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Abstract
In this paper, we introduce a new extended version of the shallow-water equations with surface tension

which may be decomposed into a hyperbolic part and a second order derivative part which is skew-
symmetric with respect to the L2 scalar product. This reformulation allows for large gradients of fluid
height simulations using a splitting method. This result is a generalization of the results published by P.
Noble and J.–P. Vila in [SIAM J. Num. Anal. (2016)] and by D. Bresch, F. Couderc, P. Noble and J.P.
Vila in [C.R. Acad. Sciences Paris (2016)] which are restricted to quadratic forms of the capillary energy
respectively in the one dimensional and two dimensional setting. This is also an improvement of the results
by J. Lallement, P. Villedieu et al. published in [AIAA Aviation Forum 2018] where the augmented version
is not skew-symetric with respect to the L2 scalar product. Based on this new formulation, we propose
a new numerical scheme and perform a nonlinear stability analysis. Various numerical simulations of the
shallow water equations are presented to show differences between quadratic (w.r.t the gradient of the
height) and general surface tension energy when high gradients of the fluid height occur.

1 Introduction
In this paper, we consider compressible Euler type equations with capillarity (such as the shallow-water system
with surface tension), in the two-dimensional setting, issued from Hamiltonian formulation in the spirit of P.
Casal and H. Gouin ([6]) (see also D. Serre ([29]). There exists a large body of literature on various numerical
techniques for simulating the shallow-water equations without capillarity terms for a variety of applications,
such as discontinuous Galerkin methods (e.g., Giraldo [13], Giraldo et al. [15], Eskilsson and Sherwin [10],
Nair et al. [26], Xing et al. [30], Blaise and St-Cyr [2]), in addition to spectral methods (e.g., Giraldo and
Warburton [16], Giraldo [14]), and purely Lagrangian approaches (e.g., Frank and Reich [11], Capecelatro
[7]). When dispersive effect is included, everything change and numerous attempts have been conducted
to try to get rid spurious currents (also known as parasitic currents) generated at the free surface due to
the presence of the third-order term coming from the capillarity quantity. Augmented versions have been
proposed to decrease the level of derivative in the system but with not enough properties to allow to design
an efficient numerical method to compute for instance large gradient of density. This is the objective of our
paper to propose an appropriate extended formulation which allows an appropriate splitting method. To be
more precise, let us define the internal energy E as follows

E (h,p) = Φ (h) + σ (h) Ecap (‖p‖) (1)

with h the density of the fluid (or the fluid height if we consider the shallow-water system), p = ∇h and
Φ(h) the pressure contribution and σ(h)Ecap(‖p‖) the capillarity energy (Note that s 7→ Φ(s), s 7→ σ(s) and
s 7→ Ecap(s) are three given positive scalar functions). We consider the following system{

∂th+ div (hu) = 0 (i)
∂t (hu) + div (hu⊗ u) +∇P = −div (∇h⊗∇pE) +∇ (hdiv (∇pE)) (ii)

(2)
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which is obtained as the Euler-Lagrange equation related to the total energy (sum of the kinetic h|u|2/2
and internal energy E(h,p) given by (1)) under the conservation of mass constraint with u the fluid velocity
vector field and P the pressure law given by

P (h,p) := h ∂hE(h,p)− E(h,p) = π(h)− (σ(h)− hσ′(h)) Ecap(‖p‖), (3)

where
π(h)

h2
=

(
Φ(s)

s

)′∣∣∣
s=h

. (4)

In all the paper long, we will do the following hypothesis:

• s 7→ Ecap(s), s 7→ Φ(s) and s 7→ σ(s) are assumed to be positive,

• Ecap invertible from R+ to R+ with Ecap(0) = 0,

• π′(h) > 0 so that Φ is strictly convex as soon as h > 0.

System (1)–(4) is supplemented with the initial data

h|t=0 = h0, hu|t=0 = m0. (5)

In this context, System (1)–(5) admits an additional energy conservation law which reads

∂t

(
1

2
h ‖u‖2 + E

)
+ div

((
1

2
h ‖u‖2 + E + P

)
u

)
− div (div (∇pE)hu) + div (div (hu)∇pE) = 0. (6)

Remark. For specific choices of the capillary energy, we note that the system (2) reduces to classical models
of the fluid mechanics literature like

• The Euler-Korteweg isothermal system when :

E (h,∇h) = Φ (h) +
1

2
σ (h) ‖∇h‖2

where h is the density and σ(h) is the capillary coefficient.

• The shallow-water type system for thin film flows both:

• In the quadratic capillary case

E (h,∇h) =
h2

2
+

1

2
σ‖∇h‖2 with h the height of the fluid and σ is constant

• In the fully nonlinear capillary case :

E (h,∇h) =
h2

2
+ σ

√
1− ‖∇h‖2 with h the height of the fluid and σ is constant

Note that the fully nonlinear case admits the following two asymptotics

E(h,∇h) = h2/2 + σ‖∇h‖2/2 + o‖∇h‖→0 (‖∇h‖)

and
E(h,∇h) = h2/2 + σ‖∇h‖+ o‖∇h‖→∞ (‖∇h‖)
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It is a hard problem to propose a discretization of System (1)–(5) that is compatible with the energy
equation (6) and this is the objective of our paper. The main issue is that one cannot adapt the proof of
the energy estimate (6) derived from (2) at a discretized level due to the presence of high-order derivatives
associated to the capillarity energy (1). The readers interested in understanding the mathematical and nu-
merical difficulties are referred to [25] and important references cited therein. The strategy first consists in
performing a reduction of order in spatial derivatives and in introducing an alternative system (called aug-
mented system) which contains lower order derivatives. It consists secondly in checking that the augmented
system may be decomposed into two parts: A conservative hyperbolic part and a second order derivatives
part which is skew-symmetric with respect to the L2 scalar product. Such system is really adapted to dis-
cretization compatible with the energy: it is obtained by taking L2 scalar products with respect to the new
unknowns. This strategy was applied successfully in the context of Euler-Korteweg isothermal system for
numerical purposes when the internal energy is quadratic with respect to ∇h: see [24] in the one dimensional
case and [3] in the two dimensional case. In both cases, the augmented version is obtained by introducing
an auxiliary velocity v which is proportional to ∇h and admits an additional skew-symmetric structure with
respect to the L2 scalar product which makes the proof of energy estimates and the design of compatible
numerical scheme easier. However, this approach was not extended to more general internal energy (1). This
is the objective of the paper to define the appropriate unknowns in order to get an appropriate augmented
system for numerical purposes.

Note that there exists several interesting papers developing augmented systems such as [12] and [17]
for symmetric form for capillarity fluids with a capillarity energy E(h,∇h) or multi-gradient fluids with a
capillarity energy E(h,∇h, · · · ,∇nh). See also recently [8] for the defocusing Schrödinger equation which is
linked to the quantum-Euler system (E(h,p) = Φ(h) + σ‖p‖2/h where σ is constant) through the Madelung
transform and some numerical simulation.

It is interesting to note that the augmented system in [12] and [17] is related to the unknowns (h, u,
∇h, · · · , ∇nh). In [21], the authors developed a similar augmented version in order to deal with internal
capillarity energies (1) for numerical purposes namely: ∂th+ div (hu) = 0 (i)

∂t(hu) + div (hu⊗ u) +∇P + div (p⊗∇pEtot) = ∇ (hdiv (∇pEtot)) (ii)
∂tp +∇

(
ptu

)
= −∇ (hdiv (u)) (iii)

(7)

where Etot = h|u|2/2 + E(h,p). However, in the 2-dimensional setting, the assumption curlp = 0 has to
be made to show the conservation of the total energy and therefore it has to be satisfied initially: The
interested reader is referred pages 166–168. This constraint is not satisfied at the discretized level and it
creates instabilities.
Remark. In order to avoid such a constraint which is hardly guaranteed in the discrete case, one could use
instead the following modified formulation

∂th+ div (hu) = 0 (i)

∂t(hu) + div (hu⊗ u) +∇P + div (p⊗∇pEtot)−
(

(∇p)
t − (∇p)

)
∇pEtot = ∇ (hdiv (∇pEtot)) (ii)

∂tp +∇
(
ptu

)
= −∇ (hdiv (u)) (iii)

for which it is easy to prove the conservation of the total energy

∂t (Etot) + div (u (Etot + π)) = (div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))

−div (u(pt∇pEtot − (σ − hσ′) Ecap))

for any smooth solution of the above system without assuming the curl free assumption on p. However, this
formulation introduces non-conservative terms in the left-hand side of the momentum equation and it is then
hard to satisfy for conservation of momentum and energy at the discrete level.

In our paper, defining an appropriate velocity field v instead of p, we are able to design an appropriate
augmented version which may be decomposed as the sum of a conservative hyperbolic part and a skew-
symmetric second order differential operator for the L2 scalar product. The system is solved in the variables
(h,u,v) and if regularity occurs we recover the expression of v in terms of h, p and ‖p‖. The important
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property is that the energy conservation law may be satisfied easily at the discretized level using the particular
structure of our augmented system. The particular form allows also an efficient splitting method allowing to
simulate complex situations like large gradients of fluid height.

In the small gradient limit, this fomulation is equivalent to the one derived by D. Bresch, F. Couderc,
P. Noble and J.–P. Vila in [3]. Our formulation is valid for any internal energy in the form E(h,p) =

Φ(h) + σ(h)Ecap(‖p‖). When specified to Ecap(q) =
√

1 + q2 − 1, we see that in the high gradient limit,
Ecap(q) ∼q→∞ |q| which is a capillary term found usually in two fluids systems. We thus expect our approach
to be useful in the context of bi-fluid flows. Note also that our paper could be also of practical interest to
deal with generalization of Euler-Korteweg system: see [20] and [18] for discussions on compressible Korteweg
type systems.

We rely on the new augmented system to propose a numerical scheme which is energetically stable and
extends what was done in [3] and [24]. Note that skew-symmetric augmented versions of the capillary shallow
water equations in the L2 scalar product are also useful from a theoretical point of view: see e.g. [5] for the
proof of existence of dissipative solutions to the Euler-Korteweg isothermal system. Our present work will be
the starting point to improve the work by Lallement and Villedieu (see [21] and [22]) related to disjunction
term for triple point simulations: see [4].

The paper is divided in three parts: The first part introduces the augmented version with full surface
tension and discuss its connection with the system derived in [3]. In the second part, we propose a numerical
scheme satisfying energy stability. Finally, we present numerical illustrations based on our numerical scheme
showing the importance of considering our augmented system with the full surface tension.

2 Augmented version
Extending ideas from [24] in the one dimensional case, an augmented formulation of the shallow water
equations (2) with Ecap (‖∇h‖) = σ

2 ‖∇h‖
2 was proposed in [3] in the two dimensional setting: it is a second

order system of PDEs which may be decomposed in two parts: A conservative hyperbolic part and a second
order derivatives part which is skew symmetric with respect to the L2 scalar product. The additional quantity
in [3] was given by w = ∇φ(h) with φ′(h) =

√
σ(h)/h: it is thus colinear to ∇h.

The main objective here is to consider a more general internal capillarity energy namely (1). We now
introduce our new formulation of (2) which is valid in the fully decoupled case and provides a dual formulation
of capillary terms which ensures a straightforward consistent energy balance. To this end we introduce an
additional unknown, denoted v, which is colinear to ∇h and satisfies

1

2
h ‖v‖2 = σ (h) Ecap (‖∇h‖)

where q = ‖p‖ = ‖∇h‖. To do so, we define v as

v = α(q2)

√
σ(h)

h
p (8)

where the function α : s 7→ α(s) is given by

α(s) =

√
2Ecap (

√
s)

s
.

Remark. Note that using the definition v, we have the following relations

‖v‖2 = α2(‖p‖2) ‖p‖2 σ
h
,

1

2
α2(q2) q2 σ(h) = σ(h)Ecap (q) .
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Remark. Note that v has the dimension of a velocity and transforms the capillary energy into some kinetic
energy. This interpretation of the capillary energy in terms of kinetic energy in our augmented system defined
below motivates surely the robustness of our results.

Let us now write a system related to the unknowns (h,u,v) where v is given by (8) with p = ∇h. This
will provide a system which combines a first order conservative and hyperbolic part on (h,u,v) together with
a second order part which has a skew-symmetric structure (for the L2 scalar product). More precisely, we
have the following result.

Lemma 2.1 i) Let

U =

 h
hu
hv

 , F (U) =

 hu
hu⊗ u+ π (h) Id

hv ⊗ u

 (9)

where Id is the d× d identity matrix and

M =M(h,v)(U)

with, for all U1 = (h1, h1u1, h1v1)t,

M(h,v)(U1) =

 0
div (h∇(f(h,v)v1)t)−∇(g(h,v)tv1)
−f(h,v) div (h∇ut1) − g(h,v) divu1

 (10)

where f(h,v) is a symmetric tensor and g (h,v) a vector field given by

f(h,v) =
√
σ(h)
√
h

(
2

α′(q2)h

α(q2)2σ(h)
v ⊗ v + α(q2)Id

)

g (h,v) =

((
σ′(h)h

2σ(h)
+

1

2

)
+ 2

α′(q2)

α(q2)
q2

)
hv

and

α(q2) =

√
2Ecap (q)

q
with q = E−1

cap

(
h‖v‖2

2σ(h)

)
.

The augmented system reads
∂tU + div (F (U)) = M . (11)

ii) If (h,u,v) is regular enough then it also satisfies the following energy balance

∂t

(
1

2
h ‖u‖2 + E

)
+ div

(
u (

1

2
h ‖u‖2 + E + π)

)
(12)

=
(
div
(
hut∇t(f(h,v)tv)

)
− div(h∇uf(h,v)v)

)
− div

(
u(f(h,v)tv)

)
where E = Φ(h) + h‖v‖2/2.
iii) If (h,u) is regular enough and the initial velocity v0 satisfies

v0 = α(‖∇h0‖2)

√
σ(h0)

h0
∇h0

then v satisfies also

v = α(‖∇h‖2)

√
σ(h)

h
∇h

and (h,u) solves the original equations with the full surface tension term given by (2)–(3).
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3 Energetically stable numerical scheme
The augmented formulation (11) in Lemma 2.1 reads

∂tU + div (F (U)) = M

with definitions (9) and (10) of U ,F and M . The first order part of the augmented formulation in the
left-hand side is the classical Euler barotropic model with an additional transport equation. It admits an
additional conservation law related to the total energy:

Etot =
‖hu‖2

2h
+ Φ (h) +

‖hv‖2

2h
.

whereas the entropy variable is

(∇UEtot)
t

= V t =

(
−1

2

(
‖u‖2 + ‖v‖2

)
+ Φ′ (h) ,ut,vt

)
.

This total energy is the total energy of the shallow-water equations with surface tension whereas the potential
energy associated to surface tension is transformed into kinetic energy associated to the artificial velocity v.
The full system admits also an energy equation:

∂tEtot + div (u (Etot + π (h))) =V tM

= div
(
hut∇(∇pE)

)
− div

(
h(∇pE)t∇u

)
−div

(
u
(
pt∇pE − (σ − hσ′) Ecap (q)

))
with the right-hand side in conservation form. One of the aim of this paper is to design a numerical scheme
that is free from a CFL condition associated to surface tension. For that purpose, we follow the strategy in
[3] and introduce an IMplicit-EXplicit strategy where the hyperbolic step is explicit in time whereas the step
associated to surface tension is implicit in time. The spatial discretization is based on an entropy dissipative
scheme for the first order part whereas we mimic the skew symmetric structure found at the continuous level
to discretize the right hand sideM. We prove that this strategy is energetically stable in the case of periodic
boundary conditions.

3.1 IMplicit - EXplicit formulation
Following [3], we consider the following IMplicit-EXplicit time discretization: the hyperbolic step is explicit

Un+1/2 −Un

∆t
+ div (F (Un)) = 0 (13)

and the capillary skew symmetric second order step

Un+1 −Un+1/2

∆t
= Mn+1 (14)

with

Mn+1 =

 0
div
(
hn+1∇(f(hn+1,vn+1/2)vn+1)t

)
−∇(g(hn+1,vn+1/2)tvn+1)

−f(hn+1,vn+1/2) div
(
hn+1∇(un+1)t

)
− g(hn+1,vn+1/2) divun+1

 .

The second step is not fully implicit: instead it is semi-implicit so that the problem to solve for (vn+1,un+1)
is linear. This does not affect the order of the time discretization since the time splitting is already first order
in time. Let us now consider the spatial discretization. We will use a generic Finite Volume context. We
introduce a spatial discretization of ∇ and div operators with finite volume methods. For that purpose, we
denote K a cell of the mesh Td, e ∈ ∂K an edge of K and Ke a neighboring cell of K: see figure 1 for an
illustration. We use a classical entropy satisfying scheme of numerical flux
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Figure 1: Notations for cell K

Gn
e,K = G

(
Un
K ,U

n
Ke
, ne,K

)
where ne,K is the outward normal to the cell K (of measure mK) at the edge e (of measure me). We denote
UK the average of the vector U on the cell K. The hyperbolic step then reads

U
n+1/2
K = Un

K −
∆t

mK

∑
e∈∂K

meG
n
e,K (15)

and we assume that it is entropy dissipative in the sense that it satisfies the following discrete Entropy
inequality

Etot

(
U
n+1/2
K

)
≤ Etot (Un

K)− ∆t

mK

∑
e∈∂K

meH
n
e,K (16)

where Hn
e,K is the entropy numerical flux associated with Gne,K . In the particular case of Euler Barotropic

equations such numerical schemes exist and satisfy this inequality provided a hyperbolic CFL condition of
the type

max
K

∆t

mK
me ‖∇UF (Un

K)‖ < a < 1 (17)

is satisfied for some a > 0. Moreover, under a similar CFL condition, the positivity of the fluid h is preserved
and the total energy Etot (U) is strictly convex: this will be a useful property to prove entropy stability for
numerical schemes. The second step is

Un+1
K = U

n+1/2
K + ∆tMn+1

K (18)

with

Mn+1
K =


0

−∇3,∆

(
g(hn+1

K ,v
n+1/2
K )tvn+1

K

)
+ div1,∆

(
hn+1
K ∇1,∆

(
f(hn+1

K ,v
n+1/2
K )vn+1

K

)T)
−g(hn+1

K ,v
n+1/2
K )div3,∆

(
un+1
K

)
− f(hn+1

K ,v
n+1/2
K )div1,∆

(
hn+1
K ∇1,∆

(
un+1
K

)T)
 (19)

where ∇3,∆, div1,∆, ∇T1,∆, div3,∆ are linear discrete operators approximating the corresponding ones in the
definition of the operatorM and that will be defined hereafter. In particular div3,∆ shall be chosen as the
dual discrete operator of ∇3,∆ in the following sense :

(a,∇3,∆ (ϕ))Td
= − (div3,∆ (a) , ϕ)Td

(20)

for any smooth function ϕ and a defined on the mesh Td where we have used the discrete scalar product
below

(a, b)Td
=
∑
K∈Td

mk〈aK , bK〉Rd .
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One possible choice is taking the classical approximation of flux in the finite volume context which leads to

div3,∆ (a) =
1

mK

∑
e∈∂K

me
1

2
(aKe

+ aK) .ne,K =
1

2mK

∑
e∈∂K

meaKe
.ne,K

and the corresponding (weak) approximation of ∇3,∆ (ϕ)

∇3,∆ (ϕ) =
1

2mK

∑
e∈∂K

me
1

2

(
ϕK

mKe

mK
− ϕKe

)
ne,K .

In the context of finite difference approximations, we may consider the discrete analogous of the div operator

div3,∆ (a)ij =
axi+1,j − axi−1,j

2∆x
+
ayi,j+1 − a

y
i,j−1

2∆y
(21)

which leads to
∇3,∆ (ϕ)ij =

ϕi+1,j − ϕi−1,j

2∆x
nx +

ϕi,j+1 − ϕi,j−1

2∆y
ny. (22)

Remark 3.1 In the case of general finite volume discretization on any mesh, the question of finding consis-
tent second order operators is not so simple and requires some refined tools such as renormalisation or adhoc
discrete gradient (see eg [1, 23, 19]).

In the next section, we focus on the definition of the discrete divergence and gradients operators div1,∆

and ∇1,∆ so as to ensure the energy stability.

3.2 Energy Stability of first order schemes
Let us now analyse the stability properties of the above scheme. The hyperbolic step is entropy stable in the
sense that ∑

K

Etot

(
U
n+1/2
K

)
mK ≤

∑
K

Etot (Un
K)mK .

since it is a direct consequence of entropy inequality (16). Let us now focus on the “capillary time step” and
the definition of div1,∆ and ∇1,∆. In order to get more compact form of discrete operators, let us define

(∂x,1∆ (m))i+1/2,j =
mi+1,j−mi,j

∆x ,
(
∂0
x,1∆ (p)

)
i,j

=
pi+1/2,j−pi−1/2,j

∆x ,
(
∂00
x,1∆ (m)

)
i,j

=
mi+1,j−mi−1,j

2∆x ,

(∂y,1∆ (m))i,j+1/2 =
mi,j+1−mi,j

∆y ,
(
∂0
y,1∆ (p)

)
i,j

=
pi,j+1/2−pi,j−1/2

∆y ,
(
∂00
y,1∆ (m)

)
i,j

=
mi,j+1−mi,j−1

2∆y

(23)

div1,∆

(
h∇1,∆m

T
)

=

( (
∂0
x,1∆ (h∂x,1∆m

x)
)

+
(
∂00
y,1∆

(
h∂00

x,1∆m
y
))(

∂00
x,1∆

(
h∂00

y,1∆m
x
))

+
(
∂0
y,1∆ (h∂y,1∆m

y)
) ) (24)

We thus have the following property :

Lemma 3.2 Let us suppose that div1,∆

(
h∇1,∆m

T
)
is defined as (24): Then we have(

u,div1,∆

(
h∇1,∆m

T
))
Td

=
(
m, div1,∆

(
h∇1,∆u

T
))
Td

(25)

where
(a, b)Td

=
∑
i,j

∆y∆x〈aij , bij〉Rd .

Proof of Lemma 3.2. Thanks to definitions (23)–(24) we have(
∂0
x,1∆ (h∂x,1∆m

x)
)
i,j

=
1

(∆x)
2

(
hi+1/2,j

(
mx
i+1,j −mx

i,j

)
− hi−1/2,j

(
mx
i,j −mx

i−1,j

))
(
∂00
y,1∆

(
h∂00

x,1∆m
y
))
i,j

=
1

4∆y∆x

(
hi,j+1

(
my
i+1,j+1 −m

y
i−1,j+1

)
− hi,j−1

(
my
i+1,j−1 −m

y
i−1,j−1

))
(
∂00
x,1∆

(
h∂00

y,1∆m
x
))
i,j

=
1

4∆y∆x

(
hi+1,j

(
mx
i+1,j+1 −mx

i+1,j−1

)
− hi−1,j

(
mx
i−1,j+1 −mx

i−1,j−1

))
(
∂0
y,1∆ (h∂y,1∆m

y)
)
i,j

=
1

(∆y)
2

(
hi,j+1/2

(
my
i,j+1 −m

y
i,j

)
− hi,j−1/2

(
my
i,j −m

y
i,j−1

))

8



where we take
hi+1/2,j =

1

2
(hi+1,j + hi,j) , hi,j+1/2 =

1

2
(hi,j+1 + hi,j) .

It follows(
u,div

(
h∇mT

))
Td

=
∑

∆y∆xuxi,j
1

(∆x)
2

(
hi+1/2,j

(
mx
i+1,j −mx

i,j

)
− hi−1/2,j

(
mx
i,j −mx

i−1,j

))
+
∑

∆y∆x

(
uxi,j

1

4∆y∆x

(
hi,j+1

(
my
i+1,j+1 −m

y
i−1,j+1

)
− hi,j−1

(
my
i+1,j−1 −m

y
i−1,j−1

)))
+
∑

∆y∆x
1

4∆y∆x
uyi,j

(
hi+1,j

(
mx
i+1,j+1 −mx

i+1,j−1

)
− hi−1,j

(
mx
i−1,j+1 −mx

i−1,j−1

))
+
∑

∆y∆x
1

(∆y)
2u

y
i,j

(
hi,j+1/2

(
my
i,j+1 −m

y
i,j

)
− hi,j−1/2

(
my
i,j −m

y
i,j−1

))
.

We compute successively∑ ∆y∆x

(∆x)
2 u

x
i,j

(
hi+1/2,j

(
mx
i+1,j −mx

i,j

)
− hi−1/2,j

(
mx
i,j −mx

i−1,j

))
=
∑ ∆y∆x

(∆x)
2

((
uxi−1,jhi−1/2,jm

x
i,j − uxi,jhi+1/2,jm

x
i,j

)
−
(
uxi,jhi−1/2,jm

x
i,j − uxi+1,jhi+1/2,jm

x
i,j

))
=
∑ ∆y∆x

(∆x)
2 m

x
i,j

((
uxi+1,j − uxi,j

)
hi+1/2,j −

(
uxi,j − uxi−1,j

)
hi−1/2,j

)
=
∑ ∆y∆x

(∆x)
2 m

x
i,j

(
hi+1/2,j (∂x,1∆u

x)i+1/2,j − hi−1/2,j (∂x,1∆u
x)i−1/2,j

)
=
∑

∆y∆xmx
i,j∂

0
x,1∆ (h (∂x,1∆u

x))i,j

and ∑ ∆y∆x

4∆y∆x
uxi,j

(
hi,j+1

(
my
i+1,j+1 −m

y
i−1,j+1

)
− hi,j−1

(
my
i+1,j−1 −m

y
i−1,j−1

))
=
∑ ∆y∆x

4∆y∆x

(
uxi,jhi,j+1m

y
i+1,j+1 − u

x
i,jhi,j+1m

y
i−1,j+1 − u

x
i,jhi,j−1m

y
i+1,j−1 + uxi,jhi,j−1m

y
i−1,j−1

)
=
∑ ∆y∆x

4∆y∆x
my
i,j

(
uxi−1,j−1hi−1,j − uxi+1,j−1hi+1,j − uxi−1,j+1hi−1,j + uxi+1,j+1hi+1,j

)
=
∑ ∆y∆x

4∆y∆x
my
i,j

((
uxi+1,j+1 − uxi+1,j−1

)
hi+1,j −

(
uxi−1,j+1 − uxi−1,j−1

)
hi−1,j

)
=
∑

∆y∆xmy
i,j

(
∂00
y,1∆

(
h∂00

x,1∆u
x
))
i,j
.

So that with ∑ ∆y∆x
4∆y∆xu

y
i,j

(
hi+1,j

(
mx
i+1,j+1 −mx

i+1,j−1

)
− hi−1,j

(
mx
i−1,j+1 −mx

i−1,j−1

))
=
∑

∆y∆xmx
i,j

(
∂00
y,1∆

(
h∂00

y,1∆u
y
))
i,j

and ∑
∆y∆x 1

(∆y)2
uyi,j

(
hi,j+1/2

(
my
i,j+1 −m

y
i,j

)
− hi,j−1/2

(
my
i,j −m

y
i,j−1

))
=
∑

∆y∆xmy
i,j∂

0
y,1∆ (h (∂y,1∆u

y))i,j .

We get finally

(
u,div1,∆

(
h∇1,∆m

T
))
Td

=

(
m,

( (
∂0
x,1∆ (h∂x,1∆u

x)
)

+
(
∂00
y,1∆

(
h∂00

x,1∆u
y
))(

∂00
x,1∆ (h∂y,1∆u

x)
)

+
(
∂0
y,1∆ (h∂y,1∆u

y)
) ))

=
(
m, div1,∆

(
h∇1,∆u

T
))
Td
.
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Proposition 3.3 Let us suppose that div1,∆

(
h∇1,∆m

T
)
satisfies identity (25) of Lemma 3.2, then the

capillary step
Un+1
K = U

n+1/2
K + ∆tMn+1

K

admits a unique solution which satisfies an energy inequality:∑
K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK . (26)

Proof of Proposition 3.3. Let us first prove that the system (18) admits a unique solution. Indeed, one
can write Mn+1

K =M(hn+1,vn+1/2)(Un+1
K ) andM(hn+1,vn+1/2) satisfies

(U,M(hn+1,vn+1/2)(U))Td
= 0 for all U

from which we deduce that M(hn+1,vn+1/2) is a skew-symmetric matrix for the scalar product ( . , . )Td
.

Thus its eigenvalues are purely imaginary and Id−∆tM(hn+1,vn+1/2) is invertible. Now, thanks to identity
(18) and the convexity of Etot (the fluid height h is assumed h > 0):

Etot
(
Un+1
K

)
≤ Etot

(
U
n+1/2
K

)
−∆t∇UEtot

(
Un+1
K

)T
Mn+1

K .

Denote fn+1/2 = f(h
n+1

K ,v
n+1/2
K ), gn+1/2 = g(hn+1

K ,v
n+1/2
K ) and DE :=

∑
K ∇UEtot

(
Un+1
K

)T
Mn+1

K mK .

R = −
(
un+1
K ,∇3,∆

(
gn+1/2vn+1

K

))
Td

−
(
gn+1/2vn+1

K ,div3,∆

(
un+1
K

))
Td

and

D =

(
un+1
K ,div1,∆

(
hn+1
K ∇1,∆

(
fn+1/2vn+1

K

)T))
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

We easily get that DE = R + D. As a consequence of definition 20, we get directly R = 0, and, as a
consequence of lemma 3.2, we get D = 0. It follows that∑

K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK .

We thus have proved the following stability result.

Proposition 3.4 Consider the scheme (15)–(18)–(19) with discretization (24) of capillary terms, then pro-
vided a CFL condition of the type (17) is satisfied, the fluid height h is positive and the scheme satisfies
energy stability ∑

K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot (Un
K)mK .

This stability result can be extended to a more general numerical framework and other time discretizations.
By taking discrete dual operators with similar rules as (20) namely

(w,div1,∆ (T ))T = − (∇1,∆w, T )Td

We thus get

D =

(
un+1
K ,div1,∆

(
hn+1
K ∇1,∆

(
fn+1/2vn+1

K

)T))
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

= −
(
∇1,∆u

n+1
K , hn+1

K ∇1,∆

(
fn+1/2vn+1

K

)T)
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

= −
(
∇1,∆

(
fn+1/2vn+1

K

)
, hn+1
K ∇1,∆(un+1

K )T
)
Td

−
(

div1,∆

(
h

n+1

∇t1∆u
n+1
K

)
, fn+1/2vn+1

K

)
Td

=
(
fn+1/2vn+1

K ,div1,∆

(
hn+1
K ∇1∆(un+1

K )T
))
Td

−
(

div1,∆

(
hn+1
K ∇1∆(un+1

K )T
)
, fn+1/2vn+1

K

)
Td

= 0
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Condition (25) of Lemma 3.2 is valid and also insures energy stability result of Proposition 3.3.

One could also consider alternative time discretization like the fully implicit scheme for the capillary step:

Un+1) = Un+1/2 + ∆tM
(
hn+1,Un+1

)
(Un+1) (27)

This system could be solved through an iterative scheme:

Un+1,p+1 = Un+1/2 + ∆tM
(
hn+1,Un+1,p

)
(Un+1,p+1), Un+1,0 = Un+1/2. (28)

The linear system (28) admits a unique solution which, moreover, satisfies the energy estimate∑
K

Etot

(
Un+1,p
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK , ∀p ≥ 0.

If ∆t is small enough so that ‖δtM(hn+1
K ,v

n+1/2
K )‖ < 1, the sequence (Un+1,p

K )p∈N converges to Un+1
K which,

in turn, satisfies ∑
K

Etot
(
Un+1
K

)
mK ≤

∑
K

Etot

(
U
n+1/2
K

)
mK ≤

∑
K

Etot (Un
K)mK .

As a result, the IMplicit-EXplicit scheme build on a time discretization with explicit steps for the hy-
perbolic part and implicit steps for the capillary part are entropy stable. This provides a method to design
higher order in time IMplicit-EXplicit schemes which are build on fully implicit time discretizations.

4 Numerical Simulations
We present in this section various numerical simulations to illustrate the benefits of the proposed extended
model. The new extended system composed by a conservative hyperbolic part and a second order derivative
part which is skew symmetric for the L2 scalar product is crucial to develop an appropriate splitting method.

We are able to carry out extremely fast simulations of capillary wave propagation in comparison to
direct numerical simulations of the original Navier-Stokes equations (DNS). On the one hand, this is due to
the vertical integration along the fluid height which reduces the dimension of the problem and withdraw the
initial free surface problem. On the other hand, the implicit treatment of surface tension removes the classical
restrictive capillary time step, empirically based to the fastest “eligible” wave speed whose wavelength is the
grid size. We will illustrate both the overall stability of the numerical method and the interest of considering
the full surface tension source term.

Global energy dissipation will be shown on time discretizations that are first order accurate. The time
discretization is of IMplicit-EXplicit type: for the hyperbolic part, an explicit Euler time-stepping scheme
has been used, associated with a Rusanov flux,

Gne,K = G
(
Un
e,K ,U

n
e,Ke

,ne,K
)

=
F
(
Un
e,K

)
+ F

(
Un
e,Ke

)
2

− max
K,Ke

(
|u.ne,K |+

√
grh
) Un

e,Ke
−Un

e,K

2
,

using the rotational invariance and considering second-order in space MUSCL reconstructions denoted
by Un

e,K and Un
e,Ke

of the primitive variables (without limitation as very smooth solution will be considered
here) whereas an implicit Euler time-stepping scheme is used for the capillary step, by considering a simpler
linearized resolution of the initial fully nonlinear problem of coupled equations. While other reconstruction
method are possible and can lead to higher order accuracy, the MUSCL method is a second order method
that is easy to implement and has the advantage to be suitable with structured and unstructured mesh. The
model has been coded on an unstructured environment, and it is planned to run simulations with it once we
have solved the discrete duality problem in such context.

It should be noted that a global second-order solver can be derived by considering an appropriate IMEX
time-stepping scheme to combine the explicit and implicit steps but this strategy is costly as it requires to
solve the full nonlinear problem, that can be achieved using Newton-like method or simply iterating on the
linearized version of the initial full nonlinear problem of coupled equations until convergence.
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4.1 Numerical Set Up
We consider a rectangular domain [0, lx]× [0, ly] divided into nx×ny cells considering uniform discretization
steps ∆x and ∆y respectively in each direction. In a Finite Volume framework, the hi,j and ui,j discrete
unknowns are associated classically to the mean of respectively a scalar field h and a vector field u over the
appropriate cell. In order to avoid any specific treatment of boundary conditions, we have only considered
periodic boundary conditions.

We have carried out numerical simulations of the augmented version of the shallow water equations in
two situations: the quadratic capillary case and the fully nonlinear capillary case. In the quadratic case, the
system (9,10) is written with,

E (h,∇h) = gr
h

2
+

1

2

σ

ρ
‖∇h‖2, (29)

meaning,

Ecap (q) =
1

2
q2, κ (h) =

σ

ρ
, α

(
q2
)

= 1,

and
f (h,v) =

√
h

√
σ

ρ
Id, g (h,v) =

hv

2
,

where gr, σ and ρ are respectively the constant gravity acceleration, the surface tension coefficient and the
constant density of the flow. In the fully nonlinear capillary case, the system (9,10) is defined with,

E (h,∇h) = gr
h

2
+
σ

ρ
(
√

1 + ‖∇h‖2 − 1), (30)

meaning,

Ecap (q) =
√

1 + q2 − 1, κ (h) =
σ

ρ
, α

(
q2
)

=
√

2
(

1 +
√

1 + q2
)−1/2

,

and

f (h,v) =
√
h

(
1 +

ρh

4σ
‖v‖2

)−1/2
(

Id −
(

1 +
ρh

2σ
‖v‖2

)−1
ρh

4σ
v ⊗ v

)
, g (h,v) =

hv

2

(
1 +

ρh

2σ
‖v‖2

)−1

.

We recall that the expression of v as a function of α and κ is given in Equation (8).

4.2 One-dimensional simulation with Gaussian initial data
We consider a one-dimensional Gaussian-shaped deformation of the free surface of a water layer, as illus-
trated in Figure (2). This deformation produces both gravity and capillary waves whose relative influence is
measured by the Eötvös number, also called Bond number,

Eo = Bo =
ρgrh

2

σ
, (31)

as long as the shape of the Gaussian is close to the shape of a drop, i.e. its curve peak height is comparable
to its width. We set physical parameters to the conventional values for water at room temperature and are
summarized in Table (1).

σ = 0.0728 N m−1

ρ = 1000 kg m−3

ν = 10−6 m2 s−1

gr = 9.81 m s−2

Table 1: Physical parameters for the simulations.
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Figure 2: One-dimensional sketch of the Gaussian deformation of a layer of water where b is the full width
at tenth of maximum (FWTM).

The initial Gaussian-shaped deformation of the water layer parametrizes the initial surface elevation as,

h(x, t = 0) = h0 + h1e
− x2

2 (b/b0)
2
, (32)

with b0 = 4.29193 allowing to consider approximately the full width at tenth of maximum as the length
b represented in the Figure (2). As the Eötvös number Eq.(31)is set to 1, such that gravity and capillary
waves are generated in the same time order, this gives a water deformation peak elevation h1 = 2.725 mm.
The layer of water elevation at rest is set to h0 = h1 whereas the full width at tenth of maximum is set to
b = 1.5h1. The computational domain is set to [−50mm, 50mm] and the simulation time to 5 ms in order to
produce significant waves in order to compare the results with the two models with respectively a linearized
capillary contribution and a full nonlinear capillary contribution. Finally, the initial velocity is set to zero
and the auxiliary variable v is initialized through the formulas according to the two models considered. In
practice, it is not needed to compute exactly ∇h, a simple discretization using a classic centered scheme for
example is sufficient and used here in practice.

x (mm)

h
 (

m
m

)

0 5 10 15 20
2

2.5

3

3.5

4

linearized capillarity

full nonlinear capillarity

x (mm)

|h
li
n
h

n
o

n
li
n
| 
/ 
h

n
o

n
li
n

0 5 10 15 20
0

0.05

0.1

0.15

x (mm)

u
 (

m
.s

1
)

0 5 10 15 20
0.2

0.1

0

0.1

0.2

x (mm)

v
 (

m
.s

1
)

0 5 10 15 20
0.2

0.1

0

0.1

0.2

Figure 3: Very fine (51200 cells) resolved numerical simulations of capillary-gravity waves considering a one-
dimensional Gaussian-shaped deformation of a layer of water using the proposed augmented shallow-water
model Eq.(9,10) and formulas Eq.(29,30). Only a window of the real computational domain is plotted since
the simulations are symmetric around zero and the waves not significant far away from zero; (top-left) Water
height h; (top-right) Relative difference between the two water heights; (bottom-left) Velocity u; (bottom-
right) Auxiliary velocity v.
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It is presented in Figure (3) the very fine resolved results for the water height h, the velocity u and the
auxiliary velocity v considering the two proposed models. For the physical parameters ans space scaling
chosen, there is a significant difference between the two models since the gradient of the water height ∇h is
sufficiently large to observe such a behaviour. The computation of the relative difference between the water
height of each model shows an approximate maximal difference of 14%. This is not only due to the difference
in the capillary wave amplitude, but also to an important phase shift.
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Figure 4: Same simulations than for Figure (3), but for the first grid sizes considered in order to materialize
the numerical solution quality with a growing number of discretization points in the characteristic wavelegth;
(left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

The computational simulation time being 5 ms, it can also be observed that the capillary waves phase
velocity are much larger than the fluid velocity. This can be easily explained by studying the dispersion
relation, developed around a layer with a height h0 and a zero velocity, giving a wave speed,

c ≈ u±

√
grh0 +

h0σ

ρ
k2. (33)

where k denotes the wave number of a plane wave. The ratio between the capillary wave speed and
gravity wave speed is then approximately equal to

√
σ/grρ 2π/λ ≈ 0.017/λ, where λ is the characteristic

wavelength of the surface elevation. As the Fourier transform of an initial Gaussian-shape deformation is
again a Gaussian, there are wavelengths as small as the machine accuracy allows to capture. Thus, for plane
waves with a wavelength of 0.17 mm, the capillary wave speed is 100 times faster than the gravity wave
speed. This is the reason why we have chosen a CFL number based on the maximal absolute eigenvalue
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of the hyperbolic Jacobian matrix at an arbitrary value of 0.01 in order to capture the propagation of the
capillary waves. Whereas proposed numerical discretization allows to work with higher CFL numbers close
to 1 due to the implicit resolution of the source terms modelling the full contribution of the surface tension,
the induced larger time steps imply a numerical time capturing low pass filter regarding the capillary waves.
Another numerical viewpoint of using CFL numbers close to 1 is that the induced linear system resolution
becomes more difficult due to a growing condition number of the resulted matrix with larger time steps. In
other words, the numerical resolution is computationally more expensive whereas less physical phenomenon
of the capillary action is captured.
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Figure 5: Relative error for the water height h in the L2 norm as a function of the grid size, computed at the
end of the simulation given a reference solution href computed with 51200 points; (left) with the linearized
capillary contribution; (right) with the full nonlinear capillary contribution.

order 1

order 2

n
x

||
v

v
r|
| L

2
 /
 |
|v

r|
| L

2

10
2

10
3

10
4

10
5

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Euler/First order

Euler/Muscl

order 1

order 2

n
x

||
v

v
r|
| L

2
 /
 |
|v

r|
| L

2

10
2

10
3

10
4

10
5

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Euler/First order

Euler/Muscl

Figure 6: Relative error for the auxiliary velocity v in the L2 norm as a function of the grid size, comparatively
to the velocity vr recomputed from h and its gradient ∇h for the same grid size; (left) with the linearized
capillary contribution; (right) with the full nonlinear capillary contribution.

A convergence study has been made for these same parameters, considering different grid resolution in
space, with a CFL number fixed to 0.01. The complete results for the water elevation h, the fluid velocity u
and the auxiliary velocity v and for the first grid sizes of 100, 200 et 400 points for are given in Figure (4), for
the linearized capillary contribution version of the model as well as the full capillary contribution version, in
order to materialize the numerical solution quality. The relative error for the water height h in the L2 norm
has been plotted in Figure (5), computed at the end of the simulation given a previous reference solution
computed with 51200 points. This has been made with both first and second order schemes in space (without
and with MUSCL reconstructions, with no limitation as the solution is very smooth). The benefit of the
MUSCL reconstruction can be clearly noticed, especially as soon as the meshes are of medium size, when
the characteristic wavelength is meshed by more than approximately 10 points. However, an asymptotic
convergence of 1 should be found increasing mesh grid sizes due to the use of a first order time-stepping
scheme. But the finest mesh used of 6400 points is not yet fine enough to find it. It is validating partially
the choice to use a simple split explicit/implicit Euler time-stepping scheme rather than a more sophisticated
IMEX time-stepping method. Indeed, an IMEX time-stepping scheme at second order requires more than
ten times of computational time in the present case, due to the mandatory resolution of the full nonlinear
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problem, knowing that the consistency error in space is predominant over the error in time.
The relative error for the auxiliary velocity v in the L2 norm as a function of the grid size has been plotted

in Figure (6), comparatively to the velocity vr recomputed from h and its gradient ∇h for the same grid size.
The purpose is to check if the velocity field v once advected in time is still the one that carries the capillary
energy as defined by the Eq.(8). And we can verify that this is the case as it naturally converges with the
grid size as the numerical consistency errors and the residual error in the linear system resolution deviate v
from the “right” solution. But even for very coarse meshes, the relative error is relatively low and of course
even more with MUSCL reconstructions. Also note that the relative error is slightly more important when
the full nonlinear capillary contribution version is used.
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Figure 7: Amount of energy dissipation in percents as a function of the grid size, computed at the end of
the simulation following the formula E = gh2/2 + h ‖u‖2 /2 + h ‖v‖2 /2; (left) with the linearized capillary
contribution; (right) with the full nonlinear capillary contribution.
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Figure 8: Evolution in time of the energy for the first grid sizes considered; (left) with the linearized capillary
contribution; (right) with the full nonlinear capillary contribution.

The amount of energy dissipation in percents as a function of the grid size is shown in Figure (7). We
recall that the energy is strictly dissipated at each time step as it has been demonstrated previously. It can
be verified that this is indeed the case in practice by looking at Figure (8). The energy can be interpreted as
an L2 norm with the advantage to check in one measure all the contributions in the numerical system, rather
than to check separately the convergence in a chosen norm for the water height h and the two velocities
u and v. For very coarse meshes, representing few points in the characteristic wavelength, see Figure (4),
approximately 10% of energy dissipation is found, which is relatively acceptable with regard to the grid
resolution used. Using MUSCL reconstruction for finer meshes, an extra rate of convergence greater than 2 is
reached before falling to the theoretical asymptotic rate of 1 for very fine meshes. Whereas, without MUSCL
reconstructions, the convergence rate begin at a value lower than 1, giving quickly significant differences,
before reaching asymptotically the same theoretical convergence rate of 1 for very fine meshes. It gives
finally an important order of magnitude difference of approximately 2 when the characteristic wavelength is
sufficiently meshed with more than 10 points.
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4.3 Two-dimensional simulations with Gaussian initial data
A two-dimensional version of the same previous problem (4.2) is now considered. The initial Gaussian-shaped
deformation of a layer of water is materialised initialising the water elevation by,

h(x, y, t = 0) = h0 + h1e
− x2 + y2

2 (b/b0)
2

(34)

The physical parameters are the same than ones summarised in the Tab.(1), as well as the space scaling
with an Eẗvös number again chosen to 1, giving a layer of water deformation elevation h1 = h0 = 2.725
mm, and a full width at tenth of maximum again fixed to b = 1.5h1. The computational domain is set to
[−50 mm, 50 mm]

2 and the simulation time to 5 ms.

Figure 9: Numerical simulations of capillary-gravity waves considering a two-dimensional Gaussian-shaped
deformation of a layer of water, using the proposed augmented model with parameters Eq.((29),(30)) and a
1600×1600 cells grid; (up) with the linearized capillary contribution; (down) with the full nonlinear capillary
contribution.

It can be observed in Figure (9) the axisymmetric propagation of capillary-gravity waves using the pro-
posed augmented shallow-water model Eq.(9,10) with formulas Eq.(29,30). The initial peak collapse on his
own weight and generate a train of capillary waves. The difference between the two models for the water
height h is plotted in Figure (10). It can be observed a maximum difference of 3%. If the same phenomena
as in the one-dimensional case can be observed, the initial chosen shape of the Gaussian deformation of the
water layer gives lower differences since axisymmetry reduces the capillary waves speed difference and the
phase shift generated.

The two-dimensional version behaves like the one-dimensional one, as it can be seen in Figure (11) and
in Figure (12). In the same way, the relative error for the auxiliary velocity magnitude ‖v‖ comparatively
to the recomputed one ‖vr‖ converges with the grid size, and is relatively low even for coarse meshes, with
a lower error using MUSCL reconstructions. In addition, it is also shown in Figure (10) a map of the
absolute difference showing no particular region with a big peak. The amounts of energy dissipation are only
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Figure 10: Same simulation than for the Figure (9) with half of the domain in each direction; (left) relative
difference between the water height for the two models; (right) absolute difference between the auxiliary
velocity magnitude ‖v‖ and the velocity magnitude ‖vr‖ recomputed from h and its gradient ∇h for the
same grid size.
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Figure 11: Relative error for the auxiliary velocity magnitude ‖v‖ in the L2 norm as a function of the
grid size, comparatively to the same velocity magnitude ‖vr‖ recomputed from h and its gradient ∇h for
the same grid size; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary
contribution.
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Figure 12: Amount of energy dissipation in percents as a function of the grid size, computed at the end of
the simulation following the formula E = gh2/2 + h ‖u‖2 /2 + h ‖v‖2 /2; (left) with the linearized capillary
contribution; (right) with the full nonlinear capillary contribution.

slightly higher than for the one-dimensional case. Again, the MUSCL reconstructions provide an extra rate
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of convergence near 2 for medium grid sizes before falling asymptotically to the theoretical rate of 1, which
finally gives approximately two orders of magnitude of difference if not using it.

This validate the application of the proposed augmented shallow water model Eq.(9,10) for both one- and
two-dimensional cases, with very similar numerical convergence behaviour.

4.4 Liquid film falling on a vertical wall
The purpose is now to apply our extended shallow water model with surface tension to a more realistic case of
simulation of a liquid film falling on a vertical wall. We are able to compare the resulting numerical solutions
with the solutions computed from the Auto07p software ([9]). The model used is the one developed by G.
Richard and al. [27] written here in non-dimensional form,

∂th+ ∂x (hu) = 0

∂t (hu) + ∂x

(
hu2 +

2

225
λ2h5 +

h2 cos θ

2Fr2

)
=

1

Re

(
λh− 3u

h

)
+

9

2Re
∂x (h∂xu) +

1

We
h∂xK

(35)

where K is the curvature, and its expression is ∂xxh in the linearized case and ∂x
(
∂xh/

√
1 + ∂xh2

)
in

the full nonlinear case. Scales are the film thickness hN and the Nusselt speed uN = gh2
N sin θ

/
(3ν) .

Dimensionless numbers are the Reynolds number Re = hNuN/ ν = gh3
N sin θ

/ (
3ν2
)
, the Froude number

Fr = uN/
√
ghN , the Weber number We = ρhNu

2
N

/
σ and λ = Re sin θ/ Fr2 = 3. The Kapitza dimensionless

number Ka = (σ/ρ) (g sin θ)
−1/3

ν−4/3 can be added such that Ka = Re4/3Fr2/3We−1.
We have constructed solitary wave solutions to (35) using the Auto07p software with the constraint of

a constant averaged thickness 〈h〉 = 1. The system of partial differential equations simplifies into ordinary
differential equations in the moving frame of reference ξ = x−ct, where c refers to the phase speed of the waves.
Travelling wave solutions to (35) correspond to limit cycles of the resulting autonomous dynamical system in
a phase space of dimension three spanned by the thickness h and its first and second derivatives. Limit cycles
are found by continuation starting from a Hopf bifurcation of a fixed point corresponding to the uniform-film
solution h = 1. Solitary waves are next obtained by increasing the period of the limit cycles. The parameters
retained are a vertical wall θ = π/2, a Reynolds number Re = 80, a Kapitza number Ka = 1000 and a length
L = 400 hN . The liquid corresponds to ν = 0.9310 10−6m2.s−1, ρ = 994.3 kg and σ = 0.019322N.m−1

and the gravitational acceleration to g = 9.81m.s−2. The Nusselt film thickness is hN = 0.27659mm so
that the length of the numerical domain is L = 110.636mm. The grid comprises 8000 mesh points with
spatial adaptation. The spatial discretization uses the method of orthogonal collocation using piecewise
polynomials with four collocation points per mesh intervals (2000 mesh intervals). The collocation points
are placed to equidistribute the local discretization error in the three-dimensional phase space, which ensures
refinement of the mesh at locations of steep gradients. Auto07p uses a predictor-corrector algorithm based
on a Keller’s pseudo-arc length continuation method that enables to detect bifurcations and folds. Details of
the algorithm can be found online at http://indy.cs.concordia.ca/auto/. Convergence was checked by
varying the error tolerances and the number of mesh cells.

Numerical simulations have been carried out using the extended shallow water model system (9,10) defined
in exactly the same way as in (29,30). The only differences are a different pressure term in the hyperbolic
system changing the Rusanov flux and the introduction of additional source terms treated implicitly simply
introducing them in the original linear system arising from the surface tension treatment. A periodic boundary
condition and an initial sinusoidal deformation of the film liquid at rest, taking care to a constant mass flow
rate, are prescribed. As we are only interested in whether the model is capable of reproducing the solutions
given by the Auto07p software, only simulations with a very fine mesh size of 25600 cells are presented here.
We can observe an almost perfect agreement between the solutions validating the good behaviour of the
proposed extended model regarding a produced exact solution from the resolution of ordinary differential
equations. It is not presented here but the liquid film deformations are perfectly stable in time.
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Figure 13: Liquid film falling on a vertical wall at Re = 80 and Ka = 1000; (top) Complete solutions
computed with the Auto07p software; (bottom) Comparison between the numerical solutions (one point
per ten considering 25600 cells) and the solution computed with the Auto07p software with a focus on the
capillary ripples; (left) with linearized curvature K in (35); (right) with full nonlinear curvature K in (35).

5 Conclusion and Perspectives
In this paper, we have introduced a new extended version of the shallow water equations with surface tension
which may be decomposed in two parts: a conservative hyperbolic part and a second order derivative part
which is skew-symmetric with respect to the L2 scalar product. This extended form is suitable for an
appropriate splitting method which allows for large gradients of fluid height. The formulation is valid for
any non linear form of the capillary energy as a functional of ‖∇h‖. In the case of deep gradient of the free
surface the new formulation make possible to deal with complete nonlinear capillary models.

The formulation allows to deal with the capillary terms as a semi-linear skew symmetric problem, and
thus associate a semi implicit resolution of the capillary terms, relaxing the time step restriction ∆t < Ch2

in the original formulation [24] and [3] which are restricted to quadratic forms of the capillary energy. We
expect that this property (semi linear implicit treatment of capillary terms) will ensure some robustness and
will be successful in the extension of this methodology to wetting problems as in the work of J. Lallement, P.
Trontin, C. Laurent and P. Villedieu published in [22] where ad hoc extension with some disjunction pressure
are proposed. We recently developed various 3 or 4 equations models (see [28]), for thin film models which are
extension of the Korteweg system introduced here. We expect that our formalism also apply to such systems.
Nevertheless the question of non-linear stability remains to study. In such case the natural extension of our
proofs relies on entropy estimate (related to the so called enstrophy introduced in [28]).

Finally it will be interesting to study possible applications to the solution of Benney type equations
obtained as relaxed system of the Shallow water system with friction source terms such as those studied in
[27]. This reads, starting from a simplified 2D version,{

∂th+ div (hu) = 0 (i)
∂t (hu) + div (hu⊗ u) +∇P = 1

εRe

(
λh− 3u

h

)
− div (∇h⊗∇pE) +∇ (hdiv (∇pE)) (ii)

gives after relaxation when ε→ 0

u = λ
h2

3
− εh

3
Re

(
−h2div

(
λ
h3

3

)
+ div

(
hλ

h2

3
⊗ λh

2

3

)
+∇P + div (∇h⊗∇pE)−∇ (hdiv (∇pE))

)
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and
∂th+ div (hu) = 0.

6 Appendix
In this section, we present the Proof of Lemma 2.1.

Part i) and iii) Equation satisfied by v. Let us first recall that v = α(q2)
√

σ(h)
h ∇h and therefore

hv = α(q2)
√
σ(h)h3/2 ∇h

h
:= α(q2)G(h)a,

with G(h) =
√
σ(h)h3/2 and a = ∇(log(h)). In order to write an evolution equation on hv, the first step is

to calculate evolution equations on a, G(h) and α(q2). For that purpose, we consider the mass conservation
law written as

∂th+ ut∇h+ hdiv(u) = 0. (36)

By dividing (36) by h and differentiating with respect to xi, i = 1, 2, one finds

∂ta +∇(uta) +∇(div(u)) = 0. (37)

By multiplying (36) by G′(h), one finds

∂tG(h) + ut∇G(h) = −hG′(h) div(u), G′(h) =
σ′(h)h3/2

2
√
σ(h)

+
3

2

√
σ(h)h. (38)

From (36), we find that ∇h satisfies

∂t∇h+ (ut∇)∇h = −div(h∇ut)−∇hdivu. (39)

The derivatives of q = ‖∇h‖ are given by

q ∂tq = (∇h)t∂t∇h, q ∂iq = (∇h)t∂i∇h, i = 1, 2.

This allows to calculate the equation on α(q2). Indeed, we can write:

∂tα(q2) + ut∇α(q2) = α′(q2)
(
∂tq

2 + (ut∇)q2
)

= 2α′(q2)(∇h)t
(
∂t∇h+ (ut∇)∇h

)
By substituting the value of ∂t∇h given by (39) into the former equation, one finds

∂tα(q2) + ut∇α(q2) = −2α′(q2)
(
(∇h)tdiv(h∇ut) + q2divu

)
. (40)

Finally, by using the fact that hv = α(q2)G(h)a, one finds that the advective term div(hv ⊗ u) is given by

div
(
α(q2)G(h)a⊗ u

)
= α(q2)G(h)

(
(ut∇)a + div(u)a

)
+ ((ut∇)(α(q2)G(h)))a.

We can now calculate the equation satisfied by v using formula (37)–(40). More precisely we have

∂t(hv) + div(hv ⊗ u) = ∂t
(
α(q2)G(h)a

)
+ div

(
α(q2)G(h)a⊗ u

)
= α(q2)G(h)

(
(∂t + ut∇)a + div(u)a

)
+
(
(∂t + ut∇)(α(q2)G(h))

)
a

= α(q2)G(h)
(
(ut∇)a + div(u)a−∇(uta + div(u))

)
−
(
α(q2)hG′(h)div(u) + 2G(h)α′(q2)((∇h)tdiv(h∇ut) + div(u)q2)

)
a

= α(q2)G(h)
(
(ut∇)a−∇(uta + div(u))

)
−
(

(
hG′(h)

G(h)
− 1)div(u) +

2α′(q2)

α(q2)
((∇h)tdiv(h∇ut) + div(u)q2)

)
hv.
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Note that we have the relation

α(q2)G(h)
(
(ut∇)a−∇(uta + div(u))

)
= −α(q2)G(h)

h
div(h∇ut)

and therefore, by using the relation hv = α(q2)G(h)a, one finds

∂t(hv) + div(hv ⊗ u) =−div(u)

(
hG′(h)

G(h)
− 1 +

2α′(q2)q2

α(q2)

)
hv

−2α′(q2)

α(q2)

(
h2v

α(q2)G(h)

)t
div(h∇ut)hv − α(q2)G(h)

h
div(h∇ut).

=−div(u)

(
hG′(h)

G(h)
− 1 +

2α′(q2)q2

α(q2)

)
hv

−
(

2α′(q2)

α(q2)2

h3

G(h)
v ⊗ v +

α(q2)G(h)

h
Id

)
div(h∇ut).

This yields the conclusion on the evolution of hv.

Equation satisfied by u. Let us first note that

p =
v

α(q2)

√
σ(h)

h

and therefore

∇pE = σ(h)
(
α(q2)2 + 2α(q2)α′(q2)‖p‖2

)
p =

√
σ(h)
√
h
(
α(q2) + 2α′(q2)q2

)
v

Next, we expand f(h,v)v and g(h,v) · v. First, one has

f(h,v)v =
√
σ(h)
√
h

(
2

α′(q2)h

α(q2)2σ(h)
‖v‖2 + α(q2)

)
v =

√
σ(h)
√
h
(
2α′q2 + α

)
v = ∇pE.

Now we observe that
p · ∇pE =

(
2α′(q2)q2 + α(q2)

)
α(q2)q2σ(h).

This yields

g (h,v) · v =

((
σ′(h)h

2σ(h)
+

1

2

)
+ 2

α′(q2)

α(q2)
q2

)
h‖v‖2

=

((
σ′(h)h

2σ(h)
+

1

2

)
α(q2) + 2α′(q2)q2

)
α(q2)q2σ(h)

=
(
2α′(q2)q2 + α(q2)

)
α(q2)q2σ(h)−

(
1− σ′(h)h

σ(h)

)
1

2
(α(q2))2q2σ(h)

and thus
g (h,v) · v = pt∇pE − (σ(h)− hσ′(h)) Ecap (q) .

Note that the momentum conservation equation of (2) can be written as:

∂t (hu) + div (hu⊗ u) +∇π = −div (∇h⊗∇pE) +∇ (hdiv (∇pE)) +∇ ((σ(h)− hσ′(h)) Ecap (‖∇h‖)) .

We now remark that

div
(
h∇(f(h,v)v)t

)
−∇(g(h,v) · v) = div

(
h∇(∇pE)t

)
−∇

(
pt∇pE − (σ(h)− hσ′(h)) Ecap (q)

)
.
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Then, by taking p = ∇h, we obtain

div (h∇(∇pE)t)−∇ (pt∇pE) = div (h∇(∇pE)t)−∇ ((∇h)t∇pE)
= −div (∇h⊗∇pE) +∇ (hdiv (∇pE))

and consequently the right-hand side of the momentum equation in the augmented system is :

div
(
h∇(f(h,v)v)t

)
−∇(g(h,v)tv) = −div (∇h⊗∇pE)+∇ (hdiv (∇pE))+∇ ((σ(h)− hσ′(h)) Ecap (‖∇h‖))

and the momentum equation in the original system is satisfied, which gives the conclusion on u for i).
Note that if (h,u) is regular enough and the initial velocity v0 satisfies

v0 = α(‖∇h0‖2)

√
σ(h0)

h0
∇h0

then v satisfies also (8) and (h,u) solves the original system.

Part ii). Recall that

Etot(U) =
1

2h

(
‖hu‖2 + ‖hv‖2

)
+ Φ (h)

where U is given by (9) and (
Φ

h

)′
=

π

h2
.

Let us consider the augmented system written as

∂tU + div (F (U)) = M (41)

with the first order part given by

U =

 h
hu
hv

 , F (U) =

 hu
hu⊗ u+ π (h) Id

hv ⊗ u


whereas the capillary term on the right hand side of (41) is given by

M =

 0
div (h∇(f(h,v)v)t)−∇(g(h,v)tv)
−f(h,v) div (h∇ut) − g(h,v) divu

 .

Note that the left-hand side of (41) is conservative and hyperbolic and the right-hand site is skew-symmetric
for the L2 scalar product. This properties is real important to allow an appropriate splitting method which
preserve the energy conservation at the discrete level.

The entropy variable V for the first order part of (41) is given by

V t = (∇UEtot)t =

(
−1

2

(
‖u‖2 + ‖v‖2

)
+ Φ′(h),ut,vt

)
.

The energy equation is thus

∂tEtot + div(u (Etot + π)) = (∇UEtot)tM
= utdiv

(
h∇(f(h,v)v)t

)
− ut∇(g(h,v)tv)

−vtf(h,v)div
(
h∇ut

)
− vtg(h,v)div (u)

= utdiv
(
h∇(f(h,v)v)t

)
− (f(h,v)v)tdiv

(
h∇ut

)
−div

(
ug(h,v)tv

)
= div

(
h(ut∇)(f(h,v)v)

)
− div

(
h
(
(f(h,v)v)t∇

)
u
)
− div

(
ug(h,v)tv

)
.
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Recall that f(h,v) · v = ∇pEtot and g (h,v) · v = pt∇pEtot − (σ − hσ′) Ecap (q) and therefore

∂t (Etot) + div (u (Etot + π)) = (div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))

−div (u(pt∇pEtot − (σ − hσ′) Ecap)) .

By chosing p = ∇h, we easily verify that

(div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))− div (upt∇pEtot)

= (div (h(ut∇)(∇pEtot))− div(h(∇pE
t
tot∇)u))− div (u(∇h)t∇pEtot)

= div (hdiv (∇pEtot)u)− div (div (hu)∇pEtot) .

Then we get

∂t (Etot) + div (u (Etot + π − (σ − hσ′) Ecap)) = div (hdiv (∇pEtot)u)− div (div (hu)∇pEtot)

which is exactly the formulation (6) of the Energy balance of the original system.
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