
HAL Id: hal-02382610
https://hal.science/hal-02382610v1

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Collision Property of Chaotic Iterations Based
Post-Treatments over Cryptographic Pseudorandom

Number Generator
Luigi Marangio, Christophe Guyeux, Jacques Bahi

To cite this version:
Luigi Marangio, Christophe Guyeux, Jacques Bahi. On the Collision Property of Chaotic Iterations
Based Post-Treatments over Cryptographic Pseudorandom Number Generator. Middle East and
North Africa COMMunications Conference, Apr 2018, Jounieh, Lebanon. �hal-02382610�

https://hal.science/hal-02382610v1
https://hal.archives-ouvertes.fr

On the Collision Property of Chaotic Iterations
Based Post-Treatments over Cryptographic

Pseudorandom Number Generators
Luigi Marangio, Christophe Guyeux and Jacques M. Bahi

Femto-ST Institute, UMR 6174 CNRS
Université de Bourgogne Franche-Comté

France

Abstract—There is not a proper mathematical definition of
chaos, we have instead a quite big amount of definitions, each
of one describes chaos in a more or less general context. Taking
in account this, it is clear why it is hard to design an algorithm
that produce random numbers, a kind of algorithm that could
have plenty of concrete appliceautifat (anul)d bions. However we
must use a finite state machine (e.g. a laptop) to produce such a
sequence of random numbers, thus it is convenient, for obvious
reasons, to redefine those aimed sequences as pseudorandom;
also problems arise with floating point arithmetic if one wants
to recover some real chaotic property (i.e. properties from
functions defined on the real numbers). All this considerations
are synthesized in the problem of the Pseudorandom number
generators (PRNGs). A solution to these obstacles may be to
post-operate on existing PRNGs to improve their performances,
using the so-called chaotic iterations, i.e., specific iterations of
a boolean function and a shift operator that use the inputted
generator. This approach leads to a mathematical description
of such PRNGs as discrete dynamical systems, on which chaos
properties can be investigated using mathematical topology and
measure theory. Such properties are well-formulated, and they
allow us to characterize which functions improves the sensitivity
to the seed, the expansivity, the ergodicity, or the topological
mixing of the generator resulting from such a post-processing.
Experience shows that choosing relevant boolean functions in
these chaotic iterations improves the randomness of the inputted
generator, for instance when considering the number of statistical
tests of randomness passed successfully. If we focus on the
cryptographical application of PRNGs, there are two main
classical notions to be considered, namely collision and avalanche
effect. In this article, we recall the chaotic properties of the
proposed post-treatment and we study the collision property in
families of pseudorandom sequences produced by this process.

Index Terms—Pseudorandom numbers generator, cryptogra-
phy.

I. INTRODUCTION

To simulate some well-known chaotic real functions, such
as a logistic map or the Arnold’s cat map, is the main idea
of many algorithms developed until now which aspire to
be good PRNGs, programs with a lot of applications for
instance in cryptography. Indeed, it is reasonable to think
that elements of chaos can improve the random-like quality
produced by such algorithms. A theoretical result that establish
a link between a chaotic map on R and its floating-point
counterpart, it has not yet been stated. Conversely, there are
some results in the opposite direction, indicating that the

numerical truncation may change drastically the statistical
properties of orbits (see, e.g., [1], [2]). A first attempt to
avoid the use of a chaotic real map, is to consider the so-
called parallel asynchronous linear iterations (PALI). Even if
the domain of definition is the floating point one, the effect of
round-off errors in this situations was analyzed (for instance)
in [3], with numerical analysis techniques, in particular for
linear fixed point systems. A second attempt to design such
kinds of PRNGs is to avoid the use of floating point arithmetic,
by considering Boolean functions such as the logical negation,
and then an asynchronous iteration scheme that includes this
function coupled with a shift. In [4], the authors proved that
such iterations, viewed as an operator on a suitable discrete
dynamical system, satisfy various topological properties of
chaos, like mixing.

Due to the finite structure of the problem it can be an
hard task formalizing a notion of pseudorandomness for binary
sequences, however Mauduit and Sárközy [5] made an attempt
in doing so. In this new framework, it is relatively easy
to redefine some of the classical notions that arise from
cryptography, such as collision and avalanche effect, as pointed
out by Tóth in [6].

In this article we recall how to design a PRNG based on
chaotic iterations, how to describe it as a dynamical system
and, for the sake of completeness, we recall some of the
topological properties of chaos previously obtained. Finally,
we provide new investigations of such a dynamical system
using the theoretical set proposed by Mauduit and Sárközy.

This research work is organized as follows. In the first two
sections we recall all the basic facts, such as how to post
treat an existing PRNG by using chaotic iterations. Then, in
the last section, we show that the collision free property of a
family of binary sequences is preserved if we post treat this
family using chaotic iterations. This research work ends by a
conclusion section, in which our contributions are summarized
and intended future work is outlined.

II. BASIC RECALLS

We first explain how to properly design chaotic PRNGs by
using discrete dynamical systems. To accomplish this task we
must introduce some notations and terminologies.

In the remainder of this article, N is the set of natural (non-
negative) numbers, while N∗ stands for the positive integers
1, 2, 3, . . . sn denotes the nth term of a sequence s while XN

is the set of all sequences whose elements belong to a given set
X; also we denote by (xn)n∈N a sequence of those sequences.
Instead of working with sequences of length N in {0, 1}N, it
will be useful considering sequences in {−1,+1}N. The set
{−1, 1} is denoted 2.

Definition 1 Let N ∈ N∗, f : 2N −→ 2N be a function, and
s ∈ [1,N]N be a sequence of integers between 1 and N. The
so-called chaotic iterations are defined by x0 ∈ 2N and

∀n ∈ N∗,∀i ∈ [1;N], xni =

{
xn−1i if sn 6= i(
f(xn−1)

)
sn

if sn = i.

In other words, at the nth iteration, only the sn-th component
of the vector xn is updated; let us explain it with an example.

Example 1 For the sake of concreteness, let us consider that
N = 3. Let s be the sequence s = (123123123123...) and
let f be the Boolean negation (where in this case the boolean
negation of −1 is 1 and viceversa). If we start with input
(111), the chaotic iterations will produce the following output

(1, 1, 1)→ (−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→

→ (1,−1,−1)→ . . .

At each iteration step, we look at the correspondent element of
the sequence s (at the n-th step, we look at the n-th element of
s), and then we apply f to the element of the input sequence
suggested by the element of s that we are considering. In the
example, for instance, at step number 5 we need to change the
second bit of the input, since the fifth element of s is 2.

We shall use the term “chaotic” (and similar) with various
meaning throughout this paper and each of these terms has no
link a priori with the other ones. In the definition of chaotic
iterations, there is a sequence s of components to update as
input, and a sequence of binary vectors as output. In other
words, given a function f , these chaotic iterations transform
a sequence s = (sn)n∈N in another sequence (xn)n∈N. If s is
provided by a pseudorandom number generator, we thus have
defined a way to modify the produced sequence, leading to a
post-treatment on this generator.

Let N ∈ N∗ and f : 2N → 2N. Any sequence u ∈ [1,N]N,
provided by an inputted pseudorandom number generator,
defines a “chaotic iterations based” PRNG, which is denoted
by CIPRNG1

f (u). It is defined by [7], [8]:

x0 ∈ 2N,∀n ∈ N,∀i ∈ [1,N], xn+1
i =

{
f(xn)i if i = un,
xni else.

The outputted sequence produced by this CIPRNG1
f (u) gen-

erator is (xn)n∈N.
However for several reasons to be discuss later, it will be

useful to consider another version of this generator, in which
is allow to update more than one digit at each iteration step. If
P ⊂ N∗ is a non empty and finite set of integers, any couple

(u, v) ∈ [1,N]N × PN defines another chaotic iterations based
PRNG, which is denoted by CIPRNG2

f (u, v) (defined in [9]).
It is defined as follows:

x0 ∈ 2N

∀n ∈ N,∀i ∈ [1,N], xn+1
i =

{
f(xn)i if i = un

xni else
∀n ∈ N, yn = xv

n

.

The outputted sequence produced by this generator is
(yn)n∈N. In other words, the first inputted generator u is
the sequence of components to update, while the second
inputted generator v provides the number of iterates be-
tween two outputs of the CIPRNG2

f (u, v) generator. Note that
CIPRNG1

f (u) is equal to CIPRNG2
f

(
u, (1)n∈N

)
, where (1)n∈N

is the sequence that is uniformly equal to 1. Pseudorandom
number sequences have plenty of applications in computer
science and in particular in cryptography; in [10], it has been
shown how to use CIPRNG to produce a cryptographycally
secure PRNG. In [4] the chaotic property of CIPRNG has
been analyzed, and some of them are listed in the next
section; also simulations show the good behavior of such
PRNGs. An interesting particular situation has been analyzed:
if we consider the boolean negation as function involved
in CIPRNG (a good PRNG should be fast and the boolean
negation is really cheap from a computational point of view),
simulations shown that CIPRNG2

f (u, v) really improved the
chaotic behavior of the inputted generator, while CIPRNG1

f (u)
does not work as good as its ”big brother”. In an article
that will appear, authors provided a theoretical explanation
to this phenomenon by using ergodic theory; in the next
sections (after some recalls) it will be shown that actually
CIPRNG2

f (u, v), where f is the boolean negation and under
some hypothesis, satisfies a classical cryptography property,
namely to be collision free, while there is no reason to
conclude that such a property is satisfy also by CIPRNG1

f (u).
Thus we conclude that CIPRNG2

f (u, v) can be successfully
used to improve the cryptography properties of a family of
pseudorandom binary sequences.

III. CHAOTIC BEHAVIOUR OF CIPRNG

In this section are listed results concerning the topological
randomness of the presented class of generators. They appear,
for instance, in [4]. Firstly we recall the theoretical framework
that can emphasize such a behavior and how to adapt the
definition of CIPRNG to fit this framework (i.e., CIPRNG
can be described as a dynamical system on a suitable metric
space). Even if the results listed here are about CIPRNG1

f ,
they can be easily extended to CIPRNG2

f .

A. A notion of randomness: Devaney’s theory of chaos

Consider a topological space (X , τ) and a continuous func-
tion f : X → X on (X , τ).

Definition 2 Let U, V be any pair of opens subsets of X . If
there exists an integer k > 0 such that fk(U) ∩ V 6= ∅, then
the function f is said to be topologically transitive

Definition 3 If the set of periodic points for f is dense in X
(i.e. for any point x in X , any neighborhood of x contains at
least one periodic point), then f is regular on (X , τ); let us
recall that an element x is a periodic point for f of period
n ∈ N, n > 1, if fn(x) = x.

Definition 4 (Devaney’s formulation of chaos [11])
The function f is chaotic on (X , τ) if f is regular and
topologically transitive.

Banks et al. have proven in [12] that, when the topological
space is a metric one (X , d), chaos implies sensitivity, defined
below:

Definition 5 The function f has sensitive dependence on
initial conditions if there exists δ > 0 such that, for any x ∈ X
and any neighborhood V of x, there exist y ∈ V and n > 0
such that d (fn(x), fn(y)) > δ.
δ is called the constant of sensitivity of f .

To show that CIPRNG1
f (u) has a chaotic dependence regard-

ing modifications on u is equivalent to prove that “chaotic
iterations” are indeed chaotic according to the definition of
Devaney recalled above.

We first recall how to define a suitable metric space where
chaotic iterations are continuous. For further explanations, see,
e.g., [13]. Let δ be the discrete Boolean metric, δ(x, y) =
0 ⇔ x = y. Given a function f , define the function Ff :
[1;N]× 2N −→ 2N by:

(k,E) 7−→
(
Ej .δ(k, j) + f(E)k.δ(k, j)

)
j∈[1;N]

where + and . are the Boolean addition and product operations.
Consider the phase space: X = [1;N]N × 2N, and the map
defined on X by:

Gf (S,E) = (σ(S), Ff (i(S), E)) , (1)

where σ is the shift function defined by σ : (Sn)n∈N ∈
[1,N]N −→ (Sn+1)n∈N ∈ [1,N]N and i is the initial function
i : (Sn)n∈N ∈ [1,N]N −→ S0 ∈ [1;N]. Then the chaotic
iterations proposed in Definition 1 can be described by the
following discrete dynamical system, whose topological chaos
can now be studied:{

X0 ∈ X
Xk+1 = Gf (Xk).

(2)

To do so, a relevant distance between two points X =
(S,E), Y = (Š, Ě) ∈ X has been introduced in [13] as
follows: d(X,Y) = de(E, Ě) + ds(S, Š), where

de(E, Ě) =

N∑
k=1

δ(Ek, Ěk),

ds(S, Š) =
9

N

∞∑
k=1

|Sk − Šk|
10k

.

(3)

It has been established in [13] that,

Proposition 1 Gf is continuous in the metric space (X , d).

Let f be a map from 2N to itself. The asynchronous iteration
graph associated with f is the directed graph Γ(f) defined
by: the set of vertices is 2N; for all x ∈ 2N and i ∈ [1;N], the
graph Γ(f) contains an arc from x to Ff (i, x).

It has been proven in [14] that,

Theorem 1 Let f : 2N → 2N. Gf is chaotic according to
Devaney if and only if Γ(f) is strongly connected.

B. Further analysis: Li-York Approach, Lyapunov Exponents,
Entropy, Uniformly Distributed Output

Additionally to the Devaney’s chaos, a discrete dynamical
system can be intrinsically complicated for various other
understanding of this wish, that are not equivalent one another,
like:
• Undecomposable: it is not the union of two nonempty

closed subsets that are positively invariant (f(A) ⊂ A).
• Total transitivity: ∀n > 1, the composition function fn =
f ◦ f ◦ . . . ◦ f is transitive.

• Strong transitivity: ∀x, y ∈ X , ∀r > 0, ∃z ∈ B(x, r),
∃n ∈ N, fn(z) = y.

• Topological mixing: for all pairs of disjoint open
nonempty sets U and V , there exists n0 ∈ N such that
∀n > n0, f

n(U) ∩ V 6= ∅.
These varieties of definitions lead to various notions of chaos.
For instance, a dynamical system is chaotic according to
Wiggins if it is transitive and sensible to the initial conditions.
According to Knudsen if a dynamical system has a dense
orbit while being sensible then we are able to use again the
adjective chaotic for such a system. Also, when the properties
of transitivity, regularity, and expansiveness are satisfied we
fit the so called expansive chaos.

Let us denote by C the set of f : 2N → 2N such that Γ(f)
is strongly connected. We have previously established that
([15], [16]) ∀f ∈ C, Gf is strongly transitive undecomposable,
unstable, and chaotic as defined by Wiggins.

Further results have been obtained when considering the
boolean negation f0, which are summarized below [17].

Theorem 2 (X , Gf0) is topologically mixing and expansive
with a constant equal to 1.

Definition 6 Let (X , d) a metric space and f : X −→ X
a continuous map. A scrambled couple of points is a pair
(x, y) ∈ X 2 such that lim infn→∞ d(fn(x), fn(y)) = 0 and
lim supn→∞ d(fn(x), fn(y)) > 0, or in other words, the two
orbits oscillate.

A scrambled set is a set in which any couple of points are
a scrambled couple, whereas a Li-Yorke chaotic system is a
system possessing an uncountable scrambled set.

We have previously stated that [18],

Theorem 3 Chaotic iterations are chaotic as defined by Li
and Yorke.

Theorem 4 Chaotic iterations using the boolean negation
have a topological entropy equal to ln(N).

Theorem 5 Chaotic iterations using the boolean negation
have an exponent of Lyapunov equal to ln(N).

Finally, it has been proven in [14] that,

Theorem 6 Let f : 2n → 2n, Γ(f) its iteration graph, M̌ its
adjacency matrix and M a n × n matrix defined by Mij =
1
nM̌ij if i 6= j and Mii = 1− 1

n

n∑
j=1,j 6=i

M̌ij otherwise.

If Γ(f) is strongly connected, then the output of
CIPRNG1

f (u) follows a law that tends to the uniform distri-
bution if and only if M is a double stochastic matrix.

These results of topological chaos and uniform distribution
have initially led us to study the possibility of building a
pseudorandom number generator (PRNG) based on chaotic
iterations. As Gf , defined on the domain [1;N]N×2N, is built
from Boolean networks f : 2N → 2N, we can preserve the
theoretical properties on Gf during implementations (due to
the discrete nature of f).

IV. COLLISION PROPERTY

A. Basic recalls

It should be clear from the last section that there are several
ways to define the notion of pseudorandomness. Recently a
constructive approach to this notion was initiated by Mauduit
and Sárközy [5], and during these years it has been extended
to more general situations. V.Toth in [6] adapted the classical
cryptographical notions of collision and avalanche effect to
this new framework. A good survey of this new approach
can be found in [19]; in this section we will recall the basic
definition and in the next section we will discuss the behaviour
of CIPRNG in this new framework, with particular focus on
the collision property. Let N ∈ N, let S be a given set (e.g.,
a set of certain polynomials or the set of all binary sequences
of a given length much less than N), to each s ∈ S we assign
a unique binary sequence

EN (s) = (e1, . . . , eN) ∈ {−1,+1}N ,

and let F = F(S) denote the family of the binary sequences
obtained in this way:

F = F(S) = {EN (s) : s ∈ S}.

Definition 7 We have a collision in F if there are two
different elements s 6= s′ ∈ S such that

EN (s) = EN (s′);

if there is no collision in F then F is said to be collision free.

An ideally good family of pseudorandom binary sequence
should be collision free or, at least, the number of collision
should be limited. We can reformulate this notion.

Definition 8 Let N ∈ N and let EN = (e1, . . . , eN),
E′N = (e′1, . . . , e

′
N) be two sequences of {−1,+1}N , then

the distance between EN and E′N is defined by

d(EN , E
′
N) = |{n : 1 ≤ n ≤ N, en 6= e′n}|.

Moreover the distance minimum m(F) of F can be defined
as

m(F) = min
s6=s′, s,s′∈S

d(EN (s), EN (s′)).

With the definitions above easily follows that a family F is
collision free if and only if m(F) > 0.

B. Collisions in CIPRNG1

Let F(S) be a family of binary sequences generated, for
instance, by a PRNG (or several PRNGs); we would like to
post process this family with CIPRNG and see when we are
able to improve the distance minimum of the inputted family.

Firstly we investigate a very simple case, i.e. the effects
of CIPRNG1

f where f is the boolean negation; with abuse
of notation (not really) let S = F(S) be a set of strategies
of length k, let u = 1N be the input of CIPRNG1

f and let
F = {CIPRNG1

f (s) : s ∈ S} the outputted family of binary
sequences. We want to study collisions in F , i.e. we want to
see what kind of conditions we need in order to get m(F) > 0.

For better notations we shall write C(s) instead of
CIPRNG1

f,N (u, s), since the input string u and the length
N are fixed. Now observe that if C(s) = (c1(s), . . . , cN (s)),
then for n = 1, 2, . . . , N we have

cn(s)cn(t) =

{
+1 if cn(s) = cn(t),
−1 if cn(s) 6= cn(t)

thus
1

2
(1− cn(s)cn(t)) =

{
0 if cn(s) = cn(t),
+1 if cn(s) 6= cn(t)

It follows that

d(C(s), C(t)) =

N∑
n=1

1

2
(1− cn(s)cn(t))

=
1

2
(N −

N∑
n=1

cn(s)cn(t))

=
1

2
(N −

N∑
n=1

(−1)
|n∈s|+|n∈t|(2)

),

where |n ∈ s| is the number of occurrences of the symbols n
in the string s. To understand the last equality in the expression
above observe that the n-th digit of c(s) (i.e. cn(s)) is equal to
1 if n appear an even numbers of times in the strategy (since
the boolean negation is such that f ◦ f = id and we started
from input u = 1N), otherwise is equal to −1.

So far from now we obtained that if we want to estimate

m(F) = min
s6=t

d(C(s), C(t)),

we should be able to estimate the following quantity

max
s6=t

N∑
n=1

(−1)
|n∈s|+|n∈t|(2)

.

However, since the strategies are computed in some way by
some PRNG (or several PRNGs), is not clear why assuming
the collision free property of the set of the strategies should

led to the collision free property for the outputted family, that
now can be expressed by the following formula

max
s6=t

N∑
n=1

(−1)
|n∈s|+|n∈t|(2)

< N.

C. Collisions in CIPRNG2

In the last section it has been shown that there is no
reasons to conclude that CIPRNG1 preserves the collision
free property; in this section it will be show that CIPRNG2

is more suitable for this task. As in the previous section,
let S = F(S) be a set of strategies generated in some
way and let P = F ′(P) be a set of iterations strings
(pseudo) randomly generated (by some PRNGs). Recall that
the strategies are sequences in {1, . . . , N}k while the iteration
strings are sequences in {2, 3}k1 ; the set {2, 3} can be actually
any finite set of integers with k1 < k.

We fix the input u = 1N and we want to post process the
family S × P with CIPRNG2

f (s, p) = C(s, p), where f is
the boolean negation and (s, p) ∈ S × P .

As before we want an estimate of this quantity

d(C(s, p), C(t, q)) =
1

2
(N −

N∑
n=1

cn(s, p)cn(t, q));

recalling the structure of CIPRNG2, we can observe that an
iteration string p induces a partition of the strategy s (in block
of size 2 or 3 in this case), thus we can write

s = s1s2 . . . sr,

for some r, where |si| = pi for i = 1, . . . , r − 1 and pr ≤
|sr| ≤ pr +max{2, 3}−1. To avoid the fact that the last block
of a strategy can have size different from 2 or 3, we will just
consider r− 1 iterations instead of r. Due to the fact that we
are using the boolean negation and we started with input 1N ,
we have

d(C(s, p), C(t, q)) =

N∑
n=1

1

2
(1− cn(s, p)cn(t, q))

=
1

2
(N −

N∑
n=1

cn(s, p)cn(t, q))

=
1

2
(N −

N∑
n=1

(−1)
|n∈s|+|n∈t|(2)

),

=
1

2
(N −

N∑
n=1

(−1)
∑r−1

j=1 |n∈sj |+|n∈tj |(2))

So now our aim is to prove the following inequality

max
(s,p)6=(t,q)

N∑
n=1

(−1)
∑r−1

j=1 |n∈sj |+|n∈tj |(2) < N.

Suppose N prime (in this way things works much better, but
probably this is not necessary) and suppose for an absurdum
that there are (s, p) 6= (t, q) such that

N∑
n=1

(−1)
∑r−1

j=1 |n∈sj |+|n∈tj |(2) = N ;

thus

N =

N∑
n=1

(−1)
∑r−1

j=1 |n∈sj |+|n∈tj |(2)

=

N∑
n=1

r−1∏
j=1

(−1)
|n∈sj |+|n∈tj |(2)

=

r−1∏
j=1

N∑
n=1

(−1)
|n∈sj |+|n∈tj |(2)

We will show now that, under the assumption that the family
of the iteration strings P is collision free, then there is some
j∗ such that

∑N
n=1 (−1)

|n∈sj∗ |+|n∈tj∗ |(2) is neither 1 nor N ,
thus we reach an absurdum since N is prime.

In fact, if the family P is collision free, then for any two
elements, there is at least one index with different digits in
those two elements. Thus, they induced a different partition
of the strategies, i.e., there is a j∗ such that (without loss of
generality) |sj∗ | = 2 and |tj∗ | = 3. There are two cases, either
sj∗ = AA or sj∗ = AB, where A,B ∈ {1, . . . , N}; in each
of these cases, we can compute all the possible configurations
of tj∗ and the correspondent values.

case 1 In this case the possible configurations of tj∗ are
tj∗ = BCD in this case A appears with the same parity

in both s and t, while B,C,D appear with
different parity, and then there are other N − 4
letters that appear with the same parity, thus the
total is 1 + (−3) +N − 4 = N − 6;

tj∗ = ABC (−3) + (N − 3) = N − 6;
tj∗ = ABB (−1) + (1) +N − 2 = N − 2;
tj∗ = AAB (1) + (−1) +N − 2 = N − 2;
tj∗ = AAA (−1) + (N − 1) = N − 2.

and this prove the first case.
case 2 For the second case, we will first consider all the

possible configuration of tj∗ without any letter in
common with sj∗ . Then, all the possible configu-
ration with one letter in common, and finally the
case with two letters in common.

tj∗ = CDE (−5) + (N − 5) = N − 10;
tj∗ = ACD observe that we can assume that the letter in

common is A; here we have (1)+(−1)+(−2)+
N − 4 = N − 6;

tj∗ = ACC (1) + (−1) + (N − 2) = N − 2;
tj∗ = AAC (−1) + (−1) + (−1) +N − 3 = N − 6;
tj∗ = ABC (+2) + (−1) +N − 3 = N − 2;
tj∗ = ABA (1) + (−1) +N − 2 = N − 2.

V. CONCLUSION AND FUTURE WORK

Designing a pseudorandom number generator is a com-
plicated task. In this article we presented a way to post
treat a family of binary sequences in order to improve their

randomness. After having recalled the structure of such a post
treatment and its properties, we proved in the new framework
introduced by Mauduit and Sárközy, that the post treatment
preserves the collision free property of the family, a classical
notion in cryptography.

In future work we intend to extend our investigation to
the avalanche effect property, and more in general we would
like to proof that such a post treatment actually increase the
distance minimum of a family of binary sequences. Seems
reasonable to think that the structure of the chaotic iterations
strictly depend from the boolean function involved in the
process, we would like to explore a possible characterization
of such a property.

ACKNOWLEDGEMENT

I would like to say thank you to professor Stefano Galatolo
for his guide through this new world (and for saying me where
to put his name in this article).

REFERENCES

[1] S. Galatolo, I. Nisoli, and C. Rojas, “Probability, statistics and com-
putation in dynamical systems,” Mathematical Structures in Computer
Science, vol. 24, no. 3, 2014.

[2] P.-A. Guiheneuf, “Dynamical properties of spatial discretizations of
a generic homeomorphism,” Ergodic Theory and Dynamical Systems,
vol. 35, no. 5, pp. 1474–1523, 2015.

[3] J. M. Bahi, “Asynchronous iterative algorithms for nonexpansive linear
systems,” Journal of Parallel and Distributed Computing, vol. 60, pp.
92–112, 2000.

[4] C. Guyeux and J. Bahi, “A topological study of chaotic iterations.
application to hash functions,” in CIPS, Computational Intelligence
for Privacy and Security, ser. Studies in Computational Intelligence.
Springer, 2012, vol. 394, pp. 51–73, revised and extended journal version
of an IJCNN best paper.

[5] C. a. Maudit, “On finite pseudoradom binary sequences i: The measure
of pseudorandomness, the legendre symbol.”

[6] V. Tóth, “Collision and avalanche effect in families of pseudorandom
binary sequences.” Period. Math. Hungar., vol. 55, pp. 185–196, 2007.

[7] J. Bahi, C. Guyeux, and Q. Wang, “A novel pseudo-random generator
based on discrete chaotic iterations,” in INTERNET’09, 1-st Int. Conf.
on Evolving Internet, Cannes, France, Aug. 2009, pp. 71–76. [Online].
Available: http://dx.doi.org/10.1109/INTERNET.2009.18

[8] J. M. Bahi, C. Guyeux, and Q. Wang, “Improving random
number generators by chaotic iterations. Application in data hiding,”
in ICCASM 2010, Int. Conf. on Computer Application and System
Modeling, Taiyuan, China, Oct. 2010, pp. V13–643–V13–647. [Online].
Available: http://dx.doi.org/10.1109/ICCASM.2010.5622199

[9] Q. Wang, J. Bahi, C. Guyeux, and X. Fang, “Randomness
quality of CI chaotic generators. application to internet
security,” in INTERNET’2010. The 2nd Int. Conf. on Evolving
Internet. Valencia, Spain: IEEE Computer Society Press, Sep.
2010, pp. 125–130, best Paper award. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/INTERNET.2010.30

[10] J. M. Bahi, R. Couturier, C. Guyeux, and P.-C. Heam, “Efficient and
cryptographically secure generation of chaotic pseudorandom numbers
on gpu,” The journal of Supercomputing, vol. 71(10), pp. 3877–3903,
2015.

[11] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed.
Redwood City, CA: Addison-Wesley, 1989.

[12] J. Banks, J. Brooks, G. Cairns, and P. Stacey, “On Devaney’s definition
of chaos,” Amer. Math. Monthly, vol. 99, pp. 332–334, 1992.

[13] J. M. Bahi and C. Guyeux, “Topological chaos and chaotic iterations,
application to hash functions,” in WCCI’10, IEEE World Congress on
Computational Intelligence, Barcelona, Spain, Jul. 2010, pp. 1–7, best
paper award.

[14] J. Bahi, J.-F. Couchot, C. Guyeux, and A. Richard, “On the link between
strongly connected iteration graphs and chaotic boolean discrete-time
dynamical systems,” in FCT’11, 18th Int. Symp. on Fundamentals of
Computation Theory, ser. LNCS, vol. 6914, Oslo, Norway, Aug. 2011,
pp. 126–137.

[15] J. Bahi, X. Fang, C. Guyeux, and Q. Wang, “Evaluating quality of
chaotic pseudo-random generators. application to information hiding,”
IJAS, International Journal On Advances in Security, vol. 4, no. 1-2,
pp. 118–130, 2011.

[16] C. Guyeux and J. M. Bahi, “A topological study of chaotic iterations.
application to hash functions,” CIPS, Computational Intelligence for Pri-
vacy and Security, vol. 394, no. Studies in Computational Intelligence,
pp. 51–73, 2012, revised and extended journal version of an IJCNN best
paper.

[17] C. Guyeux, N. Friot, and J. Bahi, “Chaotic iterations versus spread-
spectrum: chaos and stego security,” in IIH-MSP’10, 6-th Int. Conf.
on Intelligent Information Hiding and Multimedia Signal Processing,
Darmstadt, Germany, Oct. 2010, pp. 208–211. [Online]. Available:
http://dx.doi.org/10.1109/IIHMSP.2010.59

[18] C. Guyeux, “Le désordre des itérations chaotiques et leur utilité en
sécurité informatique,” Ph.D. dissertation, Université de Franche-Comté,
2010.

[19] Sárk “On pseudorandomness of families of binary sequences.”

