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A STABILITY PROPERTY FOR A MONO-DIMENSIONAL THREE

VELOCITIES SCHEME WITH RELATIVE VELOCITY

FRANÇOIS DUBOIS1,2, BENJAMIN GRAILLE2, AND S. V. RAGHURAMA RAO3

Abstract. In this contribution, we study a stability notion for a fundamental
linear one-dimensional lattice Boltzmann scheme, this notion being related to

the maximum principle. We seek to characterize the parameters of the scheme
that guarantee the preservation of the non-negativity of the particle distribution

functions. In the context of the relative velocity schemes, we derive necessary

and sufficient conditions for the non-negativity preserving property. These con-
ditions are then expressed in a simple way when the relative velocity is reduced

to zero. For the general case, we propose some simple necessary conditions on

the relaxation parameters and we put in evidence numerically the non-negativity
preserving regions. Numerical experiments show finally that no oscillations oc-

cur for the propagation of a non-smooth profile if the non-negativity preserving

property is satisfied.

1. Introduction

Studying stability of lattice Boltzmann schemes is a non-trivial problem. Classi-
cally for this purpose, the scheme is linearized around a constant state and a Fourier
analysis is performed. We refer to the work of Lallemand and Luo [9] for the D2Q9
scheme applied to hydrodynamics. Note also the work of Ginzburg et al. [8] extend-
ing the Fourier analysis to a wide variety of different two and three dimensional lattice
Boltzmann schemes. Instabilities and their interpretattion in terms of bulk viscosity
has been proposed by Dellar [2]. But no mathematical analysis has been performed.

A new way of improving stability is proposed by Geier [7], who proposed a new
generalized lattice Boltzmann scheme with the approach of relative velocities and
utilized it for hydrodynamics applications [4]. The tentative of analysis of this method
for a two-dimensional scalar linear equation has been also proposed [5].

Even if it is a difficult task, it is well known that Fourier analysis is not the
best method for analyzing nonlinear hyperbolic equations. Total variation diminish-
ing schemes, developed for suppressing oscillations in higher order CFD algorithms,
provide an alternative nonlinear stability analysis tool for analysing the schemes for
nonlinear wave propagation. The convergence of such schemes is well established [10].
The underlying stability notion concerns the maximum principle. This notion can be
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STABILITY OF THE D1Q3 WITH RELATIVE VELOCITY

extended to nonlinear cases and a first attempt has been proposed in [1] for lattice
Boltzmann schemes for the D1Q2 scheme for scalar nonlinear hyperbolic equations.

In this contribution, we propose to investigate the stability in the maximum sense,
of a linear mono-dimensional lattice Boltzmann scheme with three velocities. More
precisely, we look to a positivity constraint for a particle distribution function in the
context of a relative velocities.

In Section 2, we describe the scheme and the underlying advection model. More
precisely, the local relaxation step is written as a linear operator on the particle
distribution functions. If all the coefficients of the underlying matrix are nonnegative,
the non-negativity of the distribution is maintained during this step. Because the
transport step is just a change of locus, the non-negativity is maintained for the
whole time step of the scheme. The question is then to find appropriate conditions
to handle this property. In Section 3, a necessary and sufficient condition is derived
on the parameters in order to ensure that the scheme has the stability property.
In Section 4, we completely describe the classical case where the relative velocity
is reduced to zero. In Section 5, the general case is presented. With an analytical
study for necessary conditions and a numerical one for a complete description of
the stability zones. In Section 6, numerical experiments show the correlation of the
positivity constraint for a particle distribution and the presence of oscillations for
discontinuous profiles.

2. Description of the framework

2.1. Description of the scheme. In this contribution, we investigate a mono-
dimensional three velocities linear lattice Boltzmann scheme with relative velocity
[4]. Denoting ∆x the spatial step, ∆t the time step, and λ = ∆x/∆t the lattive
velocity, this scheme can be described in a generalized D. d’Humière’s framework [3]:

(1) the 3 velocities c1 = −1, c2 = 0, and c3 = 1;
(2) the 3 associated distributions f1, f2, and f3;
(3) the 3 moments ρ, q(u), and ε(u) given by

ρ =
∑

1≤j≤3

fj , q(u) = λ
∑

1≤j≤3

(cj − u)fj , ε(u) = 3λ2
∑

1≤j≤3

(cj − u)2fj − 2λ2
∑

1≤j≤3

fj ,

where u is a given scalar representing the relative velocity;
(4) the equilibrium value of the 3 moments

ρeq = ρ, qeq(u) = λ(V − u)ρ, εeq(u) = λ2(3u2 − 6uV + α)ρ,

where V and α are given scalars (without loose of generality, we assume that
V > 0);

(5) the 2 relaxation parameters s and s′ such that the relaxation phase reads

q?(u) = (1− s)q(u) + sqeq(u), ε?(u) = (1− s′)ε(u) + s′εeq(u).

In this formalism, the moments are defined as polynomial functions of the discrete
velocities and the discrete distribution functions. Indeed, introducting P1 = 1, P2 =
λX, and P3 = λ2(3X2 − 2), the three moments read

ρ =
∑

1≤j≤3

P1(cj − u)fj , q(u) =
∑

1≤j≤3

P2(cj − u)fj , ε(u) =
∑

1≤j≤3

P3(cj − u)fj .

The equilibrium values are chosen such that the equilibrium distributions do not
depend on the relative velocity u. Indeed, we have:

f eqj = 1
6ρ
(
2 + 3cjV + (3c2j − 2)α

)
, 1 ≤ j ≤ 3.
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Note that this scheme can be used (see e.g. [6]) to simulate a scalar transport equation
with constant velocity λV given by

∂tρ+ λV ∂xρ = 0.

Denoting xk = k∆x, k ∈ Z, the discret spatial points and tn = n∆t, n ∈ N, the
discret time points, one time step of the scheme reads

fj(t
n + ∆t, xk + cj∆t) = fj(t

n+1, xk+j) = f?j (tn, xk), 1 ≤ j ≤ 3.

2.2. Matrix notation for the relaxation step. In this contribution, we are con-
cerned with the non-negativity of the particle distribution functions. This property
can be viewed as refering to a weak maximum principle for linear schemes. Indeed,
it is always possible, by adding a constant, to assume that all the particle distribu-
tion functions are initialy nonnegative. If the scheme ensures that this property of
non-negativity remains as time marches, each particle distribution function is then
bounded, as their total sum is conserved. Moreover, as the transport step consists
simply in exchanging the position of the particle distribution functions, we focus on
the relaxation step.

We use a matrix notation for the relaxation step as it can be read as a multiplication
by a matrix. As this step is local in space, we omit the dependancy on time and space.
We define the vector of the distribution functions f

f = (f1 f2 f3)T .

One relaxation step then reads

f? = R(u)f ,

where the matrix R(u) is defined by

R(u) = M−1T (−u)
(
I + S

(
T (u)ET (−u)− I

))
T (u)M ,

with

M =

 1 1 1
−λ 0 λ
λ2 −2λ2 λ2

 , T (u) =

 1 0 0
−λu 1 0

3λ2u2 −6λu 1

 ,

S =

0 0 0
0 s 0
0 0 s′

 , E =

 1 0 0
V λ 0 0
αλ2 0 0

 , I =

1 0 0
0 1 0
0 0 1

 .

The coefficients of the matrix M are obtained by the relations Mk,j = Pk(cj),
1 ≤ k, j ≤ 3 and those of the matrix T (u) by the change of basis formula: T (u)k,l is
the coefficient of the lth-element Pl(cj) in the definition of Pk(cj − u) according to

Pk(cj − u) =
∑

1≤l≤3

T (u)k,lPl(cj), 1 ≤ k, j ≤ 3.

The matrix M is then the change of basis that transforms the vector f into the vector
m(0) = (ρ, q(0), ε(0))T :

m(0) = Mf , m(u) = T (u)Mf .

The matrix T (u) can then be viewed as the change of basis matrix from the classical
moments without relative velocity toward the moments with relative velocity.
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2.3. Remark on the choice of the moments. Note that the last moment ε(u)
that is chosen in this contribution is not the energy but a moment that is orthogonal
to the two first ones, ρ and q(u). In this section, we show that all the results of
the contribution would be identical by choosing the last moment as the energy: the
relaxation matrix R(u) would still be the same.

We consider two schemes with two different choices of polynomials: the moments
of the first scheme are defined by (P1, P2, P3) while the moments of the second scheme

by (P̂1, P̂2, P̂3). The first moment is the same in both schemes to be able to simulate

the same transport equation. We then have P̂1 = P1. We define C the change of

basis matrix associated to the tranformation M into M̂ :

M̂ = CM .

The first line of C is then (1, 0, 0).

Proposition 1. We assume that the equilibrium values of the distribution functions

are the same, that is Ê = CE, and that the relaxation parameters are the same, that

is Ŝ = CS. Then, we have R̂(u) = R(u) for all (s, s′) iff

P̂2 ∈ Span(P1, P2), P̂3 ∈ Span(P1, P3), in R[X]/X(X − 1)(X + 1).

Proof. First, we immediately obtain the following relations by identifying the coeffi-

cients of M̂ and of M :

P̂k(cj) =
∑

1≤l≤3

Ck,lPl(cj), 1 ≤ j ≤ 3.

We deduce that

T̂ (u) = CT (u)C−1.

Moreover, as the second and the third columns of E are zero (the equilibrium values
depend only on the first moment ρ), and as the first line of C is then (1, 0, 0), we have

EC = E.

We have

R̂(u) = M̂
−1

T̂ (−u)
(
I + Ŝ

(
T̂ (u)ÊT̂ (−u)− I

))
T̂ (u)M̂

= M−1T (−u)C−1
(
I + S

(
CT (u)ECT (−u)C−1 − I

))
CT (u)M

= M−1T (−u)
(
I + C−1SC

(
T (u)ET (−u)− I

))
T (u)M .

Then

R̂(u)−R(u) = M−1T (u)C−1
(
SC −CS

)
T (u)

(
E − I

)
M .

As the matrices M , T (u), and C are invertible, the condition R̂(u) = R(u) is equiv-
alent to (SC −CS)T (u)(E − I) = 0. Denoting

C =

 1 0 0
c21 c22 c23
c31 c32 c33

 ,

a straightforward calculation yields

(SC −CS)T (u)(E − I) = (s− s′)

 0 0 0
c23λ

2(α− 6V ) c236λu −c23
c32λV −c32 0

 .
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Then the property R̂(u) = R(u) for all values of s and s′ is equivalent to c23 = c32 = 0,
that ends the proof. �

2.4. Positivity of the R(u) matrix. The velocity V being fixed, we propose to give
a full description of the sets

ΩV,u =
{

(s, s′, α) ∈ R4 such that R(u) is a non-negative matrix
}
, u ∈ R.

Indeed, the non-negativity of the matrix R(u) imposes that all the distributions fj ,
1 ≤ j ≤ 3, remain non-negative if they are so at the initial time. These sets are first
described by a set of nine inequalities that can be joined into just one. Numerical
illustrations are then given to visualize it in the characteristic cases including SRT,
MRT, and relative velocity scheme.

3. Positivity of the iterative matrix

The nine inequalities obtained from the matrix R(u) can be combined neatly into
one formula.

The inequalities are

(1)



R0,0 = V su− 1
2V s− V s′u+ 1

6αs
′ + su− 1

2s− s′u− 1
6s
′ + 1 > 0,

R0,1 = V su− 1
2V s− V s′u+ 1

6αs
′ + 1

3s
′ > 0,

R0,2 = V su− 1
2V s− V s′u+ 1

6αs
′ − su+ 1

2s+ s′u− 1
6s
′ > 0,

R1,0 = −2V su+ 2V s′u− 1
3αs

′ − 2su+ 2s′u+ 1
3s
′ > 0,

R1,1 = −2V su+ 2V s′u− 1
3αs

′ − 1
32s′ + 1 > 0,

R1,2 = −2V su+ 2V s′u− 1
3αs

′ + 2su− 2s′u+ 1
3s
′ > 0,

R2,0 = V su+ 1
2V s− V s′u+ 1

6αs
′ + su+ 1

2s− s′u− 1
6s
′ > 0,

R2,1 = V su+ 1
2V s− V s′u+ 1

6αs
′ + 1

3s
′ > 0,

R2,2 = V su+ 1
2V s− V s′u+ 1

6αs
′ − su− 1

2s+ s′u− 1
6s
′ + 1 > 0.

We prove now that the previous nine inequalities can be written in a much more lucid
way.

Proposition 2. We introduce the reduced parameters u and γ according to

(2) u = 2u(s− s′), γ =
s′

6
(1− α)− u(s− s′)V.

Then the nine previous inequalities Ri,j ≥ 0 displayed in (1) are equivalent to

(3) max(s′ − 1, |u|) ≤ 2γ ≤ min(2− s− |u− sV |, s− |u+ sV |, s′ − |sV |).
Proof. Consider first the two inequalities associated with R0,0 and R2,2:{

V su− V s′u+ 1
6αs

′ − 1
2s− 1

6s
′ + 1 > 1

2V s− su+ s′u,

V su− V s′u+ 1
6αs

′ − 1
2s− 1

6s
′ + 1 > − 1

2V s+ su− s′u.
They can be synthetized in the following form

1
2 |u− V s| ≤ 1− 1

2s−
(
1
6s
′(1− α) + u(s′ − s)V

)
= 1− 1

2s− γ
and we can write this relation as

(4) 2γ ≤ 2− s− |u− sV |.

F. Dubois, B. Graille, and S.V.R. Rao 5
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Write now the inequalities (1) associated with R0,1 and R2,1:{
V su− V s′u+ 1

6αs
′ + 1

3s
′ > 1

2V s,

V su− V s′u+ 1
6αs

′ + 1
3s
′ > − 1

2V s.

In other words, |V s/2| ≤ −γ + s′/2. Then

(5) 2γ ≤ s′ − |sV |.
We now focus on the inequalities (1) associated with R0,2 and R2,0:{

V su− V s′u+ 1
6αs

′ + 1
2s− 1

6s
′ > 1

2V s+ su− s′u,
V su− V s′u+ 1

6αs
′ + 1

2s− 1
6s
′ > − 1

2V s− su+ s′u.

We have |V s/2+su−s′u| ≤ V su−V s′u+αs′/6+s/2−s′/6 = s/2−γ. In consequence,

(6) 2γ ≤ s− |u+ sV |.
Considering the inequalities (1) with R1,0 and R1,2, we have{

−V su+ V s′u− 1
6αs

′ + 1
6s
′ > su− s′u,

−V su+ V s′u− 1
6αs

′ + 1
6s
′ > −su+ s′u,

and |u/2| ≤ −V su+ V s′u− αs′/6 + s′/6 = γ. In consequence,

(7) |u| ≤ 2γ.

The last inequality R1,1 ≥ 0 can be written as −V su+V s′u−αs′/6−s′/3+1/2 > 0
and this inequality is equivalent to γ − s′/2 + 1/2 > 0. In other terms,

(8) s′ − 1 ≤ 2γ.

The inequalities (4), (5), and (6) establish a triple majoration of 2γ whereas the
inequalities (7) and (8) show a double minoration of the same quantity. The proof is
completed. �

4. The particular case u = 0

In this section, we suppose that the relative velocity u is reduced to zero. Then
the necessary and sufficient conditions (3) for the stability can be written as

(9) max(s′ − 1, 0) ≤ s′

3
(1− α) ≤ min(2− s− |sV |, s− |sV |, s′ − |sV |).

Proposition 3. To fix the ideas, we suppose that the advection velocity V is non-
negative:

(10) V ≥ 0.

The case V ≤ 0 follows directly. When u = 0, the reduced stability conditions

(11) max(s′ − 1, 0) ≤ min(2− s− |sV |, s− |sV |, s′ − |sV |).
are equivalent to the following conditions for the relaxation parameters

(12)


0 ≤ s, s′ ≤ 2,

s′ ≥ sV,
s ≤ 2/(1 + V ),

s′ ≤ min(3− (1 + V )s, 1 + (1− V )s)

F. Dubois, B. Graille, and S.V.R. Rao 6
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s
0 22

1+V

0

1

2
s′ s′ = 3− (1 + V ) s s′ = 1 + (1 + V ) s

s′ = V s

Figure 1. Necessary and sufficient stability regions described by the
inequalities (11) for a null relative velocity u. Illustration proposed
for V = 2/3.

joined with a natural Courant type condition for explicit schemes on the advection
velocity

(13) V ≤ 1.

Of course, the conditions (9) have still to be imposed for the equilibrium parameter
α when the pair s, s′ is given. In particular,

(14) α ≤ 1

and

(15) s′ ≤ 3

α+ 2
.

Proof. We first observe that 0 ≤ max(s′ − 1, 0) ≤ |sV | ≤ min(2 − s, s). Then 0 ≤
s ≤ 2. Secondly, we have |sV | ≤ s′ and because both s and V are positive, we have
0 ≤ sV ≤ s′. We have also sV ≤ s and (13) is established.

Moreover, s ≥ 0 and |sV | ≤ 2−s implies s ≤ 2/(1+V ). Due to the positivity of the
parameter s, we deduce from (9) a new set of inequalities: s′ − 1 ≤ max(s′ − 1, 0) ≤
min(2 − s − sV, s − sV ). Then s′ ≤ min(3 − (1 + V )s, 1 + (1 − V )s. Moreover,
s′ ≤ 3− (1 + V )s ≤ 2 because V ≥ 0.

Conversely, if the relations (12) and (13) are satisfied, we have s′− 1 ≤ 2− s− sV ,
s′ − 1 ≤ s− sV and s′ − 1 ≤ s′ − sV . Then s′ − 1 ≤ min(2− s− sV, s− sV, s′ − sV .
Moreover, 0 ≤ 2 − s − sV , 0 ≤ s − sV because V ≤ 1 and 0 ≤ s′ − sV . Thus
0 ≤ min(2− s− sV, s− sV, s′ − sV .

Finally the inequalities (11) are established and the proposition is proven. �

5. The general case

We analyse the general case of non-zero u in this section, with suitable illustrations
of the stability region for various ranges of the parameters.

5.1. Necessary conditions for stability. In this subsection, we prove the following
proposition.

Proposition 4. We suppose that the necessary and sufficient stability conditions (3)
are satisfied:

max(s′ − 1, |u|) ≤ 2γ ≤ min(2− s− |u− sV |, s− |u+ sV |, s′ − |sV |)

F. Dubois, B. Graille, and S.V.R. Rao 7
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with the notations (2):

u = 2u(s− s′), γ =
s′

6
(1− α)− u(s− s′)V.

We suppose also that the advection velicity = V is positive. Then if the scheme is
stable, the point (s, s′) satisfies the following inequalities

(16)



0 ≤ sV ≤ s′ ≤ 2

0 ≤ sV ≤ 1

0 ≤ s ≤ 2

s′ ≤ min(2− sV, s+ 1, 3− s)
s ≤ 2/(1 + V ).

With these necessary stability conditions, the parameter u has been eliminated. We
have also, necessarily

(17) V ≤ 1

and

(18) |u| ≤ 1

2
.

Proof. We start from the inequalities (3). Then we have 0 ≤ |u| ≤ max(s′ − 1, |u|) ≤
min(2 − s − |u − sV |, s − |u + sV |, s′ − |sV |) ≤ s′ − |sV | and s′ ≥ |sV | ≥ sV . With
the same type of inequalities, |u|+ |u− sV | ≤ 2− s and |u|+ |u+ sV | ≤ s.

If we remark that |u| ≤ |u−sV |/2+|u+sV |/2, we deduce that |u| ≤ (2−s+s)/2 = 1
and the inequality (18) is proven.

We have the triangular inequality |sV | ≤ |u − sV | + |u|. Then from the genaral
stability conditions (3), we deduce |u−sV |+ |u| ≤ 2−s and |sV | ≤ 2−s. In a similar
way, |sV | ≤ |u + sV | + |u|, |u + sV | + |u| ≤ s from (3) and finally |sV | ≤ 2 − s. We
put together the two inequalities and we have 0 ≤ |sV | ≤ min(s, 2− s).

In consequence, we have 0 ≤ s ≤ 2 and the third point is proven. Since we made
the choice of V ≥ 0 then s ≥ 0. The first inequality of the two first points are
established. From sV ≤ s we have V ≤ 1 and the relation (17) is true. Moreover,
sV ≤ 2− s and the last inequality of (16) is true.

Consider now the inequalities s′− 1 ≤ 2γ ≤ min(2− s−|u− sV |, s−|u+ sV |). We
deduce s′− 1 + |u− sV | ≤ 2− s and s′− 1 + |u+ sV | ≤ s. Due to the positvity of the
absolute values, we have also s′ ≤ 3− s and s′ ≤ s+ 1. A part of the fifth inequality
of (16) is proven.

Finally, due to the triangular inequality, sV = |sV | ≤ |u − sV |/2 + |u + sV |/2.
We add this inequality with the two following ones: s′ − 1 + |u − sV | ≤ 2 − s and
s′− 1 + |u+ sV | ≤ s. Then s′− 1 + sV ≤ (2− s+ s)/2 = 1 and s′ ≤ 2− sV . The fifth
inequality of (16) is completely established. Because sV ≥ 0, we have also s′ ≤ 2 and
the first inequality of (16) is also established. �

We illustrate the zones of necessary stability in the Figure 2 for five particular
velocities: V ∈ {0, 1/4, 1/3, 1/2, 2/3, 1}.
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s′ = 3− s

s
0 22

1+V

0

1

2
s′ s′ = s + 1

s′ = 2− V s
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s′ = 3− s

s
0 22

1+V

0

1

2
s′ s′ = s + 1

s′ = 2− V s

s′ = V s

s′ = 3− s

s
0 22

1+V

0

1

2
s′ s′ = s + 1

s′ = 2− V s

s′ = V s

s
0 22

1+V

0

1

2
s′ s′ = s + 1

s′ = 2− V s

s′ = V s

s
0 22

1+V
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s′ = V s

Figure 2. Necessary stability regions given by inequalities (16) for
V = 0 (top-left), V = 1/4 (top-right), V = 1/3 (middle-left), V =
1/2 (middle-right), V = 2/3 (bottom-left), V = 1 (bottom-right).
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5.2. Numerical study of necessary and sufficient conditions for stability.
We now illustrate the necessary and sufficient stability regions for V = 0, V = 1/4,
V = 1/3, V = 1/2, V = 2/3, and V = 1 for various ranges of u in the Figure 3.
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Figure 3. Nunerical study of necessary and sufficient stability regions
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For each value of the velocity V , the necessary and sufficient stability regions
given by the relations (3) are displayed for several values of the relative velocity:
u ∈ {−2V,−V, 0, V/2, V, 2V }. In dotted line, the necessary stability region of the
Proposition 4 is added for remind. The particular value u = 0 is enhanced by filling
the region in gray.

Some analysis can be drawn from these figures:

• the stability region changes with the relative velocity;
• the maximal value of the first relaxation parameter s is obtained (not only)

for u = 0;
• the stability region is not clearly more interessant (larger or including greater

value of s) for u = V ;
• the point (s, s′) = (1, 1) is always in the stability region.

To conclude this section, this notion of stability allows a large set of values for
the relaxation parameters. If the scheme is used to simulate the hyperbolic advection
equation without diffusive term, we can try to minimize the numerical diffusion while
maintaining this stability property. This task is complicated and out of the scope of
the paper as the second-order term reads as a non-linear formula that links all the
parameters s, α, and V .

6. Numerical illustrations

In this section, we illustrate the stability property with numerical simulations in-
volving the D1Q3 model with and without relative velocity used to simulate the linear
advection equation. The stability is demonstrated for the parameters chosen accord-
ing to the analysis presented in the previous sections. Oscillations are seen whenever
the parameters go beyond the stability limits presented, as highlighted in the results.

The parameters chosen for the simulations are the following:

V u s s′ α

left (stable) 0.25 0.0 1.6 1.3 0.3076923076923076
0.25 0.25 1.6 1.3 -0.17548076923076938

right (unstable) 0.25 0.0 1.9 1.4 0.14285714285714302
0.25 0.25 1.9 1.4 -0.10491071428571441

For the left figures, the parameters are chosen in order to satisfy the stability
property. We observe numerically also a maximum principle, even if it is not formally
the stability notion that we investigate. For the right figures, the parameters are
chosen in order not to break the stability property.
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Figure 4. Smooth profile with a continuous derivative. The param-
eters for the D1Q3 are tuned in order to have (left) or not (right) the
non-negativity property
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Figure 5. Continuous profile. The parameters for the D1Q3 are
tuned in order to have (left) or not (right) the non-negativity property
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Figure 6. Discontinuous profile. The parameters for the D1Q3 are
tuned in order to have (left) or not (right) the non-negativity property

If the profile is smooth, we have observed that no numerical oscillations occur even
if the non-negativity property of the matrix is not satisfied. If the profile is just
continuous, small negative values of the macroscopic quantity are observed when our
non-negativity property is not satisfied. Last but not least, classical oscillations are
visible for discontinuous profiles if our non-negativity property is not satisfied. These
oscillations are eliminated when the non-negativity property of the matrix is realized.
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7. Conclusion

In this contribution, we have investigated a stability property for a classical mono-
dimensional linear three velocities lattice Boltzmann scheme with relative velocity.
This property ensures that the particle distribution functions remain nonnegative if
they are at initial time. We then give a necessary and sufficient condition to describe
the stability region. The case without relative velocity is completely describe and
simplest necessary conditions are given for the general case. We finally propose some
numerical simulations that illustrate the stability property: even if the stability notion
that we investigate is not exactly a cosntraint of convexity, a numerical maximum
principle is observed if the parameters are in the stability region whereas numerical
oscillations appear (in particular for non smooth profils) if the parameters are not
there.

Moreover, relative velocities modify the stability array in a nontrivial manner.
For instance, intuition might have suggested that the stability region for the relative
velocity equal to the advection velocity contains all the others but it is realy not the
case. For a given advection velocity, relative velocities cannot be used to increase the
value of the first relaxation parameter, the one involved in the numerical diffusion.

The non-negativity of the relaxation matrix could be extended to nonliear schemes.
The theoretical study will be much more technical and has not been performed. Nev-
ertheless, numerical experiments for the Burgers equation show that the behavior of
the D1Q3 scheme, and in particular the possibility or not of oscillations, is analogous
to the linear case.
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