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ABSTRACT 

 

The adsorption of a fluid in a nanoporous material induces deformations of the solid. The 

saturating regime, where the solid is filled with liquid, generally exhibits a linear relationship 

between the liquid pressure and the solid strain. This provides an experimental way to measure 

the elastic moduli of the solid walls. For large pores, the strain is determined by the pressure of 

the liquid saturating the pores and the mechanical properties of the porous solid. What happens at 

the nanometric scale, where liquid/matrix interfacial effects dominate? We have performed 

molecular simulations of a simple Lennard-Jones fluid confined between deformable 

nanoplatelets. The simulations provide the deformation of the nanopore as a function of the liquid 

pressure, in a way similar to what is done experimentally. The results show unexpected interface 

effects, which could be relevant to experimental data analysis.  

 

INTRODUCTION 

 

Adsorption-induced deformation of a nanoporous material concerns not only soft materials like 

biopolymers or aerogels (Dušek 1993; Scherer, Smith et al. 1995; Scherer, Smith et al. 1995; 

Thibault, Préjean et al. 1995; Herman, Day et al. 2006; Kulasinski, Guyer et al. 2015; Ogieglo, 

Wormeester et al. 2015), but also stiff materials (Meehan 1927; Bangham and Fakhoury 1928; 

Haines and McIntosh 1947; Amberg and McIntosh 1952; Scherer 1986; Dolino, Bellet et al. 

1996; Fomkin 2005; Grosman and Ortega 2009; Prass, Müter et al. 2009; Grosman and Ortega 

2010; Gor, Paris et al. 2013; Schappert and Pelster 2014; Balzer, Braxmeier et al. 2015; 

Grosman, Puibasset et al. 2015). Beyond its importance for sequestration, storage or oil recovery 

(Vandamme, Brochard et al. 2010; Brochard, Vandamme et al. 2012), it is a fundamental issue to 

understand the interplay between surface effects and the adsorbed fluid; it has been suggested 

that deformation could contribute to the hysteresis in the adsorption-desorption isotherm (Haines 

and McIntosh 1947; Amberg and McIntosh 1952; Grosman and Ortega 2008; Grosman and 

Ortega 2009; Grosman and Ortega 2010). It is also a powerful tool to measure the elastic moduli 
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of nanoporous systems (Dolino, Bellet et al. 1996; Herman, Day et al. 2006; Prass, Müter et al. 

2009; Grosman, Puibasset et al. 2015).  

Understanding the mechanical behavior of nanosized materials has attracted intense 

searches due to their potential applications. In the case of nanoporous materials, it is possible to 

use the capillary stress caused by an adsorbed fluid to induce a measurable deformation. A model 

has to be used to extract the pore moduli from experiments. Poromechanics is a consistent theory 

to model the mechanical coupling between fluids and solids, including adsorption-induced 

deformations (Biot 1941; Coussy 2004; Brochard, Vandamme et al. 2012; Coasne, Weigel et al. 

2014; Kulasinski, Guyer et al. 2015), but more sophisticated models are required to take into 

account the inhomogeneous and anisotropic nature of the material (Eriksson 1969; Ash, Everett 

et al. 1973; Ravikovitch and Neimark 2006; Günther and Schoen 2009; Gor and Neimark 2010; 

Schappert and Pelster 2014; Diao, Fan et al. 2016; Gor and Bernstein 2016). It is well-known that 

porous materials have smaller elastic moduli than the bulk (Gibson and Ashby 1997), but there is 

generally a disagreement between the measured pore-load moduli and that expected for the 

porous solid, despite the development of refined models taking into account the pore geometry 

(Gor, Bertinetti et al. 2015; Guyer and Kim 2015; Liu, Wu et al. 2016; Rolley, Garroum et al. 2017).  

The surface stress is dominant in nanometer size systems, and generally taken into 

account in the models to calculate the elastic constants of the solid. However, the interplay 

between surface stress and adsorption is not so well documented. We thus perform a “numerical 

experiment” of adsorption-induced deformation of a nanoplatelet. The advantages are the 

following: the geometry is perfectly known, and the elastic constants of the solid, taking into 

account the surface stress, is known too. The observed deformation can thus be compared to that 

expected from the porous solid modulus and a theoretical thermodynamic approach. The 

observed discrepancy suggests an influence of the adsorbed fluid on the surface stress of the 

solid.  

The atomistic model and the thermodynamic approach are presented in the next section. 

In the third section we present the results and question the validity of the macroscopic approach. 

 

MODEL AND NUMERICAL DETAILS 

 

Solid. The platelet is chosen to be a fcc Lennard-Jones (12,6) solid, with parameters 

=73.2 kJ/mol and =0.3518 nm. The interactions are cut at 4. These values allow reproducing 

the mechanical properties of silicon, a material that has been used several times to study 

adsorption-induced deformation (Dolino, Bellet et al. 1996; Grosman, Puibasset et al. 2015). 

Note however that silicon is not a fcc solid, and that better potentials exist to reproduce its 

physical properties (Lee 2007). The fcc Lennard-Jones solid is however accurate enough for our 

purpose. The bulk properties are determined in a simulation box containing 6 unit cells (3.26 nm) 

in each direction with periodic boundary conditions (the crystallographic axes are parallel to the 

simulation box). The Young modulus E and the Poisson coefficient  have been determined by 

Monte Carlo simulations in the isobaric ensemble where an external pressure is applied on the 
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system and the average deformation is an output of the simulation. We obtain E = 165 GPa and  

= 0.36 at 300 K. The shear modulus is not used in this work. Note that the symmetry of the solid 

being cubic, the mechanical properties are entirely given by E and   

The properties of the nanoplatelet are evaluated in a larger simulation box: Lx = Ly = 7 

unit cells in the x and y directions (3.805 nm); a gap is introduced along the z direction so as to 

create two opposite surfaces (see Fig. 1, left). The thickness h of the nanoplatelet is 6 unit cells (h 

= 3.26 nm), and the dimension Lz = 10 nm. The distance between the walls is thus H = 6.74 nm. 

The wall thickness is quite small (compared to typical nanoporous silicon for instance, 5-6 nm), 

in order to emphasize surface stress effects. The gap is however typical of nanoporous materials. 

The elastic properties of the platelet have been determined in the framework of the standard 

Monte Carlo simulations in the isobaric ensemble, where only the dimensions parallel to the 

nanoplatelet are allowed to vary, while Lz is fixed. The cubic symmetry of the solid reduces to 

the tetragonal symmetry for the nanoplatelet, which requires the determination of 4 parameters to 

get the compliance matrix: Ex = 162 GPa, Ez = 180 GPa, yx = 0.457, zx = 0.339, and xz = 0.335 

at 353 K. Note that these elastic moduli take into account the surface stress. 

 

 
Figure 1. General presentation of the simulation box; Lz is constant, while Lx and Ly are 

allowed to fluctuate (isobaric ensemble). Left: an external pressure (arrows) is imposed to 

measure the elastic moduli of the nanoplatelet. Right: a fluid at imposed chemical potential 

is introduced; the external pressure is set to zero; the arrows materialize the internal 

pressure of the fluid.  

 

Fluid. Since we focus on non-specific effects between the fluid and the substrate we use again 

the Lennard-Jones (12,6) potential to model the fluid-fluid and fluid-solid interactions. Following 

Watanabe et al.(Watanabe, Ito et al. 2012), the potential is truncated at 3  and a quadratic term 

is added so that both the potential and force are continuous. The parameters are chosen to mimic 

n-heptane, a non-polar fluid which has been used previously for experiments (Grosman, 
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Puibasset et al. 2015). The fluid-fluid parameters are ff = 0.6 nm and ff /k = 505 K, where k is 

Boltzmann's constant, or ff = 4.2 kJ/mol, and the fluid-wall parameters are taken equal to the 

fluid-fluid parameters. Calculations are performed at 353 K, just above the freezing point of the 

Lennard-Jones model. Using standard grand canonical Monte Carlo simulations, the pressure of 

the (bulk) liquid phase has been determined versus its chemical potential  (see Table 1). Note 

that we have considered  values above and below (metastable liquid) its bulk saturating value, 

because, in the system we want to study, the fluid is confined (Puibasset 2005). The pressure of 

the liquid phase thus ranges from -116 to +210 bar.  

 

Method. The method relies on the measurement of the deformation of the solid induced by the 

pressure of the adsorbed fluid (see Fig. 1, right). We use the standard semi-grand canonical 

Monte Carlo algorithm to let the simulation box fluctuate in the x and y directions while the 

chemical potential of the fluid is imposed through the pressure of the surrounding gas. The 

external pressure on the simulation box is set to zero: the system is free to relax, so that the solid 

(which deforms) accommodates the fluid pressure.  

 

Phenomenological model. The aim of this section is to relate the expected average deformation 

of the simulation box with the fluid pressure, in the framework of a simple thermodynamic 

approach. The quantities to be considered are: the pressure of the liquid adsorbed on the platelet, 

PL; the fluid-wall surface tension , and the elastic moduli of the platelet previously determined 

without adsorbed fluid. At equilibrium, the overall constrain on the simulation box walls parallel 

to the z axis is zero since the external pressure in the semi-grand canonical ensemble is set to zero 

(free walls). As a consequence  

xx = yy = (H PL - Lx Ly)/h;  zz = -PL 

where  is the solid-fluid surface tension. Deformations along the x and y directions are given by:  

 xx = yy  = (1-yx) xx/Ex - zxzz/Ez  

   = [(1-yx)H/(Ex h) +zx /Ez] PL - (1-yx) Lx Ly /(Ex h). 

The surface tension, given by the excess amount of adsorbed liquid, is essentially constant 

because the liquid is barely compressible. The solid deformation is thus expected to be linear 

with the liquid pressure; the inverse of the slope is [(1-yx)H/(Ex h) +zx /Ez]
-1

 = 113 GPa. Note 

that the fluid pressure has two additive effects on the solid: through the simulation box (a positive 

pressure tends to dilate the nanoplatelet in the x and y directions), and directly on the solid (a 

positive fluid pressure along z induces a nanoplatelet dilatation along x and y given by the 

Poisson ratio). 

 

TABLE 1: Monte Carlo simulation results. 

ln(activity) -11.175 -10.83 -10.485 -10.200 -9.930 -9.375 

PL (bar) -119 -65 -1.9 52.1 113 211 

xx = yy -5.65×10
-5

 -1.85×10
-5

 8.86×10
-6

 2.80×10
-5

 4.99×10
-5

 8.91×10
-5
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RESULTS AND DISCUSSION 

 

For each given chemical potential, we have measured the fluctuations of the system size in 

directions x and y (see an example in Fig. 2). The fluctuations are of the order of 10
-3 

Lx, which 

means that they are not negligible compared to the average deformation of the nanoplatelet, as 

expected in nanometer size systems. Long simulation runs are thus required to reach an accuracy 

of 5% in the determination of the solid strain.  

The average strain has been determined for different values of the chemical potential. The 

results are given in Table 1. As can be seen, the solid deforms under the influence of the adsorbed 

fluid. For high chemical potential values, the solid expands, while for low chemical potential 

values the solid shrinks. This is qualitatively expected from the observation that the fluid pressure 

acts directly on the solid (along z) and through the simulation box (parallel to the nanoplatelet). 

The observed deformation is of order 10
-4

, typical of solid strain.  

 

 
Figure 2. Fluctuations of the nanoplatelet dimension Lx during a Monte Carlo simulation 

run. 1 MC step corresponds to 1000 moves per atom. 

 

The simulation results are shown as a function of the liquid pressure in Fig. 3. As can be 

seen, the observed strain follows essentially a linear behavior, except for the lowest pressure 

point, which however corresponds to the stability limit of the stretched liquid. At coexistence, 

where the liquid pressure is essentially zero, the observed deformation is very small: the solid-

fluid surface tension is thus small compared to the solid stiffness. How do the simulations 

compare with the phenomenological model depicted in previous section? The prediction of the 

model is given as a solid line in Fig. 3, where we have omitted the (constant) surface tension 

term. The simulations qualitatively follow the expected behavior (linear), but a significant 

disagreement is observed between the slopes. The inverse of the slope of the simulation results is 

approximately 270 GPa, while the prediction gives 113 GPa.  

MC steps

L x

38.08

38.04

38.06

38.02

38.00

0 400 800 1200 1600 2000



Proceedings Paper Formatting Instructions – 6 –  Rev. 10/2015 

 
Figure 3. Symbols: Monte Carlo simulation results of the nanoplatelet deformation as a 

function of the fluid pressure in the liquid phase (the line is a guide to the eye). Solid black 

line: theoretical prediction based on the thermodynamic approach (see text). 

 

Many papers in the literature mention disagreements between the elastic moduli 

determined from adsorption-induced deformation measurements and bulk values. Two major 

origins are invoked. On one hand, the origin is attributed to finite size effects due to the small 

wall thicknesses in nanoporous materials. On the other hand, one can also invoke the dependence 

of the solid (surface) stress with the presence of the adsorbed fluid.  

Since in our simulations the elastic constants have been determined for the nanoplatelet 

itself, finite size and surface stress effects cannot be invoked to explain the disagreement. Two 

hypotheses are proposed to explain the results: a strong dependence of the fluid-substrate free 

energy with the chemical potential of the fluid, or a significant variation of the surface stress of 

the solid in presence of the fluid. The small compressibility of the adsorbed liquid seriously 

disfavors the first hypothesis. However, quantitative analysis is under consideration. The second 

argument has already been invoked to explain some features of the nitrogen adsorption hysteresis 

in porous silicon (Grosman and Ortega 2008; Grosman and Ortega 2009; Grosman and Ortega 

2010).  

 

CONCLUSION 

This paper focused on the comparison between the adsorption-induced deformation of a 

nanoplatelet given by atomistic simulations, and that predicted from the elastic constants of the 

nanoplatelet determined without fluid. The results show a strong disagreement which could 

reveal interplay between surface stress and fluid adsorption.  
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