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Abstract1

The phenology of plants is a major driver of agro-ecosystem processes and biosphere feed-2

backs to the climate system. Phenology models are classically used in ecology and agronomy3

to project future phenological changes. With our increasing understanding of the environmen-4

tal cues affecting bud development, phenology models also increase in complexity. But, we5

expect these cues, and the underlying physiological processes, to have varying influence on bud6

break date predictions depending on the specific weather patterns in winter and spring. Here,7

we evaluated the parameter sensitivity of state-of-the-art process-based phenology models that8

have been widely used to predict forest tree species phenology. We used sensitivity analysis to9

compare the behavior of models with increasing complexity under specific climatic conditions.10

We thus assessed whether the influence of the parameters and modeled processes on predictions11

varies with winter and spring temperatures. We found that the prediction of the bud break date12

was mainly affected by the response to forcing temperature under current climatic conditions.13

However, the impact of the parameters driving the response to chilling temperatures and to pho-14

toperiod on the prediction of the models increased with warmer winter and spring temperatures.15

Interaction effects between parameters played an important role on the prediction of models,16

especially for the most complex models, but did not affect the relative influence of parameters17

on bud break dates. Our results highlighted that a stronger focus should be given to the char-18

acterization of the reaction norms to both forcing and chilling temperature to predict accurately19

bud break dates in a larger range of climatic conditions and evaluate the evolutionary potential20

of phenological traits with climate change.21

22

Key words: Sensitivity analysis; Process-based modeling; Bud development; Forcing temper-23

ature; Chilling temperature; Photoperiod24
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1 Introduction25

Bud break is a key phenological event that affects plant performance by defining the period26

during which plants are able to grow, photosynthesize and produce their seeds. Therefore, the27

phenology of plants is a major driver of agro-ecosystem processes (Cleland et al., 2007) and28

biosphere feedbacks to the climate system (Richardson et al., 2013). It drives ecosystem pro-29

ductivity (Richardson et al., 2012), carbon (Delpierre et al., 2009), water (Hogg et al., 2000)30

and nutrient (Cooke & Weih, 2005) cycling processes, as well as energy balance (Wilson &31

Baldocchi, 2000). Moreover, plant phenology critically affects yield and organoleptic quality32

of crop harvest (Nissanka et al., 2015) as well as species distributions (Chuine, 2010). The33

onset of plant activity has been reported to advance by 2.5 days per decade on average dur-34

ing the last 50 years (Menzel et al., 2006), potentially increasing the risk of frost damages on35

flowers and leaves (Vitasse et al., 2018a). These rapid responses have been shown to be highly36

species-specific and are expected to have major consequences on species interactions, species37

distributions, ecosystem functioning and forest carbon uptake (Cleland et al., 2007; Chuine,38

2010; Richardson et al., 2013). Therefore, accurately predicting plant species phenology at39

both large and local scales is of key importance for assessing the impact of global change on40

agro-ecosystems and the multiple services they provide, as well as species range shift and pop-41

ulations’ local extinction.42

43

Fu et al. (2015b) showed however that the linear trend towards earlier spring onset had been44

slowing down significantly during the last two decades. One of the hypothesis put forward by45

the authors to explain this slowdown is the warming of winters. And indeed, recently, Asse46

et al. (2018) documented the negative effect of the warming of winter on the leaf unfolding and47
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flowering date of several tree species. Air temperature is the major environmental factor regu-48

lating the dates of budburst and flowering of plants (Rathcke & Lacey, 1985; Polgar & Primack,49

2011). In perennial species, temperature has an antagonistic effect on bud development depend-50

ing on the season: low temperature (called chilling) are required to release the endodormancy51

of buds during winter, which is characterized by the inability of bud cells to growth despite52

optimal growing conditions, while higher temperature (called forcing) are required to promote53

bud cell elongation in spring. Recently, the effect of long photoperiod in compensating the lack54

of chilling temperature has also been reported for some tree species (Laube et al., 2014; Way &55

Montgomery, 2015; Zohner et al., 2016).56

57

Our understanding of the environmental cues affecting species-specific bud break dates has58

been increasing thanks to the compilation of large phenological datasets (Menzel et al., 2006; Fu59

et al., 2015b), and to experimental work in controlled conditions using growth chambers (e.g.60

Caffarra & Donnelly 2011; Zohner et al. 2016). This empirical knowledge has been essential61

for the development and calibration of process-based phenology models (Chuine & Regniere,62

2017), that are used to predict spring phenology over large spatial and temporal scales (e.g.63

Chuine et al. 2016; Gauzere et al. 2017). While the relative contribution of environmental cues64

in driving spring phenological responses in current and future climatic conditions is still debated65

for most species (Chuine & Regniere, 2017; Laube et al., 2014; Fu et al., 2015a,b), the recent66

declining of the response of spring onset to global warming suggests that the relative influence67

of environmental cues driving the endodormancy phase varies with climatic conditions. Since68

climate change is likely to generate non-equilibrium conditions, the relative influence of the en-69

vironmental cues might also not remain constant over time. Overall, a strong expectation is that70

the environmental cues releasing endodormancy should have an increasing influence in warmer71
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environmental conditions. Yet, comprehensive analysis of the behavior of phenology models in72

different climates are still lacking, while pioneer modeling studies in crops have shown that it is73

expected to change depending on ecological conditions (e.g. Yin et al. 2005; Zhang et al. 2014).74

75

Recently, Huber et al. (2018) highlighted the importance of improving our understanding76

of models behavior, and identifying key parameters and processes that have the strongest ef-77

fects on model predictions under different ecological conditions. It is a major stage to enhance78

model applications across large spatial and temporal scales, as well as the robustness of model79

projections. We embrace this view and acknowledge here the usefulness of sensitivity analysis80

to reach this general objective. Sensitivity analyses are interesting statistical tools to address81

the impact of parameters variations on the outputs of models (Cariboni et al., 2007), allowing82

to evaluate both intrinsic (i.e. model structure and parameters) and extrinsic (i.e. model inputs)83

sources of variation. They can also highlight model limitations and directions for further im-84

provements (Saltelli et al., 2000; Cariboni et al., 2007). Therefore, they represent an important85

step in the modeling cycle (Saltelli et al., 2000; Cariboni et al., 2007; Augusiak et al., 2014;86

Courbaud et al., 2015).87

88

For forest tree species, most studies in phenology modeling have focused on the analysis89

of extrinsic sources of variation, e.g. investigating the uncertainty of climatic inputs on sim-90

ulations (Morin & Chuine, 2005; Migliavacca et al., 2012). Ecological studies interested in91

intrinsic sources of variation most often evaluate the effect of the variation of single parameters92

on the model outputs, other parameters remaining fixed at a given default value (e.g. Lange93

et al. 2016). The major disadvantage of this approach is to neglect possible interactions among94

parameters and to be unreliable in presence of non-linear relationships between the parameters95
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and the model predictions (Coutts & Yokomizo, 2014). At the opposite, sensitivity analyses96

varying all parameters simultaneously allow to account for parameter interactions and non-97

linear relationships and providing robust sensitivity measures for complex simulation models.98

While phenology model complexity is increasing with our understanding of the physiological99

responses involved in bud development, these interaction effects and non-linear relationships100

can no more be overlooked. A first originality and aim of this study was thus to compare the101

behavior of phenology models with increasing complexity, and to disentangle the main and in-102

teraction effects of parameters on bud break date predictions.103

104

The most commonly used phenology models are process-based, meaning that they describe105

known or suspected cause-effect relationships between physiological processes and some driv-106

ing factors in the organism’s environment to predict the precise occurrence in time of various107

phenology events (see for review Chuine & Regniere 2017). The parameters of these models are108

either defined using parameter values measured in experimental controlled conditions, or statis-109

tically inferred from phenological and meteorological data using inverse modeling techniques.110

Since they describe causal relationships derived from experimental work, the sensitivity analy-111

sis of process-based models is supposed to reflect the sensitivity of the real processes (Saltelli112

et al., 2000). Therefore, we can expect the sensitivity of phenology models to specific param-113

eters, e.g. driving the endodormancy phase, to change with varying climatic conditions. The114

impact of climate on observed and simulated bud break dates is expected to be complex, be-115

cause of the cumulative and antagonistic effects of temperature depending on the season on bud116

development (Chuine & Regniere, 2017). For this reason, we also aimed at testing the param-117

eter sensitivity of phenology models to climatic conditions. We thus analyzed model behavior118

under specific patterns of winter and spring temperatures, that produced either particularly early119
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or late bud break date. This study thus differ from that of Lange et al. (2016) which explored120

the behavior of phenology models in uniformly warmer or colder conditions all along the year.121

In the present study we used different observed climatically contrasted years with their specific122

weather patterns.123

124

Using a sensitivity analysis approach, we aimed at evaluating the parameter sensitivity of125

state-of-the-art process-based phenology models that have been widely used to predict bud126

break dates of forest tree species. The main originalities of this study are to (i) compare the127

behavior of models with increasing complexity; and, (ii) perform this analysis under realistic128

and contrasted climatic conditions in order to better estimate how the relative influence of pa-129

rameters on model prediction varies with specific weather patterns in winter and spring. To130

perform this study we used historical climatic conditions encountered at different elevations in131

the Pyrenees Mountains, to cover a large range of temperature variation, without variation of the132

day length between sites. More specifically, we propose here to: 1) evaluate whether increasing133

model complexity is related to higher interaction effects between parameters; 2) identify key134

parameters and processes that cause the highest variability in the output of the models under135

different climatic regimes; 3) assess the physiological plausibility of this sensitivity; 4) discuss136

our outcome for future studies that will use phenology models to address key question in ecol-137

ogy and evolution. In particular, we expect parameters related to physiological responses to138

spring forcing temperatures to have a stronger impact on the prediction of the bud break date139

in cold environmental conditions, and more generally in historical climatic conditions in West-140

ern Europe. On the opposite, we expect parameters related to endodormancy release (requiring141

chilling conditions during winter) to have an increasing influence on the prediction of models in142

warmer environmental conditions. Finally, we expect parameter interactions to have a greater143
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influence on the prediction of models with increasing model complexity.144

145

2 Material and methods146

2.1 Process-based phenology models147

Process-based phenology models (see for review Chuine & Regniere 2017) are deeply grounded148

on experimental results which have accumulated over the last 50 years and describe how the de-149

velopment of buds, from dormancy induction in fall to bud break in spring, is determined by150

the individual or interactive effects of different environmental cues, notably temperature and151

photoperiod. Most of these models are based on the same framework (see Chuine & Regniere152

2017). Each development phase (e.g. endodormancy, ecodormancy) is described by a sub-153

model determining its reaction norms to various cues. Several response functions describing154

the reaction norms to various cues can combine by addition, multiplication, or composition.155

Development phases either are sequential (follow each other in time) or overlap (a phase can156

start before the end of the previous one).157

158

We chose three different kinds of model within this framework that represent the three main159

types of environmental regulation of bud break (of either vegetative or reproductive buds) in160

perennial species and are the most widely used in phenology studies: UniForc (Chuine, 2000),161

UniChill (Chuine, 2000) and PGC (Gauzere et al., 2017). These models differ by their com-162

plexity and by the environmental cues they account for. While UniForc and UniChill are ther-163

mal ecodormancy and endo-ecodormancy models respectively, PGC is a photothermal endo-164

ecodormancy model. In the three models described below, t0 defines the beginning of the endo-165

or ecodormant phase depending on the model, t f the bud break date and F∗ the critical amount166
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of forcing units to reach bud break.167

168

UNIFORC - The UniForc model is an one-phase model, describing the cumulative effect of169

forcing temperatures on the development of buds during the ecodormancy phase. This model170

thus assumes that the endodormancy phase is always fully released and that there is no dynamic171

effects of chilling and photoperiod on forcing requirements. Bud break occurs when the rate of172

forcing, R f (Eqn. 7), accumulated since t0, reaches the critical state of forcing F∗:173

t f

∑
t0

R f (T )≥ F∗ (1)

with T the daily average temperature.174

175

UNICHILL – The UniChill model is a sequential two-phases model describing the cumula-176

tive effect of chilling temperatures on the development of buds during the endodormancy phase177

(first phase) and the cumulative effect of forcing temperatures during the ecodormancy phase.178

Like in the Uniforc model, bud break occurs when the accumulated rate of forcing, R f , reaches179

F∗ (Eqn. 1).180

The start of the ecodormancy phase corresponds to the end of the endodormancy phase, tc,181

which occurs when the accumulated rate of chilling Rc (Eqn. 8) has reached the critical state of182

chilling C∗:183

tc

∑
t0

Rc(T )≥C∗ (2)

PGC – The PGC model has been designed to explain bud break date of photosensitive184

species, which might represent about 30 % of the species (Zohner et al., 2016). It has been185
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shown to be particular relevant to simulate the bud break date of beech (Fagus sylvatica) which186

is one of the most photosensitive species for bud break (Gauzere et al., 2017). This is a pho-187

tothermal model that integrates the compensatory effect of photoperiod on insufficient chilling188

accumulation through a growth competence function (GC; Gauzere et al. 2017). The growth189

competence function describes the ability of buds to respond to forcing temperatures. It modu-190

lates the rate of forcing (R f ) through a multiplicative function to define the actual daily forcing191

units accumulated by the bud until bud break as:192

t f

∑
t0
(GC(P)R f (T ))≥ F∗ (3)

with P and T the daily photoperiod and average temperature respectively.193

194

The growth competence (GC) is related to the daily photoperiod through a sigmoid function:195

GC(P) =
1

1+ e−dP(P−P50(t))
(4)

with P50 the mid-response photoperiod and dP the positive slope of the sigmoid function.196

P50 is not constant and depends on the state of chilling (CS): the greater the accumulated rate197

of chilling, the shorter the mid-response photoperiod, i.e. buds become sensitive to shorter198

photoperiod when they have accumulated chilling:199

P50(CS) = (12−Pr)+
2Pr

1+ e−dC(CS(t)−C50)
(5)

with Pr the range boundaries of the parameter P50, so that P50 ∈ [12-Pr; 12+Pr], dC the200

negative slope of the sigmoid function, and C50 is the mid-response parameter if the sigmoid201
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function, reflecting chilling requirements under short-day length.202

Finally, chilling units accumulated as:203

CS(t) =
t

∑
t0

Rc(T ) (6)

204

205

For the sake of comparison, the version of the models used for this study have the same type206

of response functions to forcing and to chilling temperatures. The response function to forcing207

temperature, R f , was defined as a sigmoid function as it has been shown to be the most realistic208

experimentally (Hanninen et al., 1990; Caffarra & Donnelly, 2011):209

R f (Td) =
1

1+ e−dT (Td−T50)
(7)

with dT the positive slope and T50 the mid-response temperature of the sigmoid function.210

We defined the rate of chilling, Rc, as a threshold function (Caffarra et al., 2011b):211

Rc(Td) =


1 if Td < Tb

0 if Td ≥ Tb

(8)

with Td , the mean temperature of day d and Tb, the threshold temperature (also called base tem-212

perature) of the function.213

214

As defined here, the UniForc model has 4 parameters (t0, dT , T50, F∗), the UniChill model215

6 parameters (t0, Tb, C∗, dT , T50, F∗), the PGC model 9 parameters (t0, Tb, C50, Pr, dC, dP, dT ,216

T50, F∗; Table 1).217
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218

2.2 Model calibration and validation219

In order to set up the sensitivity analysis design, we first calibrated and validated the studied220

phenology models for three emblematic tree species in European forests: common beech (Fagus221

sylvatica L.), sessile oak (Quercus petraea L.) and silver fir (Abies alba Mill.). These results222

were used to (i) define the natural parameter variation among tree species (Table 1) and (ii)223

identify contemporary climatic years that produced particularly early and late spring phenology224

(Appendix D). The three models were parametrized for the three different species using obser-225

vations of the bud break date in the Pyrenees and corresponding weather data from 2005 to 2012.226

227

The phenology of several populations located at different elevations following the Gave and228

Ossau valleys in the Pyrenees have been yearly monitored since 2005. The studied populations229

ranged from 131 to 1604 m (9 sites) for beech, from 131 to 1630 m (13 sites) for oak, and from230

840 to 1604 m (6 sites) for fir (for further details about these populations, see Vitasse et al.231

2009). Data used for this study consisted in the bud break date (BBCH 9) monitored from 2005232

to 2012 in these populations. Models were parametrized using daily weather data since 2004233

from Prosensor HOBO Pro (RH/Temp, Onset Computer Corporation, Bourne, MA 02532) that234

have been placed at the core of each monitored population (Vitasse et al., 2009). Day length was235

calculated according to the latitude of the meteorological stations (see Caffarra et al. 2011a).236

Using these datasets, the three studied models were parametrized for each species following237

Gauzere et al. (2017). The models RMSE varied from 5.85 to 10 days, with mean RMSE of238

6.28 for beech, 6.92 for oak, 9.39 for fir (Appendix C).239

240
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2.3 Sensitivity analysis241

To perform the sensitivity analysis we sampled 1,000,000 parameters combinations for each242

model, to fully capture each parameter space. To sample each parameter, we used beta distri-243

butions for the slope parameter of the sigmoid functions (equations 4, 5 and 7) and uniform244

distributions for other parameters (Appendix E). The beta distribution was chosen to account245

for the fact that variations in shape parameters have differential effects on sigmoid responses246

(variation in extreme shape values have a lowest impact on the global shape of the sigmoid247

function). The bounds of the sampling distributions were defined according to two criteria: (i)248

the sampled values needed to be biologically relevant, i.e. make sense according to the empiri-249

cal knowledge about the physiological responses and the adjusted values for the three species,250

and (ii) produce positioned dates, i.e. dates different from the last day of the year (DOY 6= 365).251

Due to these constraints, all parameters do not have the same variance (coefficient of variation252

ranging from 0.05 to 0.18). Appendix E details the parameter values adjusted for each species253

in the parameter space explored for the sensitivity analysis.254

255

Two different sensitivity indexes, describing the proportion of variance of the model’s output256

Y (here bud break date) explained by the variation of a given parameter Xi, were calculated257

from the "Sobol" and "Sobol-Jansen" methods implemented in the package "sensitivity" of the258

R software. These two methods implement the Monte Carlo estimation of the variance-based259

method for sensitivity analysis proposed by Sobol (1993). More precisely, these functions allow260

estimating the first-order and total-effect indexes from the variance decomposition, sometimes261

referred to as functional ANOVA decomposition. The first-order index is defined as:262
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Si =
VarXi(EX∼i(Y |Xi))

Var(Y )
(9)

with263

n

∑
i=1

Si = 1 (Si > 0) (10)

Y is the prediction and Xi the ith parameter of the model. The notation (X ∼ i) indicates the264

set of all variables except Xi. The numerator represents the contribution of the main effect of Xi265

to the variation in the output, i.e. the effect of varying Xi alone, but averaged over variations in266

other input parameters. Si is standardized by the total variance to provide the fractional contri-267

bution of each parameter i.268

269

And total-effect index as:270

STi =
EX∼i(VarXi(Y |X∼i))

Var(Y )
= 1− VarX∼i(EXi(Y |X∼i))

Var(Y )
(11)

with271

n

∑
i=1

STi ≥ 1 (STi > 0) (12)

due to the interaction effect, e.g. Xi and X j both counted in STi and ST j. STi thus measures272

the contribution of Xi to the variation in the output, including all variances caused by its inter-273

actions with any other input variables.274

275
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2.4 Climatic data used for the sensitivity analysis276

To perform the sensitivity analysis, we used the climate simulated at different elevations, over277

a gradient of 1000 m, for the period from 1956 to 2012, in order to explore a large range278

of climatic conditions. To study the response of the models to realistic climate at different279

elevations, we used measurements taken with local weather stations on three forest sites, at280

627 m, 1082 m and 1630 m a.s.l., along the Gave valley (Prosensor HOBO Pro; Vitasse et al.281

2009). As this weather dataset only covered the period from 2004 to 2012, we also used Météo282

France measurements at other stations located close to these sites, and data from the SAFRAN283

reanalysis on the points of the systematic grid located in the valley, to simulate the climate at284

the forest sites over a larger period (1959-2012). The temperature data recorded with the local285

HOBO sensors were linearly correlated to the climatic data derived by the SAFRAN model of286

Météo France (Quintana-Segui et al., 2008) for the same period. Daily minimum and maximum287

temperature data from 1960 to 2012 were generated based on the long-term SAFRAN outputs288

using the following equation:289

T (X) = βt(X)+αt(X).TSAFRAN (13)

with X the targeted site, βt and αt the intercept and the slope of the linear regression be-290

tween TSAFRAN and THOBO for the period 2004-2012. The coefficients used for this equation are291

provided in Appendix A. Day length was calculated according to the latitude of the forest sites292

(see Caffarra et al. 2011a).293

294

Over this large simulated period, we chose three climatically contrasted years, that corre-295

sponded to (1) a year with winter and spring mean temperatures close to their global mean over296
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the 1960-2012 period ("normal climatic year"; year 1966), (2) a year expected to produce early297

spring phenology, i.e. with cooler winter and warmer spring temperatures than normal ("early298

climatic year"; year 2011) and (3) a year expected to produce late spring phenology, i.e. with299

warmer winter and cooler spring temperatures than normal ("late climatic year"; year 1975;300

Table 2; Appendix B). We checked that the three years selected indeed generated early, average301

and late bud break dates using the adjusted models for different tree species (Appendix D). This302

range of climatic conditions allowed us to credibly investigate the impact of specific weather303

patterns in winter and spring on the behavior of the models.304

305
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Elevation Year TNovDec TJanFeb TMarAprMay
1966 7.18 6.37 11.45

627 m 1975 8.97 7.46 10.23
2011 5.72 6.99 14.52
1966 5.85 5.12 9.44

1082 m 1975 7.42 6.018 8.40
2011 4.64 5.72 12.02
1966 3.20 2.50 6.54

1630 m 1975 4.67 3.33 5.56
2011 2.07 3.07 8.94

Table 2: Detail of the climatic conditions used to perform the sensitivity analysis of the phe-
nological models. With TNovDec the average temperature of November and December of the
previous year (in ˚ C), TJanFeb the average temperature of January and February of the focal
year (in ˚ C) and TMarAprMay the average temperature of March, April and May of the focal year
(in ˚ C).
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3 Results306

3.1 Main trends in parameter sensitivity of phenology models307

For the three models, the mid-response temperature during the ecodormancy (T50) had the great-308

est influence on the predictions of the models in most of the climatic conditions explored, except309

in the cool winter-warm spring conditions producing early phenology (Figure 1, and see Ap-310

pendices F, G and H for detailed results). This strong influence is both due to the main effect of311

T50 and its interaction with other parameters, and especially with dT , T50xdT defining the shape312

of the forcing response during the ecodormancy phase. Under the conditions producing early313

phenology, the main parameters affecting the predicted bud break date were t0, T50 and F∗ for314

UniForc, UniChill and PGC respectively (Figure 1a). Note that the influence of the parameters315

on the predictions of the models was significantly affected by their coefficient of variation (i.e.316

parameters that had the highest variation also had the highest influence; Figure 2). However,317

this effect only explained a small proportion of the total variation in the total-effect of the pa-318

rameters (R2 = 0.29).319

320

3.2 The sensitivity to model parameters varies with model complexity321

The sensitivity of model predictions to the variation in model parameters highly depended on322

the phases and processes modeled (Figure 1). Predictions of the ecodormancy model UniForc323

were more sensitive to the t0 parameter, i.e. the model starting date, than the predictions of324

the endo-ecodormancy models UniChill and PGC, particularly under the climatic conditions325

producing early phenology (Figure 1a and b). Predictions of the thermal model UniChill were326

more sensitive to the critical amount of chilling to release dormancy (C∗ parameter) than the327
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predictions of the photothermal model PGC to the equivalent parameter (C50). Predictions of328

this latter photothermal model was more sensitive to the critical amount of forcing (F∗) than329

that of the thermal models UniForc and UniChill. Finally, predictions of the UniChill model330

were more sensitive to the mid-response temperature during ecodormancy (T50) than that of the331

UniForc and PGC models, which presented similar sensitivity to this parameter (Figure 1).332

Depending on the model complexity, the uncertainty in the predictions will thus reply in the333

accurate calibration of different key parameters.334

335

3.3 The sensitivity to model parameters varies with climate336

The sensitivity of the model predictions to the variation in model parameters also changed ac-337

cording to the climatic conditions experienced during winter and spring (Figure 3). In the three338

models, the sensitivity of the predictions to the mid-response temperature during ecodormancy339

(T50) decreased with warming temperature (Figure 3), while the sensitivity to the parameters340

driving the endodormancy phase (e.g. t0 in the UniForc model, C∗ in the UniChill model, dP341

and C50 in the PGC model) increased with warming temperature (Figure 3). The sensitivity of342

the endo-ecodormancy models to the critical amount of forcing to reach bud break (F∗) was343

also higher in warmer conditions. This is probably because, even if forcing accumulation be-344

comes less limiting with warming temperature, F∗ still represents the minimum duration of the345

ecodormancy phase and thus strongly drives bud break date.346

347

The sensitivity of the predictions of the PGC model to both the critical amount of chilling348

(C50) and the parameter determining the sensitivity to photoperiod (dP) increased with warming349

temperature (Figure 3). But, in such conditions, the sensitivity of PGC model predictions to350
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the photoperiod related parameter was higher than that to chilling related parameters (C50 and351

Tb; Figure 3). Finally, the sensitivity of PGC model predictions to the starting date of endodor-352

mancy (t0) tended to increase with warming temperature conditions, while that of the Unichill353

model remained constant and low (Figure 3). This result may be explained by the differences354

in growth competence modeling between these two models. The growth competence function355

of the PGC model is not null in autumn but decreases with the decreasing day length, and in-356

duces endodormancy. If temperature conditions are particularly favorable, some forcing units357

can be accumulated before endodormancy is fully induced contrary to the Unichill model. This358

therefore gives an increasing importance to t0 in driving bud break dates in warmer temperature359

conditions.360

For the three models, the increasing influence of the endodormancy vs ecodormancy related361

parameters on bud break date predictions can already be noticed in warm winter conditions.362

363

3.4 Main and interaction effects364

In the results above, we describe the influence of the parameters on the predictions of the mod-365

els based on their total effect, which include both main and second-order interaction effects.366

However, it is also interesting to decompose these effects to understand their relative contribu-367

tions to the variation of bud break dates. For most parameters, the total effects were mainly due368

to main (or first-order) effects, and in a lesser extend to interaction effects between parameters369

(or second-order effects; Figures 1). Second-order effects always explained less than 15 % of370

the predictions variation (while the largest first-order effect explained more than 50 % of the371

output variation ; Figure 4 and Appendix I). Interestingly, interaction effects did not modify the372

relative influence of the parameters on the predictions of the models (Figures 1). Nevertheless,373
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total interaction effects represented an important source of variation in the predicted bud break374

dates (Figure 4), in particular for the most complex models.375

376

The total influence of interaction effects on model predictions also varied with the specific377

weather patterns in winter and spring. For UniForc, total interaction effects were found to be378

more important in the warm winter-cool spring conditions, producing late phenology, while for379

PGC, these effects were more important in the cool winter-warm spring conditions, producing380

early phenology (Figure 4a and c). The interaction between the parameters T50 and dT had the381

largest effect on the predicted bud break date, notably in the coldest temperature conditions382

(dT xT50; Appendices I). These two parameters define the shape of the response to temper-383

ature during ecodormancy in the three models. For the PGC model in the warmest climatic384

conditions, the interaction between the endodormancy starting date (t0) and the photoperiod385

sensitivity (dP) also had an impact on the predicted bud break date (t0xdP; Appendix I).386

The influence of interaction effects thus tended to increase with model complexity, but also387

varied with specific weather patterns in winter and spring.388
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Figure 1: Main and total effects of the parameters on the predictions of the three studied models
in the most contrasted climatic conditions. The main effect (or first-order effect)quantifies the
individual effect of a parameter, i.e. without interactions. The total effect represents the first-
and second-order effects (i.e. with second-order interaction effects). These effects quantify the
proportion of variance of the model’s prediction explained by the variation of a given parame-
ter. a. "Early conditions" corresponds to climatic conditions at 627 m in 2011, producing the
earliest phenology, b. "standard conditions" to climatic conditions at 1082 m in 1966, produc-
ing intermediate phenology, and c. "late conditions" to climatic conditions at 1603 m in 1975,
producing the latest phenology over the range of conditions explored. The details of the results
for each site and year are given in Appendix H.
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Figure 2: Variation in the total-effect of parameters on the predictions of all models according
to their coefficients of variation (CV). The coefficient of variation of each parameter was esti-
mated from its sampling distribution. The R-squared was estimated using a linear model. The
parameters with the highest CV were also the most influential on models prediction.
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Figure 3: Variation in the total effect of the most biologically relevant parameters on the pre-
dictions of the three studied models according to climatic variables (see also Appendix G). The
total effect quantifies the proportion of variance in the model’s prediction explained by the vari-
ation of a given parameter (considering its main and interaction effects). We chose to represent
the average temperature of January and February because it is known to be involved in endodor-
mancy release, and the average temperature of March, April and May because it is known to
be involved in bud growth during ecodormancy. The climatic gradient corresponds to the nine
contrasted climatic conditions used to perform the sensitivity analyses.
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Figure 4: Proportion of the variation in model predictions explained by the main individual
parameter effect and the total interaction effect for each model under the three most contrasted
climatic conditions. The main parameter individual effects is the proportion of variance in the
predictions explained by the most influential parameter (T50 in most cases). The total interaction
effects is the cumulative influence of the second-order interaction effects on models prediction.
a. "Early conditions" corresponds to climatic conditions at 627 m in 2011, b. "standard condi-
tions" to climatic conditions at 1082 m in 1966, and c. "late conditions" to climatic conditions
at 1603 m in 1975.
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4 Discussion389

4.1 Bud break date predictions mainly depend on the forcing response under current390

climatic conditions391

The sensitivity analysis of the studied process-based models showed that the mid-response tem-392

perature of the ecodormancy phase (called here T50) plays a critical role in the prediction of bud393

break date under current climatic conditions. This result applies whether models account or not394

for an endodormancy phase or a photoperiodic control of bud development. It therefore suggests395

that the response to forcing temperature during the ecodormancy (defined by both T50 and dT in396

the studied phenological models) is a major physiological response driving the variation of bud397

break dates in temperate plant species in historical and current climatic conditions. This finding398

is consistent with previous correlative modeling studies showing that bud break date variation399

was mainly driven by the mean temperature of the two preceding months, which roughly corre-400

sponds to the ecodormancy phase (e.g. Menzel et al. 2006). It is also consistent with previous401

process-based modeling studies showing that models simulating only the ecodormancy phase402

explained as much variance in bud break dates as models simulating both the endo- and ecodor-403

mancy phases (Linkosalo et al., 2006; Gauzere et al., 2017). The similar performance of the404

two types of model suggested either that the fulfillment of chilling requirements had not been405

a limiting factor so far, or that the endodormancy phase is not accurately modeled (Linkosalo406

et al., 2006; Chuine et al., 2016). Our results support the first hypothesis, i.e. winter chilling407

temperature have played a minor role in bud break variations so far, which also explains why408

the response of plant species to climate warming has so far resulted in an advancement of the409

bud break dates (Menzel et al., 2006). A methodological consequence of this is that phenolog-410

ical records in natural populations may not allow estimating accurately endodormancy model411
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parameters (Chuine et al., 2016).412

413

4.2 Bud break date predictions are increasingly dependent on chilling temperatures and414

photoperiod as climate warms415

We found that the effect of the reaction norm to forcing temperature on the prediction of the416

bud break date decreased with warming spring conditions, while the effect of chilling accu-417

mulation during the endodormancy phase increased with warming winter temperature for the418

thermal endo-ecodormancy models UniChill and PGC. This suggests that in warmer environ-419

mental conditions reaction norms to temperature during both bud endodormancy and ecodor-420

mancy are critical in determining bud break dates. This result is supported by several recent421

experimental studies showing that temperature sensitivity of the bud break dates was currently422

decreasing, likely due to an increasing influence of warming winters on bud endodormancy (Fu423

et al., 2015a,b; Vitasse et al., 2018b; Asse et al., 2018). In particular, Vitasse et al. (2018b)424

showed that a differential response to chilling temperatures between trees living at low and high425

elevations may explain the difference in the temporal trends of bud break date advancement426

observed at different elevations with warming conditions during the last decade. Overall, these427

results highlight that the influence of chilling temperatures on bud development can no longer428

be overlooked, and that the correct estimation of the parameters governing the endodormancy429

phase is required to accurately predict bud break.430

431

The sensitivity analysis of the photothermal endo-ecodormancy model PGC showed that the432

influence of the photoperiodic response (through the dP parameter) on the prediction of the bud433

break date increased in warmer environmental conditions. A growing number of studies suggest434
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that the phenology of up to 30 % of tree species might be sensitive to photoperiod at various435

degrees (Laube et al., 2014; Zohner et al., 2016). Understanding how this increasing effect of436

the photoperiodic cue will affect the variation of bud break dates in future climatic conditions437

is an issue still debated (Fu et al., 2015b; Gauzere et al., 2017). However, in the most sensitive438

species, such as beech, it has been suggested that this sensitivity may counteract the negative439

effect of insufficient chilling during winter (Gauzere et al., 2017). Our results thus highlight440

that a stronger focus should be given to the modeling of the reaction norm to photoperiod to441

be able to accurately predict bud break dates of up to 30 % of tree species in future climatic442

conditions.443

444

4.3 Originality and limits of the study445

Only a few studies have performed sensitivity analysis of phenology models so far. They ei-446

ther analyzed the behavior of phenology models, identified the main sources of uncertainties in447

bud break date predictions, or assessed the consequences of phenological uncertainties on re-448

lated processes (e.g. Morin & Chuine 2005; Migliavacca et al. 2012; Zhang et al. 2014; Lange449

et al. 2016). A key results from these previous studies is that uncertainty in climate conditions,450

notably generated by climate scenarios, was a greater source of variation in phenological date451

projections than uncertainty in phenology models (Migliavacca et al., 2012).452

453

To our knowledge, this study is the first to have compared the behavior of different phenol-454

ogy models, with increasing complexity, and to perform this analysis under different weather455

patterns in winter and spring. The results found here are in line with a recent sensitivity anal-456

ysis of species-specific phenology models, which found an increasing importance of chilling457
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requirements and photoperiod in warm climatic conditions for temperate tree species (Lange458

et al., 2016). The consistency of our results with the sensitivity analysis of other phenology459

models strengthens the scope of our study, and thus further stress the importance of investigat-460

ing the behavior of phenology models in contrasted climatic conditions in order to fully embrace461

their robustness.462

463

While the climate we used to perform the sensitivity analyses covers a small geographical464

region, it still explores a large range of variation in winter and spring average temperatures465

(TNovDec ∈ [2.07; 8.97], TMarAprNay ∈ [5.56; 14.52]). This temperature variation is less impor-466

tant then in other sensitivity analyses (e.g. Lange et al. 2016), but it is large enough to allow467

extrapolating the results of this study at larger spatial scales. The aim of the present study was468

not to investigate the behavior of phenology models under climate change scenarios. Neverthe-469

less, by extrapolating our results on the impact of warming conditions on parameter sensitivity,470

we can expect the influence of the parameters governing the endodormancy to overall have more471

influence on bud break date predictions in the future.472

473

Due to the high computational requirement of sensitivity analyses, most studies usually ne-474

glect, partially or completely, interaction effects between model parameters as a source of output475

variation (e.g. Lange et al. 2016). However, the complexity of process-based phenology models476

tends to increase as we gain better knowledge about the physiological processes involved in bud477

development. With increasing model complexity and realism, we can expect interaction effects478

to have non-negligible influence on the prediction of the models, and thus local sensitivity anal-479

ysis to partially reveal the effect of parameters on output variance. Our results also suggest that480

model complexity would result in higher uncertainty in bud break dates because of interaction481
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effects. Moreover, increasing model complexity would generate higher uncertainty in model482

outputs because of parameter compensation during the statistical adjustment, notably if models483

are used to perform predictions outside of the range of the climatic conditions used to adjust484

them (Gauzere et al., 2017).485

486

Here, we showed that sensitivity analysis of process-based phenology models are relevant487

to identify key parameters and processes that have the largest effect on phenology (Migliavacca488

et al., 2012; Lange et al., 2016). However, the choice of the parameter variation range likely489

affects the results of such analyses. Since for most plant species, the range limits or shape of the490

distributions of the physiological parameters in natural populations are unknown, such sensitiv-491

ity analyses rely on assumptions that cannot be tested. Here, we might have overestimated the492

real contribution of T50 and F∗ to the variation of the bud break date due to uneven variances in493

parameter sampling distributions. This effect of parameter variation on the outcome of sensitiv-494

ity analyses should be more acknowledged. To improve the scope and relevance of sensitivity495

analyses, more attention should be given to the characterization of the natural variation of the496

physiological parameters described in process-based models (e.g. Burghardt et al. 2015).497

498

4.4 Implications for the adaptive potential of phenological traits499

While the sensitivity analysis of phenology models has direct implications for ecological and500

climate change studies, we wanted to highlight also here their usefulness for evolutionary stud-501

ies. The bud break date is among the most genetically differentiated trait across species dis-502

tribution ranges (De Kort et al., 2013), suggesting that it is strongly involved in the process of503

local genetic adaptation. Evolutionary response of the bud break date is expected to depend on504
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which parameters present genetic variation and how this variation impacts the bud break date,505

i.e. the expressed trait variation. Sensitivity analysis outputs can be used to address this second506

issue. For example, our results show that the mid-response temperature of the ecodormancy507

phase (T50) has the highest impact on the variation of the bud break date in most conditions.508

We thus suggest that future experimental research consider measuring the genetic variation of509

this key physiological trait in natural populations and crops to evaluate their adaptive potential.510

This can be done by monitoring bud break of several genotypes either in varying controlled511

conditions (e.g. Caffarra et al. 2011b), or by monitoring growth transcriptor factors in natura512

or in the field using new transcriptomic technics (e.g. Nagano et al. 2012), or even better by513

combining both approaches (e.g. Satake et al. 2013). Given the increasing importance of the514

response to chilling temperatures during the endodormancy phase to determine the bud break515

date in warming conditions, future experimental research might additionally consider measur-516

ing the genetic variation in chilling requirement and reaction norms to chilling temperature,517

especially in species requiring large amount of chilling. Finally, future experimental research518

should consider measuring the genetic variation in the reaction norm to photoperiod in most519

sensitive species, and notably beech (Goyne et al. 1989 for example in crops).520

521

5 Conclusions522

The identification of the physiological responses underlying the bud break date variation in cur-523

rent environmental conditions is an important on-going experimental research field (Fu et al.,524

2015a,b; Vitasse et al., 2018b). Assuming that process-based phenology models reflect real525

physiological responses and processes, the analysis of their behavior under contrasted climatic526

conditions can provide valuable information about this issue. Our results highlighted the ma-527
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jor influence of the response to forcing temperature on the prediction of the bud break date,528

but also an increasing importance of the responses to chilling temperature and photoperiod in529

warming environmental conditions. Changes in the sensitivity of the prediction of phenology530

models to their parameters with climatic conditions highlights that we need to better take into531

account the temporal and spatial variation of environmental conditions when analyzing pheno-532

logical changes (Vitasse et al., 2018b). More generally, we acknowledge here that the sensitivity533

analysis of process-based models is a useful tool to understand the relative contributions of envi-534

ronmental cues in driving phenotypic traits variation and their evolutionary potential (Donohue535

et al., 2015; Burghardt et al., 2015; Lange et al., 2016).536
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Appendix A688

Coefficients of the equation used to reconstruct maximum and minimum temperatures at the689
three study sites. βT and αT are the intercept and the slope of the linear relationship linking the690
recorded HOBO temperatures at the study site and the SAFRAN climatic data (from 2006 to691
2012).692

693

Elevation (m) βT max αT max βT min αT min
627 0.96 1.17 1.07 0.96

1082 3.98 0.93 1.74 0.99
1630 2.95 1.04 0.81 0.97
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Appendix B694

Yearly mean temperatures for the months (1) November-December ("meanND"), (2) January-February695
("meanJF") and (3) March-April-May ("meanMAM") relatively to their historic mean (period 1960-696
2012) for the three studied sites at low (627 m), intermediate (1082 m) and high (1630 m) elevations697
in the Pyrenees valley. Year 1966 was considered as an "average" climatic year, year 1975 as a "late"698
climatic year and year 2011 as an "early" climatic year for the global sensitivity analysis.
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Appendix C699

RMSE (days) and AIC of the three models for the three species calculated with all available bud break700
date data for each species. Number of data for each species were 142 for Fagus sylvatica, 145 for Quer-701
cus petraea and 95 for Abies alba.702

703

Fagus Quercus Abies
RMSE AIC RMSE AIC RMSE AIC

UniForc 6.29 530.4 7.03 690.4 10.00 445.5
UniChill 6.72 553.0 6.98 692.2 9.07 430.9

PGC 5.85 519.6 6.76 686.8 9.45 444.8
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Appendix D704

Variation in the bud break dates predicted by the best model calibrated and validated for F. sylvatica705
(PGC) , Q. petraea (UniChill) and A. alba (UniChill). The best model for each species was chosen based706
on its statistical performance (RMSE) and the biological realism of its adjusted parameters (for more707
details see Gauzere et al. 2017). These projections were made using the climate corresponding to the 3708
focus years and along the studied elevation gradient of the Pyrenees. As expected, the climatic conditions709
in year 1975 generated on average late bud break dates, the conditions in year 2011 generated on average710
early bud break dates, and the conditions in year 1966 generated intermediate bud break dates.711

Fagus QuercusAbies

1966  1975  2011 1966  1975  20111966  1975  2011
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Appendix E712

Sampling distributions of the parameters of the three models used to perform the global sensitivity analy-713
sis. For all parameters, except slope parameters, values were drawn in uniform distribution U . For slope714
parameters d, values were drawn in beta distribution B{α=20;β=1.3}. On the graphic, the grey rectangles715
represent the range of parameter values explored by our simulations for the three studied models. The716
red symbols represent the parameters adjusted for Fagus sylvatica (dots), Quercus petraea (triangles)717
and Abies alba (stars) using bud break date observations in the Pyrenees. Most of the parameters values718
adjusted for the species were found in the range of variation explored by the sensitivity analysis. A no-719
table exception is for the critical amount of forcing and chilling rates, F∗ and C∗ (or C50) respectively.720
For F∗, many experiments in controlled environmental conditions have shown that the amount of days721
to reach bud break under optimal conditions was rarely over 30 days. But, in most cases, the adjust-722
ment of F∗ is not constrained, which can lead to the adjustment of a parameter value with low biological723
realism. For C∗ (and C50) , the range of values explored by our simulations is lower than the adjusted724
range of C∗ values because of methodological constraints. Indeed, sampling C∗ values over 60 generated725
non-positioned bud break dates in warm conditions. So, we had to restrain the range of parameter values726
explored by the sensitivity analysis.727
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Appendix F728

Total effect (eq. 12) of each parameter on the prediction of three studied models for the nine contrasted729
climatic conditions. This coefficient reflects the contribution of each parameter to the prediction of the730
bud break date, including all variances caused by its interactions with other parameters.731

732

Elevation Year Method e t0 Tb Pr dP Fcrit Ccrit

627 1966 UniForc 0.275 0.601 - - - 0.197 -
627 1966 UniChill 0.433 0.101 0.104 - - 0.236 0.259
627 1966 PGC 0.332 0.211 0.027 0.062 0.161 0.381 0.076
627 1975 UniForc 0.337 0.573 - - - 0.177 -
627 1975 UniChill 0.344 0.126 0.249 - - 0.157 0.250
627 1975 PGC 0.376 0.183 0.092 0.057 0.133 0.300 0.097
627 2011 UniForc 0.253 0.637 - - - 0.200 -
627 2011 UniChill 0.450 0.096 0.072 - - 0.270 0.243
627 2011 PGC 0.281 0.260 0.022 0.063 0.192 0.410 0.072
1082 1966 UniForc 0.427 0.442 - - - 0.192 -
1082 1966 UniChill 0.576 0.103 0.045 - - 0.200 0.137
1082 1966 PGC 0.478 0.179 0.021 0.044 0.083 0.314 0.059
1082 1975 UniForc 0.463 0.429 - - - 0.175 -
1082 1975 UniChill 0.583 0.129 0.049 - - 0.175 0.118
1082 1975 PGC 0.541 0.157 0.020 0.045 0.058 0.264 0.053
1082 2011 UniForc 0.367 0.512 - - - 0.205 -
1082 2011 UniChill 0.513 0.116 0.053 - - 0.230 0.191
1082 2011 PGC 0.386 0.235 0.021 0.050 0.124 0.367 0.074
1630 1966 UniForc 0.588 0.222 - - - 0.192 -
1630 1966 UniChill 0.628 0.101 0.010 - - 0.168 0.069
1630 1966 PGC 0.587 0.134 0.006 0.025 0.037 0.242 0.038
1630 1975 UniForc 0.567 0.256 - - - 0.168 -
1630 1975 UniChill 0.662 0.089 0.002 - - 0.150 0.045
1630 1975 PGC 0.622 0.108 0.001 0.031 0.028 0.218 0.025
1630 2011 UniForc 0.526 0.276 - - - 0.211 -
1630 2011 UniChill 0.547 0.142 0.028 - - 0.192 0.123
1630 2011 PGC 0.495 0.200 0.016 0.031 0.056 0.294 0.063
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Appendix G733

Variation in the total effect (i.e. first and second-order effects) of all parameters on the prediction of734
the three studied models according to the climatic conditions. Only the parameter’s total effect on the735
prediction is represented. The climate was here described by the average temperature in January and736
February (known to be important to release dormancy), and average temperature in March, April and737
May (important during the ecodormancy). The climatic gradient is thus described by the 9 contrasted738
climates we used to perform the sensitivity analyses.739
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Appendix H740

Main and total effects of the parameters on the prediction of the models for the nine contrasted climatic741
conditions. From left to right and top to down are ranked the earlier to the later climatic years, with 2011742
the early climatic year, 1966 the average climatic year and 1975 the late climatic year.743
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Appendix I744

Second-order effects on the prediction of the models for the three elevation sites the average climatic745
year 1966. These second-order effects quantify the impact of pairwise interactions between parameters746
on model’s output.747
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