For each element in the template of the

RM-RNL, we design a set of general restriction rules shown

in Table I.

In addition, we define a set of sentence patterns. Each sentence

pattern represents a complex sentence structure, which are com-

posed of sequences of single sentences conjunct by the keywords

(e.g., IF THEN ELSE, AND, LOOP FOR, NOT) for describing

different requirements. We have designed several recommended

simple sentence patterns for each kind of requirement in the

template of the RM-RNL. Here, we give five predefined sentence

patterns for functional requirements and example, as shown

in Table II.

There are three types of simple sentence in Table II, where

Behavior denotes a simple sentence describing a single behavior

action, such as “this module sends Handshake Information to

Guidance, Navigation, and Control Computer (GNCC).” Con-

dition denotes the conditions (single conditions conjuncted by

AND) of actions, including dispatch conditions and variable

conditions such as “IF receiving Handshake Success Informa-

tion.” TimeRestrain denotes time constraint such as “function A

finishes in 5 s.”

Here, we give a running example of RM-RNL, i.e., the

“GNCC Controlling Data Retransmission” module in the GNCC

system, which is shown in Table III. GNCC Controlling Data

Retransmission in Intelligent Terminal Unit is a small unit in

TABLE II
SENTENCE PATTERNS FOR FUNCTIONAL REQUIREMENTS

“+” means sequences of elements explained below in sentences, e.g., “Condition + Behavior” presenting a sentence pattern as “IF Condition, Then Behavior.”

TABLE III
MODULE OF GNCC CONTROLLING DATA RETRANSMISSION SPECIFIED BY

THE RM-RNL

the data management system in GNCC, and it is in charge

of data retransmission for GNCC. Input and output such as

“GNCC Controlling Data” in Table III have been defined in

the data dictionary. “GNCC” and “GNCC Controlling Data

Retransmission” have been defined in the glossary. Sentences

1–4 in Functional Requirement satisfy sentence patterns SP3,

SP4 with keyword “LOOP FOR,” SP2 with keyword “AND,”

and SP1, respectively.

B. Automatically Generate the Requirement Traceability Links

Through Model Transformations

Restricted_Rules are mainly used to restrict the expressive-

ness of natural language to reduce ambiguity and vagueness. The

Glossary is transformed to the AADL models straightly. There-

fore, we just consider the transformation of Data_Dictionary and

Requirement_Template_Set to AADL models.

1) Transformation of Data_Dictionary: Data in data dictio-

nary are directly transformed to AADL data components.

The items of a data are transformed into subcomponents

and properties of an AADL data component.

Fig. 5. Metamodel of the RM-RNL.

2) Transformation of Requirements Templates: To simplify

the transformation and facilitate the possibilities for

further extensions, we propose an intermediate model,

which is named as RAInterM (RM-RNL2AADL Inter-

mediate Model).

In the following sections, we present the transformations in

details. We first introduce the metamodel of RM-RNL and RAIn-

terM, and then describe the transformations from RM-RNL to

RAInterM and the transformations from RAInterM to AADL

respectively. Finally, we discuss the traceability between the

RM-RNL and the AADL models.

1) Metamodel of the RM-RNL: The requirement specifica-

tions with the RM-RNL essentially contains three parts: glos-

sary and data dictionary, requirement templates, and sentence

patterns. Thus, we define the metamodel of the RM-RNL, which

is shown in Fig. 5.

1) Data Dictionary and Glossary: Each data item refers to

an instance of DataWord and each terminology refers to

an instance of Term in the metamodel.

2) Templates: Are organized as requirement templates for

systems, subsystems, functions, subfunctions, and shared

Fig. 6. Metamodel of RAInterM.

function blocks. Each template inherits from a super class

AbstractTemplate, and a higher level template can be

composed by several lower level ones.

3) Sentence patterns: Each type of requirements in templates

is organized as a list of sentences, which satisfy predefined

sentence patterns. Each sentence pattern inherits from a

super class Sentence, and their transformation rules are

defined in the gen() operation of Sentence.

2) Intermediate model (RAInterM): RAInterM is an inter-

mediate model, which is used to bridge the gap between the

RM-RNL and AADL models. As a result, the transformation is

divided into two steps: the transformation from the RM-RNL to

the intermediate model RAInterM and the transformation from

the intermediate model to the AADL models. The reasons of

introduction of the intermediate model RAInterM are given as

follows.

1) Simplifying the transformation: The elements of the

RM-RNL and the AADL models satisfy many-to-many

mappings. Some mappings are complex, for instance,

mappings of sentence patterns, which can be related

to multiple templates in the RM-RNL. An intermediate

model can separate many-to-many mappings into many-

to-one and one-to-many mappings, which can decrease

the complexity of the transformation.

2) Guaranteeing the compatibility of extension: We can sup-

press irrelevant features of AADL (e.g., declarations and

implementations) in the transformation from the RM-RNL

to RAInterM. Thus, when extending sentence patterns

in the RM-RNL, we only need to consider the transfor-

mation of the extended elements instead of the entire

transformation from the RM-RNL to AADL.

The metamodel of RAInterM is presented in Fig. 6. RAInterM

is a component-based model, and the top concept is Model,

which represents an entire abstract system. Component repre-

sents entities in Model, and type of Component is defined in

glossary. Statemachine can be classified as MTStateMachine and

BHVStateMachine. MTStateMachine refers to both mode tran-

sitions in RM-RNL and AADL, and BHVStateMachine refers

Algorithm 1: Transformation From the RM-RNL to the

RAInterM Model.

Require:

RM-RNL

Ensure:

RAInterM

1: for each Template t in RM-RNL.getTemplates do

2: Component c = new Component (t.getType);

3: for each Port p in t.getPorts do

4: p.gen(RAInterM, c, p.PortType);

5: end for

6: end for

7: for each Port p in RAInterM.getPorts do

8: if p.NoSameNamePort then

9: p.type = DATAACCESS;

10: RAInterM.add(data = newComponent(DATA));

11: RAInterM.addDataAccessConnections(p, data);

12: else

13: RAInterM.addConnections(p,

p.getSameNamePort);

14: end if

15: end for

16: for each Sentence s in t.getRequirements do

17: s.transform(RAInterM, c);

18: //Each type of requirements transformed into

different parts in RAInterM

19: end for

to both Functional Requirement in RM-RNL and BA in AADL.

Connection and Port refer to the concepts of port and connection

in AADL, representing the interactions among components.

3) Transformation from the RM-RNL to the RAInterM

Model: To facilitate the transformation from the RM-RNL

to RAInterM, we develop a transformation algorithm (see

Algorithm 1). This algorithm can be divided into three parts.

1) Transformation of the structure of RM-RNL: The structure

of RM-RNL is transformed first, including the hierar-

chical relationship among templates and Input/Output.

SRT, SSRT, FRT, SFRT, and SFBRT are transformed into

Components with corresponding types. Input/Output are

transformed into Port in RAInterM.

2) Generation of connection: Requirement specifications in

the RM-RNL may be incomplete. For each Port, we create

a series of Connections to link it with other ports, which

have the same port type and opposite direction. If no

matchable port exists, we create a data component in top

Component connecting with single ports.

3) Transformation of the elements in templates: The Trans-

formation of sentence pattern is realized in “gen()” op-

eration. Thus, Functional Requirements, Performance

Requirements, Mode Transitions, Interface Requirements,

and Hardware Constraints are mainly transformed into

BHVStateMachine, Property, MTStateMachine, Prop-

erty of Port, and Components with hardware types in

RAInterM, respectively.

Fig. 7. Requirement traceability information model.

Algorithm 2: Transformation From the RAInterM Model to

the AADL Models.

Require:

RAInterM

Ensure:

AADL models

1: for each Component c in RAInterM.getComponents do

2: if c.isSystem then

3: AADL.add(new System n);

4: else if c.isProcess then

5: AADL.add(new Process n);

6: else if c.isThread then

7: AADL.add(new Thread n);

8: else if c.isSubprogram then

9: AADL.add(new Subprogram n);

10: else

11: AADL.add(new Abstract n);

12: end if

13: AADL.addInstance(n.newInstance);

14: c.getPorts → n.features;

15: c.SubComponents → n.instance.subcomponents;

16: c.Connections → n.instance.connections;

17: c.MTStateMachine.getStates → n.instance.modes;

18: c.MTStateMachine.getTransitions

→ n.instance.transitions;

19: c.Properties → n.instance.properties;

20: c.BHVStateMachine → n.instance.BA;

21: end for

4) Transformation from the RAInterM model to the AADL

models: Since we implement the metamodel of RAInterM and

the metamodel of AADL in the source code of OSATE, we

develop another algorithm (see Algorithm 2) to facilitate the

transformation from RAInterM to AADL.

The transformation from RAInterM to AADL can be divided

as the generation of AADL-type declarations and of AADL im-

plementation declarations; the first one includes AADL features

such as ports, and the second one includes other information of

AADL models, such as subcomponents, connections, properties,

mode transitions, annexes, etc. AADL components are generated

based on Component in RAInterM, and ports, connections, MT-

StateMachine, BHVStateMachine, and properties in RAInterM

are transformed into features, connections, mode transitions, BA,

and properties of AADL components, respectively.

C. Traceability

In this section, we propose a requirement traceability informa-

tion model, which can standardize the process of establishing the

requirement traceability links, shown in Fig. 7. In the following

paragraphs, we elaborate on the key elements of the requirement

traceability model.

1) TraceabilityLink in Fig. 7 connects traceability artifact to

define their dependence relations. One end of a traceability

link is attached to a set of requirement elements, and the

other end of the traceability link is attached to a set of el-

ements of design model. In other words, traceability links

build the relations between the elements of requirement

and design model. Each traceability link has an attribute

“id,” which uniquely identifies the link. Traceability link

types define the type of a link and give the semantics of

the link. The sublink relation of traceability links indicates

that the traceability links are not independent of each

other. Some links are the sublinks of other links. In this

article, the traceability relationship refers to the set of all

traceability links.

2) TraceabilityElement refers to the elements that are sup-

posed to be linked in order to ensure traceability. So, there

are two kinds of traceability elements: the element of the

RM-RNL and the element of AADL models.

3) RTIM is the root element, which contains traceability

elements and all the generated traceability links.

4) TraceType enumeration is used to specify links types,

which are represented as follows.

a) Generation automatically relates the component to

a requirement through model transformation. In this

article, each traceability link type is generation by

default.

b) ImplementedBy relates requirement to system

fragments, implementation plans, code source, etc.

c) MappedTo relates requirement to a particular

attribute, operation, state, or value of the artifact.

d) Satisfy relates requirement to the component that

fulfills it.

e) Refine relates a requirement to its refined

requirement.

f) Verify relates requirements to test cases.

Model transformation is the process of converting a source

model into a target model based on a set of transformation rules.

The rules are defined with a model transformation language

[40]. These transformation rules manipulate elements defined

in metamodels. In our approach, the process of automatically

generates the requirement traceability links actually consist of

three steps.

1) Traceability links are established between the RM-RNL

and the RAInterM model generated from it, while Gener-

ate_RAInterM is performed.

2) Traceability links are established between a RAInterM

model and the AADL models generated from it, while

Generate_AADL is performed.

3) Traceability links are established between the RM-RNL

and the AADL models through merging the generated

traceability links in the former two step.

V. MAINTAIN REQUIREMENT TRACEABILITY DURING THE

REFINEMENT OF AADL MODELS

The initial AADL models automatically generated by model

transformations cannot fully express all the properties of an em-

bedded software system, for instance, nonfunctional properties

such as schedulability, and the related feature of the execution

platform. Thus, the requirement traceability links may not be

complete. Therefore, we study how to realize the change of

requirements in the refinements of AADL models, and how to

maintain the requirement traceability links at the same time.

A. Global View the AADL-Based Development

Practically, the AADL models require iterative refinement

before the system synthesis. As shown in Fig. 8, we give a

global view of our AADL-based development approach. The

refinement can be done at different phases, for instance, software

requirement specifications, design, and coding. First, we rewrite

the requirements of embedded software through RM-RNL and

Fig. 8. Global view of the AADL-based development.

then automatically generate the initial AADL models by model

transformations, as well as the requirement traceability links.

It needs to maintain the consistency between requirements and

AADL models by regenerating the AADL models and the trace-

ability links when a requirement change is happened. Second,

the generated initial AADL models are incomplete. Thus, it

needs a refinement process, which may include several steps.

In our work, we refine the AADL models from two aspects.

One is to enrich the functional/nonfunctional expression of

AADL models. It mainly includes adding some description of

functional and nonfunctional requirements to the AADL models

that cannot be specified in the RM-RNL or are difficult automat-

ically transformed to the AADL models. The other is structure

reorganization of AADL models; it mainly considers the factors

of safety and reliability, or automatic code generation. Moreover,

the AADL models should be formally verified, in which we use

TASM and UPPAAL to verify the individual properties of each

component, use the compositional verification tool AGREE to

verify the system properties of the hierarchical components, and

use Cheddar [41] to verify the schedulability of the system. The

verification results will be further feedback to the AADL models

and, thus, to guide the modification of AADL models.

Finally, the executable C and Ada code can be generated.

Similarly, we also need to perform the code refinement to

make the code executable, by adding some platform-specific

information to C/Ada that cannot be automatically generated

from the AADL models, such as the watchdog in the VxWorks

operating system, etc.

In this article, the refinement of requirements (or requirement

change) focuses on the expression ability of the RM-RNL. We

maintain the consistency between requirements and the AADL

models, as well as the effectiveness of traceability links through

Fig. 9. Merge pattern for refinement of AADL models.

model transformations, which will not be discussed here. In this

section, we focus on the refinement of AADL models. However,

it is a very complex process of generated a complete AADL

models, which requires several iteration refinements.

Traceability can effectively support change impact analysis,

coverage analysis, test optimization, and so on. Therefore, it is

very important to establish and maintain the traceability links

(path) in the refinement of AADL models, especially in the

safety-critical domains.

B. Maintain Requirement Traceability Through AADL

Refinement Patterns

The refinement of AADL models is an iterative design

process. In this section, we describe the refinement patterns,

i.e., general refinement scenarios, and how to maintain the

requirement traceability in this refinement patterns.

First, we consider the merge pattern. This pattern is taking two

or more components aggregated into a single one that performs

the same function. The purpose of such refinement is to provide

a single functionally equivalent component, from which it will

be simpler to generate implementation code.

As shown in Fig. 9, before refinement, process P contains

two threads T1 and T2; thread T1 processes the data received

at its input port and sends the computation results to its output

port. The data are then received at the input port of thread T2

through the port connection between the threads. Thread T2

then processes the data and sends the result to its output port.

In addition, T1 and T2 have a traceability relationship with

the subfunction requirement template SFRT1 and SFRT2 in the

RM-RNL, respectively.

After refinement, the two threads are aggregated into a single

one that performs the same function, and the traceability links

between thread T1 (or T2) and SFRT1 (or SFRT2) are broken

since thread T1 (or T2) does not exist anymore in the new

AADL models. Then, we must refine the original requirements

in the RM-RNL and fix the traceability links between the refined

requirements and the AADL models.

Furthermore, considering the factors of reliability and safety,

it is necessary to optimize the AADL models, such as increasing

the redundancy of the components that realize the safety-critical

functions, or increasing the shared data access mechanism to

improve the reliability of data interaction, and so on. Thus,

Fig. 10. Spilt pattern for refinement of AADL models.

we introduce the split pattern. As shown in Fig. 10, we use

a shared data access mechanism to refine the initial AADL

model. Before refinement, the process P contains two threads

T1 and T2; thread T1 processes the data received at its input

port and sends the computation results to its output port. The

data are then received at the input port of thread T2 through

the port connection between the threads. Thread T2 then further

processes the data and sends the result to its output port. After

refinement, the port connection between two threads is replaced

by a data subcomponent (buffer), which is shared by the sender

and receiver threads via two data access connections. There-

fore, the original port connection is split into three elements.

Additionally, subprogram calls are also added to each thread to

implement the refined communication mechanism (not shown

in the figure).

Similarly, the original traceability links between the require-

ments and the initial thread are broken since a new data subcom-

ponent is added to the process. In order to fix the traceability links

and requirements, we need to add a new data item to the data

dictionary in the RM-RNL to describe the information of buffer

data components; we also need to modify the data interaction

between SFRT1 and SFRT2 and the corresponding requirement

constraints in the requirement template.

Before code generation, it is necessary to further refine the

AADL models based on the features of target code and the

execution platform. Therefore, we review additions to attach

some platform-specific details or code representing an interrupt

service routine. For instance, we can further to refine the AADL

models by adding a property association to data, such as we

can use the Allowed-Memory-Binding and Allowed-Memory-

Binding Class properties to indicate the memory (or device)

hardware the port resources reside on.

Finally, the target code (such as C or Ada) can be generated

based on the refined AADL models.

VI. CASE STUDIES

We illustrate our approach through two industrial case stud-

ies: Attitude and Orbit Control System (AOCS) [42], [43] and

Rocket Launch Control System (RLCS), including the specifi-

cation of the requirements with RM-RNL and the generation of

the traceability links through the MACAerospace toolset.

A. AOCS

AOCS is a subsystem in the GNCC system on board a satellite.

Its task is to ensure that the satellite attitude and orbit remain sta-

ble and follow prespecified profiles by ground control. In the case

Fig. 11. Conceptual structure of AOCS.

of geostationary telecommunication satellites, for instance, the

AOCS is responsible for ensuring that each particular satellite

retains its position over the Earth’s equator at a given longitude

and keeps its antennas pointed toward the ground station.

The conceptual structure of the AOCS is shown in Fig. 11.

The AOCS is a typical embedded hard real-time control system.

It periodically collects the measurements from a set of sensors

and converts them into commands for a set of actuators. The

AOCS interacts with a ground control station, from which it

receives commands (telecommands), and to which it forwards

housekeeping data (telemetry).

Our requirement document of AOCS has 200 pages, and it is

obtained from the industrial partner. It has nine sections (such

as Attitude Determination, Orbit calculation, Attitude Control,

Orbit Control, etc.) and 124 modules. We manually extract the

structure of the AOCS requirements and specify them using the

RM-RNL modeling function with MACAerospace. For confi-

dentiality reasons, we are only allowed to present a sanitized

portion of the AOCS case study in this article.

First, we construct a data dictionary and a glossary of AOCS

based on the original textual documents. Then, we use the RM-

RNL to specify the AOCS requirements. The decomposition

structure of a system should be accomplished by requirement

engineers, who have a wide knowledge on the object system.

In this case study, the structure of decomposed systems is given

in the requirement documents. The corresponding hierarchical

structure described in the RM-RNL plug-in of MACAerospace

is shown in Fig. 12. After the requirement specification with the

RM-RNL, we can automatically generate initial AADL models

and the traceability links between RM-RNL and AADL models.

The RM-RNL of AOCS includes 12 system/subsystem re-

quirement templates, ten function requirement templates, and

one subfunction template, and so on. The statistical data are

shown in Table IV, and the statistical data of generated AADL

models and traceability links are shown in Table V.

All types of templates except Shared Function Block and

all sentence patterns except Interface-Sentence are covered by

this case study. There are 19 types of sentence patterns in

the RM-RNL, which include three types of Interface-Sentence.

Thus, the coverage of RM-RNL template elements and sentence

patterns are 80.0% and 84.2%, and we believe this case study

can cover enough elements for evaluation. The hierarchical

templates refer to system, process, thread components in AADL;

Fig. 12. Structure of AOCS requirements in the MACAerospace toolset.

TABLE IV
STATISTICAL DATA OF RM-RNL FOR AOCS CASE STUDY

TABLE V
STATISTICAL DATA OF GENERATED AADL MODELS AND TRACEABILITY LINKS

FOR AOCS CASE STUDY

In/Out refers to port and condition in AADL; Mode Transition

refers to mode transition in AADL; and Functional Requirement

refers to BA in AADL. As we explained in Section III-A, each

sentence pattern has its own transformation rules; some of them

can be transformed into two or more transitions in BA, such

as sentence pattern “< Condition > + < Behavior > +
< else > + < Behavior >” is transformed into two transi-

tions representing “if” and “else,” respectively.

A part of requirement traceability links is shown in Fig. 13,

and the traceability table presents a set of one-to-many mappings

from the elements in the RM-RNL to the elements in the AADL

Fig. 13. Part of generated requirement traceability links of the attitude control
subsystem.

Fig. 14. Traceability link of the attitude control subsystem.

models. To take the mode and mode transition of attitude control

subsystem as an example, the upper part of Fig. 14 is the RM-

RNL, and the lower part is the corresponding AADL code. The

dashed lines in this figure that describe the traceability links

between the elements of the RM-RNL and the AADL code.

B. RLCS

The RLCS is a critical subsystem of the rocket launcher

system (RLS). The function of the RLS is to control the rocket

to perform various operations and automatically execute the

function of rocket launch during the period from receiving

the launch command to the rocket leaving the launcher. RLCS

running on the launch control unit (LCU) computer, and the

LCU computer interacts with other modules of the RLS through

the bus and/or network. The RLCS can ensure the normal

TABLE VI
STATISTICAL DATA OF THE RM-RNL FOR RLCS CASE STUDY

TABLE VII
STATISTICAL DATA OF THE GENERATED AADL MODELS AND TRACEABILITY

LINKS FOR RLCS CASE STUDY

execution of the launch function of the rocket through a serious

of hardware–software interaction.

The requirement document of RLCS has more than 300 pages.

In this article, we only show the requirements of the launch

and control subsystem, which has 56 pages. For confidentiality

reasons, we consider 24 subfunction modules in the main control

layer and process layer of the RLCS in this article.

Similarly, we first construct the data dictionary and the glos-

sary of RLCS and then specify the RLCS requirements through

the requirement modeling function of MACAerospace. After

the requirement specification with the RM-RNL, the initial

AADL models and the requirement traceability links can be

generated automatically by the model transformation function

of MACAerospace.

The requirements of the RLCS are specified in the RM-

RNL, including 13 system/subsystem requirement templates,

14 functional requirement templates, and 76 shared function

requirement templates, and so on. The statistical data are shown

in Table VI; the statistical data of generated AADL models and

traceability links are shown in Table VII.

The traceability links are presented in tabular form in the

MACAerospace, and the elements of the RM-RNL and the

AADL models are one-to-many mapping, that is, one element

in the RM-RNL can be traced to many elements in the AADL

models.

Since these traceability links are automatically generated

along with the model transformation in our approach, all the

generated traceability links should be correct if the transforma-

tion rules and algorithms are correct. However,we still manually

check these traceability links with industry partners to ensure the

effectiveness of traceability links. We ensure that at least one

traceability link exists for each element in the RM-RNL and the

AADL models.

Then, we improve the initial AADL models through model

refinement, which mainly include improving the expression

of functional and nonfunctional requirements, reorganizing the

structure of the AADL models based on refinement patterns,

and adding the information of platform-specific, and so on. At
this time, the original requirement traceability links and the
consistency between the requirements and the AADL models
will be broken. Therefore, we must maintain the consistency
between the requirements and the AADL models, that is, we
need to change the requirements and traceability links during
the refinement of the AADL models.

The refined AADL models are verified by the verifica-

tion tools, such as TASM and UPPAAL. If the verification
fails, the AADL models will be further modified according to
the counterexample, and if so, we can automatically generate
the architecture C/Ada codes with the support of the devel-

oped code generation tool. Before that, we should perform
the second-round refinement, which is required to derive the
platform-specific model. MACAerospace provides an user in-

terface for the PSM refinement to assist users adding informa-

tion that is OS-related, hardware-related, programming-related,
communication-related, etc. For example, we need to add the
platform features of the VxWorks operating system in the AOCS
case, such as watchdog, etc., because the AOCS is developed on
the VxWorks operating system. However, we have not consider
the characteristics of the operating system in the refinement of
the RLCS case study, because it is developed in the Ada language
and runs without an operating system.

Requirement traceability can effectively support the analysis
and verification of software artifacts and can effectively re-

duce the maintenance cost of software artifacts. In traditional
software development, traceability links between requirements
and design models need to be established manually, is often
time-consuming and error-prone. To improve this situation, we
provide an automatic method to generate the traceability links
between requirements and the design models.

VII. EVALUATION

In this section, we will evaluate our approach and summarize
the threats to its validity. Finally, we also discuss the lessons
learned and limitations of our approach.

A. Evaluation Experiments

We mainly evaluate the approach from two aspects: the practi-

cability of RM-RNL and the quality of requirement traceability

links.

We conducted a deep investigation when designing the

RM-RNL, including fully understanding the requirements de-

scription in the actual projects through close interaction with

engineers, and verified the RM-RNL using actual industrial

cases. The RM-RNL has been modified and adjusted several

times. Therefore, we consider that the RM-RNL can meet the

basic requests of industrial requirement description. In addition,

the RM-RNL has good scalability. We evaluate the practicability

of the RM-RNL in this article via a questionnaire. This ques-

tionnaire includes four measures: understandability, usability,

effectiveness, and restrictiveness. Four statements are designed

for these four measures and are presented in Table VIII. We

requested the subjects to rate each question relevance on a scale

between 0 (completely disagree) and 9 (completely agree).

TABLE VIII
EVALUATION THE PRACTICABILITY OF THE RM-RNL

The requirement traceability links are generated by using

model transformation in this article, and therefore, these links

should be correct in the premise of the transformation rules,

and algorithms are correct. Based on this theory, we design

the following experiments to illustrate the advantages of our

approach.

We set up two groups of comparison experiments. One group

manually establishes the traceability links between the RM-RNL

and the AADL models, and the other group manually estab-

lishes the traceability links between the original requirement

documents and the AADL models. Then, we compare the

traceability links established by manually with those generated

automatically using the MACAerospace toolset.

In addition, we observe the impact of engineering expe-

rience in the experimental results by comparing the trace-

ability links established by engineers and students (master’s

students and fourth-year undergraduate students) in each set

of experiments. The experimental results are measured using

two metrics, namely, accuracy and recall. In this article, we

use linksMACAerospace to represent the traceability links generated

by the MACAerospace toolset and linksmanually to represent

the traceability links established by subjects. Then, we define

matched links as the links, which appear in both linksMACAerospace

and linksmanually. Therefore, the definitions of the accuracy and

recall are as follows.

Accuracy is the ratio between the number of matched links

and the number of links that are established by subjects

accuracy =
|{linksMACAerospace} ∩ {linksmanually}|

|{linksmanually}|
. (1)

Recall is the ratio between the number of matched links and

the number of links that are automatically generated by the

MACAerospace toolset

recall =
|{linksMACAerospace} ∩ {linksmanually}|

|{linksMACAerospace}|
. (2)

B. Evaluation Results

The subjects consist of 12 students (seven fourth-year under-

graduate students and five master’s students) and six engineers

from industry. A lecture is given to the subjects regarding the

RM-RNL and the MACAerospace toolset before conducting the

experiment. The evaluation results of the RM-RNL obtained by

the questionnaire are as shown in Fig. 15.

Fig. 15 compares the evaluation scores given by the 18

subjects for the practicability for the RM-RNL. All measures

of RM-RNL are rated highly with a median of either 7 or 8

Fig. 15. Evaluation results of practicability for the RM-RNL.

TABLE IX
EVALUATION RESULTS OF THE QUALITY OF REQUIREMENT

TRACEABILITY LINKS

except for restrictiveness (avg: 2.61, med: 3, and std: 1.04).

Individual statistics are given follows: understandability (avg:

7.34, med: 7.5, and std: 0.85), usability (avg: 7.28, med: 7, and

std: 0.89), and effectiveness (avg: 7.50, med: 4, and std: 0.79).

All subjects found RM-RNL to be practicable. We believe that

the MACAerospace toolset has improved the understanding and

cognition for RM-RNL.

In the evaluation experiment of the quality of traceability

links, we divided the 18 subjects into two groups, with each

group consisting of six students and three engineers. The sub-

jects established the traceability links between the original re-

quirement documents and the AADL models in Group A, and the

subjects established the traceability links between the RM-RNL

and the AADL models in Group B. The evaluation results are

shown in Table IX.

Comparing the two sets of experiments results, we find the

following:

1) The accuracy and recall of Group B are significantly higher

than those of Group A.

2) In the same case study, the accuracy and recall of engineers

are significantly higher than those of students in Group A,

but this advantage is not obvious in Group B.

3) In both groups, the accuracy and recall of the RLCS cases

study are lower than in the AOCS case study.

Therefore, we draw the following conclusions.

1) The RM-RNL can effectively improve the understanding

of the requirements for subjects and also indirectly prove

the effectiveness of the RM-RNL.

2) Our approach can generate more complete requirement

traceability links than the manual method, that is, our

approach is effective.

3) With the increasing complexity of the software system, it

is not reliable to manually establish the traceability links

between requirements and the design models.

In addition, requirement traceability links are automatically

generated along with model transformations to generate the

design models in our approach, and thus, there is no additional

time or costs associated with establishing the traceability links

between requirements and the design models.

C. Threats to Validity

Besides inheriting all limitations of the underlying software

quality engineering and model-driven traceability techniques,

our approach exhibits some threats to validity. In order to reduce

the possible threat to validity, we communicate with industry

partners iteratively to obtain more information and try to make

each case study more real. However, we still find some threats

to validity of our approach.

1) Correctness: The input of the RM-RNL is given by the en-

gineers that define the system decomposition and other elements

based on their understanding. This means that not every input

combination is valid, and it becomes increasingly unlikely that

the input remains consistent, especially if the input is provided

by different engineers. It is important for future work to provide

correctness checks based on the consistency of the input, despite

the fact that consistency does not imply correctness. The result

of the evaluation experiment shows that there is no obvious

difference among RM-RNLs created by different subjects if the

original requirement document is more standardized.

2) Granularity: It is difficult to establish at what level of

granularity traces between requirements and design models

should be generated. The trace links between requirements and

design models can be created in different level of granularity,

e.g., the requirement traceability links can be created at the

system level or at the (sub)function level, or even on a require-

ment sentence, and so on. Then, the engineer has the choice

to establish traceability between the model elements, and it is

unrealistic to keep under control all requirements and design

models at all levels of abstraction.

3) Requirement Specification Based on the RM-RNL: The

AOCS and RLCS case studies may not cover all possible situa-

tions for safety-critical systems. We see opportunities and needs

to apply MACAerospace in other systems of different domains

such as the vehicle control system in the automotive domain.

Further investigation of the applicability of MACAerospace

through larger scale case studies will be conducted in the near

future in a real industrial setting.

D. Discussions

From the experiment results reported, we observe that the

RM-RNL is overall easy to understand and apply. At the same

time, the applicability of the RM-RNL can be further improved

since the MACAerospace toolset can be used to enforce the

proper usage of keywords specified in the restrictions on the use

of control structures.

It is worth noting that inconsistent requirement specification

in the RM-RNL may lead to low-quality AADL models and

traceability information. However, we believe that inconsisten-

cies among requirement specifications can be reduced if the

RM-RNL restrictions are properly applied. In summary, the

RM-RNL can be better applied in practice due to support from
the MACAerospace toolset.

During the collaboration with our industrial partner for de-

vising the methodology, developing the tool, and conducting
the industrial case studies, we learned the following lessons and
identified some challenges when applying our approach in real
industrial contexts.

1) In the safety-critical domain, a number of standards (e.g.,

DO-178B/C and ISO26262 [44]) are recommended to

be followed when developing requirement specifications.

However, even though guided by such standards, we

observed that there are hidden guidelines (i.e., implicit

domain knowledge) followed by domain experts and re-

quirements engineers but not documented anywhere. Such

hidden rules were hard to obtain, and we spent a lot

of effort eliciting such information. We believe there

are still more of these rules to discover. Understanding,

formalizing, and enabling automated analyses of such

requirements require domain knowledge. Furthermore,

these aforementioned hidden rules need to be identified

and embedded as part of the methodology and tool. We

believe that our approach can be easily tailored for accom-

modating such domain-specific rules. During the domain

analysis, a lot of effort was spent on identifying and

clarifying such rules with our industrial partner, and the

whole process was highly iterative.

2) We observed that some of the requirements need to de-

scribe data flows. Doing so with restricted natural lan-

guages is not as straightforward as describing control

flows. Therefore, our approach is mainly designed for

describing control flows, which is similar to AADL.

Although our approach supports basic descriptions of

data processes, such as data transitions and assignments,

it requires more effort compared with the capability of

any programming language. Thus, in the future, we will

consider how to describe the data flows in a better way.

3) Sentence patterns in RM-RNL (see Section IV) are ade-

quate for describing the requirements of the case studies.

However, the case studies are only for an aerospace control

system and RLS. If one wants to apply the RM-RNL to

other domains, it may not be enough for the requirements

be expressed by the predefined sentence patterns. To ac-

commodate this challenge, we implemented our toolset

as an extensible framework, which will make it easier to

introduce new sentence patterns as well as to generate trace

links in the future.

4) Traceability is rarely directly supported by current soft-

ware development processes [45]. There is a lack of guid-

ance, both with respect to traceability planning and the

evaluation of cost and benefit and with respect to when and

how to actually carry out traceability-related tasks during

software development. Although our approach supports

extending model-driven design ideas to the requirement

phase, the traceability between requirements and design

can be generated automatically when deriving the de-

sign model through model transformation. But in MDD,

traceability should be regarded not only as an output of

model transformation, but also considered in the context of

the larger development process. This calls for addressing

pre and postmodeling traceability and for traceability of

transformation specifications.

5) The autogenerated requirement trace links of our approach

are only a coarse-grained traceability relationship. The

more complete and accurate requirement traceability rela-

tionship needs to be artificially perfected in the refinement

of the AADL model or through formal derivation and other

methods. In addition, this automatic approach to trace

recording only supports one general type of trace link.

Furthermore, there is disagreements with the requirement

traceability community, which has an understanding of

semantics as the meaning of a link, and the modeling

community in semantics is comprehended more in the

concrete technical context of conditions, events, and ac-

tions. Merging both views could be beneficial for both

communities. There is also a tradeoff between applying re-

source extensive, but semantically more accurate, manual

techniques, and cost-efficient, but inaccurate, automatic

approaches.

VIII. RELATED WORK

We carefully searched for previous work with relation to the

study reported in this article and classify the discussion into three

topics: requirement specifications in restricted natural language,

automated traceability, and model refinement.

A. Requirement Specifications in Restricted Natural Language

Requirements should be easy to understand, since they are

usually written as a means for communication between different

stakeholders (e.g., users and developers). There are many differ-

ent ways to document requirements. One common way is to use

textual descriptions only. Other ways to document requirements

include use cases and customized document templates. For some

systems (e.g., safety-critical systems), requirements may even

be documented as formal specifications.

In most cases, requirements are represented as natural lan-

guage, which is easy to understand. However, there are some

shortcomings, such as ambiguity and difficult to be processed

automatically. In order to solve these problems, restricted natural

language came into being. A restricted natural language is

also called a controlled natural language (CNL). It is a subset

of natural language obtained by restricting the grammar and

vocabulary. It aims to reduce ambiguity, redundancy, size, and

complexity of requirements, and to facilitate automated analysis.

Mavin et al. proposed an Easy Approach to Requirement Syn-

tax (EARS) [46], [47]. The EARS provides specific keywords

to support the specification of four different types of normal

operation and one unwanted behavior. It is simple to use and

leads to clear and expressive descriptions of the desired func-

tionality. The EARS has been successfully applied to a variety

of complex safety-critical systems, e.g., aero-engine control

systems. Holtmann et al. proposed a CNL, which describes the

requirements of embedded software in automobile areas. CNL

can reduce the ambiguity of natural language; it can also detect

inconsistency and incompleteness of requirements, as well as

support the automate verification of requirements [48], [49].

CNL is mainly used to describe system requirements of auto-

motive systems. The EARS and CNL were developed primarily

for stakeholder requirements, as opposed to technical system

requirements.

Use case is another common description for requirements in

requirements engineering, and its expressions mainly include

use case diagram and use case textual specification. The use case

diagram has the exact definition and corresponding modeling

standard in UML; the use case textual specification is often

described in the form of a template for the use of natural

language. The use case textual specification generally includes

options such as use case names, descriptions, basic flows, and

optional flows. Yue et al. developed a modified use case model-

ing method, namely restricted use case modeling (RUCM) [50]–

[52], which contains a relatively perfect with using case textual

specification template and a series of natural language used to

constraint template writing limit rules (restricted rules). This

made the use case description more easy to understand, reduced

the ambiguity, and allowed for the automatic generation of the

analysis model. In addition, the authors propose a method and a

tool called aToucan, to automatically generate a UML analysis

model comprising class, sequence, and activity diagrams from a

use case model and to automatically establish traceability links

between model elements of the use case model and the generated

analysis model.

RUCM is a general description method of requirements. It has

some shortcomings in the description of safety requirements in

SCS, but the RUCM method has good scalability. Therefore, Wu

et al. proposed a safety RUCM by extending some templates and

restricted rules into the existing RUCM. The safety RUCM sup-

ports the standardized description of safety requirements [53].

However, it still describes the requirements through use cases,

and the description of the domain features of the embedded

system is not comprehensive.

Gu et al. [54], [55] proposed a formal modeling approach

SPARDL as a concise way to specify embedded systems. It

can improve the quality of embedded systems in aerospace.

SPARDL is a formal requirements modeling method that can

accurately describe software requirements, but it is difficult for

engineers to use it directly.

AADL provides ReqSpec [56], a textual requirement specifi-

cation language Annex of AADL. ReqSpec supports the refine-

ment of requirements along with system designs, qualitative and

quantitative analysis of the created requirement specifications,

and verification of the associated system architecture models,

and thus ensures that requirements are met. ReqSpec mainly

focuses on the consistency between requirements and AADL

models, which is recommended for requirement specifications

along with the establishment of AADL models, instead of the

transformation of AADL models from requirements.

To summarize, the existing modeling methods for restricted

RNLs have their own advantages and disadvantages. For in-

stance, the EARS and RUCM are directly used for writing the

text requirement and were developed primarily for stakeholder

requirements. AADL ReqSpec is primarily used to express

traceability between the requirement document and the AADL

model. The RM-RNL can be better for specifying the input–

process–output features of embedded software. The RM-RNL is

a requirement modeling method for SCS and AADL. It combines

the advantages of RMCM, EARS, and other methods, which can

eliminate the ambiguity of NLRs and barely change engineer’s

habits of requirement specification. The RM-RNL can also

promote the application of MDD in the stage of NLRs.

B. Automated Traceability

Traceability has been defined as the ability to describe and

follow the life cycle of software artifacts [30]. van Lamsweerde

[57] reported several applications of formal specifications rel-

evant to traceability: refinement of specifications, derivation of

test cases, and extraction of specifications from source code are

transforming activities, which can produce trace links as by-

products. Of course, deriving a trace link as part of a generative

or transforming activity is rather intuitive: there is usually a link

derived-from from the product to the source artifact.

In the context of MDD, traces partially fulfill the same purpose

as in requirements engineering because in many tasks, MDD

is simply an automation of software engineering. The special

characteristic of MDD is the usage of models and automated

transformations. Therefore, the artifacts under study are mainly

(intermediate) models. This context influences the definitions

and semantics of the terms known from requirement traceability

and software engineering in general.

Gervasi and Zowghi [58] explored the automatic transfor-

mation from NLRs into formal logic. In their approach, they

analyzed NLRs with a part of speech tagger and then produced

equivalent formulas in predicate logic. The source and target

artifacts were stored in a database in order to make the transfor-

mation traceable. A similar transformation from requirements

to UML models was described by Ilieva and Ormandjieva [59],

[60]. While their model generation method could easily support

traceability, they did not mention it explicitly.

In addition, results from existing empirical studies [61]–[63]

demonstrate that traceability information has beneficial effects

on the effectiveness and efficiency of understanding changes,

performing requirements inspections, and evolving software

artifacts. Ghabi and Egyed introduced a language for expressing

uncertainties in traceability relationships between models and

code, which is the main benefit of this technique compared with

other traceability approaches [64], [65]. They also considered

artifacts with different natures that are architectural elements,

and extra-functional results utilized a similar approach [66],

[67].

Holtmann et al. proposed a semiautomatic method for es-

tablishing and maintaining requirement traceability in the pro-

cess of automated development based on the CNL requirement

specification method [50], [68], [69]. Meanwhile, Yue et al.

realized an RUCM tools—aToucan [52]; it can automatically

generate a UML analysis model and automatically establish

trace links between model elements of the use case model and

the generated analysis model. The aToucan is rule based and,

thanks to a modular design, facilitates modifications to the set

of transformation rules to accommodate different contexts (e.g.,

use different parsers).

C. Model Refinement

There are several works studying the specific nature of the

relationship between requirements and architectures and the

more general problem of model corefinement. In [70], Tang

et al. proposed an interesting traceability metamodel taking into

account the characterization of requirements and architecture

elements in terms of problem and solution spaces and capturing

design outcomes and decisions. An ontology supporting the

designer in corefinement is provided. However, only traceability

is managed automatically, and requirements and architecture

must be corefinement manually. In [71], Rahimi and Cleland-

Huang proposed a pattern of corefinement between requirements

and source code. Such patterns provide building blocks for

automating traceability maintenance, but, again, corefinement

of requirements and architecture is not addressed. In [72], a co-

evolution of use cases models and feature model configurations

is proposed and implemented with a bidirectional transforma-

tion language. In [73], Blouin et al. present a semiautomated

approach to evolve nonfunctional requirements and their trace

links following system’s architecture refinement in the context

of design space exploration and automated code generation. The

approach has been prototyped for AADL models refined with the

RAMSES tool and model transformations implemented as story

diagrams. In [74], Rahmoun et al. proposed an approach that

automates the identification of model transformation alternatives

(MTAs) taking into account their dependencies, and selections

of MTAs based on evolutionary algorithms that produce the best

output models with respect to nonfunctional properties.

IX. CONCLUSION

In this article, requirement traceability was broadly recog-

nized as a critical element of any rigorous software develop-

ment process, especially for building high-assurance and SCS

systems. MDD provided new opportunities for establishing

traceability links through model transformations. However, re-

quirement modeling was not involved in the MDD life cycle. To

promote the gap between NLRs and the AADL models, we pro-

posed a new requirement modeling method, which was named as

RM-RNL. The RM-RNL can promote the application of MDD

in safety-critical domains. In the context of MDD, we proposed a

method to automatically establish traceability links between the

elements of the RM-RNL and the generated AADL models. In

addition, we needed to maintain the traceability links when the

requirement change and/or AADL models refined. Therefore,

we proposed “refinement patterns” to achieve the change of

requirements and traceability links. Finally, we demonstrated

the effectiveness of our approach with industrial case studies

and evaluation experiments and discussed potential threats to its

validity.

In the future work, we will further improve the description

capability of the RM-RNL and automatically generate more

fine-grained requirement traceability links. At the same time,

we will realize the automatic maintenance of the requirement

traceability during the refinement (and evolution) of the AADL

models. In addition, we will consider automatically creating

Glossary and Data Dictionary through artificial intelligence

technologies.

REFERENCES

[1] N. Leveson, Engineering a Safer World: Systems Thinking Applied to

Safety. Cambridge, MA, USA: MIT Press, 2011.
[2] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements

traceability problem,” in Proc. Int. Conf. Requirements Eng., Colorado
Springs, CO, USA, 1994, pp. 94–101.

[3] P. Rempel and P. Mäder, “A quality model for the systematic assessment
of requirements traceability,” in Proc. 23rd Int. Requirements Eng. Conf.,
Ottawa, ON, Canada, 2015, pp. 176–185.

[4] Software Considerations in Airborne Systems and Equipment Certifica-

tion, RTCA Standard DO-178C, 2011.
[5] J. Cleland-Huang, O. C. Z. Gotel, J. H. Hayes, P. Mäder, and Z. Andrea,

“Software traceability: Trends and future directions,” in Proc. Future

Softw. Eng. Conf., Hyderabad, India, 2014, pp. 55–69.
[6] Z.-B. Yang, “AADL formal semantics and verification & analysis of safety-

critical real-time systems,” Ph.D. dissertation, School Comput. Sci. Eng.,
Beihang Univ., Beijing, China, 2012.

[7] C. He and G. Mussbacher, “Model-driven engineering and elicitation
techniques: A systematic literature review,” in Proc. 24th Int. Requirements

Eng. Conf. Workshops, Beijing, China, 2016, pp. 180–189.
[8] OMG, “OMG Unified Modeling Language (UML),” 2017. [Online]. Avail-

able: https://www.omg.org/spec/UML/2.5.1/PDF
[9] OMG, “OMG System Modeling Language (UML),” 2017. [Online]. Avail-

able: https://www.omg.org/spec/SysML/1.5/PDF
[10] MathWorks, “Simulink,” 2018. [Online]. Available: https://ww2.

mathworks.cn/products/simulink.html
[11] P. H. Feiler and D. P. Gluch, Model-Based Engineering With AADL: An

Introduction to the SAE Architecture Analysis & Design Language. Upper
Saddle River, NJ, USA: Addison-Wesley, 2012.

[12] P. H. Feiler, B. A. Lewis, and S. Vestal, “The SAE architecture analysis &
design language (AADL) a standard for engineering performance critical
systems,” in Proc. IEEE Conf. Comput. Aided Control Syst. Des./IEEE Int.

Conf. Control Appl./IEEE Int. Symp. Intell. Control, Munich, Germany,
2006, pp. 1206–1211.

[13] CMU/SEI, “Architecture analysis and design language,” 2019. [Online].
Available: http://www.aadl.info/aadl/currentsite/

[14] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni, “Model
traceability,” IBM Syst. J., vol. 45, no. 3, pp. 515–526, Jul. 2006.

[15] T. Yue, L. C. Briand, and Y. Labiche, “A systematic review of trans-
formation approaches between user requirements and analysis models,”
Requirements Eng., vol. 16, no. 2, pp. 75–99, Jun. 2011.

[16] S.-L. Kan and Z.-Q Huang, “Detecting safety-related components in state-
charts through traceability and model slicing,” Softw.: Pract. Experience.,
vol. 48, no. 3, pp. 428–448, Mar. 2018.

[17] B. Turban, Tool-Based Requirement Traceability Between Requirement

and Design Artifacts. Wiesbaden, Germany: Springer Vieweg, 2013.
[18] F. Wang et al., “Generating the AADL model based on restricted natural

language requirement template,” Ruan Jian Xue Bao/J. Softw., vol. 29,
no. 8, pp. 2350–2370, 2018.

[19] Architecture Analysis & Design Language (AADL), SAE Standard
AS5506C, 2017.

[20] SAE Architecture Analysis and Design Language (AADL) Annex Volume 1:

Annex A: Graphical AADL Notation, Annex C: AADL Meta-Model and In-

terchange Formats, Annex D: Language Compliance and Application Pro-

gram Interface, Annex E: Error Model Annex, SAE Standard AS5506/1,
2011.

[21] J. Delange and P. Feiler, “Architecture fault modeling with the AADL
error-model annex,” in Proc. 40th EUROMICRO Conf. Softw. Eng. Adv.

Appl., Verona, Italy, 2014, pp. 361–368.
[22] SAE Architecture Analysis and Design Language (AADL) Annex Volume 2:

Annex B: Data Modeling Annex, Annex D: Behavior Model Annex, Annex

F: ARINC653 Annex, SAE Standard AS5506/2, 2011.
[23] P. Dissaux, J. P. Bodeveix, M. Filali, P. Gaufillet, F. Vernadat, “AADL

behavioral annex,” in Proc. DASIA Conf., Berlin, Germany, 2006,
pp. 361–368.

[24] J.-M. Xu et al., “Hierarchical behavior annex: Towards an AADL func-
tional specification extension,” in Proc. 16th ACM/IEEE Int. Conf. Formal

Methods Models Syst. Des., Beijing, China, 2018, pp. 1–11.

[25] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous program-
ming with events and relations: The SIGNAL language and its semantics,”
Sci. Comput. Program., vol. 16, no. 2, pp. 103–149, Sep. 1991.

[26] Z.-B. Yang et al., “From AADL to timed abstract state machines: A verified
model transformation,” J. Syst. Softw., vol. 93, pp. 42–68, Jul. 2014.

[27] G. Behrmann, A. David, K. G. Larsen, “A tutorial on Uppaal,” in Formal

Methods for the Design of Real-Time Systems. Berlin, Germany: Springer,
2004, pp. 200–236.

[28] D. Cofer, A. Gacek, S. Miller, M. W. Whalen, B. Lavalley, and
L. Sha, “Compositional verification of architectural models,” in Proc.

NASA Formal Methods Symp., Norfolk, VA, USA, 2012, pp. 126–140.
[29] F. A. Pinheiro, “Requirements traceability,” in Perspectives on Software

Requirements, vol. 753. Boston, MA, USA: Kluwer, 2004, pp. 91–113.
[30] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia , E. Merlo, “Recovering

traceability links between code and documentation,” IEEE Trans. Softw.

Eng., vol. 28, no. 10, pp. 970–983, Oct. 2002.
[31] P. Lago, H. Muccini, and H. V. Vliet, “A scoped approach to traceability

management,” J. Syst. Softw., vol. 82, no. 1, pp. 168–182, Jan. 2009.
[32] S. Winkler and J. V. Pilgrim, “A survey of traceability in requirements

engineering and model-driven development,” Softw. Syst. Model., vol. 9,
no. 4, pp. 529–565, Sep. 2010.

[33] IEEE Recommended Practice for Software Requirements Specifications,
IEEE Standard 830-1998, 1998.

[34] B. Ramesh and M. Edwards, “Issues in the development of a requirements
traceability model,” in Proc. IEEE Int. Symp. Requirements Eng., San
Diego, CA, USA, 1993, pp. 256–259.

[35] P. Rempel, P. Mäder, and T. Kuschke, “An empirical study on project-
specific traceability strategies,” in Proc. 21st IEEE Int. Requirements Eng.

Conf., Rio de Janeiro, Brazil, 2013, pp. 195–204.
[36] P. Rempel and P. Mäder, “Preventing defects: The impact of requirements

traceability completeness on software quality,” IEEE Trans. Softw. Eng.,
vol. 43, no. 8, pp. 777–197, Aug. 2017.

[37] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems Trace-

ability. London, U.K.: Springer-Verlag, 2012.
[38] S. A. Bohner, “Impact analysis in the software change process: A year

2000 perspective,” in Proc. Int. Conf. Softw. Maintenance, Monterey, CA,
USA, 1996, pp. 42–51.

[39] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards, “Implementing require-
ments traceability: A case study,” in Proc. IEEE Int. Symp. Requirements

Eng., York, U.K., 1995, pp. 89–95.
[40] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineering

practices in industry,” in Proc. 33rd Int. Conf. Softw. Eng., Honolulu, HI,
USA, 2011, pp. 633–642.

[41] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: A flexible
real time scheduling framework,” in Proc. ACM SIGAda Int. Conf. Ada,
Atlanta, GA, USA, 2004, pp. 1–8.

[42] X. Liu, J. Guo, and E. Gill, “Towards model-driven development of
AOCS/GNC for small satellite missions,” in Proc. 65th Int. Astronaut.

Congr., Toronto, ON, Canada, 2014, pp. 3807–3816.
[43] Z.-B. Yang, K. Hu, Y.-W. Zhao, D.-F. Ma, J. P. Bodeveix, “Verification

of AADL models with timed abstract state machines,” J. Softw., vol. 26,
no. 2, pp. 202–222, 2015.

[44] Road Vehicles Functional Safety, ISO Standard 26262, 2011.
[45] R. Ramsin and R. F. Paige, “Process-centered review of object oriented

software development methodologies,” ACM Comput. Surv., vol. 40, no. 1,
pp. 202–222, Feb. 2008.

[46] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to
requirements syntax (EARS),” in Proc. 17th IEEE Int. Requirements Eng.

Conf., Atlanta, GA, USA, 2009, pp. 317–322.
[47] S. Gregory, “Easy EARS: Rapid application of the easy approach to

requirements syntax,” in Proc. 17th IEEE Int. Requirements Eng. Conf.,
Trento, Italy, 2011, pp. 1–2.

[48] J. Holtmann, J. Meyer, and M.V. Detten, “Automatic validation and cor-
rection of formalized, textual requirements,” in Proc. 4th Int. Conf. Softw.

Testing, Verif. Validation Workshops, Berlin, Germany, 2011, pp. 486–495.
[49] M. Fockel, J. Holtmann, and J. Meyer, “Semi-automatic establishment and

maintenance of valid traceability in automotive development processes,” in
Proc. 2nd Int. Workshop Softw. Eng. Embedded Syst., Zurich, Switzerland,
2012, pp. 37–43.

[50] T. Yue, L. C. Briand, and Y. Labiche, “A use case modeling approach to
facilitate the transition towards analysis models: Concepts and empirical
evaluation,” in Proc. Int. Conf. Model Driven Eng. Lang. Syst., Denver,
CO, USA, 2009, pp. 484–498.

[51] T. Yue, L. C. Briand, and Y. Labiche, “Facilitating the transition from use
case models to analysis models: Approach and experiments,” ACM Trans.

Softw. Eng. Methodol., vol. 24, no. 3, Feb. 2013, Art. no. 5.

[52] T. Yue, L. C. Briand, and Y. Labiche, “aToucan: An automated framework
to derive UML analysis models from use case models,” ACM Trans. Softw.

Eng. Methodol., vol. 24, no. 3, p. 13, May 2015.
[53] X. Wu, C. Liu, and Q.-X Xia, “Safety requirements modeling based on

RUCM,” in Proc. Comput., Commun. Appl. Conf., Beijing, China, 2014,
pp. 217–222.

[54] B. Gu, Y.-W. Dong, and Z. Wang, “Formal modeling approach for
aerospace embedded software,” Ruan Jian Xue Bao/J. Softw., vol. 26, no. 2,
pp. 321–331, 2015.

[55] Z. Wang et al., “SPARDL: A requirement modeling language for periodic
control system,” in Proc. 4th Int. Symp. Leveraging Appl. Formal Methods,

Verif. Validation, Heraklion, Greece, 2010, pp. 594–608.
[56] P. H. Feiler, J. Delange, and L. Wrage, “A requirement specification

language for AADL,” Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep. CMU/SEI-2016-TR-008, Jun. 2016.

[57] A. van Lamsweerde, “Formal specification: A roadmap,” in Proc. Future

Softw. Eng. Track ICSE, Limerick, Ireland, 2000, pp. 147–159.
[58] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural

language requirements,” ACM Trans. Softw. Eng. Methodol., vol. 14, no. 3,
pp. 277–330, Jul. 2005.

[59] M. G. Ilieva and O. Ormandjieva, “Models derived from automatically
analyzed textual user requirements,” in Proc. 4th Int. Conf. Softw. Eng.

Res., Manag. Appl., Seattle, WA, USA, 2006, pp. 13–21.
[60] M. G. Ilieva and O. Ormandjieva, “Automatic transition of natural lan-

guage software requirements specification into formal presentation,” in
Proc. Int. Conf. Appl. Natural Lang. Inf. Syst., Alicante, Spain, 2005,
pp. 392–397.

[61] A. V. Knethen, “Change-oriented requirements traceability: Support for
evolution of embedded systems,” in Proc. Int. Conf. Softw. Maintenance,
Montreal, QC, Canada, pp. 482–485, 2002.

[62] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue, “Traceability
and SysML design slices to support safety inspections: A controlled
experiment,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, Feb. 2014,
Art. no. 9.

[63] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical

Softw. Eng., vol. 20, no. 2, pp. 413–441, Jun. 2015.
[64] A. Ghabi and A. Egyed, “Exploiting traceability uncertainty between

architectural models and code,” in Proc. Joint Working IEEE/IFIP

Conf. Softw. Archit. Eur. Conf. Softw. Archit., Helsinki, Finland, 2012,
pp. 171–180.

[65] A. Ghabi and A. Egyed, “Exploiting traceability uncertainty among arti-
facts and code,” J. Syst. Softw., vol. 108, pp. 178–192, Oct. 2015.

[66] C. Trubiani, A. Ghabi, and A. Egyed, “Exploiting traceability uncertainty
between software architectural models and performance analysis results,”
in Proc. Eur. Conf. Softw. Archit., Cavtat, Croatia, 2015, pp. 305–321.

[67] C. Trubiani, A. Ghabi, and A. Egyed, “Exploiting traceability uncer-
tainty between software architectural models and extra-functional results,”
J. Syst. Softw., vol. 125, pp. 15–34, Mar. 2017.

[68] M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in Proc. 4th IEEE Int.

Model-Driven Requirements Eng. Workshop, Karlskrona, Sweden, 2014,
pp. 67–76.

[69] M. Daun, M. Fockel, J. Holtmann, and B. Tenbergen, “Goal-scenario-
oriented requirements engineering for functional decomposition with bidi-
rectional transformation to controlled natural language: Case study “body
control module” Inst. Comput. Sci. Bus. Inf. Syst., Univ. Duisburg-Essen,
Essen, Germany, ICB Res. Rep. 55, 2013.

[70] A. Tang, P. Liang, V. Clerc, and H. van Vliet, “Traceability in the co-
evolution of architectural requirements and design,” in Relating Software

Requirements and Architectures. Berlin, Germany: Springer-Verlag, 2011,
pp. 35–60.

[71] M. Rahimi and J. Cleland-Huang, “Patterns of co-evolution between
requirements and source code,” in Proc. 5th IEEE Int. Workshop Require-

ments Patterns, Ottawa, ON, Canada, 2015, pp. 25–31.
[72] W.-Z. Zhao, H.-Y. Zhao, and Z.-J. Hu, “A framework for synchronization

between feature configurations and use cases based on bidirectional pro-
gramming,” in Proc. 24th IEEE Int. Requirements Eng. Conf. Workshops,
Beijing, China, 2016, pp. 170–179.

[73] D. Blouin et al., “A semi-automated approach for the co-refinement of re-
quirements and architecture models,” in Proc. 25th IEEE Int. Requirements

Eng. Conf. Workshops, Lisbon, Portugal, 2017, pp. 36–45.
[74] S. Rahmoun, E. Borde, and L. Pautet, “Multi-objectives refinement of

AADL models for the synthesis embedded systems (mu-RAMSES),” in
Proc. 20th Int. Conf. Eng. Complex Comput. Syst., Gold Coast, QLD,
Australia, 2015, pp. 21–30.

Fei Wang was born in 1990. He is currently working
toward the Ph.D. degree in software engineering with
the Nanjing University of Aeronautics and Astronau-
tics, Nanjing, China.

His main research interests include require-
ment engineering, safety-critical embedded soft-
ware, model-driven development, and software
engineering.

Zhi-Bin Yang received the Ph.D. degree in computer
science from Beihang University, Beijing, China, in
2012.

He is currently an Associate Professor of Soft-
ware Engineering with the Nanjing University of
Aeronautics and Astronautics, Nanjing, China. From
April 2012 to December 2014, he was a Postdoctoral
Researcher with the Institut de Recherche en Informa-
tique de Toulouse, University of Toulouse, Toulouse,
France. His research interests include safety-critical
real-time system, formal verification, Architecture

Analysis and Design Language, and synchronous languages.

Zhi-Qiu Huang received the Ph.D. degree in
computer science from the Nanjing University of
Aeronautics and Astronautics, Nanjing, China, in
1999.

He is currently a Professor and the Director of
Software Safety in Computer Science with the Nan-
jing University of Aeronautics and Astronautics. His
current research interests include software safety, for-
mal methods, requirement engineering, and software
engineering.

Cheng-Wei Liu was born in 1994. He is currently
working toward the master’s degree in software engi-
neering with the Nanjing University of Aeronautics
and Astronautics, Nanjing, China.

His research interests include safety-critical
real-time systems, model-driven development, and
Architecture Analysis and Design Language.

Yong Zhou received the Ph.D. degree in computer
science from the Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 2006.

From 2002 to 2009, he was a Lecturer. He is cur-
rently an Associate Professor of Computer Science
with the Nanjing University of Aeronautics and As-
tronautics. He regularly teaches discrete mathematics
and programming language. His research interests in-
clude software engineering, formal methods, as well
as artificial intelligence.

Jean-Paul Bodeveix received the Ph.D. degree in
computer science from the University of Paris-Sud
11, Orsay, France, in 1989.

Since 1989, he has been an Assistant Professor of
Computer Science with the University of Toulouse
III, Toulouse, France, where he has been a Professor
of Computer Science, since 2003. He has participated
in European and national projects related to these do-
mains. His current activities are linked to the study of
real-time and synchronous language semantic proper-
ties within proof assistants and to real-time modeling

and verification. His main research interests include formal specifications, and
automated and assisted verification of protocols as well as of proof environments.

Mamoun Filali received the Ph.D. degree in com-
puter science from the Université Paul Sabatier,
Toulouse, France, in 1983.

Since 1983, he has been an Associate Professor
in Computer Science with ENSEEIHT, Toulouse,
France, where he has been a Full-Time Researcher
of Computer Science with the Centre National de
la Recherche Scientifique, Université de Toulouse,
Toulouse, France, since 1985. During the past years,
he has been mainly involved in the French nationwide
TOPCASED project, where he was concerned by the

verification topic. He has also participated in the proposal of the Architecture
Analysis and Design Language (AADL) behavioral annex, which has been
adopted as part of the AADL SAE standard. His main research interests in-
clude the certified development of embedded systems, formal methods, model
checking, and theorem proving.

