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EUROPHYSICS LETTERS 

Europhys. Lett., 11 (5), pp. 439-443 (1990) 

1 March 1990 

Renormalization Group for the Octagonal 
Quasi-Periodic Tiling. 
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(*) Laboratoire de Physique des Solides de Bellevue-CNRS 
92195 Meudon Cedex, France 
(**I Centre de Physique ThSorique, CNRS-Luminy, Case 907-CPT 
13288 Marseille Cedex 9 ,  France 
(***) UniversitS de Provence - Marseille, France 

(received 10 November 1989; accepted 3 January 1990) 

PACS. 71.20 - Electronic density of states determinations. 
PACS. 71.25 - Nonlocalized single-particle electronic states. 
PACS. 71.30 - Metal-insulator transitions. 

Abstract. - We study a renormalization group for a tight-binding Hamiltonian on the standard 
octagonal tiling. Our method can be generalized to  any self-similar quasi-crystal in 2D or even 
3D. In the limit of large potentials compared to the hopping parameters, there are numerical 
evidences that the spectrum is a Cantor set with zero Lebesgue measure. 

1. Introduction. 

Since the discovery of quasi-crystals, there has been a growing interest in the study of 
quasi-periodic tight-binding models. In one dimension by using a transfer matrix formalism, 
exact renormalization groups (RG) were found [l]. Moreover, an alternative operator 
treatment can be written[Z]. This last procedure is not specific to the 1D case, whereas 
other methods, though efficient in lD, have no generalization in higher dimensions. In lD, 
the spectrum measure is zero with an infinite number of gaps[3], whereas in ZD, it was 
found for a subtiling of the octagonal tiling (with an exact RG) that the spectrum can have 
any number of gaps and any measure, finite or not [4]. For the Penrose tiling, the spectrum 
seems to be singular [5,6], and there is no information about the measure. In the following, 
we apply an approached renormalization procedure to an Hamiltonian % defined on the 
standard octagonal quasi-periodic tiling (OQT), which is shown in fig. 1. For recent and 
general aspects on the OQT see [7] and references therein. 

2. Hamiltonian renormalization. 

The basis of our method is the use of the Schur formula: if 549 is the renormalized 
Hamiltonian and 43 is the projector on the set of vortices of the renormalized OQT, we have 

2x43, 2=1-43. (1) 1 x* = 43xXi-9 - 43x2 2x2 
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So, we first define a Hamiltonian X o n  the OQT. Then, after setting %= X- E ,  E is in 
the energy spectrum if the sequence of Hamiltonians defined by = 9Z-2 does not go to a 
fixed point including infinity. Since the OQT is a self-similar tiling, for 57 we choose the 
projection on the vertices of the standard deflated OQT. Let us stress that this choice is not 
unique and can turn out not to be the more efficient one. If we start with Xdepending on a 
finite number of parameters (on site potentials, hopping terms), one can see that S? will 
depend on an infinite number of such parameters. This is due to the fact that the deflated 
tiling does not disconnect the OQT (as it occurs in the 1D quasi-periodic chains). However, 
even if it did, starting with 5%- depending on a finite number of parameters, the 
renormalized Hamiltonians would depend on an increasing number of constants at each step. 
Thus, it seems that this problem cannot be solved exactly. So, in the following section we 
define a X f o r  which 9Z-* - 9Z-5 and X 8  has the same kind and number of parameters as 
537 

3. Hamiltonian on the OQT. 

Consider the acceptance zone of the OQT, which is the projection of the 4D-hypercube on 
the orthogonal 2D-space to the physical space (in the cut and project language [SI). This zone 
can be splitted into seven regions with eight-fold symmetry (fig. 1) which corresponds to five 
local environments with coordination 3, 4, 6 ,  7, 8 and two kinds of sites with coordination 5 
(fig. 2). For each kind of site x we define an on-site potential V,. In addition, we define three 
kinds of bonds t ,  t’ and r. r links the two nearest sites of each rhombus. t’ links a site c to a s 
or a q, and the t’s are the remaining bonds. Now, applying (1) we have 

where x is a site of the deflated OQT, y is the corresponding site in the original OQT (fig. 1) 

a) b )  

Fig. 1. - a) A finite part of the OQT. b) The octagonal acceptance zone of the OQT. We show the 
acceptance region for each kind of sites defined in fig. 2. 
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Fig. 2. - The seven kinds of sites e ,  r, m, p ,  q, s, e. 

and y1 and yz are the nearest neighbours of y, not belonging to the deflated OQT. Our 
assumption consists in replacing 2X2 by a local Hamiltonian only involving the nearest 
neighbours of y, and the links between them. Thus, we only have to inverse finite-size 
matrices and then recover exactly the same kind of Hamiltonian after renormalization. We 
find four relevant Hamiltonians (fig. 3).  Finally, we obtain the following results: 

V?=Vp-t" [;q -+- v , : r ] ,  

1, V ,  + V,  - r [ vsY r + v , ( v ,  + r) - v,*=vm-2t2 - 
(3)  

(V: (5Vs + 2VJ - 4rV, (2V, + V,) - r2 (5Vc + V ,  - 8r)) 
V: V,  - r2 Vc (3V8 + V,) + 2r4 

The four first renormalized on-site potentials are equal since their corresponding site 
acceptance zone is included into the acceptance zone of the e-sites after renormalization (fig. 
1). Moreover, the hopping parameter between two sites of the deflated OQT is derived by 
means of the same kind of approximation (fig. 3): 

2t't2 (ZV, - 3r) 



442 EUROPHYSICS LETTERS 

1 9  

s \ p / s  

\/ \I 
S s 

C )  

c@c s 

B 

el 

A 

- bond o f  type”t1” 
- - -  bond of  type ”r ” 

bond o f  type ” t ”  

Fig. 3. - The four relevant Hamiltonians are represented by means of the graphs a)-d). The three 
kinds of renormalized bonds (linking A and B) e)  t*, f )  t‘*, g)  r*, and their environment are also shown. 

One can show that this RG is exact if we formally set t 2 f 2  = t4  = t t 4  = 0. We can even make it 
simpler by setting r= 0 in (3), (3’). We have tested our RG on the following model. V, is 
taken equal to the coordination of site x and we set t’ = t ,  r = 0, and t goes from 0 to  - 1 (the 
Laplacian). When we iterate (3), (3’) or the projective version of (3), (3’) (for instance, we 
divide all parameters by V, and all renormalized parameters by V:), E is in the spectrum if 
the iteration of this dynamical system does not go to a fixed point. Numerically, we find that 
it never occurs so that the spectrum should have zero Lebesgue measure. So, numerically, E 
is said to be in the e-spectrum when the iteration with E - E and E + E goes to two different 
fixed points, with small E .  In fig. 4, we show such a spectrum. We see that near t = 0, the 

energy 

Fig. 4. - The spectrum of the Laplacian-like Hamiltonian defined in sect. 3. 
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bands are getting narrower, which is expected since at t = 0 the OQT splits into an assembly 
of atoms with energy 3 ,4 ,  5 ,6 ,  7 and 8. Moreover, the two widest bands correspond to c and 
s sites which are the most numerous ones, and thus, have the largest effective interaction. 
Moreover, with OUT approximation, the band starting from E = 7 cannot be seen. Since the 
corresponding environment is the rarest one (the r's are about IS), their effective coupling 
is very weak. Nevertheless, near t = 1, even if the sizes of the bands are very consistent 
with density arguments the lower edge of the spectrum is found to be E- - 0.8 instead of 
the exact value Edn = 0. (The upper edge is better given.) In order to test numerically our 
result, it would be necessary to compute the eigenvalues of a large matrix. We insist on the 
fact that numerical simulations should be made on periodic rational approximant of the 
OQT [7], in order to minimize boundary effects as those found in [5], for the Penrose tiling 
(extra molecular state due to undercoordinated sites on the boundary ...). 

4. Conclusion. 

In this paper, we exhibit an approached RG procedure which can be generalized to any 
self-similar quasi-crystal. In this approximation, we find that the spectrum measure is zero 
for a Laplacian-like model. One can introduce more renormalization constants and larger 
effective Hamiltonians to make the results more precise leading to a more complicated 
dynamical system. The complete study of the fixed points, a more precise RG, and some 
extra results (for the Penrose tiling) will be addressed in a paper to come. 

* * *  
It is a pleasure for us to thank M. DUNEAU, P. HAUGUEL and R. MOSSERI for fruitful 

discussions. 
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