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Abstract—This paper presents a reinforcement learning based
framework for energy management and economic dispatch in
an islanded microgrid without any forecasting module. The
architecture of the algorithm is divided in two parts: a learning
phase trained by an optimized reinforcement learning algorithm
with a past and small dataset and the execution phase with a
dynamic decision tree created by the first step. One advantage of
this approach is to create an autonomous agent, able to react in
real-time, considering only the past, thus no forecasting algorithm
is needed. This framework was tested on real data acquired at
Ecole Polytechnique in France over a long period, with a large
diversity in the type of days considered. It showed near optimal,
efficient and stable results in each situation.

Index Terms—Microgrid, Energy Management System, Agent
Based, Supervised Learning, Reinforcement Learning

I. INTRODUCTION

For the electricity sector to adapt to climate change, and
be part of the solution, the sector will have to evolve toward
a smart and decarbonize electricity grid [1]. In this context,
we saw large integration of Distributed Energy Resources
(DERs) over the last past years including renewable energy
sources and storage units. Researched have found that a
large penetration of renewable energy could weaken the grid,
eventually causing blackouts, due to their intermittent nature.
To alleviate this problem, microgrid have been pushed as one
of the possible solution [2]. A microgrid is a single controlled
entity and has several advantages: maintaining the balance
of the utility grid, reducing the peak, reducing periods of
load variability, enhancing the power quality and reliability
services and decrease the feeder loses. Nevertheless, many
challenges must be overcome to deploy microgrids at scale.
Among those challenges, this paper focuses on: managing the
power dispatch in order to minimize the total cost operations,
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while maintaining the grid stability. As this study focuses on
the energy managenement optimization, the tertiary control
level of the hierarchical architecture, as proposed in [3]–[5] is
considered.

In the past few years, machine learning (ML), a branch
of artificial intelligence, became very popular and shows
promises in a number of areas [citation]. Reinforcement Learn-
ing (RL) is a branch of ML with the aim to develop agents
that can interact with an environment, and learn form it. It
is used for decision making under uncertainty and performs
well for sequential problems [6]–[8]. Reinforcement Learning
has already been proposed for microgrid in energy trading
market [9], distributed generation (DG) agents learning [10],
energy management [11]–[16]. This paper proposes a new RL
approach with a new term called ”Q-transfer”, explained in
Section IV, for economic dispatch problem combined with a
supervised learning algorithm to select the best policy in every
situation. This specific architecture algorithm has not been
studied and its advantages are: no large set of data is needed,
no forecast is needed, online and model-free algorithm, very
fast, almost in real-time, adaptive and scalable.

The paper is organized as follows: In Section II, the
microgrid case study is presented and the objective function,
constraints and hypothesis are defined. The Section III de-
scribes the architecture of this new approach/framework. In the
Section IV, we explain the reinforcement method followed by
the Section V, where we describes the decision tree algorithm
used to execute what the agent learns. Section VI presents the
results of the application proposed and finally a perspective
and conclusion are exposed in the Section VII.

II. DESIGN AND MODELING OF THE MICROGRID

The microgrid design for this study is simple in its archi-
tecture and in the number of DERs used but makes sense to



test the performance of the algorithm. The modeling and the
simulation is built on real databases provided by the TREND-
X research program of Ecole Polytechnique and from SIRTA
(http:/sirta.ipsl.fr), an Atmospheric Research Observatory, both
based in Palaiseau, France at 200 meters from each other. It
necessary to understand this paper as the first stone based on
a top-down logical approach for future works.

A. Microgrid and Units

The model is a remote microgrid which is not connected
to the distribution grid. It consists of solar renewable sources
only (PV), a set of batteries, a diesel generator (genset) and
loads. The different units used to the case study are defined
as (figure 1):
• PV: polycristallin solar pannels produce by Francewatts

company with a total power capacity of 15 kWp. The
panels come from the SIRTA observatory, they use an
MTTP.

• Genset: diesel generator Winco DR20I4 of 20 kW and
artificially create for the study

• Batteries: Tesla powerwall 2 of 60 kWh of usable ca-
pacity and artificially create for the study

• Loads: Real data come from the Ecole Polytechnique
Innovation building. The electricity consumption depicts
the start-up, workers and student usages.

Fig. 1. Structure of the studied Microgrid

B. Problem Statement

The paper wants to answer the economic dispatch problem
for the microgrid case study. It means minimizing the oper-
ational costs of the entire system while meet the demands
in proper time. The units describes in the previous section
must be managed by an supervisory entity called the Energy
Management System (EMS), with the intention of doing the
optimal instructions to save operation costs. The Figure 3
depicts the value of having a good algorithm inside the EMS
to handle the economic dispatch problem. As the algorithm
doesn’t works with a forecast to then define a scheduling of
a day ahead, each decision will be done directly regarding
the information given by the microgrid environment. For this
reason, this study doesn’t fall in the Unit Commitment problem
but both respect the same rules like keeping the power balance
between the supply and the demand.

C. Objective function

The objective function of the Microgrid EMS seeks to
minimize the power system costs into the operations over a
period of time (T) and it is formulated as min Jcost where:

Jcost =

T∑
t=0

|PB(t)| ∗ CB(t) + PG(t) ∗ CG(t)

+ PC(t) ∗ CC(t).
(1)

PB and CB represent the charge/discharge power (reason
why PB is write in absolute value) and the cost associated
of the set of batteries. PG and CG are the power output and
the cost associated of the diesel generator. Finally PC and
CC are the power and the cost during a crash because of
disturbance due to bad management. The time step is defined
by t. The study does not consider a cost for the solar panels
because it is included in the system and the unit does not need
smart operation management to optimize its cost (contrary
to batteries). Finally this study is not concerned by demand
response so the loads are not subject to shedding or shifting.

D. Constraints and Hypothesis

The main constraint is relative to the power balance in the
microgrid which must be satisfied:

PPV (t) + PB(t) + PG(t) = PL(t) (2)

where PPV (t) is the total power produced by the solar
panels and PL(t) is the power demand, at time step t. A
simplify dynamical battery storage is modeled as:

PBcap(t) = PBcap(t− 1)− PB(t) (3)

with positive value for PB if the battery discharges in the
microgrid and a negative one if it charge power from the
microgrid. It is not possible for the battery to be in a charge
and discharge modes during the same time step. It is described
as:

P+
B (t) + P−B (t) ≤ 1 (4)

where P+
B and P−B are binary variables. Furthermore, the

battery capacity must stay within its limits at any time:

PBmin ≤ PBcap(t) ≤ PBmax. (5)

The battery cost in e/kWh is related to the number of cycles
during its lifespan. The duration life of a battery is highly
affected by how the user exploits it in terms of charge and
discharge. The more the battery discharges deeply relative to
the overall capacity of the battery, the shorter its lifespan:
this notion is known as the “Depth of Discharge” (DoD). For
the study, we have considered an approximate fixed cost in
e/kWh, denoted m, according to [17].

CB(t) = m. (6)



The diesel generator is also a simplified model because
the fuel consumption is usually represented as a non linear
function. In this study, we consider it as a linear function,
thereby the cost CG is fixed, represented by the variable q and
only the delivered power is responsible for the diesel generator
cost, expressed by:

CG(t) = q. (7)

In addition, the genset must deliver an output power below
or equal to its maximum capabilities:

0 ≤ PG(t) ≤ PGmax (8)

knowing that if PG(t) is equal to zero, the genset is
considered in a turn off mode.

Finally the study managed a net demand PNet, which is
the difference between the power output of the solar panels
and the consumption of the school building. The demand is
feed first with the power production of renewable. The excess
or deficit following at each step is the amount of power to
supervise:

PNet(t) = PPV (t)− PL(t) (9)

III. REINFORCEMENT LEARNING TO CONTROL AN EMS

Reinforcement learning (RL) [18] is based on the idea of
learning to act in an optimal way by interacting with an
environment. To be more specific, let us assume a learning
agent (algorithm) that behaves sequentially along time t.
At each t, the agent perceives the state of its environment
st ∈ S, decides on an action at ∈ A to perform, emits it.
Subsequently, it observes a return rt and the new state of
the environment st+1. The return is defined by a function
that maps a state/action pair to the expected return when
action a is emitted in state s: R(s, a) = E[r(s, a)]. The agent
has to learn how to act in order to fullfill a task, that is
optimize a certain objective function: the most common such
objective function is

∑
t≥0 γ

trt, with γ ∈]0, 1[: maximizing
this objective implies maximizing the return in the future;
γ controls the extent to which we consider the future: the
larger γ, the longer term consequences of the current actions
are considered; if γ is small, γt quickly vanishes which
leads to disregard mid and long term consequences of curent
actions. The environment is usually supposed stochastic and
Markovian: the next state st+1 depends only on the current
state and the current action: P(st+1, st, at) = P[st+1|st, at].
The environment is usually assumed stationary.The state of
the environment perceived by the agent has to contain the
necessary information to determine the best action to perform
in the current state. The mapping state/best action is learned
by repeated interaction between the agent and its environment
in a trial-and-error fashion. In this paper, our goal is to design
such a learning agent able to learn to control a microgrid. A
microgrid is a stochastic, dynamic, sequential, continuous and
partially observable environment. Partial observability means
that the assumption that the agent has access to the true state

of the environment can not be met here. Then, it has to rely
on some information which is typically not enough to decide
deterministically on the best action to perform. This is a typical
situation when tackling a real problem with RL.

In summary, an RL agent solves a Markov Decision Prob-
lem (MDP) defined by a tuple (S,A,P,R, γ) in which P
and R are unknown. Now, we are showing how we model
the EMS with RL: the learning agent will learn how to
control (optimally) a microgrid. For this purpose, we define
the different elements of this tuple.

A. States

The state is the lens through which the agent perceives its
environment. The state design is decisive in the performance.
It should be as small as possible in order to be easily
manageable. It should contain all the information to choose
the best action to perform.

In our study, the state is defined as: s = (PNet, PBcap).
Only the net demand and the batteries capacity are enough

to describe the microgrid. It is important to keep in mind that
an action influences the next steps. If the agent decision is
to discharge, the battery capacity will be impacted. An hourly
action bring automatically the agent in the next hour for a new
decision.

B. Actions

The set of actions A considered in this study is:
• action 1 = Charge: batteries charge electricity.
• action 2 = Discharge: batteries discharge electricity.
• action 3 = Genset: genset is turned on and produces

electricity.
• action 4 = Do nothing.

C. Reward function

The return characterizes the achievement of the task and also
constraints. It is represented as a real value. In the study the
current reward is associated with the cost of the unit which
is used to manage the net demand PNet. Each unit has its
own cost and we also consider a cost if the constraints are not
respected. This cost does not represent a real cost because it
is complicated to estimate the damage due to a crash but it
is forced at a very low level in order to advise the agent of a
bad choice in the action selection in a certain situation. The
Equation 11 below represents the reward conditional function:

r(s, a) =


m, if charge or discharge the battery
q, if power produced by the genset
0, if do nothing if well called
c, if the constraints are not respected

(10)

D. Q-Learning: a reinforcement learning algorithm

Q-learning is an algorithm to solve an RL problem, that
is compute its optimal policy. A policy assigns a probability
distribution to each state on the set of actions. In the case
of MDPs we consider in this paper, it is well-known that



the optimal policy is a deterministic mapping from the set
of states to the set of actions: in each state, there is one
best action (or several strictly equivalent optimal actions). We
denote this policy π, π(s) being this best action for state s.
A key concept is the “value” of a state-action pair which
formalizes how good it is for the agent to emit a certain
action a be in a state s, with regards to the optimization
of the objective function, that is the fullfillment of its task
[19]. This value is denoted Q(s, a). This value depends on
the policy π followed by the agent, hence Q(s, a) is really
Q(s, a, π) usually denoted Qπ(s, a) to emphasize the different
nature of the parameters of Q. More formally, we have:
Qπ(s, a) = E[r(s, a) + γmaxa′ Q

π(s′, a′)] known as the
Bellman equation. Let us denote the optimal policy π∗ and
its Q function Q∗. We have π∗(s) = arg maxaQ

∗(s, a). Q∗

can be learned iteratively through a stochastic approximation
similar to a gradient descent algorithm which main iteration
is:

Qt+1(s, a) =Qt(s, a) + α[rt+1 + γmax
a

Q(st+1, a)

−Qt(s, a)]
(11)

The series Qt converges under suitable assumptions to Q∗.
This equation is the essence of the Q-Learning algorithm.
Q is a function and has to be represented somehow. In this

work, the estimate of Q is stored in a table. This Q-table
is initialized randomly. Then, as the agent interacts with its
environment, it updates the Q values with eq. (11). Gradually,
the agent will learn the Q value of the optimal policy. For the
task at hand, we will repeat several such episodes going from
the initial state to a terminal state. Q-Learning is expressed
more precisely in algorithm 1.

Algorithm 1 Q-Learning
Set hyperparameters : α ∈ [0, 1], ε > 0
Initialize Q(s, a), ∀(s, a) ∈ S ×A.
for each episode do

Initialize the agent (s0); t← 0
while Terminal state not reached do

Choose at for st using Q
Emit action at, observe rt, st+1

Update Q using (11)
end while

end for

The last important point concerns the choice of the action.
As said above, RL is based on trial-and-error. Hence, initially,
the agent has to try the various actions (explore the set of
actions) and, as it learns, focus more and more on seemingly
best actions (exploit the acquired knowledge). There are dif-
ferent methods to deal with this problem. The one chosen is
called the “ε-greedy method” (see line 6 of algorithm 1). After
enough iterations, the learning agent converges toward a good
policy.

E. Q-transfer: a new way of optimizing the algorithm

The agent must learn over the last 4 days, selected by the
execution day that the EMS will manage. To speed up the
convergence a new approach is presented here as Q-transfer.
Instead of learning the four days directly, the method suggests
to split the learning phase by day. Each day improve the
learning of the next one. The principle is the agent transfers
his ”day 1 Q-table knowledge” trained to initialize a new Q-
table for the next 24 hours: day 2. Thereby, the agent divide
his way of learning. Instead of tackle directly the problem of
dispatch power over 96 hours, the study proposes to address
the problem by a one day training, understand it very well by
playing several episodes and then pass what the agent learns
for the new training day. And so on and so forth until the
fourth day. It was proved that the ability decision making of
the agent has robustly enhanced. The Figure 7 depicts the mean
cost evolution over number of iterations between a Q-transfer
approach and a classical approach. The convergence is speed
up by 10 times with Q-transfer.

Fig. 2. Benchmark speed convergence between Q-transfer and classical
approach

IV. DECISION TREE, THE PERFORMER

At the end of the learning phase, a Q-Knowledge or QFinal
table is transmitted to the execution phase in order to extract
the understanding gained with the Q-Learning algorithm. The
maximum state-action value for each state is store in a new
memory variable to keep only the state and the best action
associated. This new data - corresponding of the best agent
interactions into the simulated microgrid - feeds a decision
tree algorithm. The aim is to provide the ability to generalize
some experiences during the training phase into general rules.
These rules will be crucial to decide the action for each time
step during the execution day. The advantage of generalize is
to give the possibility at the agent to make a good decision
even if he never meets a situation before.



A decision tree is a non-parametric supervised learning
algorithm for regression and classification. The training data
consists of input/feature (state) and output/target (action) vari-
ables used to create rules in order to design a prediction model.
The model is created by partitioning the training data and
a prediction model is made at each division. The decision
tree looks like a flowchart diagram where the terminal nodes
represents the target decisions (the agent action), and the
internal nodes the attributes (the environment states) with
thresholds. There are different algorithms (ID3, C4.5, C5.0,
...) for constructing a tree, but the one used for the study is
CART (Classification and Regression Trees) [20]. The latter
is a binary tree construction, means at each node only two
branches are created. Once the Q-Knowledge feeds the CART
decision tree algorithm, decision rules describes by a flowchart
are created as depicted in the Figure 8.

V. RESULTS OF THE STUDY

Regarding the performance of the global algorithm, it is
important to split it into two parts. One section for validate
the training phase performance with Q-Learning algorithm and
another one for the testing phase, which is the main result to
answer the objective function write of the study. The study
will be done over one random weekday during one year to
validate the interest of the algorithm. Thus, the period of time
(T) is equal to 52 weeks, beginning the 07/15/2016 . After
run through an execution day, a Q-Learning algorithm is still
performs to calculate the optimal cost. The difference between
the cost obtains with the execution phase (decision tree) and
the latter will be the cost performance error, note Err. The
error will be cumulated over T. Higher is the error, lower is
the algorithm interest to respond at the objective function. The
result will be compared with a human decision making. Below
is describes the algorithm performance error:

Errtotal =

51∑
t=0

Err(t) (12)

A. Training phase result

First of all, the Q-Learning algorithm must to be imple-
mented with manually hyperparameters. For the study, it is
decided to use α = 0.2 decreasing with pair state-action
encountered, γ = 0.5 and ε = 0.99 decreasing with time. An
episode go on 24 hours, namely 24 time steps. The number
of episode starts at 200 for the first day and decreases by 30
for the following days. Recall that the Q-Learning is performs
over the past 4 weekdays. The Q-transfer is achieved between
each day. To measure the performance of the algorithm, the
cost function is calculated and the optimal one as well. A good
Q-Learning algorithm is necessary to produces a good decision
tree for the execution day. In order to follow the agent learning
development, the curve in the Figure 9 and 10 are drawn.

It describes the ”mean cumulative reward” over the number
of episode. We observe that during the first part, the curve
decreases because the agent wants to explore his environment.
At a moment the agent understood and learned from it,

Fig. 3. Cumulated reward for the 1st day (left) and 4th day (right)

involving an enhanced decision making and increasing the
mean cumulative reward until the end. Notice that the agent
needs less exploration at the fourth day to learns from the
environment compared to the 1st day because of the Q-transfer.
The training phase algorithm obtains an optimal result over
each days. It means that the algorithm performs very well
and converges every time to the global optimum. The time
for computing the entire training phase is equal to 2 seconds.
The size of the Q-Knowledge table acquired is equal to 73.824
KB.

B. Testing phase results

Once the Q-Knowledge table is obtained, a CART decision
tree algorithm is implemented. The latter will be conserved
without any modification throughout the execution day. To test
the algorithm performance, the global error Errtotal will be
calculated at the end of the 52nd week. The figure 11 describes
this process:

The study is run over one hundred time in order to observe
the standard deviation between each attempt. The mean of
the Jcost obtained by training the EMS with an optimized Q-
Learning and a CART decision tree is equal to 6491.8 e. The
Optimal cost calculated with an Q-Learning algorithm at each
execution day is equal to 6452.50 e. That gives us in average
an Errtotal of 39.3 e for 52 weekdays energy management
with an average standard deviation of 1.90e.

In order to validate the decision tree algorithm, the study
have been tested over different approximation methods. The
barchart below presents the Errtotal for each method during
only one attempt (which is enough to validate a method).

Finally, the case study have been perform by a human to
compare the performance between them. It shows that the
human beat the algorithm but with only few savings and a
lot of time.

VI. PERSPECTIVES AND CONCLUSION

An optimized Reinforcement Learning combined with a
Decision Tree method have been proposed in this paper in
order to learns properly an agent to manage the power dispatch
into a microgrid environment simulated during a long period
of time. The approach don’t requires a forecast model for
mapping the future to implement an optimization method
to resolve the problem of economic dispatch. Even if the
case study model is simple compared to a real microgrid,
the new framework presented reveal very good results, with



Fig. 4. Benchmark Approximation Methods to the case study

only 0.6% of error and a very short time computation. With
only four weeks the agent can understand the net demand
distribution of a day, take action over them to then reinforce
his knowledge. An approximation method is necessary to
generalize the agent behavior regarding what he learns during
the training phase in order to act properly during the execution
day. Nevertheless, the study muste be enhanced by taking into
account realistic simulation of the different microgrid units
and brings not deterministic states and actions but continuous
ones. Furthermore, the study could be improve by decrease
the temporal horizon in minutes. Adding a multi-timescale
forecast algorithm into this framework will be beneficial in
order to get set-point for instance to the battery level. A
next step should be having an algorithm which can acts in
islanded and connected mode depending of the distribution
level operations. And finally, multi-agent system based on this
approach could be interesting to study in order to adding a
better plug and play ability to the energy management system.
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