
HAL Id: hal-02382117
https://hal.science/hal-02382117v1

Preprint submitted on 27 Nov 2019 (v1), last revised 1 May 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse polynomial interpolation. Exploring fast
heuristic algorithms over finite fields

Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Joris van der Hoeven, Grégoire Lecerf. Sparse polynomial interpolation. Exploring fast heuristic
algorithms over finite fields. 2019. �hal-02382117v1�

https://hal.science/hal-02382117v1
https://hal.archives-ouvertes.fr


Sparse polynomial interpolation
Exploring fast heuristic algorithms over finite fields

JORIS VAN DER HOEVENabc, GRÉGOIRE LECERFbd

a. CNRS (UMI 3069, PIMS)
Department of Mathematics

Simon Fraser University
8888 University Drive

Burnaby, British Columbia
V5A 1S6, Canada

b. CNRS, École polytechnique, Institut Polytechnique de Paris
Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161)

1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
c. Email: vdhoeven@lix.polytechnique.fr
d. Email: lecerf@lix.polytechnique.fr

Work in progress, draft version of November 27, 2019

Consider a multivariate polynomial f ∈K[x1, . . . , xn] over a field K, which is given
through a black box capable of evaluating f at points in Kn, or possibly at points in An

for any K-algebra A. The problem of sparse interpolation is to express f in its usual
form with respect to the monomial basis. We analyze the complexity of various old
and new algorithms for this task in terms of bounds D and T for the total degree of f
and its number of terms. We mainly focus on the case when K is a finite field and
explore possible speed-ups under suitable heuristic assumptions.

1. INTRODUCTION

Consider a polynomial function f :Kn→K over a field K given through a black box capable
of evaluating f at points in Kn. The problem of sparse interpolation is to recover the
representation of f ∈K[x1, . . . ,xn] in its usual form, as a linear combination

f = �
i1, . . . ,in

fi1, . . . ,in x1
i1 ⋅ ⋅ ⋅ xn

in (1)

of monomials. The aim of this paper is to analyze various approaches for solving this
problem, with our primary focus on the case when K is a finite field. We will survey and
synthesize known algorithms, but we will also present a few new algorithms, together
with improved complexity bounds for some important special cases.

We explore various methods under heuristic conditions that we expect to fairly
reflect average behavior in practice. We preferred a relaxed and intuitive style of
exposition to mathematically precise theorems with rigorous proofs.

1



Efficient algorithms for the task of sparse interpolation go back as far as to the eighteen's
century and the work of Prony [41]. The first modern version of the algorithm is due to
Ben Or and Tiwari [8]. This method was swiftly embraced in computer algebra [11, 28,
32, 34, 36, 37, 39]; for early implementations, we refer to [13, 14]. There has been a regain
of interest for the problem during the last decade, both from a theoretical perspective [2,
3, 4, 15, 16, 29, 30, 33] and from the practical point of view [25, 26, 27, 31, 35]. We also
mention the survey paper [43] by Roche on the more general topic of computations with
sparse polynomials.

1.1. Complexity considerations
Throughout this paper d will stand for the total degree of f and t for the number of non-
zero terms in (1). Whenever available, the uppercase characters D and T represent upper
bounds for d and t. We will also write L for the number of ring or field operations in K
that are required in order to evaluate f .

The complexity analysis of sparse interpolation has to be carried out with a lot of care,
due to the large variety of cases that can occur:

• What kind of complexity/evaluation model do we use?
∘ Do we count the number operations in K or the number of bit operations?
∘ Are we interested in theoretic (asymptotic) or practical complexity?
∘ Are divisions allowed for the evaluation of f and how do we count them?
∘ Are we only allowed to evaluate f at points in Kn or also at points in K̂n for

certain extension rings or fields K̂?
• What kind of coefficient field K do we use?

∘ A field from analysis such as ℂ.
∘ A discrete field such as ℚ or a finite field 𝔽q.
∘ Fields with roots of unity 𝜔 of large smooth order in K.

• The univariate case (n=1) versus the multivariate case (n>1).
• Informally speaking, there are three levels of “sparsity”:

∘ Weakly sparse: total degrees d of the order O(log t).
∘ Normally sparse: total degrees d of the order tO(1).
∘ Super sparse: total degrees of order d with log t=o(log d).

We also notice that almost all general algorithms for sparse interpolation are proba-
bilistic of Monte Carlo type. Indeed, without further a priori knowledge about f , such
as its support or its number of terms, the mere knowledge of a finite number of eval-
uations of f only allow us to guess plausible expressions for f .

In this paper, we will be mostly interested in the practical bit complexity of sparse
interpolation over finite fields K=𝔽q. Sparse interpolation over the rational numbers can
often be reduced to this case as well, in which case q=p is a well chosen prime number
that fits into 32 or 64 bits and such that p−1 admits a large smooth divisor; see section 6.5.
We analyze the complexities of specializations of existing algorithms to the finite field
case and also present a few new algorithms and tricks for this specific setting. Due to
the large number of cases that can occur, we will not prove detailed complexity bounds
for every single case, but rather outline how various ideas may be used and combined to
reduce the practical complexity.

2 SPARSE POLYNOMIAL INTERPOLATION



From our practical perspective, it is important to take into account logarithmic factors
in complexity bounds, but it will be convenient to ignore sublogarithmic factors. For this
reason, we use the ad hoc notation

𝜑=O♭(𝜓) ⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔
def

𝜑=O(𝜓(log 𝜓)o(1)(log log (TDq))O(1))

for any functions 𝜑,𝜓.
We will also write MK(d) for the bit cost of multiplying two polynomials of degree d

over K and abbreviate Mq(d)≔M𝔽q(d). For instance, the naive multiplication algorithm
yields Mq(d) =O♭(d2 log2 q). For our complexity analyses we will give priority to the
asymptotic complexity point of view and use the well known [20, 44] bound Mq(d)=
O♭(d log d log q).

1.2. Overview of the paper
Many of the challenges concerning sparse interpolation already arise in the univariate
case when n= 1. As we will see in section 7.1, the multivariate case can actually be
reduced to the univariate one using the technique called “Kronecker segmentation”, even
though other approaches may be more efficient. For this reason, a large part of the paper
is devoted to methods for interpolating a univariate black box function f (x).

We distinguish three major types of algorithms:

• Cyclic extension methods (section 4).

• Geometric progression methods (section 5).

• FFT based methods (section 6).

For the first two types of methods we mostly review existing algorithms, although we do
propose some new variants and optimizations. The third FFT based method is new, as
far as we are aware. For each of the three methods, an important leitmotif is to evaluate
f (x)modulo xr−1 for one or more suitable orders r, after which we reconstruct f (x) from
these modular projections.

Cyclic extension methods directly evaluate f over the cyclic extension ring
K[x]/(xr − 1). This has the advantage that r can be freely chosen in a suitable range.
However, the evaluation of f over such a large cyclic extension induces a non-trivial
overhead in the dependency of the complexity on L.

Geometric progression methods rather evaluate f at a sequence 1, 𝜔, . . . , 𝜔2T−1 of
pairwise distinct elements in K (or inside an extension of K of modest degree s). If K=𝔽q
is a finite field, then𝜔 necessarily has an order r that divides q−1 (or qs−1when working
over an extension of degree s). Although the evaluations of f become more efficient
using this approach, the recovery of f (x) modulo xr − 1 from f (1), f (𝜔), . . . , f (𝜔2T−1)
requires extra work. The cost of this extra work highly depends on the kind of orders r
that can be taken as divisors of q − 1 (or qs − 1 for small s). Theoretically speaking, the
existence of suitable orders r is a delicate issue; in practice, they always tend to exist as
long as D=TO(1); see sections 2, 6.3 and 6.4 for some empirical evidence.

Geometric progression methods allow us to take r much larger than T, but they
involve a non-trivial cost for recovering f (x)modulo xr−1 from f (1), f (𝜔),..., f (𝜔2T−1).
If L= o((log T)3), then this cost may even dominate the cost of the evaluations of f . In
such situations, an alternative approach is to evaluate f at 1,𝜔, . . . ,𝜔r−1 and to recover
f (x) modulo xr−1 using one inverse DFT of length r. However, this puts an even larger
strain on the choice of r, since it is important that T⩽ r=O(T) for this approach to be

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3



Method Complexity bound Conditions
Cyclic extension O♭(LT logD log(qT)) H1 and logD=O(T)

Geometric progression O♭�(L+(log T)3)T� logD
log T�

3 log(qT)� H1, H2, and D=TO(1)

FFT O♭�(L+log T)T� logD
log T�

2 log(qT)� H1, H2, and D=TO(1)

Table 1. Heuristic complexity bounds for the three main approaches to sparse interpolation.

efficient. Moreover, the recovery of f (x) from its reductions modulo xr − 1 for several
orders r of this type is more delicate and based on a probabilistic analysis. Yet, suit-
able orders r again tend to exist in practice as long as D=TO(1).

The expected complexities of the best versions of the three approaches are summa-
rized in Table 1. These bounds rely on two types of heuristics:

H1. For r≪d, the exponents of f are essentially randomly distributed modulo r.
H2. For s=O(logD/log T), the number qs −1 admits a large smooth divisor.

We will present a more precise version of H1 in section 4. The heuristic H2 will be made
precise in sections 5.6 and 6.2 and numeric evidence is provided in sections 2, 6.3 and 6.4.

The last section 7 is dedicated to the interpolation of multivariate polynomials. We
start with the well known strategies based on Kronecker segmentation (section 7.1) and
prime factorization (section 7.2). For sparse polynomials in many variables, but with
a modest total degree d, we also recall the inductive approach by packets of coordinates
in section 7.3. If T< q, then geometric progression and FFT based methods should be
particularly favorable in combination with this inductive approach, since one can often
avoid working over extensions of K in this case. We conclude section 7 with a few algo-
rithms for special situations.

2. PRELIMINARIES ON FINITE FIELDS

One remarkable feature of the finite field 𝔽q with q elements is that every a∈𝔽q satisfies
the equation aq= a. In particular, for any sparse polynomial f as in (1) and with coeffi-
cients in 𝔽q, the polynomial f takes the same values as

�
i1, . . . ,in

fi1, . . . ,in x1
i1rem(q−1) ⋅ ⋅ ⋅ xn

inrem(q−1),

for x1, . . . ,xn∈𝔽q, where “rem” stands for the remainder of a Euclidean division. In other
words, the exponents of f are only determined modulo q−1, so we may assume without
loss of generality that they all lie in {0, . . . ,q−2} and that the total degree d of f satisfies
d⩽n(q−2).

On the other hand, in the case that our black box function f can be evaluated not
only over 𝔽q, but also over field extensions 𝔽qs (this is typically the case if f is given by
an expression or a directed acyclic graph (dag)), then the exponents in the expression (1)
can be general non-negative integers, but the above remark shows that we will crucially
need to evaluate over extensions fields 𝔽qs with s>1 in order to recover exponents that
exceed q.

More generally, if we choose to evaluate f only at points (a1, . . . , an)∈𝔽qs such that
a1,...,an are r-th roots of unity, then we can only hope to determine the exponents modulo r
in the expansion (1). In that case, r must divide the order qs−1 of the multiplicative group

4 SPARSE POLYNOMIAL INTERPOLATION



s 2s −1 3s −1 5s −1
1 2 22

2 3 23 23 ⋅ 3
3 7 2 ⋅13 22 ⋅ 31
4 3 ⋅5 24 ⋅ 5 24 ⋅ 3 ⋅ 13
6 32 ⋅ 7 23 ⋅ 7 ⋅ 13 23 ⋅ 32 ⋅ 7 ⋅ 31
8 3 ⋅5 ⋅17 25 ⋅ 5 ⋅ 41 25 ⋅ 3 ⋅ 13 ⋅313
12 32 ⋅ 5 ⋅ 7 ⋅13 24 ⋅ 5 ⋅ 7 ⋅13 ⋅73 24 ⋅ 32 ⋅ 7 ⋅ 13 ⋅31 ⋅601
16 3 ⋅5 ⋅17 ⋅257 26 ⋅ 5 ⋅ 17 ⋅41 ⋅193 26 ⋅ 3 ⋅ 13 ⋅17 ⋅313 ⋅11489
24 32 ⋅ 5 ⋅ 7 ⋅13 ⋅17 ⋅241 25 ⋅ 5 ⋅ 7 ⋅13 ⋅41 ⋅73 ⋅6481 25 ⋅ 32 ⋅ 7 ⋅ 13 ⋅31 ⋅313 ⋅601 ⋅390001
30 32 ⋅ 7 ⋅ 11 ⋅31 ⋅151 ⋅331 23 ⋅ 7 ⋅ 112 ⋅ 13 ⋅31 ⋅61 ⋅271 ⋅4561 23 ⋅ 32 ⋅ 7 ⋅ 11 ⋅31 ⋅61 ⋅71 ⋅181 ⋅521 ⋅ ⋅ ⋅
36 33 ⋅ 5 ⋅ 7 ⋅13 ⋅19 ⋅37 ⋅73 ⋅109 24 ⋅ 5 ⋅ 7 ⋅13 ⋅19 ⋅37 ⋅73 ⋅757 ⋅530713 24 ⋅ 33 ⋅ 7 ⋅ 13 ⋅19 ⋅31 ⋅37 ⋅601 ⋅829 ⋅ ⋅ ⋅

Table 2. Prime factorizations of 2s −1, 3s −1, and 5s −1 for various small smooth values of s.

s 1299743s −1 a(s)
1 2 ⋅649871 2
2 26 ⋅ 32 ⋅ 4513 ⋅649871 23 ⋅ 3
3 2 ⋅7 ⋅13 ⋅397 ⋅649871 ⋅6680137 2
4 27 ⋅ 32 ⋅ 52 ⋅ 193 ⋅4349 ⋅4513 ⋅40253 ⋅649871 24 ⋅ 3 ⋅ 5
6 26 ⋅ 33 ⋅ 72 ⋅ 13 ⋅31 ⋅397 ⋅4513 ⋅649871 ⋅6680137 ⋅18164844799 23 ⋅ 32 ⋅ 7
8 28 ⋅ 32 ⋅ 52 ⋅ 172 ⋅ 73 ⋅193 ⋅241 ⋅4349 ⋅4513 ⋅40253 ⋅649871 ⋅298090889 ⋅941485217 25 ⋅ 3 ⋅ 5
12 27 ⋅ 33 ⋅ 72 ⋅ 13 ⋅31 ⋅193 ⋅397 ⋅4349 ⋅4513 ⋅40253 ⋅649871 ⋅6680137 ⋅387205657 ⋅ ⋅ ⋅ 24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅13
16 29 ⋅ 32 ⋅ 52 ⋅ 172 ⋅ 73 ⋅193 ⋅241 ⋅4349 ⋅4513 ⋅40253 ⋅649871 ⋅3955153 ⋅298090889 ⋅ ⋅ ⋅ 26 ⋅ 3 ⋅ 5 ⋅17
24 28 ⋅ 33 ⋅ 52 ⋅ 72 ⋅ 13 ⋅172 ⋅ 31 ⋅73 ⋅193 ⋅241 ⋅397 ⋅4349 ⋅4513 ⋅40253 ⋅649871 ⋅ ⋅ ⋅ 25 ⋅ 32 ⋅ 5 ⋅ 7 ⋅13
30 26 ⋅ 33 ⋅ 72 ⋅ 11 ⋅13 ⋅31 ⋅61 ⋅71 ⋅271 ⋅397 ⋅701 ⋅881 ⋅1171 ⋅2411 ⋅4513 ⋅649871 ⋅ ⋅ ⋅ 23 ⋅ 32 ⋅ 7 ⋅ 11 ⋅31
36 27 ⋅ 34 ⋅ 52 ⋅ 72 ⋅ 13 ⋅31 ⋅37 ⋅109 ⋅193 ⋅397 ⋅757 ⋅1657 ⋅4349 ⋅4513 ⋅40253 ⋅649871 ⋅ ⋅ ⋅ 24 ⋅ 33 ⋅ 5 ⋅ 7 ⋅13 ⋅19 ⋅37

Table 3. Prime factorizations of qs −1 and a(s) for q=1299742 and various values of s.

of 𝔽qs. In addition, as we will recall in sections 5.1 and 5.2 below, several important tools
such as polynomial root finding and discrete logarithms admit faster implementations
if we can take r of the form r= r1 r2 with r1=O(T) and where r2 is smooth. Sometimes,
primitive roots of unity of such orders r already exist in 𝔽q. If not, then we need to search
them in extension fields 𝔽qs with s>1 as small as possible.

Let us briefly investigate the prime factorization of qs−1 for various q and small s. As
observed in [21], the number qs−1 typically admits many small prime divisors when s is
itself smooth. This phenomenon is illustrated in Table 2 for small values of q. For prac-
tical purposes, given T, it is easy in practice to find a small s and divisors r= r1r2 | (qs−1)
such that r1≈T and r2 is smooth.

For larger q, we may need to resort to larger extension degrees s in order to find
appropriate orders r. A natural question is whether qs − 1 is guaranteed to have a non-
trivial smooth divisor for large q and a fixed value of s. This leads us to introduce the
following guaranteed lower bound:

a(s)≔ lim
q0→∞

gcd(qs −1 :q⩾q0). (2)

In Table 3, we have shown the prime factorizations of qs−1 and a(s) for q=1299743 and
various small smooth values of s. Here q=1299743 was chosen such that (q − 1)/2 is
also prime. For the practical applications in this paper, the table suggests that it remains
likely that suitable orders r can still be found whenever needed, and that a(s) is usually
quite pessimistic, even for large values of q. Let us finally mention that the sequence a(s)
coincides with Sloane's integer sequence A079612; see https://oeis.org/A079612.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612
https://oeis.org/A079612


3. GENERAL OBSERVATIONS

As already mentioned in the introduction, most algorithms for sparse interpolation are
probabilistic of Monte Carlo type. We notice that it is easy to check (with high proba-
bility) whether a candidate sparse interpolation f ∗ of f is correct. Indeed, it suffices to
evaluate f − f ∗ at random sample points and check whether the result vanishes. Deter-
ministic algorithms exist but with higher complexities; see for instance [22, 42].

Many algorithms for sparse interpolation require extra information, such as
bounds T⩾ t and D⩾d for the number of terms and the total degree of f . Furthermore,
several algorithms are only able to guess some of the terms of f with high probability, but
not all of them. In this section, using ideas from [3], we show how to turn such “partial”
algorithms for sparse interpolation into full-blown ones. Provided that the character-
istic of K is zero or sufficiently large, we also show how to upgrade an interpolation
method modulo (x1r −1, . . . ,xn

r −1) into a general algorithm, following [30].

3.1. From partial to full interpolation
Assume that we have an algorithm for “partial” sparse interpolation that takes a black
box for f as input, together with bounds T and D for t and d. The algorithm should
always return a sparse polynomial f ∗ of total degree at most D and with at most T terms.
Moreover, for some fixed constant 0<𝜆<1, if t⩽T and d⩽D, then f − f ∗ should contain
at most 𝜆t terms, with high probability. If t>T or d>D, then we allow f ∗ to be essentially
arbitrary under the above constraint that f ∗ has at most T terms of degree ⩽D. Then we
may use the following strategy for arbitrary sparse interpolations:

Algorithm 1
Input: a polynomial black box function f (x1, . . . ,xn)
Output: the sparse interpolation f ∗ of f
1. Let f ∗≔0 be an initial approximation of f .

2. Set initial bounds T≔1 and D≔1 for the number of terms and total
degree.

3. Determine the approximate sparse interpolation 𝛿∗ to 𝛿≔ f − f ∗ using T
and D as bounds for the number of terms and the total degree of 𝛿.

4. Set f ∗≔ f ∗+𝛿∗.

5. If f = f ∗ with high probability, then return f ∗.

6. Whenever appropriate, increase T and/or D, and reset f ∗≔0.
7. Return to step 3.

In step 6, the precise policy for increasing T and D may depend on the application.
We typically double T when t is suspected to exceed T and we double logD when d is
suspected to exceed D. In this way, the bounds T and logD are at most twice as large
as the actual values t and log d, and the running time is essentially a constant times the
running time of the approximate sparse interpolation with bounds T and D.

However, for this “meta complexity bound” to hold, it is crucial in step 3 that the
sparse approximation f ∗ can be evaluated efficiently at the sample points used during
the sparse interpolation (the naive evaluation of a polynomial with t terms atΘ(t) points
would take time Θ(t2), which is too much). Fortunately, this is the case for all sparse
interpolation strategies that will be considered in this paper.

6 SPARSE POLYNOMIAL INTERPOLATION



When do we suspect T or D to be too low in step 6? In the case of T, a natural idea
is to test whether the number of terms in f ∗ or 𝛿∗ exceeds a fixed constant portion of T.
This strategy assumes that 𝛿∗ be essentially random when T is too small (if the number
of terms of 𝛿∗ is much smaller than T whenever t>T, then we might need more than
Θ(log t) iterations before the algorithm converges).

The handling of exponents and degree bounds is more involved. When interpolating
over a finite field, all non-zero evaluation points are roots of unity, so the exponents can
only be determined modulo a certain integer r (or even modulo a submodule of ℤn). If
the characteristic of K is sufficiently large, then the exponents can be computed directly:
see the next subsection. Otherwise, we need to recombine reductions with respect to
several moduli: see section 4 below. This also provides a natural test in order to check
whether d⩽D. Indeed, it suffices to compute the sparse interpolation of f for one or more
extra moduli and check whether the results agree with our candidate interpolation.

3.2. Supersparse interpolation in large characteristic
Assume that we have an algorithm that allows us to compute the sparse interpolation
of f modulo Ir=(x1r −1,.. . ,xn

r −1) for given moduli r. Assume also that we have access to
the program that computes f , typically in terms of a straight-line program. If charK=0
or charK>max (degx1 f , . . .,degxn f ), then let us show how to derive an algorithm for the
sparse evaluation of f .

It is well known that Baur–Strassen's technique of “automatic differentiation” [7]
allows us to evaluate the gradient (∂ f /∂x1, . . . , ∂ f /∂xn) using at most 4 L operations
in K. Using 5L+n operations, this provides an algorithm for the simultaneously eval-
uation of f , g1, . . . , gn with gi= xi (∂ f /∂xi) for i=1, . . . ,n. With a small overhead, this
next allows us to jointly compute the sparse interpolations of f , g1, . . . , gn modulo Ir.

Now assume that cx1
e1 ⋅⋅⋅xn

en is a term of f such that for any other term c′x1
e1′ ⋅⋅⋅xn

en′ of f ,
we have (e1mod r, . . . ,enmod r)≠(e1′ mod r, . . . ,en′ mod r); we say that this term “does not
collide” modulo r. Then the sparse interpolation of f modulo Ir contains the non-zero
term cx1

e1modr ⋅⋅ ⋅xn
enmodr. Moreover, given i∈{1,...,n}with ei≠0, the sparse interpolation

of gi modulo Ir also contains the non-zero term ei c x1
e1modr ⋅ ⋅ ⋅ xn

enmodr. This allows us to
retrieve ei through one simple division (ei c)/c.

Furthermore, if the modulus r was picked at random with r> t, then there is a high
probability that a fixed non-zero proportion of terms in f do not collide modulo r. Com-
bined with Algorithm 1, this yields an algorithm for obtaining the sparse interpolation
of f . This strategy for sparse interpolation was first exploited by Huang [30].

Remark. For simplicity, we consider sparse interpolation of polynomials over fields K in
this paper. In fact, the algorithms also work for vectors of polynomials in K[x1, . . . ,xn]𝜈,
by considering them as polynomials with coefficients in K𝜈. We implicitly used this fact
above when saying that we “jointly” compute the sparse interpolation of f , g1, . . . , gn
modulo Ir.

3.3. Conclusion
In summary, we have shown how to reduce the general problem of sparse interpolation
to the case when

1. we have bounds for the number of terms and the total degree, and

2. we only require an approximate sparse interpolation (in the sense of section 3.1).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7



4. UNIVARIATE INTERPOLATION USING CYCLIC EXTENSIONS

One general approach for sparse interpolation of univariate polynomials over gen-
eral base fields K was initiated by Garg and Schost [15]. It assumes that the black box
function f can be evaluated over any cyclic extension of the form K[x]/(xr − 1). The
evaluation of

f = c1xe1+ ⋅ ⋅ ⋅ + ct xet (3)

at x inside such an extension simply yields

f [r]≔ c1xe1remr+ ⋅ ⋅ ⋅ + ct xetremr.

In absence of “collisions” ei=ej modulo r for i≠ j, this both yields the coefficients of f and
its exponents modulo r. By combining the evaluations for various moduli, it is possible
to reconstruct the actual exponents using Chinese remaindering.

Throughout this section, we assume that we are given bounds D and T for the degree d
and the number of terms t of f . Garg and Schost's original algorithm was determin-
istic under these assumptions. However, their algorithm was not designed to be efficient
in practice. In the past decade, many variants have been proposed. Roughly speaking,
they all follow the same recipe that we summarized in Algorithm 2 below. The vari-
ants mainly differ in the precise way recombinations are done in step 3.

Algorithm 2
Input: a black box polynomial f (x), a degree bound D, a sparsity bound T
Output: a partial sparse interpolation f ∗ of f
1. Determine suitable moduli r1, . . . , rl>T with lcm(r1, . . . , rl)>D.

2. Evaluate f at x in K[x]/(xri −1) for i=1, . . . , l.

3. Determine matching terms in the expansions of f [r1], . . . , f [rl] that are
likely to be the reductions of the same term ci xei in the expansion of f .

4. Return the sum f ∗ of all terms ci xei as above.

4.1. Complexity analysis

For all matching strategies that have been considered so far, the cost of steps 1 and 3 is
dominated by the cost of step 2. If the evaluation of f only involves ring operations, then
the running time of Algorithm 2 is therefore bounded by O((MK(r1)+ ⋅ ⋅ ⋅ +MK(rl))L).
The moduli rk are usually all of the same order of magnitude rk≈ T𝜈 for some small
𝜈⩾1 that depends on the matching strategy. Then we may take l=O(logD/log T), so
the cost simplifies to O(LMK(T𝜈) logD/log T). For finite fields K=𝔽q, this cost becomes
O♭(LT𝜈 logD log q). For the design of matching strategies, it is therefore important that
we can take 𝜈 as small as possible.

Remark. The above analysis can be refined by maintaining separate counts Ladd, Lmul,
and Ldiv for the numbers of additions (or subtraction), multiplications, and divisions that
are necessary for one evaluation of T. Then the cost of Algorithm 2 over 𝔽q becomes
O♭(T𝜈 log q(Ladd+Lmul log T+Ldiv (log T)2)).

8 SPARSE POLYNOMIAL INTERPOLATION



Remark. The complexity analysis may need to be adjusted somewhat if D is so large that
we run out of suitable moduli ri. If our matching strategy requires prime numbers of
the order of Tc, then this happens when logD exceeds approximately the same order Tc.
In that case, we need to replace T by an appropriate power of logD in our complexity
bounds. Alternatively, if the characteristic of K is sufficiently large, then we may fall
back on the strategy from section 3.2.

4.2. Survey of existing variants based on cyclic extensions

4.2.1. Determining the exponents using Chinese remaindering

Garg and Schost's original algorithm from [15] uses prime numbers p for the
moduli rk. Assuming that f [p] admits t terms, the algorithm is based on the observa-
tion that the projection of the polynomial (z − e1) ⋅ ⋅ ⋅ (z − et) modulo p coincides with
(z−e1 rem p) ⋅⋅⋅ (z−etmod p). This allows for the recovery of E=(z−e1) ⋅⋅⋅ (z−et) through
Chinese remaindering, by working with a sufficient number of primes. It then suffices
to determine the zeros e1, . . . , et of E and to recover ci as the coefficient of xeiremp in f [p]
for i=1, . . . , t.

However, this strategy is very sensitive to collisions, and requires p≫T2 in order to
ensure with high probability that f [p] admits exactly t terms. In other words, it forces
us to take 𝜈⩾2 in the complexity analysis. Garg and Schost's original algorithm is actu-
ally deterministic and uses Õ(L T4 (logD)2 ) operations in K. The derandomization is
achieved by using Θ(T2 logD) different primes p.

4.2.2. Composite moduli

Another matching strategy for step 3 of Algorithm 2 has been proposed by Arnold, Gies-
brecht, and Roche [3]. The idea is to pick rk= p0 pk for k=1, . . . , l, where p0, . . . , pl are
primes with p0≍T and p1, . . . ,pl≈T𝜖 for some 𝜖>0 (so that 𝜈=1+𝜖). For i=1, . . . , t and
k=1, . . . , l, there then exists a fixed non-zero probability such that the term ci xeiremp0

of f [p0] matches a term ci xeiremrk of f [rk]. Let 𝒦 i be the set of indices k for which we have
a match. For some fixed constant c>0, we then have lcm (rk : k∈𝒦 i)>Tc𝜖l with high
probability. By taking l>logD/(c𝜖logT) in step 1, this implies lcm(rk :k∈𝒦 i)>D. With
high probability, this allows us to reconstruct those terms cixei such that ei≠ej modulo p0
for all j≠ i. The sum of these terms gives the desired approximation f ∗ of f for which a
fixed non-zero proportion of terms are likely to be correct.

4.2.3. Diversification

Giesbrecht and Roche proposed yet another matching strategy [16] which is based on the
concept of “diversification”. The polynomial f is said to be diversified if its coefficients ci
are pairwise distinct. Assuming that K is sufficiently large, it is shown in [16] that the
polynomial f (𝛼 x) is diversified with high probability for a random choice of 𝛼∈K∗.
Without loss of generality, this allows us to assume that f is diversified.

In step 3 of Algorithm 2, we then match a term c xe of f [rk] with a term c′xe′ of f [rk′]

if and only if c= c′. Giesbrecht and Roche's original algorithm uses l=O(logD) moduli
r1, . . . , rl of size Õ(T2 logD). Consequently, their algorithm for sparse interpolation uses
Õ(L T2 (logD)2) operations in 𝔽q. As we will see below, their probabilistic analysis is
actually quite pessimistic: in practice, it is possible to take r1, . . . , rl= Õ(T) as long as
logD=O(T).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9



4.3. An optimized probabilistic algorithm based on diversification
Let us now focus on the design and analysis of a probabilistic algorithm that exploits the
idea of diversification even more than Giesbrecht and Roche's original method from [16].

Given a diversified polynomial f , together with bounds D and T for its degree d and
its number of terms t, our aim is to compute Θ(t) terms of f , with high probability. Our
algorithm uses the following parameters:

• A constant 𝜏≍1.
• Orders r1< ⋅ ⋅ ⋅ < rl that are pairwise coprime, with rk≈𝜏T for k=1, . . . , l.
• The minimal number 𝜈∈{1, . . . , l} such that lcm(r1, . . . , r𝜈)= r1 ⋅ ⋅ ⋅ r𝜈>D.

The precise choice of 𝜏 and l will be detailed below; the parameter 𝜏 and the ratio l/𝜈
should be sufficiently small for the algorithm to be efficient, but 𝜏 and l/𝜈 should also be
sufficiently large for our algorithm to succeed with high probability.

We now use Algorithm 3 below in order to compute an approximate sparse interpo-
lation of f . It is a variant of Algorithm 2 with a matching strategy that has been detailed
in steps 2, 3, and 4. Each individual term cxe of f is reconstructed from only a subset of
its reductions modulo xr1−1, . . . ,xrl −1.

Algorithm 3
Input: a diversified black box polynomial f (x) and parameters as above
Output: an approximate sparse interpolation f ∗ of f

1. Compute f [rk]= f rem (xrk −1) for k=1, . . . , l.

2. Let f ∗≔0.

3. Let Ck be the set of all coefficients that occur once in f [rk], for k=1, . . . , l.

4. For each c∈C1∪ ⋅ ⋅ ⋅ ∪Cl do:
If 𝒦≔{k : c∈Ck} is such that lcm(rk :k∈𝒦)>D, then:

Determine the unique exponent e<D such that c xeremrk occurs
in f [rk] for every k∈𝒦, and set f ∗≔ f ∗+ cxe.

5. Return f ∗.

4.4. Analysis of the expected number of correct terms
How to ensure that a non-zero portion of the terms of f ∗ can be expected to be correct?
In order to answer this question, we make the following heuristic hypothesis:
Hred. For k=1, . . . , l, the modular reductions of exponents ei rem rk for i=1, . . . , t are uni-

formly distributed in {0,...,rk−1}. The distribution associated to rk is independent
of the one associated to rk′ whenever k≠k′.

Such a heuristic is customary in computer science, typically when using hash tables.
According to Hred, the probability that a fixed term cxe does not collide with another

term modulo rk is

(1− rk
−1)T−1 ≈ (1− (𝜏T)−1)T−1 ⩾ (1− (𝜏T)−1)T ⩾ eTlog(1−(𝜏T)−1) ⩾ e−1/𝜏.

Setting 𝜖≔1− e−1/𝜏, this probability tends to 1− 𝜖 for large T. The probability that c xe

collides with another term modulo rk for exactly 𝜅 values of k is therefore bounded by

� l
𝜅�𝜖

l−𝜅 (1−𝜖)𝜅

10 SPARSE POLYNOMIAL INTERPOLATION



and this bound is sharp for large T. Consequently, the probability that we cannot recover
a term fei xei in step 4 from its reductions modulo xrk −1 for k=1, . . . , l is at most

P(𝜈; l, 1−𝜖) = �
i<𝜈

�l
i�𝜖

l−i (1−𝜖)i, (4)

and this bound is sharp for large T.
The probability (4) has been well studied; see [5] for a survey. Whenever

a≔𝜈/l>1−𝜖,
Chernoff's inequality [5, Theorem 1] gives us

P(𝜈; l, 1−𝜖)⩽exp�−l�a log� a
1−𝜖�+(1−a) log�1−a

𝜖 ���.

Let 𝜂<1 be a positive real parameter. In order to ensure P(𝜈; l,1−𝜖)<𝜂 it suffices to have

l�a log� a
1−𝜖�+(1−a) log�1−a

𝜖 ��>log(1/𝜂).

Now thanks to [40, Lemma 2(a)] we have

a log� a
1−𝜖�+(1−a) log�1−a

𝜖 �⩾2(a− (1−𝜖))2,

so it suffices to ensure that
(𝜈− l(1−𝜖))2> log(1/𝜂)

2 l. (5)

Now let us take 𝜈= c (1−𝜖) l with c>1, after which (5) is equivalent to

(c−1)2> log(1/𝜂)
2 l(1−𝜖)2

. (6)

For fixed 𝜂 and large l (i.e. for large D), it follows that we may take c arbitrarily close to 1.
Summarizing, we may thus take l≈𝜈/(1−𝜖) in order to recover an average of at least

(1−𝜂) t correct terms, where 𝜂 can be taken arbitrarily close to 0:

PROPOSITION 1. Assume Hred and let 𝜏, 𝜖, l, r1,...,rl, and 𝜈 be parameters as above. Given 𝜂<1,
assume that 𝜈=c(1−𝜖) l, where c satisfies (6). Then Algorithm 3 returns at least (1−𝜂) t correct
terms of f on average.

4.5. Probabilistic complexity analysis
Let us now analyze the running time of Algorithm 3. Taking l≈𝜈/(1− 𝜖), the cost of
step 1 is proportional to

𝜏
1−𝜖 = 𝜏 e1/𝜏,

and 𝜏 e1/𝜏 reaches its minimum value e at 𝜏=1. This means that the total complexity is
best when 𝜏 is close to 1. In other words, this prompts us to take 𝜏=1, r1≈ ⋅ ⋅ ⋅ ≈ rl≈T,
𝜈≈logD/logT, and l≈𝜈/(1−e−1). For this choice of parameters, we obtain the following
heuristic complexity bound:

PROPOSITION 2. Assume that Hred and logD=O(T). Given 0<𝜂<1 and a diversified poly-
nomial f of degree d⩽D and with t⩽T terms, there exists a Monte Carlo probabilistic algorithm
which computes at least (1−𝜂) t terms of f in time

O♭(LT logD log q).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11



Proof. We take ri to be the i-th smallest prime numbers that is larger than T, so that
𝜈 =O(log D/log T) is the smallest number with r1 ⋅ ⋅ ⋅ r𝜈>D. We also take 𝜏 = 1, 𝜖=
1−1/e, and let l=O(logD/logT) be smallest such that (6) is satisfied for c=𝜈/(l(1−𝜖)).
Combining [6] and [1], we may compute r1, . . . , rl in time O♭(T logD).

Now the running time of step 1 of Algorithm 3 is

O((Mq(r1)+ ⋅ ⋅ ⋅ +Mq(rl))L).

With l=O(logD/log T), this cost simplifies to

O♭(LT log(qT) logD/log T)=O♭(LT log q logD).

Step 3 may be obtained by sorting the coefficients of the f [rk], in time

O(lT log T log q)=O(T logD log q).

Using fast Chinese remaindering, step 4 takes time TÕ(log 𝜈 logD)=O♭(T logD). □

Remark. If q≫T2, then f (𝛼x) is diversified with high probability for a random choice of
𝛼∈𝔽q∖{0}: see [16]. In the range where q=Θ(T) and q=O(T2), it is possible to work with
a slightly weaker assumption: we say that f is weakly diversified if {c1,...,ct} is of sizeΘ(t).
If q=Θ(T), then the polynomial f (𝛼 x) is still weakly diversified, for a random choice
of 𝛼∈𝔽q∖{0}. If f is only weakly diversified and t′≔ {1⩽ i⩽ t :∀j≠ i, ci≠ cj}, then our
analysis can be adapted to show that Algorithm 3 returns about (1−𝜂) t′ correct terms
of f on average. Finally, in the range where q=o(T), we need to work over a field exten-
sion 𝔽qs with qs⩾T, which leads to an additional arithmetic overhead of O♭(logT/log q).

Remark. Let us show that with high probability, the polynomial f ∗ returned by Algo-
rithm 3 only contains correct terms of f (although it does not necessarily contain all
terms). For this, we make the additional hypothesis that the coefficients of f are essen-
tially random non-zero values in𝔽q (which is typically the case after a change of variables
f (x)↝ f (𝛼x), where 𝛼∈𝔽q∖{0} is random).

Now assume that some coefficient c in step 4 gives rise to a term cxe that is not in f .
Then for every k∈𝒦, there should be at least two terms in f that collide modulo rk and
for which the sum of the corresponding coefficients equals c. The probability that this
happens for a fixed k∈𝒦 is bounded by (q− 1)−1 and the probability that this happens
for all k∈𝒦 is bounded by (q−1)−𝜈′, where 𝜈′≈𝜈 is minimal with rl−𝜈′+1 ⋅ ⋅ ⋅ rl>D.

4.6. Estimating the number of terms t
For the algorithms in this section, we assumed that a bound T for t was given. It turns out
that a variant of our probabilistic analysis can also be used for the efficient computation
of a rough estimate for t. This yields an interesting alternative to the naive doubling
strategy described in section 3.1.

Let us still assume that Hred holds. We will also assume that colliding terms rarely
cancel out (which holds with high probability if q is sufficiently large). This time, we
compute f (x) rem (xB − 1) for B≔𝛼 t, where 𝛼<1 is to be determined, and let N be the
number of terms in this remainder. When randomly distributing t balls over B boxes, the
probability that none of the balls lands in a particular box is (1− 1/B)t. Consequently,
the expected number of boxes with no ball is (1−1/B)t B, whence

B−N≈�1− 1
B�

t
B≈e− 1

𝛼 B.

12 SPARSE POLYNOMIAL INTERPOLATION



It follows that
1
𝛼 ≈log�

B
B−N�,

and thus
t= B

𝛼 ≈B log� B
B−N�. (7)

By doubling B until B−N≳ B� , we may then use the approximation (7) as a good candi-
date for t. Notice that we have B−N≈ B� when B≈2 t/log t.

4.7. Conclusion
Cyclic extension methods for sparse interpolation are attractive due to their generality
and the possibility to derive deterministic complexity bounds. However, even their most
efficient probabilistic versions suffer from the overhead of arithmetic operations in cyclic
extension algebras K[x]/(xr −1).

The matching strategy based on diversification leads to the best practical complexity
bounds, as shown in section 4.5. Assuming Hred, logD=O(T), and q=Θ(T), we have
given a Monte Carlo algorithm for sparse interpolation of complexity O♭(LT logD logT).
The case when q= o(T) can be reduced to this case using a field extension of degree
O(log T/log q). Assuming only Hred and log D=O(T), we thus obtain a probabilistic
algorithm that runs in time

O♭(LT logD log (qT)). (8)

5. UNIVARIATE INTERPOLATION USING GEOMETRIC PROGRESSIONS

Prony's method is one of the oldest and most celebrated algorithms for sparse interpola-
tion of univariate polynomials. It is based on the evaluation of f at points in a geometric
progression. Since there are many variants, we keep our presentation as general as pos-
sible. As in the previous section, assume that

f = c1xe1+ ⋅ ⋅ ⋅ + ct xet (9)

and that we know bounds D and T for the degree and the number of terms of f .

Algorithm 4
Input: a black box polynomial f (x), a degree bound D, a sparsity bound T
Output: the sparse interpolation f ∗ of f
1. Find a suitable element𝜔∈K with multiplicative order r⩾max(D,2T),

while replacing K by an extension if necessary.

2. Evaluate f (1), f (𝜔), f (𝜔2), . . . , f (𝜔2T−1).

3. Compute a minimal t⩽T, a monicΛ∈K[z] of degree t, and an N∈K[z]
of degree <t, such that the following identity holds modulo O(z2T):

�
k∈ℕ

f (𝜔k)zk = �
1⩽i⩽t

ci
1−𝜔ei z = N(z)

Λ(z) . (10)

4. Find the roots 𝜔−ei of Λ≔zt+Λt−1zt−1+ ⋅ ⋅ ⋅ +Λ0∈K[z].

5. Compute the discrete logarithms of the roots to base 𝜔 to discover the
exponents e1, . . . , et of f as in (9).

6. Compute ce1,...,cet from f (1),..., f (𝜔t−1) and e1,...,et, using linear algebra.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13



It is well known that steps 3 and 6 can be performed in time O(MK(T) logT), through
fast Padé approximation [10, 38] in the case of step 3, and using a transposed version
of fast multipoint interpolation [9, 11] for step 6. If K=𝔽q, then this bound becomes
O♭(T (log T)2 log q). The efficiency of steps 4 and 5 highly depends on the coefficient
field K. In the remainder of this section, we will discuss this issue in detail in the case
when K=𝔽q is a finite field.

5.1. Root finding
Finding the roots of a univariate polynomial over a finite field is a well-known and highly
studied problem in computer algebra. The most efficient general purpose algorithm for
this task is due to Cantor–Zassenhaus [12]. It is probabilistic and computes the roots
of Λ in time O♭(T (log T)2(log q)2).

In [17, 18], several alternative methods were designed for the case when r= r1r2 with
r1=O(T) and r2⩽TO(1) smooth (in the sense that 𝜋=O♭(1) for each prime factor 𝜋 of r2).
The idea is to proceed in three steps:

1. We first compute the r2-th Graeffe transform Gr2(Ω) of Ω, whose roots are the
r2-th powers of the roots of Ω. This step can be done in time O♭(T (log T)2 log q)
by [17, Proposition 5].

2. We next compute the roots of Gr2(Ω) through an exhaustive evaluation at all r1-th
roots of unity. This step takes time O♭(T log T log q).

3. We finally lift these roots back up to the roots of Ω. This can be done in time
O♭(T (log T)2 log q log r2)=O♭(T (log T)3 log q), using g.c.d. computations.

Altogether, this yields a sparse interpolation method of cost O♭(T (log T)3 log q).
The backlifting of single roots can be accelerated using so-called “tangent Graeffe

transforms”. The idea is to work over the ring R≔K[𝜖]/(𝜖2) instead of K. Then 𝛼∈K
is a root of a polynomial P(z)∈K[z] if and only if 𝛼+𝜖∈R is a root of the polynomial
P(z − 𝜖)∈R[z]. Now if we know a single root (𝛼+𝜖)r2=𝛼r2+ r2𝛼r2−1 𝜖 of Gr2(Ω(z − 𝜖)),
then we may retrieve 𝛼 using one division of 𝛼r2 by r2𝛼r2−1 and one multiplication by r2
(note that r2 is invertible in 𝔽q since r2 divides q−1). In other words, the backlifting step
can be done in time O♭(T log q), using O(T) operations in 𝔽q.

However, this method only works for single roots 𝛼. When replacingΩ(z) andΩ(z−𝜆)
for a randomly chosen 𝜆∈𝔽q, the polynomial Gr2(Ω(z − 𝜆)) can be forced to admit
a non-trivial proportion of single roots with high probability. However, these roots are
no longer powers of 𝜔, unless we took r= q − 1. Assuming that r= q − 1 and using sev-
eral shifts 𝜆, it can be shown [17, Proposition 12] that the tangent Graeffe method yields
a sparse interpolation method of complexity O♭(T log T (log q)2).

5.2. Discrete logarithms
The discrete logarithm problem in abelian groups is a well-known problem in compu-
tational number theory. If r is smooth, then Pohlig–Hellman's algorithm provides an
efficient solution; it allows step 5 of Algorithm 4 to be performed in time O♭(T log r log q).
Under the assumption that we may take r=TO(1), this bound reduces to O♭(T logT log q).

Again, the same bound still holds if r= r1 r2 with r1=O(T) and r2 smooth. Indeed,
in that case, we may tabulate the powers 𝜔0, 𝜔r2, 𝜔2r2, . . . , 𝜔(r1−1)r2. This allows us to
efficiently determine the discrete logarithms of 𝜔e1r2, . . . ,𝜔etr2 with respect to 𝜔r2, which
yields the exponents e1, . . . , et modulo r1. We next use Pohlig–Hellman's algorithm to
compute e1, . . . , et.

14 SPARSE POLYNOMIAL INTERPOLATION



5.3. Field extensions
Ifmax(T,2D) exceeds q (or if q−1 admits no suitable factors r that allows us to apply the
above methods), then we may need to work over an extension field 𝔽qs of 𝔽q. Notice that
this requires our black box representation of f to accept inputs in such extension fields.

Since evaluations over 𝔽qs are at least s times more expensive, it is important to
keep s as small as possible. If T>q, then we must necessarily have qs⩾2T+1, whence
s⩾ log(2T+1)/log q. In general, we want to take s=O(⌈log T/log q⌉). Since we also
need r⩾D in step 1, this leads to the constraint D=TO(1). Under this hypothesis and
using the observations from section 2, it is likely that a suitable extension order s and
divisor r | (qs −1) can indeed be found.

Denoting by Mq(s) the cost of multiplication of polynomials of degree s over 𝔽q, the
total cost of sparse interpolation then becomes

O♭((L+(log T)3)TMq(s)). (11)

5.4. Exploiting the Frobenius map
An interesting question is whether we can reduce the number of evaluation points when
working over an extension field 𝔽qs. Indeed, if 𝜙 is the Frobenius map of 𝔽qs over 𝔽q, then
f (𝜙(a))=𝜙( f (a)) for all a∈𝔽qs. If𝔽qs=𝔽q[a], then this allows us to obtain the evaluations
at the s distinct points a,𝜙(a), . . . ,𝜙s−1(a) using a single evaluation at a. In step 2 of Algo-
rithm 4, we can therefore avoid the evaluations at𝜔i for i=q,2q,3q,... and gain a constant
factor q/(q−1) for large s. Similarly, we may compute all values f (1), f (𝜔), . . . , f (𝜔r−1)
using approximately r/s evaluations of f only; whenever r/(2T) is small, this allows us
to gain a factor 2Ts/r. It would be interesting to know whether it is possible to do better
and regain a factor Θ(s) in general.

5.5. Traces
Besides working in an extension field, it may also be interesting to perform part of the
computations over a subfield of 𝔽q. Indeed, the main aim of steps 4 and 5 is to find the
exponents of f . Now assume that 𝔽q admits a subfield 𝔽q′ with max(2T −1,D)<q′ and
let Tr:𝔽q→𝔽q′ be the corresponding trace function. Then f and Tr f are likely to admit
approximately the same exponents. Taking𝜔∈𝔽q′ in step 1, we may thus replace f (1),...,
f (𝜔2T−1) by their traces after step 2, and determine the exponents of Tr f instead of f .
Although this does not allow us to speed up steps 2 and 6, we do gain a factor of at least
log q/log q′ in steps 4 and 5.

5.6. Combining interpolations for several moduli r
Once the order r has been fixed, Algorithm 4 essentially allows us to interpolate f (x)
modulo xr −1. With respect to the cyclic extension approach, the main difference is that
one expensive evaluation of f over the extension ring K[x]/(xr − 1) is replaced by 2T
cheap evaluations over K plus O♭(T (log T)2) scalar operations.

If D≫T, then we may also evaluate f (x)modulo xr−1 for different moduli r=r1,...,rl
and recombine the results using one of matching strategies from section 4. However,
in the present context, we are not completely free to pick our moduli, since we need
corresponding primitive roots of unity 𝜔1∈𝔽qs1, . . . ,𝜔l∈𝔽qsl of orders r1, . . . , rk in small
extensions 𝔽qs1, . . . ,𝔽qsl of 𝔽q.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 15



Let us focus more specifically on Algorithm 3, which requires in particular that q⩾T.
We need r1, . . . , rl>2T to be suitable for steps 4 and 5, so rk= rk,1 rk,2 with rk,1=O(T) and
rk,2 is smooth. On the other hand, we may relax the conditions on r1, . . . , rl. In this case,
the complexity does not depend on 𝜏, so it is better to choose the rk much larger than T,
preferably of the order of T2. It is also not necessary that r1, . . . , rl be pairwise coprime: it
suffices that lcm(rk1, . . . , rk𝜈)>D for any 1⩽k1< ⋅ ⋅ ⋅ <k𝜈⩽ l. Ideally speaking, we should
have l≈𝜈≈logD/log T.

Although there is no a priori reason for suitable r1,...,rl of this kind to exist, we expect
that this will often be the case in practice, as long as logD=O(log T). Evidence in this
direction will be presented in sections 6.3 and 6.4 below, under even stronger constraints
on the orders r1, . . . , rl. Assuming that we are indeed able to find suitable r1, . . . , rl, the
overall runtime complexity becomes

O♭((L+(log T)3)T (Mq(s1)+ ⋅ ⋅ ⋅ +Mq(sl))).

When using naive arithmetic with Mq(s)=O♭(s2 log q) and assuming that si=O(i), this
complexity bound simplifies into

O♭(((((((((((L+(log T)3)T(((((((((( logD
log T ))))))))))

3
log q)))))))))).

5.7. Conclusion
In summary, the efficiency of the geometric progression approach over a finite field rests
on our ability to find suitable divisors of qs −1 for small values of s. If D⩽T2 and T⩽q,
then we essentially need an order r | (qs − 1) of the type r= r1 r2 with r1≈T, r2 smooth,
and s small. By what has been said in section 2, it is very likely that such r and s always
exist. If D=TO(1) and T⩽q, then it remains likely that various divisors of this type can
be combined, as explained in section 5.6. If q<T, then we first need to replace K by
a suitable extension.

Assuming that D=TO(1) and that suitable orders as above can indeed be found, the
cost of the geometric progression approach is bounded by

O♭(((((((((((L+(log T)3)T(((((((((( logD
log T ))))))))))

3
log (qT))))))))))). (12)

In favorable cases when D<q=TO(1) and q−1 is smooth, we obtain the complexity bound

O♭((L+log T log q)T log q), (13)

instead of (12), by using the tangent Graeffe method.
In comparison with algorithms based on cyclic extensions, the main advantage of the

algorithms in this section is that we avoid expensive evaluations over cyclic extension
rings. On the other hand, the cost of the root finding step may dominate the cost of the
evaluations of f whenever L= o((log T)3); in that case, cyclic extension methods may
become competitive. Methods based on geometric progressions are also less suited for
the supersparse case.

Remark 3. For practical implementations, it is not convenient to use an a priori compar-
ison in order to determine which of the L or (log T)3 terms dominates the cost in (12).
Since we usually try to interpolate f for increasingly large bounds T, it is better to test
whether step 1 of Algorithm 4 requires more running time than step 3 as we increase T.
Whenever the cost of step 3 starts to dominate, we may switch to a cyclic extension style
approach (or an FFT based approach, to be presented next).

16 SPARSE POLYNOMIAL INTERPOLATION



6. UNIVARIATE SPARSE INTERPOLATION USING FFTS

Geometric progression style algorithms for sparse interpolation admit the big advantage
that they have a sharp complexity with respect to L. However, if evaluations of f are
cheap, then the (log T)3 term in (11) may dominate L. In this section, we will investigate
a strategy to reduce the dependency in log T, at the price of O(1) more evaluations. The
idea is to more aggressively exploit the observations from sections 5.6 and 5.4. Alterna-
tively, we can regard our proposal as a careful adaptation of the cyclic extension approach
that allows us to replace evaluations over cyclic extensions by evaluations over K itself.

6.1. Fast evaluation modulo xr −1

For a fixed parameter 𝜏 that we control and a modulus r close to 𝜏T, let us first study how
to evaluate f (x) efficiently modulo xr − 1. Instead of evaluating f at only 2T − 1 points
1,𝜔, . . . ,𝜔2T−1 for a primitive r-th root of unity 𝜔 (as in step 2 of Algorithm 4), we rather
evaluate f at all r-th roots of unity 1,𝜔, . . . ,𝜔r−1. The advantage is that we may then use
FFT-based techniques as a replacement for the remaining steps of Algorithm 4.

Moreover, if K=𝔽q and 𝜔 lives in an extension K̂=𝔽qs of K, then it suffices to eval-
uate f at only ∼r/s points in order to determine all values f (1), . . . , f (𝜔r−1) using the
Frobenius map. Recovering f (x) modulo xr −1 from these values can also be done effi-
ciently using the inverse Frobenius FFT [23].

Algorithm 5
Input: a black box polynomial f (x) over 𝔽q and 𝜔∈𝔽qs of order r∈ℕ
Output: a polynomial f ∗∈𝔽q[x] of degree <r with f = f ∗ modulo xr −1

1. Let Ω be a section of {1,𝜔, . . . ,𝜔r−1} under the Frobenius map 𝜙 that is
suitable for the Frobenius DFT.

2. Compute f (𝜉) for each 𝜉 ∈Ω.

3. Compute the coefficients of f ∗ by applying one inverse Frobenius DFT
of order r to ( f (𝜉))𝜉∈Ω and return f ∗.

Assuming for simplicity that |Ω| =Θ(r/s) and that the computation of an inverse
Frobenius DFT is Θ(s) times faster than the computation of a full DFT, we note that the
cost of one run of Algorithm 5 is bounded by

O♭(((((((((((L+log T)T𝜏
Mq(s)

s )))))))))). (14)

6.2. Recombination into approximate sparse interpolations

If D≫T and q⩾T, then we wish to apply a similar strategy as in section 5.6 and recom-
bine the values of f (x) rem (xr−1) for various moduli r= r1, . . . , rl. This time, in order to
perform step 1 of Algorithm 3 using Algorithm 5, we need the orders r1, . . . , rl to be close
to T. With 𝜏≈1 as in section 4.4, we thus assume r1=𝜏1T, . . . , rl=𝜏l T with 𝜏1, . . . , 𝜏l≈
𝜏≈1. As in section 5.6, we also impose the condition that lcm (rk1, . . . , rk𝜈)>D for any
1⩽k1< ⋅ ⋅ ⋅ <k𝜈⩽ l. Ideally speaking, we have 𝜈≈logD/log T and l≈𝜈/(1−e−𝜏).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17



Under these conditions, thanks to (14), the overall running time of Algorithm 3 is
bounded by

O♭(((((((((((L+log T)T((((((((((𝜏1Mq(s1)
s1

+ ⋅ ⋅ ⋅ +𝜏l
Mq(sl)

sl )))))))))))))))))))). (15)

When using naive arithmetic with Mq(s)=O♭(s2 log q) and assuming that si=O(i), this
bound simplifies into

O♭(((((((((((L+log T)T(((((((((( logD
log T ))))))))))

2
log q)))))))))).

Due to our hypothesis that l≈𝜈/(1−e−𝜏) and the analysis from section 4.4, we can still
expect the algorithm to return about half of the terms of f .

Remark 4. If q<T, then we need to replace K by an extension of degree at least deg T/
deg q before being able to diversify f , without being able to profit from the Frobenius
map. This leads to an incompressible overhead of deg T/deg q. Nevertheless, in the
special case when the exponents e1,...,et are already known, the matching step 4 of Algo-
rithm 3 can be simplified, and working over an extension can be avoided.

6.3. Example over 𝔽2

In order to apply Algorithm 3 as in the previous section, we need primitive roots of unity
of suitable orders r1, . . . , rl in algebraic extensions of 𝔽q. Although we have no general
theory, it is instructive to study a few practical examples in order to gain insight what
we may reasonably hope for. In this section, we consider the case when q=2, T=106,
and D=1018.

First of all, we need to replace𝔽q by a sufficiently large extension𝔽q′ in order to diver-
sify f (at least in the weak sense from the end of section 4.2.3). Since it is favorable to take

q′>log 106/log 2≈20

as smooth as possible, we opt for q′=30. For k=1,2, . . . , we next take our orders rk≈106
with rk | (q30sk −1) and sk as small as possible, and such that

Λk≔lcm(r1, . . . , rk)
is as large as possible:

s1 = 1 r1 = 1549411 = 31 ⋅151 ⋅331 Λ1 ≈ 1.5 ⋅106

s2 = 2 r2 = 1047553 = 13 ⋅61 ⋅1321 Λ2 ≈ 1.6 ⋅1012

s3 = 3 r3 = 1701703 = 73 ⋅23311 Λ3 ≈ 2.8 ⋅1018

s4 = 3 r4 = 1186911 = 32 ⋅ 11 ⋅19 ⋅631 Λ4 ≈ 3.2 ⋅1024

s5 = 4 r5 = 1048577 = 17 ⋅61681 Λ5 ≈ 3.4 ⋅1030

s6 = 4 r6 = 1729175 = 52 ⋅ 7 ⋅ 41 ⋅241 Λ6 ≈ 5.9 ⋅1036

s7 = 5 r7 = 1016801 = 251 ⋅4051 Λ7 ≈ 6.0 ⋅1042

s8 = 5 r8 = 1082401 = 601 ⋅1801 Λ8 ≈ 6.5 ⋅1048

s9 = 5 r9 = 1108811 = 11 ⋅100801 Λ9 ≈ 6.6 ⋅1053

s10 = 6 r10 = 1134021 = 3 ⋅7 ⋅54001 Λ10 ≈ 3.6 ⋅1058

Taking 𝜏=1, we obtain 𝜈≈18/6=3 and l≈𝜈e. To be on the safe side, we take l=10. The
minimum least common multiple of three (resp. four) orders among r1, . . . , r10 is

lcm(r4, r9, r10)≈4.5 ⋅1016

18 SPARSE POLYNOMIAL INTERPOLATION



(resp. lcm(r4,r6,r9,r10)≈1.1 ⋅1022), so we have 𝜈=4. Notice that some of the 𝜏k=rk/T are
quite a bit larger than 𝜏, with an average of 𝜏′=(𝜏1+ ⋅ ⋅ ⋅ +𝜏10)/10≈1.26. For l=10 and
e−1/1.26 l≈4.52>𝜈 , we therefore consider it likely that the condition lcm(rk : k∈𝒦)>D
in step 4 of Algorithm 3 is satisfied with probability >1/2 (a rigorous analysis would be
welcome).

6.4. Example over 𝔽1299743

As our second example, consider the case when q=1299743 (as in section 2), T=106,
and D=1018. This time 𝔽q contains at least T elements, so we may directly work over 𝔽q.
Proceeding as in the previous subsection, we may now take:

s1 = 1 r1 = 1299742 = 2 ⋅649871 Λ1 ≈ 1.3 ⋅106

s2 = 2 r2 = 1299744 = 25 ⋅ 32 ⋅ 4513 Λ2 ≈ 8.4 ⋅1011

s3 = 4 r3 = 1006325 = 52 ⋅ 40253 Λ3 ≈ 8.5 ⋅1017

s4 = 4 r4 = 1678714 = 2 ⋅193 ⋅4349 Λ4 ≈ 7.1 ⋅1023

s5 = 5 r5 = 1690111 = 701 ⋅2411 Λ5 ≈ 1.2 ⋅1030

s6 = 6 r6 = 1119937 = 7 ⋅13 ⋅31 ⋅397 Λ6 ≈ 1.4 ⋅1036

s7 = 8 r7 = 1196324 = 22 ⋅ 17 ⋅73 ⋅241 Λ7 ≈ 4.0 ⋅1041

s8 = 9 r8 = 1185702 = 2 ⋅3 ⋅72 ⋅ 37 ⋅109 Λ8 ≈ 1.1 ⋅1046

s9 = 10 r9 = 1376122 = 2 ⋅11 ⋅71 ⋅881 Λ9 ≈ 7.8 ⋅1051

s10 = 11 r10 = 3423619 = 23 ⋅148853 Λ10 ≈ 2.7 ⋅1058

With 𝜏=1, l=10, and 𝜈=4 as before, the minimum least common multiple of 𝜈 orders
among r1, . . . , r10 is lcm (r2, r6, r7, r8)≈1.2 ⋅ 1022. Again, the “effective” mean value 𝜏′=
(𝜏1+ ⋅ ⋅ ⋅ +𝜏10)/10≈1.5 satisfies e−1/𝜏′ l≈5>𝜈.

Notice that sk approximately grows like sk≈1.1 ⋅ k. On the first example from the
previous subsection, we rather have sk≈0.7 ⋅k. This suggests that the growth of sk might
often be somewhat above (log T/log q)k.

As an optimization, we also notice that it should be better to take 𝜏k=rk/T somewhat
larger for small values of s, so as to balance the terms 𝜏kMq(sk)/sk in the sum (15). For
instance, the last number r10 is quite a lot larger than T; it should be more efficient to
resort to a larger extension degree s10=13 and take r10=1220444=22 ⋅ 305111. Another
option would be to include s3′ =3 and r3′ =6680137. In addition, by increasing r3 and r4,
it might also be possible to take l=9.

6.5. Sparse interpolation over the rationals

As mentioned in the introduction, one important application of sparse interpolation over
finite fields is sparse interpolation over the rational numbers. In that case, we typically
combine sparse interpolation over different prime fields 𝔽q for which q−1 is divisible by
a high power of two.

We usually proceed in two stages. We first determine the exponents e1, . . . , et of f
(typically using a few primes q only). Once the exponents are known, the computation
of the coefficients modulo further primes q (typically many ones) becomes more efficient.
We finally use the Chinese remainder theorem and rational number reconstruction to
determine the actual coefficients.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 19



The techniques from this section may help to accelerate both stages. If f is normally
sparse, then we may directly apply the algorithms from above to find the exponents. If f
is supersparse, then we will now present a multimodular variant of the strategy from
section 3.2. Given a number r⩾T, the aim is to determine with high probability those
exponents ei such that ei≠ej for all j≠ i and use this to reconstruct an approximate sparse
interpolation of f . We next apply Algorithm 1.

So let r⩾ T be fixed and consider successive prime numbers q1, q2, . . . for which
qk − 1 is divisible by r. Let l be minimal such that q1 ⋅ ⋅ ⋅ ql>D. We first compute
f [qk,r]≔( f mod qk) rem (xr − 1) for k=1, . . . , l using Algorithm 5. We next reconstruct
( f mod q1 ⋅ ⋅ ⋅ ql) rem (xr − 1) using Chinese remaindering. In a similar way, we com-
pute (xf ′ mod q1 ⋅ ⋅ ⋅ ql) rem (xr−1). For any coefficient cixei of f such that cj≠ci modulo r
for all j≠ i, we thus obtain both coefficients ci and ci ei modulo q1 ⋅ ⋅ ⋅ ql. Whenever
gcd (q1 ⋅ ⋅ ⋅ ql, ci)= 1, this allows us to retrieve ei. By considering a few more primes
ql+1, . . . , ql+𝛿 for sanity checking, we may thus compute ei with high probability. The
running time of this algorithm is bounded by O♭((L+log T)T logD).

If the exponents e1, . . . , et are known, then we may also use the techniques from this
section to further speed up the computation of the coefficients fe1, . . . , fet. For this, let
t⩽r1⩽r2⩽⋅⋅ ⋅ be an increasing sequence of pairwise coprime numbers. Assume that the
numerators and denominators of the coefficients fei are bounded by B with log B= o(t),
and assume that rk=O(t) for the first O(log B) terms of the sequence (rk). For each k, let
qk be the smallest prime number such that rk divides qk −1.

Starting with 𝒦1= ⋅⋅ ⋅=𝒦 t=∅, we now repeat the following loop for k=1,2, . . . until
∏k∈𝒦 i

qk>B2 for all i=1, . . . , t:

• We compute ( f mod qk) rem (xrk −1) using Algorithm 5.
• For i=1, . . . , t, if ei≠ ej modulo rk for all j≠ i, then set 𝒦 i≔𝒦 i∪{k}.

At the end of this loop, for i=1,...,t, we may recover the coefficient fei from the coefficients
of xeiremrk in ( f mod qk) rem (xrk − 1), where k runs over 𝒦 i. With high probability, this
algorithm runs in time O♭((L+log t) t log B), modulo the heuristic Hred.

6.6. Further remarks
The FFT based technique from this section is intended to be used in combination with
a probabilistic recombination method such as Algorithm 3 or the technique from the
previous subsection. In the most favorable case when we are always able to pick r close
to T, we have seen that approximately T/e terms of f are expected not collide modulo
xr − 1. This means that we have evaluate f at least eT times in order to determine its
sparse interpolation. Recall that only 2T−1 evaluations were required with Algorithm 4.
An interesting question is whether there exist any compromises or improvements.

One idea is to exploit colliding terms better. For instance, assume that we are com-
puting f [rk]≔ f mod (xrk − 1) for various moduli rk and that f [r1] contains a term that
comes from the sum of exactly two terms ci xei and cj xej with ei≡ ej modulo r1. Now sup-
pose that we are able to determine ci xei from the reductions f [rk] for a few other moduli
rk≠ r1. Then we might reuse f [r1] to compute the term cj xej using a simple subtraction.

Another idea is to optimize the (non-tangent) Graeffe transform variant of the geo-
metric progression method. With the notations from section 5.1, we have seen how to
achieve a complexity of O♭((L+(log T)2 log r2) log q). When taking r2=To(1), this com-
plexity bound reduces to O♭((L+(logT)2) log q), whereas only about O(t/r2) terms of f
collide modulo xr −1.

20 SPARSE POLYNOMIAL INTERPOLATION



6.7. Conclusion
For functions f that can be evaluated “fast” (more specifically, this means that the (logT)3
term dominates the L term in the complexity bound (12) for geometric progression style
algorithms), it may be interesting to switch to the FFT-based approach from this sec-
tion. As a bonus, one may exploit the Frobenius map whenever we need to work over
an extension field of K. Under the assumption that D=TO(1) and that suitable orders
r1, . . . , rl as in section 6.2 indeed exist, this leads to the complexity bound

O♭(((((((((((L+log T)T(((((((((( logD
log T ))))))))))

2
log (qT))))))))))). (16)

We recall that this bound hides an increased constant factor with respect to (12), so geo-
metric progression based algorithms should remain faster whenever L≻(log T)2 logD.
Under the assumption that D=TO(1), we also notice that (16) is always better than (8).
However, cyclic extension methods should remain faster in the supersparse case. One
noticeable exception concerns sparse interpolation over the rationals, in which case we
may use the approach from section 6.5.

7. MULTIVARIATE SPARSE INTERPOLATION

In this section we focus on the case when f is a multivariate polynomial in K[x1, . . . ,xn]
given as a black box function. In sections 7.1 and 7.2, we first survey the well-known
technique of Kronecker segmentation and known multivariate variants of Algorithm 4.
In section 7.3, we recall a technique that we introduced in [26] and in section 7.4 we list
a few generally useful ideas. In sections 7.5, 7.6, and 7.7 we propose a few new ideas for
particular situations.

7.1. Reduction to the univariate case using Kronecker segmentation
One first method for interpolating f is to reduce to the univariate case using Kronecker
segmentation. This reduction assumes that we have strict bounds degx1 f <D1,...,degxn f <
Dn for the partial degrees of f . Then we may consider the univariate polynomial

g(z)= f (z,zd1, . . . ,zd1⋅ ⋅ ⋅dn−1)

with deg g<D1 ⋅ ⋅ ⋅ Dn. We now compute the univariate sparse interpolation of g and
retrieve the sparse interpolation of f by mapping each term gi z i of g to the term
gi x1

iremd1x2
(iquod1)remd2 ⋅ ⋅ ⋅ xn

i remd1⋅ ⋅ ⋅dn−1 of f .

7.2. Generalizing algorithms based on geometric progressions
Another well known method for multivariate sparse interpolation is to adapt Algo-
rithm 4. Using the notation xk=x1

k1 ⋅ ⋅ ⋅ xn
kn for n-tuples k∈ℕn, we may still write

f = c1xe1+ ⋅ ⋅ ⋅ + ct xet.

For a suitable vector 𝜔∈K r, we again evaluate f at 𝜔k=𝜔1
k ⋅ ⋅ ⋅𝜔n

k for k=0, . . . , 2T−1, and
determine the roots𝜔−e1,...,𝜔−et ofΛ as in steps 3 and 4 of Algorithm 4 for the univariate
case. The only subtlety is that we need to chose𝜔 in a clever way, so that we can recover
the exponents e1, . . . , et from 𝜔e1, . . . ,𝜔et.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 21



In the case when K has characteristic zero, Ben-Or and Tiwari [8] proposed to pick
𝜔=(p1, . . . , pn), where p1=2, p2=3, p3=5, . . . is the sequence of prime numbers; see
also [19]. This clearly allows us to quickly recover each ei from𝜔ei through smooth prime
factorization. The approach still works for finite fields K of characteristic char K> pn

D.
With respect to Kronecker segmentation, the approach is interesting if the total degree D
is much smaller than the sum D1+ ⋅ ⋅ ⋅ +Dn of the partial degrees. Note that we really
need the weighted total degree

D′≔max {(ei)1 log p1+ ⋅ ⋅ ⋅ +(ei)n log pn : 1⩽ i⩽ t}

to be bounded by D′<log charK.
If K is a finite field, then we may still use a variant of this idea, which partially goes

back to [28]. Modulo going to a suitable field extension, we first ensure that K is of the
form K=𝔽qs, where q⩾n and s>D. For some primitive element u∈𝔽qs over 𝔽q and n
pairwise distinct points a1, . . . ,an∈𝔽q we then take 𝜔=(u−a1, . . . ,u−an).

For sparse interpolations on GPUs, modular arithmetic is often most efficient for
prime numbers of at most 23 or 31 bits. This may be insufficient for the interpolation
of very large polynomials with t≫232 and thereby force us to use K=𝔽q2 instead. In
that case, we may take 𝜔=(p1, . . . , pk,u − a1, . . . ,u − an−k) and a1, . . . , an−k∈𝔽q. We next
require the total degree of f in x1, . . . ,xk to be bounded by D with pk

D<q and we require f
to be linear in xk+1, . . . ,xn.

If one of the above techniques applies, then the complexity analysis is similar to the
one for the univariate case. Indeed, after the evaluation step 2 of Algorithm 4, the values
f (1), f (𝜔), . . . , f (𝜔2T−1) are in K, so steps 3, 4, and 6 can be applied without changes,
whereas the discrete logarithm computations in step 5 are replaced by cheaper factoriza-
tions. Under the assumption that we can find a suitable divisor r=r1r2 of q−1with r1≈T
and r2 smooth, this leads to a complexity bound of the form

O♭((L+(log T)3)T log (qT)). (17)

7.3. Multivariate interpolation by packets of coordinates
For m∈{1, . . . ,n−1} and a random point 𝛼∈Km, consider the specialization

𝜑(xm+1, . . . ,xn)≔ f (𝛼1, . . . , 𝛼m,xm+1, . . . ,xn).

With high probability on 𝛼1, . . . , 𝛼m, the support of 𝜑 coincides with the support of f
in x1, . . . ,xm. The knowledge of the support of 𝜑 may sometimes help with the computa-
tion of the support of f , which in turn facilitates its sparse interpolation. Since 𝜑 has less
variables, we may recursively use a similar strategy for determining the support of 𝜑.
This idea essentially goes back to Zippel [45] in the case when m=n−1 and was applied
successfully in [26] in combination with more modern algorithms for sparse interpola-
tion.

Let us show how to implement this strategy in the case when we know a bound D>m
for the total degree of f with respect to xm+1, . . . , xn. We first pick 𝛼= (𝛼m+1, . . . , 𝛼n) in
a similar way as 𝜔 in subsection 7.2: if char K=0 or char K> pn−m

D>m, then we take 𝛼≔
(p1, . . . ,pn−m); otherwise, we take 𝛼≔(u − a1, . . . ,u − an−m) with the notations from there.
The auxiliary function

g(x1, . . . ,xn)= f (x1, . . . ,xm, 𝛼m+1xm+1, . . . , 𝛼n xn)

22 SPARSE POLYNOMIAL INTERPOLATION



admits the property that the terms ci xei of f are in one to one correspondence with the
terms ci𝛼m+1

ei,m+1 ⋅⋅⋅𝛼n
ei,nxei of g (where ei, j≔(ei)j). Moreover, knowing both ci and ci𝛼m+1

ei,m+1 ⋅⋅⋅𝛼n
ei,n

allows us to compute ei,>m≔(ei,m+1, . . . , ei,n) through factorization.
For a suitable element 𝜔∈K of order r⩾T and suitable integers 𝜅1, . . . , 𝜅n>0, the next

idea is to compute

Φ(z) ≔ 𝜑(z𝜅m+1, . . . ,z𝜅n) rem (zr −1)
F(z) ≔ f (z𝜅1, . . . ,z𝜅n) rem (zr −1)
G(z) ≔ g(z𝜅1, . . . ,z𝜅n) rem (zr −1).

Mimicking Algorithm 4, we take r= r1 r2⩾2T as large as possible under the conditions
that r1=O(T) and r2 be smooth (ideally speaking, r1≍ r2≍T). We compute the poly-
nomial Λ, its roots, and the exponents 𝜅 ⋅ e1, . . . , 𝜅 ⋅ et modulo r as in Algorithm 4, which
allows us to recover F(z). We compute G(z) in a similar way (while exploiting the fact
that the polynomial Λ is the same in both cases with high probability). Now consider
some i∈{1, . . . , t} such that 𝜅 ⋅ ei≠𝜅 ⋅ ej modulo r and 𝜅⩽m ⋅ ei,⩽m≠𝜅 ⋅ ej,⩽m modulo r for
all j≠ i. Then we may recover ei,>m from the terms fi z𝜅⋅eiremr and fi 𝛼>m

ei,m z𝜅⋅eiremr of F(z)
and G(z). Moreover, 𝜅 ⋅ ei,⩽m rem r=(𝜅 ⋅ ei −𝜅 ⋅ ei,>m) rem r is an exponent of Φ (with high
probability). Since 𝜑 and Φ are both known, this allows us to recover ei,⩽m.

Instead of a geometric progression method, we may also opt for the approach from
section 6. In that case, we rather take an order r⩾T close to T, and we compute F(z) and
G(z) using Algorithm 5. With high probability, this only leads to a constant portion of
the exponents of f . By varying the choices of r and 𝜅, we may increase this portion until
we find all exponents.

This way of interpolating multivariate polynomials by packets of variables is par-
ticularly interesting if 𝜑 admits significantly less terms than T (so that the interpolation
of 𝜑 only requires a small portion of the total time) and D>m is small. In that case, we
can typically avoid expensive field extensions as considered in sections 5.3, 6.3, and 6.4.
If K=𝔽q is a finite field with q⩾T, this leads to a complexity of O♭((L+(log T)3)T log q)
for the geometric progression method and O♭((L+log T)T log q) when using FFTs (but
with a larger constant factor for the dependency on L).

Remark 5. The algorithms in this subsection rely on the prime factoring approach from
section 7.2. It is also possible to use Kronecker segmentation for the next packet of vari-
ables: see [26]. Notice that Kronecker segmentation is mainly useful in combination
with geometric progression style algorithms. It combines less well with the FFT based
approach, except when m=n − 1 and the coefficients of f with respect to x1, . . . , xm are
dense polynomials in xn.

7.4. Gathering information
In the previous subsections, besides a bound on the total degree D, we have also used
bounds on the partial degrees D1,...,Dn and the total degree D>m with respect to a packet
of variables {xm+1, . . . ,xn}. More generally, for the sparse interpolation of a large multi-
variate polynomial f , it is a good idea to first gather some general information about f .
This can often be done quickly and the information can be used to select a fast interpola-
tion strategy for the specific polynomial at hand. For instance, in the previous subsection,
it may help finding a packet of variables {xm+1, ... ,xn} that leads to optimal performance.

Let us now describe a few probabilistic methods to gain information about f .
Zero test We may test whether f =0 through one evaluation at a random point 𝛼∈Kn.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23



Constant test We may test whether f ∈K through one more evaluation at a random
point 𝛽∈Kn with 𝛽≠𝛼, by checking whether f (𝛼)= f (𝛽).
Linearity test We may test whether f is linear through a third evaluation at the point 𝛾=
(1−𝜆)𝛼+𝜆𝛽 for a random 𝜆∈K∖{0,1}, by checking whether f (𝛾)=(1−𝜆) f (𝛼)+𝜆 f (𝛽).
Small total degree More generally, if the total degree d of f is small, then we may deter-
mine this degree d using d+1 evaluations of f : we first set g(z)≔ f (𝛼1 z, . . . , 𝛼n z) for
random 𝛼1, . . . , 𝛼n∈K∖{0} so that d=deg g. For 𝜔∈K∗ of order >d, we then compute
g(𝜔i) for i=0,1,2,. . . until Gi−1(𝜔i)=g(𝜔i) for the unique polynomial Gi−1 of degree i−1
with g(𝜔 j)=Gi−1(𝜔 j) for j=0, . . . , i−1. At that point, we have i=d.

Small partial degrees The above method generalizes to the case when we wish to deter-
mine the degree of f with respect to all variables in a subset S of {x1,...,xn}. Indeed, modulo
renaming variables, we may assume S={x1, . . . ,xm}. We then take g(z)≔ f (𝛼1z, . . . , 𝛼m z,
𝛼m+1, . . . , 𝛼n).
Number of terms We can obtain a rough estimate for the number t of terms of f as
follows: for orders r that increase geometrically and random integers 𝜅1, . . . , 𝜅n>0, we
compute F(z)≔ f (z𝜅1, . . . ,z𝜅n) rem (zr −1). As soon as r exceeds t/log t, it becomes likely
that F contains less than r terms. This may be used to determine a rough estimate of t
using O(t/log t) instead of O(t) evaluations.

Active variables We may recursively compute the set of variables xi that occur in f
as follows. If f is constant, then we return ∅. If f is not constant and n=1, then we
return {x1}. Otherwise, we pick a random 𝛼∈K and consider g(x1, . . . ,xm)≔ f (x1, . . . ,xm,
𝛼m+1, . . . , 𝛼n) with m≔⌊n/2⌋, as well as h(xm+1, . . . ,xn)≔ f (𝛼1, . . . , 𝛼m, xm+1, . . . , xn). We
recursively apply the method to g and h, and return the union of the output sets. This
method uses at most ⌈log2 n⌉ s evaluations of f for an output set of size s.

Linear cliques A linear clique is a subset S⊆{x1, . . . ,xn} of variables such that f is linear
with respect S. Is it possible to quickly determine a maximal linear clique? Setting X=
{xi :deg fxi⩽1} we must clearly have S⊆X and we may always put all inactive variables
inside S. Although we do not have an algorithm to compute a maximal linear clique, the
following randomized algorithm should be able to produce reasonably large ones for
practical purposes (especially if we run it several times). Starting with S≔∅, we iterate
over all elements xi∈X in a random order, and add a new xi to S whenever f remains
linear with respect to S∪{xi}. Notice that this algorithm only requires 3 |X| evaluations
of f .

Low degree packets More generally, we may use a variant of the linear clique algo-
rithm to find large packets of variables S⊆{x1, . . . , xn} with respect to which f admits
a small total degree. This is the kind of packets that we need in section 7.3 (by taking
{xm+1, . . . ,xn}≔S after a suitable permutation of indices).

More precisely, for a finite field K=𝔽q of size q, assume that we wish to compute
a packet S of size s (as large as possible) such that the total degree dS of f with respect
to S satisfies ps

dS<q. During the algorithm, we maintain a table that associates a degree 𝛿i
to each variable xi. The table is initialized with 𝛿i≔degxi f for each i. Starting with S≔∅
we now repeat the following steps. We reorder indices such that S= {x1, . . . , xs} and
𝛿s+1⩽⋅⋅⋅⩽𝛿n. For i= s+1,s+2,. . . , we replace 𝛿i≔degS∪{xi} f and stop as soon as i=n or
𝛿j⩽𝛿i+1 for some j∈{s+1, . . . , i}. We then determine the index j∈{s+1, . . . , i} for which
𝛿j is minimal. If ps+1

𝛿j <q, then we add xj to S and continue; otherwise, we abort the main
loop and return S.

24 SPARSE POLYNOMIAL INTERPOLATION



During the loop, we may also remove all variables xi for which 𝛿i exceeds log q/
log ps+1. With this optimization, the number of evaluations of f always remains bounded
by O(n2 log q).

7.5. Packets of total degree one
Let us now consider the interesting special case when there exist a non-trivial linear
clique {xm+1, . . . ,xn} and assume that we know the support of f with respect to x1, . . . ,xm.
Then the derivation strategy from section 3.2 yields an efficient interpolation method
for f , even if charK is small. Indeed, in that case, we may write

f = g0(x1, . . . ,xm)+ g1(x1, . . . ,xm)xm+1+ ⋅ ⋅ ⋅ + gn−m(x1, . . . ,xm)xn,

where gm+i=∂ f /∂xm+i for i=1, . . . ,n−m. The idea is to jointly interpolate g0,g1, . . . ,gn−m
using the fact that the vector v≔(g0, g1, . . . , gn−m) can be evaluated fast using automatic
differentiation. As usual, we may either rely on a geometric progression style approach
or on more direct FFTs.

When using a geometric progression style approach, we assume that T2≺ q and let
𝜔∈K denote a primitive (q−1)-th root of unity. We pick random integers 𝜅1, . . . , 𝜅m>0
and set V(z)≔v(z𝜅1, . . . ,z𝜅m). With high probability, the known exponents e1, . . . , eu of V
are pairwise distinct modulo q−1. We now compute V(1),...,V(𝜔u−1) and interpolate the
coefficients of V using transposed multipoint interpolation. This yields V and v in time

O♭((L+(log u)2)u log q). (18)

When using FFTs, we rather take an r-th primitive root of unity with r | (q−1) close to u
and only obtain a constant proportion of the coefficients of v; applying the same method
for different values of r, this leads to a runtime of O♭((L+log u)u log q), with a higher
constant factor with respect to L.

Example 6. Consider the sparse interpolation of the determinant f =det of an n×n matrix
with generic coefficients (xi, j)1⩽i, j⩽n. Then the variables x1,1, . . . , x1,n form a (maximal)
linear clique. When specializing these variables by random elements in K, we obtain
a new function 𝜑 for which the variables x2,1, . . . , x2,n form a (maximal) linear clique.
And so on for the successive rows of the matrix. Notice that the specialization of all
variables xi, j with i⩽k has a support of size n!/k!.

Using the geometric progression strategy of complexity (18) in a recursive manner, it
follows that we can compute the sparse interpolation of f in time

O♭((((((((((((((((((
( �
1⩽k⩽n

��n3+�log n!
k! �

2
� n!

k! � log q))))))))))))))))))
)=O♭((n3+(log n!)2)n! log q)=O♭(n3n! log q).

Notice that the traditional geometric progression method (of complexity (17)) takes time

O♭((n3+(log n!)3)n! log q)=O♭(n3(log n)3n! log q).

7.6. Multivariate FFTs
Instead of evaluating F(z)≔ f (z𝜅1, . . . , z𝜅n) rem (zr − 1) using Algorithm 5 for random
integers 𝜅1,...,𝜅n>0 and a suitable modulus r ∣ (q−1), the multivariate setting also allows
us to consider multivariate FFTs. To do so, we use moduli r1,...,rm | (q−1) and an integer
matrix (𝜅i, j)i⩽n, j⩽m, and then take

F(z1, . . . ,zm)≔ f (z1
𝜅1,1 ⋅ ⋅ ⋅ zm

𝜅1,m, . . . ,z1
𝜅n,1 ⋅ ⋅ ⋅ zm

𝜅n,m) rem (z1r1−1, . . . ,zm
rm −1).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 25



Moreover, the ri and 𝜅i, j should be chosen in such a way that r≔ r1 ⋅ ⋅ ⋅ rm is close to T, the
linear map

ℤn →→→→→→→→→→→→→
𝜓

ℤ/r1ℤ× ⋅ ⋅ ⋅ ×ℤ/rmℤ
(e1, . . . , en) ⟼ (e1𝜅1,1+ ⋅ ⋅ ⋅ + en𝜅n,1, . . . , e1𝜅1,m+ ⋅ ⋅ ⋅ + en𝜅n,m)

is surjective, and the exponents in the support of f are mapped to essentially random
elements in im 𝜓. This generalization admits the advantage that the ri do not need to be
coprime, which may help to avoid working over large extensions 𝔽qs if D≫T. It would
be interesting to generalize the Frobenius FFT to this multivariate setting.

7.7. Symmetries

Is it possible to speed up the interpolation if f admits symmetries? As a simple example,
let us consider the trivariate case with f (x1,x2,x3)= f (x2,x1,x3). It is easy to detect such
a symmetry by checking whether f (𝛼1, 𝛼2, 𝛼3)= f (𝛼2, 𝛼1, 𝛼3) for a random point 𝛼∈K3.
When using multivariate FFTs as in the previous subsection, the idea is to pick parame-
ters ri and 𝜅i, j of the form

F(z1,z2,z3)≔ f (z1z3
𝜅1,3,z2z3

𝜅1,3,z1
𝜅3,1z2

𝜅3,1z3
𝜅3,3) rem (z1r1−1,z2r1−1,z3r3−1),

so that F is still symmetric with respect to z1 and z2. Now let 𝜔1, 𝜔3∈K be primitive
roots of unity of orders r1 and r3. In order to evaluate of F at all points (𝜔1

i1, 𝜔1
i2, 𝜔3

i3)
with i1, i2=0, . . . , r1− 1 and i3=0, . . . , r3− 1, it suffices to consider the points with i1⩽ i2,
thereby saving a factor of almost two. We may recover the coefficients of F using an
inverse DFT. This can again be done almost twice as efficiently as for non-symmetric
polynomials, using a method from [24]. Overall, we save a factor of almost two when
computing sparse evaluations using the FFT method. This approach should generalize
to more general types of symmetries, as the ones considered in [24].

7.8. Conclusion

In order to interpolate a multivariate polynomial f , it is recommended to first gather
useful information about f , as described in section 7.4. With this information at hand,
we may then opt for a most appropriate interpolation strategy:

• If f admits special properties, then we may wish to apply a dedicated algorithm,
such as the linear clique strategy from section 7.5 or the symmetric interpolation
strategy from from section 7.7.

• Whenever D1 ⋅ ⋅ ⋅Dn<q−1, Kronecker segmentation can be combined with any of
the univariate interpolation methods in order to obtain an efficient algorithm for
the interpolation of f .

• If D1 ⋅ ⋅ ⋅Dn⩾q−1, but f admits a reasonably small total degree, then we may use
a variant of the geometric progression style algorithm from section 7.2 in order to
interpolate f .

26 SPARSE POLYNOMIAL INTERPOLATION



• If f is normally sparse, but too large for one of the above strategies to apply, then
interpolation by packets is a powerful tool. It typically allows us to reduce to
the most favorable cases from sections 5 and 6 when we do not need any field
extensions of 𝔽q (except when q<T or when q−1 admits not enough small prime
divisors). As in the univariate case, we may then opt for a geometric progression
style approach if (logT)3=O(L) and for an FFT based approach if L=o((logT)3).

• If f is supersparse, then we may use the strategy from section 6.5 over the ratio-
nals and fall back on a cyclic extension style algorithm when K is a given finite
field.

BIBLIOGRAPHY

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781–793, 2004.
[2] A. Arnold, M. Giesbrecht, and D. S. Roche. Sparse interpolation over finite fields via low-order roots

of unity. In ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Compu-
tation, pages 27–34. ACM Press, 2014.

[3] A. Arnold, M. Giesbrecht, and D. S. Roche. Faster sparse multivariate polynomial interpolation of
straight-line programs. J. Symbolic Comput., 75:4–24, 2016.

[4] A. Arnold and D. S. Roche. Multivariate sparse interpolation using randomized Kronecker substitu-
tions. In ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation,
pages 35–42. ACM Press, 2014.

[5] R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution. Bltn Mathcal
Biology, 51(1):125–131, 1989.

[6] R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes, II. Proc. of the London
Math. Soc., 83(3):532–562, 2001.

[7] W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22:317–330, 1983.
[8] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation.

In STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 301–309.
ACM Press, 1988.

[9] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In ISSAC '03: Proceedings of the
2003 International Symposium on Symbolic and Algebraic Computation, pages 37–44. ACM Press, 2003.

[10] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of equations and
computation of Padé approximants. J. Algorithms, 1(3):259–295, 1980.

[11] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations faster.
In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation,
pages 121–128. ACM Press, 1989.

[12] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields. Math.
Comp., 36(154):587–592, 1981.

[13] A. Díaz and E. Kaltofen. FOXFOX: a system for manipulating symbolic objects in black box representa-
tion. In ISSAC '98: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation,
pages 30–37. ACM Press, 1998.

[14] T. S. Freeman, G. M. Imirzian, E. Kaltofen, and Y. Lakshman. DAGWOOD: a system for manipulating
polynomials given by straight-line programs. ACM Trans. Math. Software, 14:218–240, 1988.

[15] S. Garg and É. Schost. Interpolation of polynomials given by straight-line programs. Theor. Comput.
Sci., 410(27-29):2659–2662, 2009.

[16] M. Giesbrecht and D. S. Roche. Diversification improves interpolation. In ISSAC '11: Proceedings of the
36th International Symposium on Symbolic and Algebraic Computation, pages 123–130. ACM Press, 2011.

[17] B. Grenet, J. van der Hoeven, and G. Lecerf. Randomized root finding over finite fields using tangent
Graeffe transforms. In ISSAC '15: Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation, pages 197–204. ACM Press, 2015.

[18] B. Grenet, J. van der Hoeven, and G. Lecerf. Deterministic root finding over finite fields using Graeffe
transforms. Appl. Algebra Engrg. Comm. Comput., 27(3):237–257, 2016.

[19] D. Y. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with polynomially
bounded permanents is in NC. In Proceedings of the 28th IEEE Symposium on the Foundations of Com-
puter Science, pages 166–172. IEEE Computer Society, 1987.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 27



[20] D. Harvey and J. van der Hoeven. Polynomial multiplication over finite fields in time O(n log n). Tech-
nical Report, HAL, 2019. http://hal.archives-ouvertes.fr/hal-02070816.

[21] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. J.
ACM, 63(6), 2017. Article 52.

[22] J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute. In Logic and algorithmic
(Zurich, 1980), volume 30 of Monograph. Enseign. Math., pages 237–254. Geneva, 1982. Univ. Genève.

[23] J. van der Hoeven and R. Larrieu. The Frobenius FFT. In M. Burr, editor, ISSAC '17: Proceedings of
the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pages 437–444. ACM
Press, 2017.

[24] J. van der Hoeven, R. Lebreton, and É. Schost. Structured FFT and TFT: symmetric and lattice polyno-
mials. In ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation,
pages 355–362. ACM Press, 2013.

[25] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial and series multiplication.
J. Symbolic Comput., 50:227–254, 2013.

[26] J. van der Hoeven and G. Lecerf. Sparse polynomial interpolation in practice. ACM Commun. Comput.
Algebra, 48(3/4):187–191, 2015.

[27] J. Hu and M. B. Monagan. A fast parallel sparse polynomial GCD algorithm. In ISSAC '16: Proceedings
of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 271–278. ACM
Press, 2016.

[28] M. A. Huang and A. J. Rao. Interpolation of sparse multivariate polynomials over large finite fields
with applications. In SODA '96: Proceedings of the seventh annual ACM-SIAM symposium on Discrete algo-
rithms, pages 508–517. Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathematics.

[29] Q. L. Huang and X. S. Gao. Sparse Polynomial Interpolation with Finitely Many Values for the Coef-
ficients. In V. Gerdt, V. Koepf, W. Seiler, and E. Vorozhtsov, editors, Computer Algebra in Scientific
Computing. 19th International Workshop, CASC 2017, Beijing, China, September 18-22, 2017, Proceedings.,
volume 10490 of Lecture Notes in Computer Science. Springer, Cham, 2017.

[30] Q.-L. Huang. Sparse polynomial interpolation over fields with large or zero characteristic. In Proc.
ISSAC '19, pages 219–226. ACM, 2019.

[31] M. Javadi and M. Monagan. Parallel sparse polynomial interpolation over finite fields. In M. Moreno
Maza and J.-L. Roch, editors, PASCO '10: Proceedings of the 4th International Workshop on Parallel and
Symbolic Computation, pages 160–168. ACM Press, 2010.

[32] E. Kaltofen. Computing with polynomials given by straight-line programs I: greatest common divi-
sors. In STOC '85: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pages
131–142. ACM Press, 1985.

[33] E. L. Kaltofen. Fifteen years after DSC and WLSS2 what parallel computations I do today: invited lec-
ture at PASCO 2010. In PASCO '10: Proceedings of the 4th International Workshop on Parallel and Symbolic
Computation, pages 10–17. ACM Press, 2010.

[34] E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational sparse multivariate polynomial inter-
polation. In ISSAC '90: Proceedings of the International Symposium on Symbolic and Algebraic Computation,
pages 135–139. New York, NY, USA, 1990. ACM Press.

[35] E. Kaltofen and W. Lee. Early termination in sparse interpolation algorithms. J. Symbolic Comput.,
36(3):365–400, 2003.

[36] E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for their evalua-
tions: greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic
Comput., 9(3):301–320, 1990.

[37] E. Kaltofen and L. Yagati. Improved sparse multivariate polynomial interpolation algorithms. In
P. Gianni, editor, Symbolic and algebraic computation. International symposium ISSAC '88. Rome, Italy,
July 4–8, 1988, volume 358, pages 467–474. Springer-Verlag, 1989.

[38] R. Moenck. Fast computation of GCDs. In STOC '73: Proceedings of the Fifth Annual ACM Symposium
on Theory of Computing, pages 142–171. ACM Press, 1973.

[39] H. Murao and T. Fujise. Modular algorithm for sparse multivariate polynomial interpolation and its
parallel implementation. JSC, 21:377–396, 1996.

[40] M. Okamoto. Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat.
Math., 10(1):29–35, 1959.

[41] R. Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur
celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures.
J. de l'École Polytechnique Floréal et Plairial, an III, 1(cahier 22):24–76, 1795.

[42] J.-J. Risler and F. Ronga. Testing polynomials. J. Symbolic Comput., 10(1):1–5, 1990.

28 SPARSE POLYNOMIAL INTERPOLATION

http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816
http://hal.archives-ouvertes.fr/hal-02070816


[43] D. S. Roche. What can (and can't) we do with sparse polynomials? In C. Arreche, editor, ISSAC '18:
Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pages 25–30.
ACM Press, 2018.

[44] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor-
matica, 7:395–398, 1977.

[45] R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, editor, Symbolic and Algebraic
Computation. Eurosam '79, An International Symposium on Symbolic and Algebraic Manipulation, Marseille,
France, June 1979, volume 72 of Lect. Notes Comput. Sci., pages 216–226. Springer-Verlag, 1979.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 29


	1. Introduction
	1.1. Complexity considerations
	1.2. Overview of the paper

	2. Preliminaries on finite fields
	3. General observations
	3.1. From partial to full interpolation
	3.2. Supersparse interpolation in large characteristic
	3.3. Conclusion

	4. Univariate interpolation using cyclic extensions
	4.1. Complexity analysis
	4.2. Survey of existing variants based on cyclic extensions
	4.2.1. Determining the exponents using Chinese remaindering
	4.2.2. Composite moduli
	4.2.3. Diversification

	4.3. An optimized probabilistic algorithm based on diversification
	4.4. Analysis of the expected number of correct terms
	4.5. Probabilistic complexity analysis
	4.6. Estimating the number of terms t
	4.7. Conclusion

	5. Univariate interpolation using geometric progressions
	5.1. Root finding
	5.2. Discrete logarithms
	5.3. Field extensions
	5.4. Exploiting the Frobenius map
	5.5. Traces
	5.6. Combining interpolations for several moduli r
	5.7. Conclusion

	6. Univariate sparse interpolation using FFTs
	6.1. Fast evaluation modulo x^r-1
	6.2. Recombination into approximate sparse interpolations
	6.3. Example over ᵓ퀅�
	6.4. Example over ᵓ퀅ဃ 逃逃瀃䀃�
	6.5. Sparse interpolation over the rationals
	6.6. Further remarks
	6.7. Conclusion

	7. Multivariate sparse interpolation
	7.1. Reduction to the univariate case using Kronecker segmentation
	7.2. Generalizing algorithms based on geometric progressions
	7.3. Multivariate interpolation by packets of coordinates
	7.4. Gathering information
	Zero test
	Constant test
	Linearity test
	Small total degree
	Small partial degrees
	Number of terms
	Active variables
	Linear cliques
	Low degree packets

	7.5. Packets of total degree one
	7.6. Multivariate FFTs
	7.7. Symmetries
	7.8. Conclusion

	Bibliography

