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Abstract

In this paper, we introduce a new extended version of the shallow water equations with surface
tension which is skew-symmetric with respect to the L2 scalar product and allows for large gradients of
fluid height. This result is a generalization of the results published by P. Noble and J.–P. Vila in [SIAM J.
Num. Anal. (2016)] and by D. Bresch, F. Couderc, P. Noble and J.P. Vila in [C.R. Acad. Sciences Paris
(2016)] which are restricted to quadratic forms of the capillary energy respectively in the one dimensional
and two dimensional setting. This is also an improvement of the results by J. Lallement, P. Villedieu et
al. published in [AIAA Aviation Forum 2018] where the augmented version is not skew-symetric with
respect to the L2 scalar product. Based on this new formulation, we propose a new numerical scheme
and perform a nonlinear stability analysis. Various numerical simulations of the shallow water equations
are presented to show differences between quadratic (w.r.t the gradient of the height) and general surface
tension energy when high gradients of the fluid height occur.

1 Introduction
In this paper, we consider shallow-water type equations with a full surface tension term issued from Hamil-
tonian formulation of P. Casal and H. Gouin ([4]) (see also D. Serre ([13])):{

∂th+ div (hu) = 0 (i)
∂t (hu) + div (hu⊗ u) +∇P = −div (∇h⊗∇pE) +∇ (hdiv (∇pE)) (ii)

(1)

with h the fluid height, u the fluid velocity vector field. The internal energy E is defined by

E (h,p) = Φ (h) + κ (h) Ecap (‖p‖) (2)

with p = ∇h and ‖p‖ =
√
ptp. Finally, the pressure P is given by

P (h,p) := h∂hE(h,p)− E(h,p) = π(h)− (κ(h)− hκ′(h)) Ecap(‖p‖), (3)

where
π(h)

h2
=

(
Φ(s)

s

)′ ∣∣
s=h

.

The three given functions s 7→ Ecap(s), s 7→ Φ(s) and s 7→ κ(s) are assumed to be positive and Ecap

invertible from R+ to R+ with Ecap(0) = 0. Moreover, we suppose π′(h) > 0 so that Φ is strictly convex as
soon as h > 0. In this context, the system (1) admits an additional energy conservation law which reads

∂t

(
1

2
h ‖u‖2 + E

)
+ div

((
1

2
h ‖u‖2 + E + P

)
u

)
− div (div (∇pE)hu) + div (div (hu)∇pE) = 0. (4)
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For specific choices of the capillary energy, we note that the system (1) reduces to classical model of the
fluid mechanics literature like the Euler-Korteweg isothermal system when :

E (h,∇h) = Φ (h) +
1

2
κ (h) ‖∇h‖2

or the shallow water type system for thin film flows both in quadratic capillary case

E (h,∇h) = Φ (h) +
1

2
σ‖∇h‖2

and the fully nonlinear capillary case :

E (h,∇h) = Φ (h) + σ(
√

1 + ‖∇h‖2 − 1).

Note that the fully nonlinear case admits the two following asymptotics

E(h,∇h) = Φ(h) + σ
‖∇h‖2

2
+ o‖∇h‖→0

(
‖∇h‖2

)
,

E(h,∇h) = Φ(h) + σ‖∇h‖+ o‖∇h‖→∞ (‖∇h‖) .

It is a hard problem to propose a discretization of the shallow water equations (1) that is compatible
with the energy equation (4). The main issue is that one cannot adapt the proof of the energy estimate (4)
derived from (1) at a discretized level due to the presence of high order derivatives. The readers interested
to understand the mathematical and numerical difficulties are referred to [10] and important references cited
therein. The strategy then consists in performing a reduction of order in spatial derivatives and introducing
an alternative system which contains lower order derivatives. This strategy was applied successfully in the
context of Euler-Korteweg isothermal system when the internal energy is quadratic with respect to ∇h: see
[9] in the one dimensional case and [1] in the two dimensional case. In both cases, the augmented version
is obtained by introducing an auxiliary velocity v which is proportional to ∇h and it admits an additional
skew-symmetric structure with respect to the L2 scalar product which makes the proof of energy estimates
and the design of compatible numerical scheme easier. However, this approach does not work in the context
of general internal energy. In [7], the authors consider the following augmented version in order to deal with
more general internal energies: ∂th+ div (hu) = 0 (i)

∂t(hu) + div (hu⊗ u) +∇P + div (p⊗∇pEtot) = ∇ (hdiv (∇pEtot)) (ii)
∂tp +∇ (p.u) = −∇ (hdiv (u)) (iii)

(5)

where Etot = h|u|2/2 + E(h,p). However, in the 2-dimensional setting, the assumption curlp = 0 has to be
made to show the conservation of the total energy and therefore it has to be satisfied initially: The interested
reader is referred page 166–168. In order to avoid such a constraint which is hardly guaranteed in the discrete
case, one could use instead the following modified formulation

∂th+ div (hu) = 0 (i)

∂t(hu) + div (hu⊗ u) +∇P + div (p⊗∇pEtot)−
(

(∇p)
t − (∇p)

)
∇pEtot = ∇ (hdiv (∇pEtot)) (ii)

∂tp +∇
(
ptu

)
= −∇ (hdiv (u)) (iii)

for which it is easy to prove the conservation of the total energy

∂t (Etot) + div (u (Etot + π)) = (div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))

−div (u(pt∇pEtot − (κ− hκ′) Ecap))

for any smooth solution of the above system. However, this formulation introduces nonconservative terms in
the momentum equation and it is then hard to satisfy for conservation of momentum and energy.

In this paper, a new skew-symmetric augmented version which is a second order differential system is
proved for (1)–(3). In the small gradient limit, this fomulation is equivalent to the one derived by D. Bresch,
F. Couderc, P. Noble and J.–P. Vila in [1]. This formulation is valid for any internal energy in the form
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E(h,p) = Φ(h) + κ(h)Ecap(‖p‖). When specified to Ecap(q) =
√

1 + q2 − 1, we see that in the high gradient
limit, Ecap(q) ∼q→∞ |q| which is a capillary term found usually in two fluids systems. We thus expect our
approach to be useful in the context of bi-fluid flows. Note also that our paper could be also of practical
interest to deal with generalization of Euler-Korteweg system: see [6] and [5] for discussions on compressible
Korteweg type systems. We rely on the new augmented system to propose a numerical scheme which is
energetically stable and extends what was done in [1] and [9]. Note that skew-symmetric augmented versions
of the capillary shallow water equations are also useful from a theoretical point of view: see e.g. [3] for the
proof of existence of dissipative solutions to the Euler-Korteweg isothermal system. Our present work will
be the starting point to improve the work by Lallement and Villedieu (see [7] and [8]) related to disjunction
term for triple point simulations: see [2].

The paper is divided in three parts: The first part introduces the augmented version with full surface
tension and discuss its connection with the system derived in [1]. In the second part, we propose a numerical
scheme satisfying energy stability. Finally, we present numerical illustrations based on our numerical scheme
showing the importance to consider the augmented system with the full surface tension.

Notations. Throughout this paper, we will write vectors in column forms and the transpose of a matrix or
a vector is defined as: At

ij = Aji. The symbol ∇ will denote the gradient operator considered as a vector :
(∂1, ∂2)t. When applied respectively to a vector or a matrix, the divergence operator div is defined as

div(u) = ∂1u1 + ∂2u2, div(A)i = ∂1Ai1 + ∂2Ai2.

2 Augmented version
Extending ideas from [9] in the one dimensional case, an augmented formulation of the shallow water equations
(1) with Ecap (‖∇h‖) = σ

2 ‖∇h‖
2 was proposed in [1]: it is a second order system of PDEs which is skew

symmetric with respect to the L2 scalar product. The additional quantity was given by w = ∇φ(h) with
φ′(h) =

√
κ(h)/h: it is thus colinear to ∇h. An alternative extended form was proposed in [7], [8] to deal

with the general case by introducing the additional unknown p = ∇h: although it seems to be efficient in the
one dimensional case, this approach hardly extends to the two dimensional setting due to a lack of energy
consistency as soon as the condition curl (p) = 0 is not satisfied.

We now introduce our new formulation of (1) which is valid in the fully decoupled case and provides a
dual formulation of capillary terms which ensures a straightforward consistent energy balance. To this end
we introduce an additional unknown, denoted v, which is colinear to ∇h and satisfies

1

2
h ‖v‖2 = κ (h) Ecap (‖∇h‖)

where q = ‖p‖ = ‖∇h‖. To do so, we define v as

v = α(q2)p

√
κ(h)

h
(6)

where α is given by

α(q2) =

√
2Ecap (q)

q
.

Note that using the definition v, we have the following relations

‖v‖2 = α2(‖p‖2) ‖p‖2 κ
h
,

1

2
α2(q2)q2κ(h) = κ(h)Ecap (q) .

Note that, in this context, v has the dimension of velocity and transforms the capillary energy into some
kinetic energy. This interpretation of the capillary energy in terms of kinetic energy in our augmented system
defined below motivates surely the robustness of our results.

Let us now write a system related to the unknowns (h,u,v) where v is given by (6) with p = ∇h.
This will give a first order hyperbolic system on (h,u,v) together with a second order part which has a
skew-symmetric structure (for the L2 scalar product). More precisely, we have the following result.
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Lemma 2.1 i) Let

U =

 h
hu
hv

 , F (U) =

 hu
hu⊗ u+ π (h) Id

hv ⊗ u

 (7)

and

M =

 0
div (h∇(f(h,v)v)t)−∇(g(h,v)tv)
−f(h,v) div (h∇ut) − g(h,v) divu

 . (8)

where f(h,v) is a symmetric tensor and g (h,v) a vector field given by

f(h,v) =
√
κ(h)
√
h

(
2

α′(q2)h

α(q2)2κ(h)
v ⊗ v + α(q2)Id

)

g (h,v) =

((
κ′(h)h

2κ(h)
+

1

2

)
+ 2

α′(q2)

α(q2)
q2

)
hv

where

α(q2) =

√
2Ecap (q)

q
with q = E−1

cap

(
h‖v‖2

2κ(h)

)
.

The augmented system reads
∂tU + div (F (U)) =M. (9)

ii) If (h,u,v) is regular enough then it also satisfies the following energy balance

∂t

(
1

2
h ‖u‖2 + E

)
+ div

(
u (

1

2
h ‖u‖2 + E + π)

)
(10)

=
(
div
(
hut∇t(f(h,v)tv)

)
− div(h∇uf(h,v)v)

)
− div

(
u(g(h,v)tv)

)
where E = Φ(h) + h‖v‖2/2.
iii) If (h,u) is regular enough and the initial velocity v0 satisfies

v0 = α(‖∇h0‖2)

√
κ(h0)

h0
∇h0

then v satisfies also

v = α(‖∇h‖2)

√
κ(h)

h
∇h

and (h,u) solves the original Equations with the full surface tension term given by (1)–(3). �

Proof of Lemma 2.1.
Part i) and iii) Equation satisfied by v. Let us first recall that v = α(q2)

√
κ(h)
h ∇h and therefore

hv = α(q2)
√
κ(h)h3/2∇h

h
:= α(q2)F (h)a,

with F (h) =
√
κ(h)h3/2 and a = ∇(log(h)). In order to write an evolution equation on hv, the first step is

to calculate evolution equations on a, F (h) and α(q2). For that purpose, we consider the mass conservation
law written as

∂th+ ut∇h+ hdiv(u) = 0. (11)

By dividing (11) by h and differentiating with respect to xi, i = 1, 2, one finds

∂ta +∇(uta) +∇(div(u)) = 0. (12)
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By multiplying (11) by F ′(h), one finds

∂tF (h) + ut∇F (h) = −hF ′(h) div(u), F ′(h) =
κ′(h)h3/2

2
√
κ(h)

+
3

2

√
κ(h)h. (13)

By differentiating directly (11), we have

∂t∇h+ (ut∇)∇h = −div(h∇ut)−∇hdivu. (14)

The derivatives of q = ‖∇h‖ are given by

q∂tq = (∇h)t∂t∇h, q∂iq = (∇h)t∂i∇h, i = 1, 2.

This allows to calculate the equation on α(q2). Indeed, we can write:

∂tα(q2) + ut∇α(q2) = α′(q2)
(
∂tq

2 + (ut∇)q2
)

= 2α′(q2)(∇h)t
(
∂t∇h+ (ut∇)∇h

)
By substituting the value of ∂t∇h given by (14) into the former equation, one finds

∂tα(q2) + ut∇α(q2) = −2α′(q2)
(
(∇h)tdiv(h∇ut) + q2divu

)
. (15)

Finally, by using the fact that hv = α(q2)F (h)a, one finds that the advective term div(hv ⊗ u) is given by

div
(
α(q2)F (h)a⊗ u

)
= α(q2)F (h)

(
(ut∇)a + div(u)a

)
+ ((ut∇)(α(q2)F (h)))a.

We can now calculate the equation satisfied by v using formula (12)–(15). More precisely we have

∂t(hv) + div(hv ⊗ u) = ∂t
(
α(q2)F (h)a

)
+ div

(
α(q2)F (h)a⊗ u

)
= α(q2)F (h)

(
(∂t + ut∇)a + div(u)a

)
+
(
(∂t + ut∇)(α(q2)F (h))

)
a

= α(q2)F (h)
(
(ut∇)a + div(u)a−∇(uta + div(u))

)
−
(
α(q2)hF ′(h)div(u) + 2F (h)α′(q2)((∇h)tdiv(h∇ut) + div(u)q2)

)
a

= α(q2)F (h)
(
(ut∇)a−∇(uta + div(u))

)
−
(

(
hF ′(h)

F (h)
− 1)div(u) +

2α′(q2)

α(q2)
((∇h)tdiv(h∇ut) + div(u)q2)

)
hv.

Note that we have the relation

α(q2)F (h)
(
(ut∇)a−∇(uta + div(u))

)
= −α(q2)F (h)

h
div(h∇ut).

and therefore, by using the relation hv = α(q2)F (h)a, one finds

∂t(hv) + div(hv ⊗ u) =−div(u)

(
hF ′(h)

F (h)
− 1 +

2α′(q2)q2

α(q2)

)
hv

−2α′(q2)

α(q2)

(
h2v

α(q2)F (h)

)t
div(h∇ut)hv − α(q2)F (h)

h
div(h∇ut).

=−div(u)

(
hF ′(h)

F (h)
− 1 +

2α′(q2)q2

α(q2)

)
hv

−
(

2α′(q2)

α(q2)2

h3

F (h)
v ⊗ v +

α(q2)F (h)

h
Id

)
div(h∇ut).

This yields the conclusion on the evolution of hv.
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Equation satisfied by u. Let us first note that

p =
v

α(q2)

√
κ(h)

h

and therefore

∇pE = κ(h)
(
α(q2)2 + 2α(q2)α′(q2)‖p‖2

)
p =

√
κ(h)
√
h
(
α(q2) + 2α′(q2)q2

)
v

Next, we expand f(h,v)v and g(h,v)tv. First, one has

f(h,v)v =
√
κ(h)
√
h

(
2

α′(q2)h

α(q2)2κ(h)
‖v‖2 + α(q2)

)
v =

√
κ(h)
√
h
(
2α′q2 + α

)
v = ∇pE.

Now we observe that
pt∇pE =

(
2α′(q2)q2 + α(q2)

)
α(q2)q2κ(h)

This yields

g (h,v)
t
v =

((
κ′(h)h

2κ(h)
+

1

2

)
+ 2

α′(q2)

α(q2)
q2

)
h‖v‖2

=

((
κ′(h)h

2κ(h)
+

1

2

)
α(q2) + 2α′(q2)q2

)
α(q2)q2κ(h)

=
(
2α′(q2)q2 + α(q2)

)
α(q2)q2κ(h)−

(
1− κ′(h)h

κ(h)

)
1

2
(α(q2))2q2κ(h)

and thus
g (h,v)

t
v = pt∇pE − (κ(h)− hκ′(h)) Ecap (q)

Note that the momentum conservation equation of (1) can be written as:

∂t (hu) + div (hu⊗ u) +∇π = −div (∇h⊗∇pE) +∇ (hdiv (∇pE)) +∇ ((κ(h)− hκ′(h)) Ecap (‖∇h‖))

We now remark that

div
(
h∇(f(h,v)v)t

)
−∇(g(h,v)tv) = div

(
h∇(∇pE)t

)
−∇

(
pt∇pE − (κ(h)− hκ′(h)) Ecap (q)

)
Then, by taking p = ∇h, we obtain

div (h∇(∇pE)t)−∇ (pt∇pE) = div (h∇(∇pE)t)−∇ ((∇h)t∇pE)
= −div (∇h⊗∇pE) +∇ (hdiv (∇pE))

and consequently the right-hand side of the momentum equation in the augmented system is :

div
(
h∇(f(h,v)v)t

)
−∇(g(h,v)tv) = −div (∇h⊗∇pE) +∇ (hdiv (∇pE)) +∇ ((κ(h)− hκ′(h)) Ecap (‖∇h‖))

and the momentum equation in the original system is satisfied, which gives the conclusion on u for i).
Note that if (h,u) is regular enough and the initial velocity v0 satisfies

v0 = α(‖∇h0‖2)

√
κ(h0)

h0
∇h0

then v satisfies also (6) and (h,u) solves the original system.

Part ii). Recall that

Etot(U) =
1

2h

(
‖hu‖2 + ‖hv‖2

)
+ Φ (h)
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where U is given by (7) and (
Φ

h

)′
=

π

h2
.

Let us consider the augmented system written as

∂tU + div (F (U)) =M (16)

with the first order part given by

U =

 h
hu
hv

 , F (U) =

 hu
hu⊗ u+ π (h) Id

hv ⊗ u


whereas the capillary term on the right hand side of (16) is given by

M =

 0
div (h∇(f(h,v)v)t)−∇(g(h,v)tv)
−f(h,v) div (h∇ut) − g(h,v) divu

 .

The entropy variables V for the first order part of (16) are given by

V t = (∇UEtot)t =

(
−1

2

(
‖u‖2 + ‖v‖2

)
+ Φ′(h),ut,vt

)
The energy equation is thus

∂tEtot + div(u (Etot + π)) = (∇UEtot)tM
= utdiv

(
h∇(f(h,v)v)t

)
− ut∇(g(h,v)tv)

−vtf(h,v)div
(
h∇ut

)
− vtg(h,v)div (u)

= utdiv
(
h∇(f(h,v)v)t

)
− (f(h,v)v)tdiv

(
h∇ut

)
−div

(
ug(h,v)tv

)
= div

(
h(ut∇)(f(h,v)v)

)
− div

(
h
(
(f(h,v)v)t∇

)
u
)
− div

(
ug(h,v)tv

)
Recall that f(h,v)v = ∇pEtot and g (h,v)

t
v = pt∇pEtot − (κ− hκ′) Ecap (q) and therefore

∂t (Etot) + div (u (Etot + π)) = (div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))

−div (u(pt∇pEtot − (κ− hκ′) Ecap)) .

By chosing p = ∇h, we easily verify that

(div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))− div (upt∇pEtot)

= (div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))− div (u(∇h)t∇pEtot)

= div (hdiv (∇pEtot)u)− div (div (hu)∇pEtot) .

Then we get

∂t (Etot) + div (u (Etot + π − (κ− hκ′) Ecap)) = div (hdiv (∇pEtot)u)− div (div (hu)∇pEtot)

which is exactly the formulation (4) of the Energy balance of the original system.
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3 Energetically stable numerical scheme
The augmented formulation in Lemma 2.1 reads

∂tU + div (F (U)) =M

with definitions (7,8) of U,F andM. The first order part of the augmented formulation in Lemma 2.1 is the
classical Euler barotropic model with additional transport and admits an additional conservation law related
to the total energy:

Etot =
‖hu‖2

2h
+ Φ (h) +

‖hv‖2

2h
.

whereas the entropy variables are

(∇UEtot)t = V t =

(
−1

2

(
‖u‖2 + ‖v‖2

)
+ Φ′ (h) ,ut,vt

)
.

This total energy is the total energy of the shallow water equations with surface tension whereas the potential
energy associated to surface tension is transformed into kinetic energy associated to the artificial velocity v.
The full system admits also an energy equation:

∂tEtot + div (u (Etot + π (h))) = V tM
= div

(
hut∇(∇pE)

)
− div

(
h(∇pE)t∇u

)
−div

(
u
(
pt∇pE − (κ− hκ′) Ecap (q)

))
with the right-hand side in conservation form. One of the aim of this paper is to design a numerical scheme
that is free from a CFL condition associated to surface tension. For that purpose, we follow the strategy in
[1] and introduce an IMplicit-EXplicit strategy where the hyperbolic step is explicit in time whereas the step
associated to surface tension is implicit in time. The spatial discretization is based on an entropy dissipative
scheme for the first order part whereas we mimic the skew symmetric structure found at the continuous level
to discretize the right hand sideM. We prove that this strategy is energetically stable in the case of periodic
boundary conditions.

3.1 IMplicit - EXplicit formulation
Following [1], we consider the following IMplicit-EXplicit time discretization: the hyperbolic step is explicit

Un+1/2 − Un

∆t
+ div (F (Un)) = 0 (17)

and the capillary skew symmetric second order step

Un+1 − Un+1/2

∆t
=Mn+1 (18)

with

Mn+1 =

 0
div
(
hn+1∇(f(hn+1,vn+1/2)vn+1)t

)
−∇(g(hn+1,vn+1/2)tvn+1)

−f(hn+1,vn+1/2) div
(
hn+1∇(un+1)t

)
− g(hn+1,vn+1/2) divun+1

 .

The second step is not fully implicit: instead it is semi-implicit so that the problem to solve for (vn+1,un+1)
is linear. This does not affect the order of the time discretization since the time splitting is already first order
in time. Let us now consider the spatial discretization. We will use a generic Finite Volume context. We
introduce a spatial discretization of ∇ and div operators with finite volume methods. For that purpose, we
denote K a cell of the mesh Td, e ∈ ∂K an edge of K and Ke a neighboring cell of K: see figure 1 for an
illustration. We use a classical entropy satisfying scheme of numerical flux

Gne,K = G
(
UnK , U

n
Ke
, ne,K

)

8



Figure 1: Notations for cell K

where ne,K is the outward normal to the cell K (of measure mK) at the edge e (of measure me). We denote
UK the average of the vector U on the cell K. The hyperbolic step then reads

U
n+1/2
K = UnK −

∆t

mK

∑
e∈∂K

meG
n
e,K (19)

and we assume that it is entropy dissipative in the sense that it satisfies the following discrete Entropy
inequality

Etot

(
U
n+1/2
K

)
≤ Etot (UnK)− ∆t

mK

∑
e∈∂K

meH
n
e,K (20)

where Hn
e,K is the entropy numerical flux associated with Gne,K . In the particular case of Euler Barotropic

equations such numerical schemes exist and satisfy this inequality provided a hyperbolic CFL condition of
the type

max
K

∆t

mK
me ‖∇UF (UnK)‖ < a < 1 (21)

is satisfied for some a > 0. Moreover, under a similar CFL condition, the positivity of the fluid h is preserved
and the total energy Etot (U) is strictly convex: this will be a useful property to prove entropy stability for
numerical schemes. The second step is

Un+1
K = U

n+1/2
K + ∆tMn+1

K (22)

with

Mn+1
K =


0

−∇3,∆

(
g(hn+1

K ,v
n+1/2
K )tvn+1

K

)
+ div1,∆

(
hn+1
K ∇1,∆

(
f(hn+1

K ,v
n+1/2
K )vn+1

K

)T)
−g(hn+1

K ,v
n+1/2
K )div3,∆

(
un+1
K

)
− f(hn+1

K ,v
n+1/2
K )div1,∆

(
hn+1
K ∇1,∆

(
un+1
K

)T)
 (23)

where ∇3,∆, div1,∆, ∇T1,∆, div3,∆ are linear discrete operators approximating the corresponding ones in the
definition of the operatorM and that will be defined hereafter. In particular div3,∆ shall be chosen as the
dual discrete operator of ∇3,∆ in the following sense :

(a,∇3,∆ (ϕ))Td
= − (div3,∆ (a) , ϕ)Td

(24)

for any smooth function ϕ and a defined on the mesh Td where we have used the discrete scalar product
below

(a, b)Td
=
∑
K∈Td

mk〈aK , bK〉Rd

One possible choice is taking the classical approximation of flux in the finite volume context which leads to

div3,∆ (a) =
1

mK

∑
e∈∂K

me
1

2
(aKe

+ aK) .ne,K =
1

2mK

∑
e∈∂K

meaKe
.ne,K

9



and the corresponding (weak) approximation of ∇3,∆ (ϕ)

∇3,∆ (ϕ) =
1

2mK

∑
e∈∂K

me
1

2

(
ϕK

mKe

mK
− ϕKe

)
ne,K

In the context of finite difference approximations, we may consider the discrete analogous of the div operator

div3,∆ (a)ij =
axi+1,j − axi−1,j

2∆x
+
ayi,j+1 − a

y
i,j−1

2∆y
(25)

which leads to
∇3,∆ (ϕ)ij =

ϕi+1,j − ϕi−1,j

2∆x
nx +

ϕi,j+1 − ϕi,j−1

2∆y
ny (26)

Remark 3.1 In the case of general finite volume discretization on any mesh, the question of finding consis-
tent second order operators is not so simple and requires some refined tools such as Renormalisation or adhoc
discrete gradient (see eg [14, 16, 15]).

In the next section, we focus on the definition of the discrete divergence and gradients operators div1,∆

and ∇1,∆ so as to ensure the energy stability.

3.2 Energy Stability of first order schemes
Let us now analyse the stability properties of the above scheme. The hyperbolic step is entropy stable in the
sense that ∑

K

Etot

(
U
n+1/2
K

)
mK ≤

∑
K

Etot (UnK)mK .

since it is a direct consequence of entropy inequality (20). Let us now focus on the “capillary time step” and
the definition of div1,∆ and ∇1,∆. In order to get more compact form of discrete operators, let us define

(∂x,1∆ (m))i+1/2,j =
mi+1,j−mi,j

∆x ,
(
∂0
x,1∆ (p)

)
i,j

=
pi+1/2,j−pi−1/2,j

∆x ,
(
∂00
x,1∆ (m)

)
i,j

=
mi+1,j−mi−1,j

2∆x ,

(∂y,1∆ (m))i,j+1/2 =
mi,j+1−mi,j

∆y ,
(
∂0
y,1∆ (p)

)
i,j

=
pi,j+1/2−pi,j−1/2

∆y ,
(
∂00
y,1∆ (m)

)
i,j

=
mi,j+1−mi,j−1

2∆y

(27)

div1,∆

(
h∇1,∆m

T
)

=

( (
∂0
x,1∆ (h∂x,1∆m

x)
)

+
(
∂00
y,1∆

(
h∂00

x,1∆m
y
))(

∂00
x,1∆

(
h∂00

y,1∆m
x
))

+
(
∂0
y,1∆ (h∂y,1∆m

y)
) ) (28)

We thus have the following property :

Lemma 3.2 Let us suppose that div1,∆

(
h∇1,∆m

T
)
is defined as (28): Then we have(

u,div1,∆

(
h∇1,∆m

T
))
Td

=
(
m, div1,∆

(
h∇1,∆u

T
))
Td

(29)

where
(a, b)Td

=
∑
i,j

∆y∆x〈aij , bij〉Rd .

�

Proof of Lemma 3.2. Thanks to definitions (27)–(28) we have(
∂0
x,1∆ (h∂x,1∆m

x)
)
i,j

=
1

(∆x)
2

(
hi+1/2,j

(
mx
i+1,j −mx

i,j

)
− hi−1/2,j

(
mx
i,j −mx

i−1,j

))
(
∂00
y,1∆

(
h∂00

x,1∆m
y
))
i,j

=
1

4∆y∆x

(
hi,j+1

(
my
i+1,j+1 −m

y
i−1,j+1

)
− hi,j−1

(
my
i+1,j−1 −m

y
i−1,j−1

))
(
∂00
x,1∆

(
h∂00

y,1∆m
x
))
i,j

=
1

4∆y∆x

(
hi+1,j

(
mx
i+1,j+1 −mx

i+1,j−1

)
− hi−1,j

(
mx
i−1,j+1 −mx

i−1,j−1

))
(
∂0
y,1∆ (h∂y,1∆m

y)
)
i,j

=
1

(∆y)
2

(
hi,j+1/2

(
my
i,j+1 −m

y
i,j

)
− hi,j−1/2

(
my
i,j −m

y
i,j−1

))
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where we take
hi+1/2,j =

1

2
(hi+1,j + hi,j) , hi,j+1/2 =

1

2
(hi,j+1 + hi,j)

It follows(
u,div

(
h∇mT

))
Td

=
∑

∆y∆xuxi,j
1

(∆x)
2

(
hi+1/2,j

(
mx
i+1,j −mx

i,j

)
− hi−1/2,j

(
mx
i,j −mx

i−1,j

))
+
∑

∆y∆x

(
uxi,j

1

4∆y∆x

(
hi,j+1

(
my
i+1,j+1 −m

y
i−1,j+1

)
− hi,j−1

(
my
i+1,j−1 −m

y
i−1,j−1

)))
+
∑

∆y∆x
1

4∆y∆x
uyi,j

(
hi+1,j

(
mx
i+1,j+1 −mx

i+1,j−1

)
− hi−1,j

(
mx
i−1,j+1 −mx

i−1,j−1

))
+
∑

∆y∆x
1

(∆y)
2u

y
i,j

(
hi,j+1/2

(
my
i,j+1 −m

y
i,j

)
− hi,j−1/2

(
my
i,j −m

y
i,j−1

))
We compute successively∑ ∆y∆x

(∆x)
2 u

x
i,j

(
hi+1/2,j

(
mx
i+1,j −mx

i,j

)
− hi−1/2,j

(
mx
i,j −mx

i−1,j

))
=
∑ ∆y∆x

(∆x)
2

((
uxi−1,jhi−1/2,jm

x
i,j − uxi,jhi+1/2,jm

x
i,j

)
−
(
uxi,jhi−1/2,jm

x
i,j − uxi+1,jhi+1/2,jm

x
i,j

))
=
∑ ∆y∆x

(∆x)
2 m

x
i,j

((
uxi+1,j − uxi,j

)
hi+1/2,j −

(
uxi,j − uxi−1,j

)
hi−1/2,j

)
=
∑ ∆y∆x

(∆x)
2 m

x
i,j

(
hi+1/2,j (∂x,1∆u

x)i+1/2,j − hi−1/2,j (∂x,1∆u
x)i−1/2,j

)
=
∑

∆y∆xmx
i,j∂

0
x,1∆ (h (∂x,1∆u

x))i,j

and ∑ ∆y∆x

4∆y∆x
uxi,j

(
hi,j+1

(
my
i+1,j+1 −m

y
i−1,j+1

)
− hi,j−1

(
my
i+1,j−1 −m

y
i−1,j−1

))
=
∑ ∆y∆x

4∆y∆x

(
uxi,jhi,j+1m

y
i+1,j+1 − u

x
i,jhi,j+1m

y
i−1,j+1 − u

x
i,jhi,j−1m

y
i+1,j−1 + uxi,jhi,j−1m

y
i−1,j−1

)
=
∑ ∆y∆x

4∆y∆x
my
i,j

(
uxi−1,j−1hi−1,j − uxi+1,j−1hi+1,j − uxi−1,j+1hi−1,j + uxi+1,j+1hi+1,j

)
=
∑ ∆y∆x

4∆y∆x
my
i,j

((
uxi+1,j+1 − uxi+1,j−1

)
hi+1,j −

(
uxi−1,j+1 − uxi−1,j−1

)
hi−1,j

)
=
∑

∆y∆xmy
i,j

(
∂00
y,1∆

(
h∂00

x,1∆u
x
))
i,j

So that with ∑ ∆y∆x
4∆y∆xu

y
i,j

(
hi+1,j

(
mx
i+1,j+1 −mx

i+1,j−1

)
− hi−1,j

(
mx
i−1,j+1 −mx

i−1,j−1

))
=
∑

∆y∆xmx
i,j

(
∂00
y,1∆

(
h∂00

y,1∆u
y
))
i,j

and ∑
∆y∆x 1

(∆y)2
uyi,j

(
hi,j+1/2

(
my
i,j+1 −m

y
i,j

)
− hi,j−1/2

(
my
i,j −m

y
i,j−1

))
=
∑

∆y∆xmy
i,j∂

0
y,1∆ (h (∂y,1∆u

y))i,j

We get finally

(
u,div1,∆

(
h∇1,∆m

T
))
Td

=

(
m,

( (
∂0
x,1∆ (h∂x,1∆u

x)
)

+
(
∂00
y,1∆

(
h∂00

x,1∆u
y
))(

∂00
x,1∆ (h∂y,1∆u

x)
)

+
(
∂0
y,1∆ (h∂y,1∆u

y)
) ))

=
(
m, div1,∆

(
h∇1,∆u

T
))
Td
.
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Proposition 3.3 Let us suppose that div1,∆

(
h∇1,∆m

T
)
satisfies identity (29) of lemma 3.2, then the cap-

illary step (22)
Un+1
K = U

n+1/2
K + ∆tMn+1

K

admits a unique solution which satisfies an energy inequality:∑
K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK .� (30)

Proof of Proposition 3.3. Let us first prove that the system (22) admits a unique solution. Indeed, one
can writeMn+1

K = M(hn+1,vn+1/2)Un+1
K andM(hn+1,vn+1/2) satisfies (U,M(hn+1,vn+1/2)U)Td

= 0, ∀U
from which we deduce that M(hn+1,vn+1/2) is a skew-symmetric matrix for the scalar product ( . , . )Td

.
Thus its eigenvalues are purely imaginary and Id−∆tM(hn+1,vn+1/2) is invertible. Now, thanks to identity
(22) and the convexity of Etot (the fluid height h is assumed h > 0):

Etot
(
Un+1
K

)
≤ Etot

(
U
n+1/2
K

)
−∆t∇UEtot

(
Un+1
K

)TMn+1
K .

Denote fn+1/2 = f(h
n+1

K ,v
n+1/2
K ), gn+1/2 = g(hn+1

K ,v
n+1/2
K ) and DE :=

∑
K ∇UEtot

(
Un+1
K

)TMn+1
K mK .

R = −
(
un+1
K ,∇3,∆

(
gn+1/2vn+1

K

))
Td

−
(
gn+1/2vn+1

K ,div3,∆

(
un+1
K

))
Td

and

D =

(
un+1
K ,div1,∆

(
hn+1
K ∇1,∆

(
fn+1/2vn+1

K

)T))
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

We easily get thatDE = R+D. As a consequence of definition 24 we get directly R = 0, and as a consequence
of lemma 3.2 we get D = 0. It follows that∑

K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK . �

We thus have proved the following stability result.

Proposition 3.4 Consider the scheme (19)(22,23) with discretization (28) of capillary terms, then provided
a CFL condition of the type (21) is satisfied, the fluid height h is positive and the scheme satisfies energy
stability ∑

K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot (UnK)mK .�

This stability result can be extended to a more general numerical framework and other time discrétisations.
By taking discrete dual operators with similar rules as ( 24)

(w,div1,∆ (T ))T = − (∇1,∆w, T )Td

We thus get

D =

(
un+1
K ,div1,∆

(
hn+1
K ∇1,∆

(
fn+1/2vn+1

K

)T))
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

= −
(
∇1,∆u

n+1
K , hn+1

K ∇1,∆

(
fn+1/2vn+1

K

)T)
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

= −
(
∇1,∆

(
fn+1/2vn+1

K

)
, hn+1
K ∇1,∆(un+1

K )T
)
Td

−
(

div1,∆

(
h

n+1

∇t1∆u
n+1
K

)
, fn+1/2vn+1

K

)
Td

=
(
fn+1/2vn+1

K ,div1,∆

(
hn+1
K ∇1∆(un+1

K )T
))
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

= 0

12



Condition (29) of Lemma 3.2 is valid and also insures Energy Stability result of Proposition 3.3.

One could also consider alternative time discretization like the fully implicit scheme for the capillary step:

Un+1 = Un+1/2 + ∆tM
(
hn+1,Un+1

)
Un+1 (31)

This system could be solved through an iterative scheme:

Un+1,p+1 = Un+1/2 + ∆tM
(
hn+1,Un+1,p

)
.Un+1,p+1, Un+1,0 = Un+1/2. (32)

The linear system (32) admits a unique solution which, moreover, satisfies the energy estimate∑
K

Etot

(
Un+1,p
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK , ∀p ≥ 0.

If ∆t is small enough so that ‖δtM(hn+1
K ,v

n+1/2
K )‖ < 1, the sequence (Un+1,p

K )p∈N converges to Un+1
K which,

in turn, satisfies ∑
K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK ≤

∑
K

Etot (UnK)mK .

As a result, the IMplicit-EXplicit scheme build on a time discretization with explicit steps for the hyper-
bolic part and implicit steps for the capillary parts are entropy stable. This may be useful to design higher
order in time IMplicit-EXplicit schemes which are build on fully implicit time discretizations.

4 Numerical Simulations
We present in this section various numerical simulations to illustrate the benefits of the proposed extended
model. We are able to carry out extremely fast simulations of capillary wave propagation in comparison to
direct numerical simulations of the original Navier-Stokes equations (DNS). On the one hand, this is due to
the vertical integration along the fluid height which reduces the dimension of the problem and withdraw the
initial free surface problem. On the other hand, the implicit treatment of surface tension removes the classical
restrictive capillary time step, empirically based to the fastest “eligible” wave speed whose wavelength is the
grid size. We will illustrate both the overall stability of the numerical method and the interest of considering
the full surface tension source term.

Global energy dissipation will be shown on time discretizations that are first order accurate. The time
discretization is of IMplicit-EXplicit type: for the hyperbolic part, an explicit Euler time-stepping scheme
has been used, associated with a Rusanov flux,

Gne,K = G
(
Un
e,K ,U

n
e,Ke

,ne,K
)

=
F
(
Un
e,K

)
+ F

(
Un
e,Ke

)
2

+ max
K,Ke

(
|u.ne,K |+

√
grh
) Un

e,Ke
−Un

e,K

2
,

using the rotational invariance and considering second-order in space MUSCL reconstructions denoted
by Un

e,K and Un
e,Ke

of the primitive variables (without limitation as very smooth solution will be considered
here) whereas a split implicit Euler time-stepping scheme is used for the capillary step, by considering a
simpler linearized resolution of the initial fully nonlinear problem of coupled equations.

It should be noted that a global second-order solver can be derived by considering an appropriate IMEX
time-stepping scheme to combine the explicit and implicit steps but this strategy is costly as it requires to
solve the full nonlinear problem, that can be achieved using Newton-like method or simply iterating on the
linearized version of the initial full nonlinear problem of coupled equations until convergence.

4.1 Numerical Set Up
We consider a rectangular domain [0, lx]× [0, ly] divided into nx×ny cells considering uniform discretization
steps ∆x and ∆y respectively in each direction. In a Finite Volume framework, the hi,j and ui,j discrete
unknowns are associated classically to the integral of respectively a scalar field h and a vector field u over the
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appropriate cell. In order to avoid any specific treatment of boundary conditions, we have only considered
periodic boundary conditions.

We have carried out numerical simulations of the augmented version of the shallow water equations in
two situations: the quadratic capillary case and the fully nonlinear capillary case. In the quadratic case, the
system (7,8) is written with,

E (h,∇h) = gr
h

2
+

1

2

σ

ρ
‖∇h‖2, (33)

meaning,

Ecap (q) =
1

2
q2, κ (h) =

σ

ρ
, α

(
q2
)

= 1,

and,

f (h,v) =
√
h

√
σ

ρ
I, g (h,v) =

hv

2
,

where gr, σ and ρ are respectively the constant gravity acceleration, the surface tension coefficient and the
constant density of the flow. In the fully nonlinear capillary case, the system (7,8) is defined with,

E (h,∇h) = gr
h

2
+
σ

ρ
(
√

1 + ‖∇h‖2 − 1), (34)

meaning,

Ecap (q) =
√

1 + q2 − 1, κ (h) =
σ

ρ
, α

(
q2
)

=
√

2
(

1 +
√

1 + q2
)−1/2

,

and,

f (h,v) =
√
h

(
1 +

ρh

4σ
‖v‖2

)−1/2
(
I −

(
1 +

ρh

2σ
‖v‖2

)−1
ρh

4σ
v ⊗ v

)
, g (h,v) =

hv

2

(
1 +

ρh

2σ
‖v‖2

)−1

.

We recall that the expression of v as a function of α and κ is given Eq.(6).

4.2 One-dimensional simulation with Gaussian initial data
It is considered a one-dimensional Gaussian-shaped deformation of the free surface of a water layer, as
illustrated in the Fig.(2). This deformation produces both gravity and capillary waves whose relative influence
is measured by the Eötvös number, also called Bond number,

Eo = Bo =
ρgrh

2

σ
, (35)

as long as the shape of the Gaussian is close to the shape of a drop, i.e. its curve peak height is comparable
to its width. We set physical parameters to the conventional values for water at room temperature and are
summarized in the Tab.(1).

Figure 2: One-dimensional sketch of the Gaussian deformation of a layer of water where b is the full width
at tenth of maximum (FWTM).
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σ = 0.0728 N m−1

ρ = 1000 kg m−3

ν = 10−6 m2 s−1

gr = 9.81 m s−2

Table 1: Physical parameters for the simulations.

The initial Gaussian-shaped deformation of the water layer parametrizes the initial surface elevation as,

h(x, t = 0) = h0 + h1e
− x2

2 (b/b0)
2
, (36)

with b0 = 4.29193 allowing to consider approximately the full width at tenth of maximum as the length
b represented in the Fig.(2). As the Eötvös number Eq.(35)is chosen to 1, such that gravity and capillary
waves are generated in the same time order, this gives a water deformation peak elevation h1 = 2.725 mm.
The layer of water elevation at rest is set to h0 = h1 whereas the full width at tenth of maximum is set to
b = 1.5h1. The computational domain is set to [−50mm, 50mm] and the simulation time to 5 ms in order to
produce significant waves in order to compare the results with the two models with respectively a linearized
capillary contribution and a full nonlinear capillary contribution. Finally, the initial velocity is set to zero
and the auxiliary variable v is initialized through the formulas according to the two models considered. In
practice, it is not needed to calculate exactly ∇h, a simple discretization using a classic centered scheme for
example is sufficient and used here in practice.
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Figure 3: Very fine resolved numerical simulations of capillary-gravity waves considering a one-dimensional
Gaussian-shaped deformation of a layer of water using the proposed augmented shallow-water model Eq.(7,8)
and formulas Eq.(33,34). Only a window of the real computational domain is plotted since the simulations
are symmetric around zero and the waves not significant far away from zero; (top-left) Water height h; (top-
right) Relative difference between the two water heights; (bottom-left) Velocity u; (bottom-right) Auxiliary
velocity v.

It is presented in the Fig.(3) the very fine resolved results for the water height h, the velocity u and
the auxiliary velocity v considering the two proposed models. For the physical parameters ans space scaling
chosen, there is a significant difference between the two models since the gradient of the water height ∇h is
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sufficiently large to observe such a behaviour. The computation of the relative difference between the water
height of each model shows an approximate maximal difference of 14%. This is not only due to the difference
in the capillary wave amplitude, but also to an important phase shift.
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Figure 4: Same simulations than for the Fig.(3), but for the first grid sizes considered in order to materialize
the numerical solution quality with a growing number of discretization points in the characteristic wavelegth;
(left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

The computational simulation time being 5 ms, it can also be observed that the capillary waves phase
velocity are much larger than the fluid velocity. This can be easily explained by studying the dispersion
relation, developed around a layer with a height h0 and a zero velocity, giving a wave speed,

c ≈ u±

√
grh0 +

h0σ

ρ
k2. (37)

where k denotes the wave number of a plane wave. The ratio between the capillary wave speed and
gravity wave speed is then approximately equal to

√
σ/grρ 2π/λ ≈ 0.017/λ, where λ is the characteristic

wavelength of the surface elevation. As the Fourier transform of an initial Gaussian-shape deformation is
again a Gaussian, there are wavelengths as small as the machine accuracy allows to capture. Thus, for plane
waves with a wavelength of 0.17 mm, the capillary wave speed is 100 times faster than the gravity wave
speed. This is the reason why we have chosen a CFL number based on the maximal absolute eigenvalue
of the hyperbolic Jacobian matrix at an arbitrary value of 0.01 in order to capture the propagation of the
capillary waves. Whereas proposed numerical discretization allows to work with higher CFL numbers close
to 1 due to the implicit resolution of the source terms modelling the full contribution of the surface tension,
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the induced larger time steps imply a numerical time capturing low pass filter regarding the capillary waves.
Another numerical viewpoint of using CFL numbers close to 1 is that the induced linear system resolution
becomes more difficult due to a growing condition number of the resulted matrix with larger time steps. In
other words, the numerical resolution is computationally more expensive whereas less physical phenomenon
of the capillary action is captured.
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Figure 5: Relative error for the water height h in the L2 norm as a function of the grid size, computed at the
end of the simulation given a reference solution href computed with 51200 points; (left) with the linearized
capillary contribution; (right) with the full nonlinear capillary contribution.
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Figure 6: Relative error for the auxiliary velocity v in the L2 norm as a function of the grid size, comparatively
to the velocity vr recomputed from h and its gradient ∇h for the same grid size; (left) with the linearized
capillary contribution; (right) with the full nonlinear capillary contribution.

A convergence study has been made for these same parameters, considering different grid resolution in
space, with a CFL number fixed to 0.01. The complete results for the water elevation h, the fluid velocity u
and the auxiliary velocity v and for the first grid sizes of 100, 200 et 400 points for are given in the Fig.(4), for
the linearized capillary contribution version of the model as well as the full capillary contribution version, in
order to materialize the numerical solution quality. The relative error for the water height h in the L2 norm
has been plotted in the Fig.(5), computed at the end of the simulation given a previous reference solution
computed with 51200 points. This has been made with both first and second order schemes in space (without
and with MUSCL reconstructions, with no limitation as the solution is very smooth). The benefit of the
MUSCL reconstruction can be clearly noticed, especially as soon as the meshes are of medium size, when
the characteristic wavelength is meshed by more than approximately 10 points. However, an asymptotic
convergence of 1 should be found increasing mesh grid sizes due to the use of a first order time-stepping
scheme. But the finest mesh used of 6400 points is not yet fine enough to find it. It is validating partially
the choice to use a simple split explicit/implicit Euler time-stepping scheme rather than a more sophisticated
IMEX time-stepping method. Indeed, an IMEX time-stepping scheme at second order requires more than
ten times of computational time in the present case, due to the mandatory resolution of the full nonlinear
problem, knowing that the consistency error in space is predominant over the error in time.

The relative error for the auxiliary velocity v in the L2 norm as a function of the grid size has been
plotted in the Fig.(6), comparatively to the velocity vr recomputed from h and its gradient ∇h for the same
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grid size. The purpose is to check if the velocity field v once advected in time is still the one that carries the
capillary energy as defined by the Eq.(6). And we can verify that this is the case as it naturally converges
with the grid size as the numerical consistency errors and the residual error in the linear system resolution
deviate v from the “right” solution. But even for very coarse meshes, the relative error is relatively low and of
course even more with MUSCL reconstructions. Also note that the relative error is slightly more important
when the full nonlinear capillary contribution version is used.
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Figure 7: Amount of energy dissipation in percents as a function of the grid size, computed at the end of
the simulation following the formula E = gh2/2 + h ‖u‖2 /2 + h ‖v‖2 /2; (left) with the linearized capillary
contribution; (right) with the full nonlinear capillary contribution.
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Figure 8: Evolution in time of the energy for the first grid sizes considered; (left) with the linearized capillary
contribution; (right) with the full nonlinear capillary contribution.

The amount of energy dissipation in percents as a function of the grid size is shown in the Fig.(7). We
recall that the energy is strictly dissipated at each time step as it has been demonstrated previously. It can
be verified that this is indeed the case in practice by looking at the Fig.(8). The energy can be interpreted as
an L2 norm with the advantage to check in one measure all the contributions in the numerical system, rather
than to check separately the convergence in a chosen norm for the water height h and the two velocities
u and v. For very coarse meshes, representing few points in the characteristic wavelength, see Fig.(4),
approximately 10% of energy dissipation is found, which is relatively acceptable with regard to the grid
resolution used. Using MUSCL reconstruction for finer meshes, an extra rate of convergence greater than 2 is
reached before falling to the theoretical asymptotic rate of 1 for very fine meshes. Whereas, without MUSCL
reconstructions, the convergence rate begin at a value lower than 1, giving quickly significant differences,
before reaching asymptotically the same theoretical convergence rate of 1 for very fine meshes. It gives
finally an important order of magnitude difference of approximately 2 when the characteristic wavelength is
sufficiently meshed with more than 10 points.

4.3 The two-dimensional simulation with Gaussian initial data
A two-dimensional version of the same previous problem (4.2) is now considered. The initial Gaussian-shaped
deformation of a layer of water is materialized initializing the water elevation by,
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h(x, y, t = 0) = h0 + h1e
− x2 + y2

2 (b/b0)
2

(38)

The physical parameters are the same than ones summarized in the Tab.(1), as well as the space scaling
with an Eẗvös number again chosen to 1, giving a layer of water deformation elevation h1 = h0 = 2.725
mm, and a full width at tenth of maximum again fixed to b = 1.5h1. The computational domain is set to
[−50 mm, 50 mm]

2 and the simulation time to 5 ms.

Figure 9: Numerical simulations of capillary-gravity waves considering a two-dimensional Gaussian-shaped
deformation of a layer of water, using the proposed augmented model with parameters Eq.((33),(34)) and a
1600×1600 cells grid; (up) with the linearized capillary contribution; (down) with the full nonlinear capillary
contribution.

It can be observed in the Fig.(9) the axisymmetric propagation of capillary-gravity waves using the
proposed augmented shallow-water model Eq.(7,8) with formulas Eq.(33,34). The initial peak collapse on
his own weight and generate a train of capillary waves. The difference between the two models for the water
height h is plotted in the Fig.(10). It can be observed a maximum difference of 3%. If the same phenomena
as in the one-dimensionnal case can be observed, the initial chosen shape of the Gaussian deformation of the
water layer gives lower differences since axisymmetry reduces the capillary waves speed difference and the
phase shift generated.

The two-dimensional version behaves like the one-dimensional one, as it can be seen in Fig.(11) and in
Fig.(12). In the same way, the relative error for the auxiliary velocity magnitude ‖v‖ comparatively to the
recomputed one ‖vr‖ converges with the grid size, and is relatively low even for coarse meshes, with a lower
error using MUSCL reconstructions. In addition, it is also shown in Fig.(10) a map of the absolute difference
showing no particular region with a big peak. The amounts of energy dissipation are only slightly higher than
for the one-dimensional case. Again, the MUSCL reconstructions provide an extra rate of convergence near 2
for medium grid sizes before falling asymptotically to the theorical rate of 1, which finally gives approximately
two orders of magnitude of difference if not using it.
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Figure 10: Same simulation than for the Fig.(9) with half of the domain in each direction; (left) relative
difference between the water height for the two models; (right) absolute difference between the auxiliary
velocity magnitude ‖v‖ and the velocity magnitude ‖vr‖ recomputed from h and its gradient ∇h for the
same grid size.
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Figure 11: Relative error for the auxiliary velocity magnitude ‖v‖ in the L2 norm as a function of the
grid size, comparatively to the same velocity magnitude ‖vr‖ recomputed from h and its gradient ∇h for
the same grid size; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary
contribution.

order 2

order 1

n
x
 = n

y

E
n

e
rg

y
 d

is
s

ip
a

ti
o

n
 (

%
)

10
2

10
3

10
4

10
­2

10
­1

10
0

10
1

10
2

Euler/First order

Euler/Muscl

order 2

order 1

n
x
 = n

y

E
n

e
rg

y
 d

is
s

ip
a

ti
o

n
 (

%
)

10
2

10
3

10
4

10
­2

10
­1

10
0

10
1

10
2

Euler/First order

Euler/Muscl

Figure 12: Amount of energy dissipation in percents as a function of the grid size, computed at the end of
the simulation following the formula E = gh2/2 + h ‖u‖2 /2 + h ‖v‖2 /2; (left) with the linearized capillary
contribution; (right) with the full nonlinear capillary contribution.
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This validate the application of the proposed augmented shallow water model Eq.(7,8) for both one- and
two-dimensional cases, with very similar numerical convergence behavior.

5 Conclusion and Perspectives
In this paper, we introduce a new extended version of the shallow water equations with surface tension which
is skew-symmetric with respect to the L2 scalar product and allows for large gradients of fluid height. The
formulation is valid for any non linear form of the capillary energy as a functional of ‖∇h‖. In case of deep
gradient of the free surface the new formulation make possible to deal with complete nonlinear capillary
models.

The formulation allows to deal with the capillary terms as a semi-linear skew symmetric problem, and
thus associate a semi implicit resolution of the capillary terms, relaxing the time step restriction ∆t < Ch2

in the original formulation [9] and [1] which are restricted to quadratic forms of the capillary energy.
We expect that this property (semi linear implicit treatment of capillary terms) will ensure some robustness

and will be successful in the extension of this methodology to wetting problems as in the work of J. Lallement,
P. Trontin, C. Laurent and P. Villedieu published in [8] where ad hoc extension with some disjunction pressure
are proposed.

We recently developed various 3 or 4 equations models (see [12]), for thin film models which are extension of
the Korteweg system introduced here. We expect that our formalism also apply to such systems. Nevertheless
the question of non-linear stability remains to study. In such case the natural extension of our proofs relies
on entropy estimate ( related to the so called enstrophy introduced in [12]).

Finally it will be interesting to study possible applications to the solution of Benney type equations
obtained as relaxed system of the Shallow water system with friction source terms such as those studied in
[11]. This reads, starting from a simplified 2D version,{

∂th+ div (hu) = 0 (i)
∂t (hu) + div (hu⊗ u) +∇P = 1

εRe

(
λh− 3u

h

)
− div (∇h⊗∇pE) +∇ (hdiv (∇pE)) (ii)

gives after relaxation when ε→ 0

u = λ
h2

3
− εh

3
Re

(
−h2div

(
λ
h3

3

)
+ div

(
hλ

h2

3
⊗ λh

2

3

)
+∇P + div (∇h⊗∇pE)−∇ (hdiv (∇pE))

)
and

∂th+ div (hu) = 0

We expect that our formalism should also applies to study such systems remarking that our augmented
formulation may also be applied to lubrication systems written in gradient flow formulation.
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