
A case against indirect jumps for secure programs
Alexandre Gonzalvez

IMT Atlantique, INRIA/TAMIS
alexandre.gonzalvez@imt-atlantique.fr

Ronan Lashermes
INRIA/SED&LHS

ronan.lashermes@inria.fr

ABSTRACT
A desired property of secure programs is control flow integrity (CFI):
an attacker must not be able to alter how instructions are chained
as specified in the program. Numerous techniques try to achieve
this property with various trade-offs. But to achieve fine-grained
CFI, one is required to extract a precise control flow graph (CFG),
describing how instructions are chained together. Unfortunately
it is not achievable in general. In this paper, we propose a way to
overcome this impossibility result by restricting the instruction
set architecture (ISA) semantics. We show that forbidding indirect
jumps unlocks a precise CFG extraction for all acceptable programs.
We discuss the implications and limitations of the new semantics
and argue for the adoption of restricted ISAs for security-related
computation.

KEYWORDS
control flow integrity, control flow graph, instruction set architec-
ture

1 INTRODUCTION
In the wake of the publication of numerous microarchitectural at-
tacks such as Spectre [11], Meltdown [12] and their variants, the
need for the secure execution of programs is blatant. Secure exe-
cution in this context refers to the additional information security-
related properties that must be guaranteed by the execution model.

One such property is the control flow integrity (CFI). Informally,
this property should guarantee that an attacker is not able to redi-
rect the control flow, i.e. the order of execution of the instructions
in the program. But as we will see in section 4, this property is
actually quite difficult to properly enforce. Moreover, guaranteeing
CFI requires the defense mechanism to obtain the valid control
flow in the form of the control flow graph (CFG). The mechanism
is then responsible for comparing the actual control flow with the
valid paths in the CFG. Unfortunately, in the real computers that
we use every day, extracting the CFG from a binary is a problem
impossible to do precisely in general as shown in subsection 2.2. It
leaves few possibilities for the defender:

(1) Provides an escaping mechanism to the CFI in order to deal
with the holes in our knowledge (but therefore creating a
weakness).

(2) Enrich the binary with the necessary metadata to complete
the CFG. In some cases, it requires annotation from the de-
veloper in the source language.

(3) Restrict the valid programs to the ones where the CFG is
easily extractable.

If we are interested in providing CFI at the hardware level, we
must be able to run securely all the programs fed to the chip: solu-
tion 1 is not acceptable. To comply with the solution 2, the metadata

must either be filled manually by the developer or derived auto-
matically by the compiler when possible. A consequence is that
to be executed on a secure processor enforcing CFI, the sequence
of instructions is not self-sufficient anymore. In addition to the
instructions, the processor needs the metadata defining a complete
CFG. Some solutions such as HAFIX [5] or CHERI [18] propose to
enrich the instruction set architecture (ISA) semantic with new in-
structions, embedding the metadata in the instructions themselves.

Instead, in this paper, we argue for the third choice: the impossi-
bility to extract efficiently the CFG is due to the presence of indirect
jumps in the ISA. If we remove the indirect jumps, the binary now
contains all the information to extract the CFG without requiring
metadata.

The problem caused by indirect jumps is well known, and nu-
merous works try to circumvent it (see [10, 16] for CFG extraction
in the presence of indirect jumps). Yet removing indirect jumps
has multiple benefits: first it rejects a class of program (the ones
that cannot be converted to direct jumps only) that is insecure by
nature. Then the CFG extraction becomes trivial, the binary pro-
gram holds straightforwardly the necessary information for the
CFG reconstruction.

A non-goal is to convert automatically programs written in an
ISA with indirect jumps to our new ISA proposal without them.
Indeed, aswe show in subsection 2.2 and section 5, such a conversion
is not possible in general: there are some programs that cannot be
converted efficiently to an ISA without indirect jumps. But this im-
possibility result is actually a feature. Our new ISA rejects programs
which contain jumps with an impredictable destination: unsecure
programs if we want to enforce CFI.

Motivation. In this work, we want to provide an ISA allowing
easy and precise CFG extraction for all valid programs. As proven
in subsection 2.2, this is not possible if the ISA has indirect jumps.
This property would allow to easily enforce CFI but also to forbid
some forms of obfuscation: a malware packer would have a hard
time to hide its payload. Additionally, it would improve the reach
and the power of static analysis tools.

Contribution. To allow easy and precise CFG extraction, we
propose to remove indirect jumps in the ISA with two new ISAs
proposals.

In this paper, we start by defining our abstract machine in sec-
tion 2, followed by the definitions of CFG and CFI. In particular we
show, in subsection 2.2, that a particular program with an indirect
jump can hide the jump destination.

The 3 ISAs with varying semantics to express the control flow
are described in section 3. We compare the resulting ISAs with a
simple benchmark to evaluate the performances and the ability to
extract a precise CFG with basic CFG extraction algorithms. Our
ISAs are very simple ones, we do not compare them to existing

Alexandre Gonzalvez and Ronan Lashermes

ones; instead we evaluate the impact of indirect jumps removal in
this simple setup.

A theoretical comparison is also performed on a dispatcher pro-
gram since it is the main pattern requiring an indirect jump for effi-
cient computations. We propose a new ISA modification to mitigate
the latency penalty.

We critically analyze the reach of our proposals in section 4. We
demonstrate in particular that the ability of extracting a CFG is
not transferable in a virtual machine. There is a parallel between
indirect jumps and indirect memory operations that would require
to remove the latter operations in order to precisely and easily
extract the CFG in any virtual machine (VM). Alas, this would
seriously limit the machine computational capability.

We discuss the classes of accepted or rejected programs in sec-
tion 5 to point the limitations of totally removing indirect jumps.

On these mixed results, we draw a conclusion in section 6

2 THE MACHINE, CONTROL FLOW GRAPH
AND CONTROL FLOW INTEGRITY

2.1 Machine
Our analyzes are performed on an abstract machine representative
of the real chips powering most computation today. The elementary
instructions that our machine is able to execute are inspired (and
simplified) from the RISC-V ISA. Apart from the common archi-
tecture described in this section, we will define 3 different ISAs in
section 3 for this same machine.

Our machine is a 64-bit RISC processor: addresses, data memory
words and registers are 64-bit integers.

The machine has a mutable state composed of registers and data
memory. The registers are:

• generic (read/write) registers x1, · · · ,x16.
• Stack pointer (SP) (read/write) register for the data stack.
• Constant zero and full (read-only) registers. Full is defined
such that x ⊕ f ull = ¬x (full is the value with all its bits to
1).
• A special register (neither readable nor writable directly),
the program counter (PC), that contains the address of the
next instruction.

The data memory is finite, as in a real machine, and is word-
addressed. Since the memory is finite, the machine is not Turing-
complete. But as in real machines, it has no practical implications.

All registers and memory are initialized with a default zero
value. A program is a dictionary of instructions: the address (64-bit
unsigned integer) is used to uniquely select one instruction in the
dictionary. As such, our architecture is a Harvard architecture,
instructions and data are separated.

The execution of our machine works as follows:

• First provide a program that is put in a dedicated (read-only)
memory.
• Set the PC to the program entry address.
• Then in an infinite loop:
– Fetch the next instruction at the address in PC
– Execute it by changing the state according to the instruc-
tion semantic. Or terminate the machine on an halt in-
struction.

– If the PC has not been changed by the instruction, incre-
ment the address.

We will explore 3 ISAs presenting slight variations on how to
handle the control flow in section 3.

2.2 Control flow graph
In our machine definition, we have seen that instructions are stored
linearly in memory, as a dictionary where the addresses are the
entry keys. Yet at runtime, the control flow is not linear. We want
to be able to go forward or back. As a result, in our machine, the
control flow is represented as a graph (potentially with cycles):
the control flow graph (CFG). In it, nodes are instructions and
edges are the legal transitions between instructions. For example, a
conditional branch has two possible successors: the node has two
outgoing edges in the CFG.

All invalid program addresses, in our machine, are considered
aliases for the program entry address (simplification hypothesis for
our analysis).

A CFG is always defined for any ISA since the complete digraph
(i.e. where all nodes are connected with all the others) is a valid
CFG: meaning that all legal control flows follow connected paths in
the graph. Therefore, any valid CFG is an overapproximation. The
best CFG is the smallest that is still valid for all possible program
executions.

CFG extraction is useful on several counts. If CFG extraction
is easy and precise, it allows to obtain more efficient static ana-
lyzis tools (e.g. dead code elimination can be performed safely and
precisely). Additionally, it allows powerful CFI schemes such as
instruction set randomization (ISR) [15].

On another hand, it renders obfuscation harder (but possible as
seen in section 4): it would be more difficult for malware packers
to hide their payload.

The question that naturally arises is: can the best CFG be
extracted from the instructions in general?

Beyond the fact that the difficulty of precise CFG extraction is
related to the reachability problem in programs (undecidable gener-
ally), we can simply prove that it is possible to hide the destination
of an indirect jumps by using cryptographic hash functions.

Trapdoor predicates.

Definition 2.1. Trapdoor predicate Let p : Fn2 → F2 be a func-
tion working on bit vectors of size n (for a large enough n). We call
p a trapdoor predicate if ∃k ∈ Fn2 such that:
• ∀x , k ∈ Fn2 , p(x) = 0.
• p(k) = 1, where k is a secret value. Meaning that knowing
p, there is no better way to find k than brute-forcing every
possible input without additional information (the adversary
has negligible advantage otherwise).

Trapdoor predicates can be built from a cryptographic hash
function (other constructions are possible, for example by exploiting
the SAT problem). Let h : Fn2 → Fm2 be a cryptographic hash
function.

Then we can define p for a given secret value k ∈ Fn2 as:

p(x) =

{
1 if h(x) = h(k)
0 in the other cases

A case against indirect jumps for secure programs

By construction, p(k) = 1 but k cannot be deduced from the
knowledge of p (of course h(k) is precomputed).

How to use these predicates to hide the control flow. Trapdoor
predicates allow hiding the control flow in any given program as
shown in Listing 1.

Listing 1: Hiding the control flow with a trapdoor predicate.
1 x <- user input

2 delta <- p(x)*(h(x + 1) xor constant)

3 jump 0x1000 xor delta

In Listing 1, for most input values p(x) = 0, the program jump
to the 0x1000 value. But if the attacker inputs the secret value
k , the program jump to another secret address (hidden, equal to
0x1000 ⊕ h(k + 1) ⊕ constant where constant is chosen according
to the desired destination).

In this program, without the knowledge of k , it is impossible
(without brute-forcing) to
• find x such that we jump to an address different than 0x1000,
• find the destination address when we jump to somewhere
different than 0x1000. We use h(x + 1) since h(k) may be
reverse engineered from p(x) program.

In conclusion, because of the existence of trapdoor predicates, a
precise CFG is not extractable without additional information in
general. Specifically, the program is not enough: in Listing 1, the
CFG extraction must assume that the jump instruction can reach
the whole address space (where it can, in reality, jump to only two
destinations).

Please note that we did not use opaque predicates for our demon-
stration since they are not theoretically sound as shown by Zobernig
et al. [19].

2.3 Control flow integrity
A CFI mechanism is responsible for ensuring that only a valid
control flow is taken. For every instruction, it must verify that the
transition to the next instruction is an edge in the CFG. CFI has an
extensive literature. A recent review has been published by Burow
et al. [4]. Most CFI solutions try to verify that jumps can only reach
legitimate addresses (forward edges). A special case is the return
instruction to return from a routine call (backward edges).

Abadi et al. [1] show software CFI implementations: they propose
code snippets to replace dangerous instructions (indirect jumps) in
order to guarantee CFI.

Tice et al. [17] demonstrate a software solution that leverages the
compiler to automatically insert the appropriate protections at jump
sites (forward edges only). In particular, they tackle the problem
caused by virtual method tables, necessary in some programming
languages (e.g. C++) to enforce runtime polymorphism: a dispatcher
is necessary there.

Backward edges (e.g. return instruction) are traditionally pro-
tected with a shadow stack [8]: the call stack is duplicated. On a
return instruction, the return address on both stacks are read then
compared. If they differ, an alarm is triggered. Another possibility
explored by Davi et al. [5, 6] is to add instructions to the ISA for
the sole purpose of validating function calls and returns. On any
indirect function call, the processor switch to a particular state.
The next instruction must be a special CFIBR label instruction

in order to continue execution. The label is used to keep track of
which functions are currently executing.

Another common solution proposed in the context of CFI is the
use of a shadow stack, a second stack that duplicates the return
addresses of the main stack. Upon a function return, both return
addresses from the two stacks are compared before the backward
indirect jump. This countermeasure is actually a duplication coun-
termeasure, there is no added semantic in the program and there
is no way to validate the return address against a truth value. As
such it is only useful in some specific attack scenarios and is not a
general solution for CFI.

To resist stronger attacker models, hardware CFI becomes nec-
essary. SOFIA [15] proposes such a solution with an instruction
set randomization (ISR) scheme: instructions are encrypted with
a value representing the corresponding edge in the CFG. More
precisely, instructions are encrypted at program startup using the
previous and current PC values as shown on Equation 1.

i ′ = Ek (PCprev | |PC | |...) ⊕ i (1)
Effectively, the CFG edge is encoded in the encrypted instruction

and must be valid for decryption. The difficulty arises when two
predecessors (thus two edges) are possible for one instruction. Then
a hack is proposed to overcome this difficulty.

Hiscock et al. [9] explore how to properly implement an ISR
scheme to ensure CFI by discussing and proposing encryption
strategies.

For all these propositions, the system must be able to check the
control flow with respect to a predetermined CFG. Since trapdoor
predicates do not allow this in general, in the next section we
propose to modify the ISA semantic to allow easy and precise CFG
extraction for all programs.

3 SEMANTICS
The key point that forbid easy and precise CFG extraction is the
presence of indirect jumps whose destinations are not statically
predictable. Indirect jumps are mostly present in two forms: for-
ward edges (jump x0) where we jump to the address present in
a register, and backward edges (return) where we jump to the
address following the last procedure call.

A radical solution to our problem is therefore to forbid indirect
jumps (both forward and backward). Yet it is possible to handle
indirect backward jumps in a statically predictable way, allowing
as a consequence a more versatile ISA.

In this section, we will describe and test 3 ISAs:
• ISAv1 allows indirect jumps.
• ISAv2: similar to ISAv1 without indirect jumps.
• ISAv3: building on ISAv2, a restricted indirect jump is autho-
rized in the form of a call/return semantic with a dedicated
return stack, also called “call stack”.

The source code for our implementation and our results can be
found on the git repository at https://gitlab.com/Artefaritaj/simple_
risc.

Here is a short description of the instructions:
• Integer arithmetic instructions: perform an arithmetic oper-
ation on two operands (in registers) and place the result in a
register. Operations are: +,−, ⊕,∧,∨, ·, /, mod , <<, >>.

https://gitlab.com/Artefaritaj/simple_risc
https://gitlab.com/Artefaritaj/simple_risc

Alexandre Gonzalvez and Ronan Lashermes

• Conditional branches: evaluate the condition among =,,
, ≤, <, ≥, > between two registers. If the condition is valid,
jump to the specified address if not follow the usual control
flow.
• Direct jump: goto the specified address for the next instruc-
tion.
• Call: direct jump to specified address and store the value of
PC in a register (x14 for ISAv1) or a dedicated stack (ISAv3).
• Return: jump to the address popped from the dedicated re-
turn stack (ISAv3 only).
• Indirect jump: go to the address present in the given register
(ISAv1 only).
• Direct load/direct store: load or store a data in memory
to/from a register.
• Indirect load/indirect store: load or store a data in memory
at address in a register to/from another register.
• Load immediate: set the value of the given register (source
of constants).
• Register move: copy a register into another.
• Non-deterministic: load a non-deterministic value into a
register. The semantic does not specify the source: it can be
either user input, result of a true random number generator,
etc.
• Halt: terminate the computation.

The push and pop instructions are also used and are pseudo-
instructions developed as several machine instructions to do stack
operations.

In this paper, we will change the ISA semantic by adding or
removing instructions in order to enforce security properties at the
ISA level.

3.1 Benchmarks
After defining our three ISAs, we want to verify that our new
proposals achieve our goal of easy and precise static CFG extraction.
At the same time, we measure the performance differences for two
benchmarks:
• An Advanced Encryption Standard (AES) encryption is a
simple program with an interesting instruction mix. The
execution requires a lot of memory accesses and many arith-
metic operations (cf. Table 1).
• A theoretical analysis of a dispatcher pattern. Dispatchers are
the main argument to keep indirect jumps: we will analyze
the penalty incurred by ISAv2 and ISAv3.

3.1.1 AES.

Implementation. This benchmark is an AES encryption (sym-
metric cryptography algorithm), encoded by hand in an assembly
language. The instruction mix for ISAv1, ISAv2 and ISAv3 can be
seen on Table 1.

The (naive) implementation is done in our own assembly lan-
guage corresponding to the 3 ISAs. This assembly language is also
used for listings 2, 3, 4, 5 and 7. Instructions map quite directly to
their defining semantic. The @ symbol is used as an optional hint
that we are using the value at the address present in the register. #
is used to denote literal values. Finally, ! is used to denote global
symbols (by default, symbols are defined only in their file).

Listing 2: Xtimes assembly implementation (AES subfonc-
tion) with ISAv1.

1 //x1 byte value to modify

2 !xtimes:

3 // save context

4 push x2, x4

5

6 // x1=x1*2

7 load x4, #0x1

8 sla x1, x1, x4

9

10 // test modulo

11 load x4, #0x100

12 and x2, x1, x4

13 beq end, x2, zero

14

15 sub_modulo:

16 load x4, #0x11B

17 xor x1, x1, x4

18

19 end:

20 // restore context

21 pop x4, x2

22 //return

23 jump x14

Results. For the three ISAs, we evaluate their performance and
the size of the CFG that can be extracted without annotation, shown
on Table 2. For the ISAv2, all the return instructions have been
replaced by dispatchers (cf. subsubsection 3.1.2), another possibility
would be to inline everything but this latter solution cannot be
scaled to any program.

The performance is evaluated as the mean and the standard
deviation for 10, 000 AES executions. The CFG extraction is done
with 2 different algorithms:
• Structural: the successors to an instruction are all the ones
that can be reached according to the instruction semantic.
The CFG is deduced from the structure of the program, not
the data content. In particular, the successors to an indirect
jump are all the instructions in the program. The extraction
algorithm is described in algorithm 1.
• Tracking: it is possible to extract precisely the CFG with the
ISAv3 call/stack semantic. In addition to the structural infor-
mation, we track the return stack and compute all edges for
all stack states. In other words, if the same procedure is called
from 2 different locations, the return instruction will jump
to 2 different addresses that can be determined if we track
the whole return stack in our CFG analysis. The extraction
algorithm is described in algorithm 2 and algorithm 3.

It is often possible to have a better CFG extraction algorithm
in the presence of indirect jumps, for example Kinder et al. in
[10] propose a (complex) solution to the problem. Balakrishnan
et al. [2] propose quite a complete toolsuite for static analysis in
general and CFG extraction in particular. Yet these solutions are, of
course, non-general: they cannot deal with the snippet presented in
subsection 2.2. The lesson being that the presented snippet should
be rejected in the context of secure execution.

Our CFG extraction algorithms are simpler than the one pro-
posed by Kinder et al.: only a simple control flow analysis is per-
formed. A data-flow analysis may improve a bit the accuracy of the
extracted CFG if some branch conditions are always true or always

A case against indirect jumps for secure programs

Table 1: Instruction mix for one AES run for each ISA. *A return instruction is an indirect jump.

ISAv1 ISAv2 ISAv3
Type Count Ratio Count Ratio Count Ratio
Arithmetic 10011 0.44 9978 0.41 9825 0.44
LoadImmediate 5232 0.23 6767 0.27 5218 0.23
IndirectLoad 2650 0.12 2628 0.11 2554 0.11
IndirectStore 2464 0.11 2441 0.10 2368 0.11
DirectJump 668 0.03 719 0.03 668 0.03
IndirectJump* 616 0.03 X X 616 0.03
ConditionalBranch 601 0.03 1703 0.07 601 0.03
RegisterMove 370 0.02 370 0.02 370 0.02
NonDeterministic 2 0.00 2 0.00 2 0.00
Halt 1 0.00 1 0.00 1 0.00
Total 22615 1.00 24609 1.00 22223 1.00

false. But such a case would represent a failure of the compiler:
it should have detected this invariant and simplified the program
accordingly.

Data: E: Address (entry address), P: Dictionary<Address,
Instruction> (program)

Result: CFG: Graph<Address> (control flow graph)
/* list of addresses to analyze */

addresses_buffer← [E];
/* addresses already analyzed */

analyzed← {};
while addresses_buffer is not empty do

/* we now analyze instruction at new address
*/

current_address← pop from addresses_buffer;
push current_address to analyzed;
/* find successors, the set of addresses that

can follow this address. Here the
successors are chosen according to the
nature of the instruction only (branches
have 2 successors, etc.). */

successors← successor_analysis(program P,
current_address);
for successor ∈ successors do

/* The add edge method adds nodes too if

necessary */

add edge to CFG: current_address→ successor;
end
successors_to_analyze← filter successors to keep only
addresses not in analyzed;
append successors_to_analyze to addresses_buffer;

end
return CFG;

Algorithm 1: Structural CFG extraction algorithm.

On Table 2, we show the implementations performances and
the CFG nodes and edges coverage. The CFG nodes (respectively
edges) coverage is the ratio of nodes (resp. edges) in the CFG that
are touched during one execution. E.g. an edges coverage of 6.4%

means that only 6.4% of the edges have effectively been followed
during one execution: the CFG is imprecise in this case. In our case,
it means that numerous instruction transitions are considered valid
where they should not.

On the performance side, we observe that ISAv2 is slower. Indeed,
for all returns from procedures we have a small dispatcher to jump
back to the correct location. ISAv1 is a bit slower than ISAv3 since
the stack handling (push and pop) is explicit instead of implicit in
ISAv3.

For CFG extraction, we note that the structural extraction is
imprecise for ISAv1 and ISAv3. In the latter case, the problem comes
from the return instructions: the algorithm cannot infer where they
jump and assume that all instructions are potential successors. In
these two cases, we can say that static CFG extraction is impractical.
But for ISAv2 with structural extraction and ISAv3 with tracking
extraction, the CFG is extremely precise. For ISAv2 the coverage is
not perfect since, because of the semantic of the ISA, unreachable
halt instructions must be added to deal with error cases.

This benchmark showcases the advantages for our ISAv2 and
ISAv3 proposals: the CFG is extractable with a 9% loss of perfor-
mance for ISAv2 or a 2% gain of performances for ISAv3.

3.1.2 Dispatcher. A dispatcher is an instruction pattern where a
particular control flow is chosen depending on a data value. This
pattern is used to call functions in a library, as a result of a system
call or as a way to implement runtime polymorphism in object-
oriented languages. This pattern is particularly dangerous with
respect to information security as we will see in section 4. It often
relies on indirect jumps for an efficient implementation, therefore
we expect that our ISA proposals will have varying dispatcher
implementations.

Listing 3: ISAv1 dispatcher pattern
1 //x1 contains the address to branch to

2 //(may be the result of pointer arithmetic)

3 call x1

4 dispatcher_end:

5 //continue

6

7 //...

8 procX:

9 push x14

Alexandre Gonzalvez and Ronan Lashermes

Data: E: Address (entry address), P: Dictionary<Address,
Instruction> (program)

Result: CFG: Graph<Address> (control flow graph)
/* list of pairs (addresse to analyze,

corresponding ReturnStack) */

addresses_buffer← [(E, empty ReturnStack)];
/* the data contained in the pair (Address,

ReturnStack) is hashed for easier handling
and for dealing with recursion */

/* hashes already analyzed */

analyzed← {};
while addresses_buffer is not empty do

/* we now analyze instruction at new address
*/

(current_address, current_stack)← pop from
addresses_buffer;
push (hash(current_address) ⊕ hash(current_stack)) to
analyzed;

/* find successors, the set of pairs
(addresses, corresponding return stack)
that can follow this (address, return
stack) pair. Here the successors are
chosen according to the nature of the
instruction and the values in the return
stack. */

successors← successor_analysis(program P,
current_address, current_stack);
for (succ_address, succ_stack) ∈ successors do

/* The add edge method adds nodes too if

necessary */

add edge to CFG: current_address→ successor;
end
successors_to_analyze← filter successors to keep only
pairs (address, stack) such that (hash(add) ⊕
hash(stack)) is not in analyzed;
append successors_to_analyze to addresses_buffer;

end
return CFG;

Algorithm 2: Tracking CFG extraction algorithm, uses algo-
rithm 3 for ReturnStack hashing.

10 //...

11 pop x14

12 jump x14

Listing 4: ISAv2 dispatcher pattern
1 //x1 contains the value that decides where to branch

2 load x15, #0

3 beq proc1, x1, x15

4 jump proc2

5

6 dispatcher_end:

7 //continue

8

9 //...

10 procX:

11 //...

Data: RS: Vec<Address> (return stack)
Result: H: integer (hash value)
/* The objective is to transparently deal with

recursion. If a repeated pattern is found at
the end, one repetiton is not taken into
account. hash(A) = hash(AA), hash(AB) =
hash(ABAB), hash(ABC) = hash(ABCABC), . . . */

max← length(RS);
if max > 1 then

stack_size← length(RS);
pattern_size← 1;
while pattern_size * 2 <= stack_size do

/* detect pattern repetition of size

pattern_size */
if RS[(stack_size − pattern_size) .. stack_size] ==
RS[(stack_size − 2 ∗ pattern_size) ..
(stack_size − pattern_size)] then
/* recursion found */

max← max - pattern_size;
break;

else
pattern_size← pattern_size + 1;

end
end

end
H← 0;
for i← 0 tomax − 1 do

H← hash(H | RS[i]);
end
return H;

Algorithm 3: ReturnStack hash algorithm.

12 jump dispatcher_end

Listing 5: ISAv3 dispatcher pattern
1 //x1 contains the value that decides where to branch

2 load x15, #0

3 beq call_proc1, x1, x15

4 jump call_proc2

5 call_proc2:

6 call proc2

7 jump dispatcher_end

8 call_proc1:

9 call proc1

10 jump dispatcher_end

11 //...

12 dispatcher_end:

13 //continue

14

15 //...

16 procX:

17 //...

18 return

For the 3 proposed patterns, we evaluate the number of instruc-
tions necessary for the dispatcher logic as a function of the number
p of procedures that must be reachable by the dispatcher, shown
on Table 3.

A case against indirect jumps for secure programs

Table 2: Evaluating ISAs performances and CFG coverage for an AES implementation

CFG extraction Mean duration Std deviation CFG nodes count nodes coverage CFG edges edges coverage
ISAv1 structural 22635.0 24.1 778 99.6% 12437 6.4%
ISAv2 structural 24605.2 24.1 816 99.1% 836 99.0%
ISAv3 structural 22230.7 23.8 747 99.7% 11942 6.4%
ISAv3 tracking 22230.8 24.0 745 100% 764 100%

Table 3: Dispatcher instruction count (for p > 3)

Branch logic (red) Call logic (green) Return logic (blue) Total
ISAv1 0 1 3 · p 3 · p + 1
ISAv2 2 · p 0 p 3 · p
ISAv3 2 · p 2 · p p 5 · p

Table 4: Dispatcher latency

Branch latency (red) Call latency (green) Return latency (blue) Total
ISAv1 0 1 3 4
ISAv2 2 · ⌈log2(p)⌉ + 1 0 1 2 + 2 · ⌈log2(p)⌉
ISAv3 2 · ⌈log2(p)⌉ + 1 2 1 4 + 2 · ⌈log2(p)⌉

The branch latency, a measure of the time taken to call a partic-
ular procedure, is shown in Table 4. The value for ISAv2 and ISAv3
can be proven by recurrence. Indeed, for a given p the branching
can be done by using a branch (2 instructions) and the 2 patterns for
⌈
p
2 ⌉ and ⌊

p
2 ⌋. As a consequence Latency(p) = 2 + Latency

(
⌈
p
2 ⌉

)
.

If we admit that ∀l < p, the relation Latency(l) = 2 · ⌈log2(l)⌉ + 1
holds (manually verified for the firsts l), then

Latency(p) = 2 + 1 + 2 · ⌈log2(⌈
p

2
⌉)⌉,

Latency(p) = 1 + 2 ·
(
1 + ⌈log2(p) − 1⌉

)
,

Latency(p) = 1 + 2 · ⌈log2(p)⌉ .

In the case where all procedures called by the dispatcher re-
turn to the same location, then ISAv2 is actually slightly better
than ISAv3 for the two metrics (instruction count and latency). Yet
the true reason why indirect jumps are preeminent is because of
the low dispatching latency, independent from the number of
procedures to call. Moreover, the high number of branches for
ISAv2 and ISAv3 does not play well with speculative execution:
dispatchers are highly penalized by the deletion of indirect jumps.
Indirect jumps allow a high fanout control flow: an instruction can
have a lot of possible successors. Whereas with ISAv2 and ISAv3,
an instruction has 2 successors at most.

An additional problem with the dispatchers with ISAv2 and
ISAv3 is that the latency of a procedure call depends on what
procedure is called. Depending on the application, this timing side-
channel can be a vulnerability.

Therefore, the usage (or not) of indirect jumps is a trade-off
between the performance of a high fanout control flow and the
possibility (or ease) of knowing the CFG statically.

3.2 Branching
In order to meet a better trade-off between performances and CFG
discoverability, a new instruction may be added: the n-fanout con-
ditional branch.

Listing 6: n-fanout conditional branch illustration
1 nbranch x1, #3

2 jump proc1

3 jump proc2

4 jump proc3

5 jump error_handling

The deciding register is expected to hold an integer value i in
[[0,n−1]] (n being the constant litteral present in the instruction). An
implicit jump is performed to the address:AddressO f (branch)+1+i .
If the register holds an illegal value, we jump to the error handling
address at AddressO f (branch) + 1 + n. A usage example can be
found on Listing 6.

With this new instruction, the latency is nowO
(
logn (p)

)
, where

n can be chosen equal to p to minimize latency.

4 LIMITS OF CONTROL FLOW INTEGRITY
The ability to precisely extract any CFG limits the reach of virtual-
ization as a defense mechanism: the virtual machine inner mecha-
nisms cannot be hidden. But as demonstrated in this section, it is
still possible to hide the control flow in the data domain.

4.1 Virtual machines
Guaranteeing CFI is particularly important to mitigate Return-
Oriented Programming (ROP) attacks [14] where an attacker mod-
ifies the control flow from a valid program to obtain a malicious
behavior. The trouble is CFI is not enough. Indeed, the existence of
emerging virtual machines, in particular weird machines [7], limits
the guarantees that CFI can offer. An illustration, valid with all our
ISAs, can be seen on Listing 7.

Alexandre Gonzalvez and Ronan Lashermes

Listing 7: subleq virtual machine
1 // data memory is filled with user-defined values

2

3 // initialization

4 // virtual program counter

5 // VPC(x13) = 0

6 load x13, #0

7

8 //exec one subleq instruction

9 subleq:

10 //read operands from data memory

11 move x1, x13

12 load x15, #1

13 add x13, x13, x15

14 move x2, x13

15 add x13, x13, x15

16 move x3, x13

17 //increment for next instruction

18 //if no jump

19 add x13, x13, x15

20

21 //subleq execution

22 load x4, @x1

23 load x5, @x2

24 sub x6, x5, x4

25 store @x2, x6

26 ble ijump, x6, x0

27

28 //start next instruction

29 jump subleq

30

31 //virtual indirect jump

32 ijump:

33 move x13, x3

34 //start next instruction

35 jump subleq

Subleq machines have been proven to be universal comput-
ers [13]. Our subleq VM has a simple control flow with only direct
jumps (it can be written with any of the three ISA). Yet the instruc-
tions to the VM are in fact in data memory and indirect jumps are
performed in the data domain. This program is an example where
even if CFI is guaranteed, we cannot enforce any security prop-
erty as a result. In other words, security properties such as CFI are
not automatically transposed in the virtual machine: if an attacker
replace a word in data memory, she can hijack the VM control flow.

A possible conclusion would be that since Harvard architectures
can be converted to von Neumann architectures (and reciprocally)
via virtual machines, then properly removing indirect jumps re-
quires removing indirect (data)memory accesses. Non-coincidentally,
for safety-critical application the use of the dynamic heap alloca-
tion is forbidden (e.g. the rule 20.4 of MISRA-C:2004) since that
generates lots of indirect memory accesses making the behavior
of the program harder to statically predict. But removing entirely
indirect memory accesses is a lot more constraining.

To respect our design principle that the ISA must intrinsically
contain the semantic information about the control flow, pointers
used for direct memory accesses must be augmented with meta-
data inside the ISA. The instructions below should replace indirect
memory accesses to restrict their reach:

• BoundedIndirectLoad Rd, Rs, B1, B2: load the value
present in memory at address contained Rs in register Rd if

the address is between the bounds B1 and B2 (being literal
values).
• BoundedIndirectWrite Rd, Rs, B1, B2: same principle
but store at address Rd the value register Rs.

This is a proposition present in CHERI [18]. Unfortunately, these
new instructions may mitigate the power of emerging virtual ma-
chines but do not allow to strictly enforce CFI.

4.2 Pointing our model simplifications
The machines presented in sections 2 and 3 are simplified ver-
sions of actual machines. In particular, real machines implement
mechanisms where the control flow is not defined by instructions:
interrupts and traps. An interrupt is a change of control flow due
to an external event: e.g. when a new byte has arrived on the serial
bus, an interrupt is raised that divert the control flow to a dedicated
subroutine, whatever the previous instruction was. A trap is a spe-
cial interrupt caused by an instruction: the trap instruction divert
the control flow to an implementation-defined location. Traps are
notably used to transfer control from the user land to the kernel.

These mechanisms are not captured by our models but neither
are they by most CFI mechanisms presented in subsection 2.3. Mod-
eling the security of these control transfers is a major hurdle that
has yet to be achieved. For example, how can we ensure CFI in the
presence of the page-fault weird machine [3]?

Another limitation is our use of a Harvard architecture. Even if
it is well known that the distinction between von Neumann and
Harvard architectures has little relevance theoretically, we have
no ways to modify the instructions in our machine after the initial
program write. As such it is not possible to install new programs
after the initial programming. Quite limiting for a general-purpose
computer. The reason being that any instruction modification has
the potential to break CFI and is harder to model.

5 ACCEPTED AND REJECTED PROGRAMS
In order to express a program with ISAv2 or ISAv3, CFG extraction
has to be performed at compilation (or conversion) time. In our
new ISAs, the new program will reflect the quality of the prior CFG
extraction. But any subsequent CFG extraction becomes trivial (cf.
algorithms 1 and 2 in the appendix) and equivalent to the prior
one: the structure of our new program reflects it. Additionally, if
the prior CFG extraction is not precise, the new program becomes
extremely inefficient (both in size and execution time) due to the
presence of big dispatchers. For all these elements, we can say that
a program without indirect jumps structurally mirrors its control
flow graph.

But generally, the possibility of expressing a program in our new
ISAs is equivalent to the possibility of extracting a complete CFG
at compilation time (no invalid edge is ever taken at runtime).

Accepted programs. As seen in subsection 2.2, there are programs
that cannot be expressed efficiently in our ISAv2 or ISAv3. Here
is how to write the snippet shown in Listing 1 in an ISA without
indirect jumps. If the program has size n instructions, we can write
the new version by first computing the destination address as in
the initial version, then dispatching on this address. As shown in
Table 3, the new program will have at least size 3 · n instructions
with ISAv2 and ISAv3 (n for the initial version, 2 · n to be able to

A case against indirect jumps for secure programs

branch to all initial instructions). We still do not know the secret
value that provokes a different branching destination or what that
new destination is. But in this new version, the structure of the
program makes explicit all possible branches.

All programs can therefore be converted to the new ISAs, if and
only if their size is finite and the memory layout is known (we
consider only jumps to valid instruction addresses). But not all
conversions are efficient. Equivalently for a new program, it can
be expressed in the new ISAs if all its instructions are known at
compile time.

In particular, virtual method tables can be written with ISAv2 and
ISAv3. These tables are used in Object-Oriented languages to deal
with dynamic dispatch: depending on the caller’s type, a different
function (at a dedicated address) is called. Virtual method tables
can be replaced with dispatchers since all destinations are known
at compile time.

Rejected programs. They are programming patterns where ex-
tracting a complete CFG is impossible at compile time. An example
would be an application able to dynamically load plugins for addi-
tional functionality. When the application is compiled, the plugin
instructions are not known. If we forbid indirect jumps, the ap-
plication cannot divert the control flow to the plugin. Similarly,
the kernel cannot launch a new application not known when we
compile it. We must recompile our kernel for each new applica-
tion added. In fact, the question is how to execute a program after
compilation, since the new program was not known before.

From a security standpoint, these are dangerous patterns. For
example, executing a plugin program is equivalent to execute un-
known instructions from the application context.

Indirect jumps are needed. Launching a new unknown application
from the kernel seems to bemore acceptable than launching a plugin
from an application. This is because in the former case, we change
the execution context: the application has fewer privileges than the
kernel.

Finally, these examples give the solution to our problem. Indirect
jumps are absolutely required to get non-trivial functionalities. But
an indirect jump is also equivalent to switching to a new security
domain. As a consequence in a secure ISA, if we want to remove
indirect jumps as in our new ISAs, we must also introduce hardware
security domains. What is instruction and what is data is tied to
the security domain, so that switching domain allows transferring
data into instruction memory. With this new feature, an indirect
jump can be authorized when switching to a new context. The new
jump would not be directly to a particular instruction, but to the
new security domain entry point, able to verify the validity of the
new control flow.

With this mechanism, an application can launch a plugin, but
in a new security domain. Compilation is possible, but launching a
new application is done in a new security domain.

6 CONCLUSION
In order to execute secure programs, our computation model must
guarantee specific security properties. Control flow integrity (CFI)
is a critical property preventing the attacker from altering the
program control flow. Yet to ensure this property, we have shown

that the systemmust be able to extract the CFGwhich is not possible
in general because of the existence of trapdoor predicates.

As a consequence, in order to execute generic programs and still
ensure CFI, we need to modify the computational model to allow
easy and precise CFG extraction. We compare 3 ISAs: one with
indirect jumps, one without and a last ISA allowing a restricted
form of indirect jumps. We show that an AES encryption can be
performed in the new ISAv3 without loss of performance but al-
lowing CFG extraction. Yet we show that an efficient dispatcher
pattern requires a forward indirect jump. Our new ISA proposals
incur a performance penalty for high-fanout control flows. Finally,
we have shown that because of the existence of emerging VMs, the
CFI property cannot be properly guaranteed without greater con-
straints on indirect memory transfers. This negative result suggests
that the CFI property, even if improving the system security, is no
silver bullet.

Finding how to prevent the emergence of VMs would go a long
way to ensure the security of our computers.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. [n.d.]. Control-

flow integrity principles, implementations, and applications. 13, 1 ([n. d.]), 1–40.
https://doi.org/10.1145/1609956.1609960

[2] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You See is Not
What You eXecute. ACM Trans. Program. Lang. Syst. 32, 6, Article 23 (Aug. 2010),
84 pages. https://doi.org/10.1145/1749608.1749612

[3] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W Smith. 2013. The
page-fault weird machine: lessons in instruction-less computation. In Presented
as part of the 7th {USENIX} Workshop on Offensive Technologies.

[4] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. [n.d.]. Control-Flow Integrity: Precision, Security,
and Performance. 50, 1 ([n. d.]), 1–33. https://doi.org/10.1145/3054924

[5] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick
Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. [n.d.]. HAFIX: hardware-
assisted flow integrity extension. ACM Press, 1–6. https://doi.org/10.1145/
2744769.2744847

[6] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. [n.d.]. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation. IEEE, 1–6. https://doi.org/10.1109/DAC.
2014.6881460

[7] T. F. Dullien. 2019. Weird machines, exploitability, and provable unexploitability.
IEEE Transactions on Emerging Topics in Computing (2019), 1–1. https://doi.org/
10.1109/TETC.2017.2785299

[8] Mike Frantzen and Mike Shuey. [n.d.]. StackGhost: Hardware Facilitated Stack
Protection. USENIX.

[9] T. Hiscock, O. Savry, and L. Goubin. 2017. Lightweight Software Encryption for
Embedded Processors. In 2017 Euromicro Conference on Digital System Design
(DSD). 213–220. https://doi.org/10.1109/DSD.2017.25

[10] Johannes Kinder, Florian Zuleger, and Helmut Veith. 2009. An Abstract
Interpretation-Based Framework for Control Flow Reconstruction from Bina-
ries. In Verification, Model Checking, and Abstract Interpretation, Neil D. Jones
and Markus Müller-Olm (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
214–228.

[11] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. [n.d.]. Spectre Attacks: Exploiting Speculative Execution.
([n. d.]), 19.

[12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. [n.d.]. Meltdown: Reading Kernel Memory from
User Space. ([n. d.]), 18.

[13] Farhad Mavaddat and Behrooz Parhami. 1988. URISC: the ultimate reduced
instruction set computer. International Journal of Electrical Engineering Education
25, 4 (1988), 327–334.

[14] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. ACM Trans.
Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages. https://doi.org/10.1145/
2133375.2133377

[15] Ruan de Clercq, Ronald De Keulenaer, Bart Coppens, Bohan Yang, Pieter Maene,
Koen de Bosschere, Bart Preneel, Bjorn de Sutter, and Ingrid Verbauwhede. [n.d.].

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/3054924
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1109/DAC.2014.6881460
https://doi.org/10.1109/DAC.2014.6881460
https://doi.org/10.1109/TETC.2017.2785299
https://doi.org/10.1109/TETC.2017.2785299
https://doi.org/10.1109/DSD.2017.25
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377

Alexandre Gonzalvez and Ronan Lashermes

SOFIA: Software and Control Flow Integrity Architecture. IEEE.
[16] H. Theiling. 2000. Extracting safe and precise control flow from binaries. In

Proceedings Seventh International Conference on Real-Time Computing Systems
and Applications. 23–30. https://doi.org/10.1109/RTCSA.2000.896367

[17] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. [n.d.]. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. ([n. d.]), 15.

[18] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

[19] Lukas Zobernig, Steven D. Galbraith, and Giovanni Russello. 2017. When Are
Opaque Predicates Useful? Cryptology ePrint Archive, Report 2017/787. https:
//eprint.iacr.org/2017/787.

https://doi.org/10.1109/RTCSA.2000.896367
https://eprint.iacr.org/2017/787
https://eprint.iacr.org/2017/787

	Abstract
	1 Introduction
	2 The machine, control flow graph and control flow integrity
	2.1 Machine
	2.2 Control flow graph
	2.3 Control flow integrity

	3 Semantics
	3.1 Benchmarks
	3.2 Branching

	4 Limits of control flow integrity
	4.1 Virtual machines
	4.2 Pointing our model simplifications

	5 Accepted and rejected programs
	6 Conclusion
	References

